
Characterization of Markovian equilibria in a
class of di)erential games

J.P. Rinc-on-Zapatero∗

Department of Applied Economics (Mathematics), University of Valladolid, Avda. Valle Esgueva 6,
47011 Valladolid, Spain

Abstract

We consider an alternative method to the classical one for the determination of Markov perfect
Nash equilibria. The approach shown in the paper is based on the study of a quasi-linear system
of partial di)erential equations instead of the Hamilton–Jacobi–Bellman system. The simpler
structure of the former allows us to determine existence and uniqueness of Nash equilibria in
non-renewable resource games under some assumptions. When closed-form solutions are not
available, we give a method to obtain numerical solutions.
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1. Introduction

The development of game theory has been spectacular in the recent years. In particu-
lar, one of the more promising discipline is di)erential game theory. In this framework,
it is supposed that interactions among rational agents take place instantaneously along
time. This facilitates the modelling of problems in biology, economics and engineering,
and allows us to obtain robust solutions.
As it is well established in the literature, the most relevant concept of solution in

a non-coperative game is Nash equilibrium. Generally speaking, open-loop strategies,
which are programmed for each player from the beginning of the game, lead to sub-
optimal decisions. Therefore, the Nash equilibrium obtained with these type of strategies
is not subgame perfect. On the other hand, with (non-stationary) Markov rules the
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decision of each player depends on time and the present value of the state variable.
This fact makes it possible for Nash equilibrium be subgame perfect, in such a way
that the players do not have incentives to deviate unilaterally at any stage of the game.
Traditionally, the characterization of Markovian equilibrium depends on the Hamilton–

Jacobi–Bellman (HJB) system of partial di)erential equations; see Friedman (1971) and
BaHsar and Olsder (1999). It is well known in the literature that if the value function of
each player is smooth enough, then it is a solution to the HJB system. However, the
system is in general non-linear. This fact can make its analytical as well as numerical
studies diIcult.
Our aim in this paper is to provide an alternative method for the study of a class of

di)erential games that are of relevance in some applications in Economics, as for ex-
ample, games of resource extraction. This new approach – which is, however, closely
related with the HJB system – was proposed in Rinc-on-Zapatero et al. (1998) for
the smooth case. There, a quasi-linear system of partial di)erential equations charac-
terizing Markov perfect Nash equilibrium (MPNE) was found using the Pontryagin’s
maximum principle. The scope of the approach was limited to games where the dimen-
sion of the state space equals the number of controls of each player, and the MPNE
is interior to the control region. Nevertheless, we were able to establish the existence
of MPNE in rather general di)erential games of non-renewable resources in Knite
horizon.
The main objective of this paper is to extend the results in Rinc-on-Zapatero

et al. (1998) to a non-smooth setting. We consider continuous and piecewise smooth
Markovian strategies and give suIcient conditions for their optimality. These suIcient
conditions are critically based on the following assumptions: (i) each player’s control
space has the same dimension as the state space of the system, and the control region
is unconstrained; (ii) the region of non-smooth points of each player’s control is con-
tained in a Knite union of curves in the graph of trajectories; (iii) the state equations
have a unique solution for each initial condition when piecewise–continuous feedback
controls are used; and (iv) the trajectory meets the region of non-smoothness at most
a Knite number of points.
The special structure of the quasi-linear equations gives more information than that

of a general equation of Krst order. This fact is exploited in this paper to obtain
new results on the joint exploitation of a non-renewable resource in a competitive
framework.
In Section 2, we present the types of di)erential games we consider and the deKnition

of MPNE. We also review some of the results from Rinc-on-Zapatero et al. (1998).
In Section 3, we establish the main result of the paper. We give suIcient conditions
which imply that a continuous and piecewise smooth solution of a quasi-linear system
of PDEs is an MPNE. In Section 4, we apply the results obtained in the previous
section to the study of symmetric, non-renewable resource games. In particular, we
prove the existence and uniqueness of MPNE when the discount rate is zero. We are
also able to Knd closed-form solutions in this case and perform a sensitivity analysis
of the solution with respect to variations in the number of players, residual function
and the intertemporal rate of substitution. The classical result that Markovian equilibria
are ineIcient is corroborated. We also include a numerical method – well known in
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the literature of quasi-linear equations – demonstrating the usefulness of our approach.
We conclude with the additional remarks of Section 5 and an Appendix.

2. Game description and preliminary results

We consider an N -person di)erential game over a Kxed time interval,

max
ui

{J i(x0; t0; u1; : : : ; uN ) =
∫ T

t0
Li(x; t; u1; : : : ; uN ) dt + Si(x(T ); T )};

s:t: ẋ = f(x; t; u1; : : : ; uN ); x(t0) = x0;

ui(t)∈Ui; ∀t ∈ [t0; T ]; U i a subset of Rn (1)

for i=1; : : : ; N . Here the functions Li, f and Si are assumed to be twice continuously
di)erentiable. The vectors x = (x1; : : : ; xn)T ∈Rn and ui = (ui1; : : : ; u

i
n)

T ∈Rn represent
the state and control variables for the ith player, respectively, where the superscript
T denotes the ‘transpose’. The function f satisKes a uniform Lipschitz condition with
respect to (u1; : : : ; uN ) and has linear growth with respect to x. We associate with each
ui a continuous and piecewise smooth function �i :Rn[t0; T ] → Ui such that ui(t) =
�i(x(t); t) and the dynamics (1) admits a unique solution. Hence we are considering
Markov strategies for the players. We denote by Ui the set of functions �i satisfying
the above conditions and let U=U1×· · ·UN . We refer to Ui as the set of admissible
controls of player i and to U as the set of admissible proKles.

The system

ẋ = f(x; t; �1(x; t); : : : ; �N (x; t)); x(t0) = x0

is the closed-loop system associated to the proKle �= (�1; : : : ; �N ). Let us denote by
y�(s; x; t), t6 s6 T the (unique) trajectory associated with the proKle � when the
initial condition is (x; t). Obviously y�(t; x; t) = x.
An N -tuple of strategies �̂∈U is an MPNE of the game if, for all i = 1; : : : ; N ,

J i(x; t; (�i|�̂−i))6 J i(x; t; �̂); ∀�̂i ∈Ui ; t ∈ [t0; T ]; x∈Rn;

where �̂−i =(�̂1; : : : ; �̂i−1; �̂i+1; : : : ; �̂N ) and (�i|�̂−i)= (�̂1; : : : ; �̂i−1; �̂i; �̂i+1; : : : ; �̂N ).
By deKnition, an MPNE is a Nash equilibrium whatever the initial condition is.

Hence, if the players play the MPNE proKle, then no player should have any incen-
tive, at any future stage of the game, to deviate unilaterally from this recommendation.
In contradistinction with the Nash equilibrium based on open-loop controls, the equi-
librium found with Markov controls allows us to instantaneously update the decisions
of the agents by means of the value of the state variable. In this way, Nash equilibrium
may enjoy the property of subgame perfection. However, it is important to note that
not all Nash equilibria based on Markov strategies are necessarily subgame perfect.

The standard approach adopted in the literature to determine MPNE is to solve the
HJB system of PDEs; see Friedman (1971) and BaHsar and Olsder (1999). In general,
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this system is non-linear, so its study and resolution are not easy, both from analytical
and computational points of view. The HJB system is

V i
t + Hi(x; t; u10(x; t;∇xV 1); : : : ; uN0 (x; t;∇xV N )) = 0; t06 t ¡T; (2)

V i(x; T ) = Si(x); x∈Rn; (3)

i = 1; : : : ; N , where Hi is the Hamiltonian of the ith player,

Hi(x; t; u1; : : : ; uN ; �i) = Li(x; t; u1; : : : ; uN ) + fT(x; t; u1; : : : ; uN )�i

with �i being his or her costate variable. The functions ui = ui0(x; t; �
i) are assumed to

be of class C1, and obtained from

Hi(x; t; u10(x; t; �
1); : : : ; uN0 (x; t; �

N ); �i) = max
ui∈Ui

H i(x; t; (ui|(u0)−i); �i):

A classical result of Friedman (1971, Theorem 8.2.3) states that if there is a solution
V to (2)–(3), of class C2, then �(x; t) = ui0(x; t; (∇xV 1; : : : ;∇xV N )) is of class C1 and
�= (�1; : : : ; �N ) is an MPNE.
In Rinc-on-Zapatero et al. (1998), we discussed another method to characterize MPNE,

based on a system of quasi-linear partial di)erential equations, intimately related with
the HJB system. In the quasi-linear system presented below the unknown is the proKle
of strategies of the players, whereas in the HJB system the unknown is the vector of
value functions of the players. However, the HJB approach applies without restrictions
on the dimensions of the controls and state variables, and allow us to handle also
constraints on the control variables.
In order to make the exposition more transparent, in the following we take n = 1,

although the results also hold without this assumption whenever the number of con-
trols of each player coincide with the dimension of the state space. By means of the
application of Pontryagin’s maximum principle, in Rinc-on-Zapatero et al. (1998) it is
proved that a smooth and interior MPNE must satisfy the following system of partial
di)erential equations:

Ĥ i
uit + Ĥ i

uixf +
N∑
j=1

Ĥ i
uiuj (�̂

j
t + �̂ j

x f) + Ĥ i
ui�i


−Ĥ i

x −
N∑
j=1

Ĥ i
uj �̂

j
x


= 0;

i = 1; : : : ; N; (4)

where Ĥ i
{·}(x; t; u) denotes Hi

{·} evaluated at (x; t; �̂;−(Liui =fui)(x; t; �̂)), and a vari-
able in subscript notation stands for partial di)erentiation. In Eq. (4), the independent
variables are x, t and the dependent ones are (�̂1; : : : ; �̂N ). In the system above the
costate variable of each player, �i, has been substituted by −Liui =fui . Of course, we are
assuming that fui �= 0.
The transversality condition established by the maximum principle and the maxi-

mization of the Hamiltonian function provides a set of Knal conditions for system (4)
given by

Liui(x; T; �̂) + fui(x; T; �̂)S
i
x(x; T ) = 0; i = 1; : : : ; N: (5)
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De�nition 1. Suppose that for all i=1; : : : ; N , fui �= 0. We say that �̂∈U satisKes the
Nash property if

Hi(x; t; (�i|�̂−i); �i(x; t; �̂))6Hi(x; t; �̂; �i(x; t; �̂))

for all t ∈ [t0; T ], x∈R, i = 1; : : : ; N and for all �i ∈Ui, where

�i(x; t; u) =−f−1
ui (x; t; u)Liui(x; t; u):

Remark 1. If Ui is convex and the Hamiltonians of the players are concave with
respect to their own control variable ui, then any proKle that is interior to U has the
Nash property.

In Rinc-on-Zapatero et al. (1998), it was proved that a C1 solution of (4), (5) being
an admissible proKle of strategies and verifying the Nash property, is an MPNE.

3. Main result

In this section, we will extend the suIcient condition established in the previous sec-
tion to non-smooth solutions of (4), (5). The value function of each player is deKned as

V i(x; t) =max
{∫ T

t
Li(y; s; (�i�̂−i)) ds+ Si(y(T ); T ) :

ẏ = f(y; s; (�i|�̂−i)); s∈ (t; T ); y(t) = x; �i ∈Ui
}
:

Theorem 1. Let �̂∈U be a continuous and piecewise smooth solution to (4), (5)
having the Nash property, such that fui(x; t; �̂) �= 0. Suppose further that the region
of non-smoothness of �̂i is a &nite union of curves: Ci

j={(x; t) : �ij(x; t)=0}, i=1; : : : ; N ,
j = 1; : : : ; mi, where

(i) �ij :R × [t0; T ] → R is C1 and �ijx(x; t)f(x; t; �̂) + �ijt(x; t) �= 0 for all (x; t)∈R ×
[t0; T ].

(ii) There exists a unique solution y�̂(s; x; t) of the dynamics for all initial conditions
(x; t); this trajectory meets the set C =

⋃N
i=1

⋃mi
j=1 C

i
j at most at a &nite number

of points.

Then, �̂ is an MPNE. Furthermore, the value function of each player satis&es

V i
x(x; t) = �i(x; t; �̂(x; t)); i = 1; : : : ; N:

Proof. The idea of the proof is to show that the costate variable of each player equals
the partial derivative of his value function with respect to the initial value of the state
variable. Given an initial condition (x; t) �∈ C, let us denote by �ij(x; t) a time point

when y�̂(s; x; t) meets Ci
j. An induction argument with respect to i; j easily shows that

y�̂ is C1 with respect to (s; x; t). To proceed further, we note that on the one hand
5



�ij(�
i
j(x; t); y

�̂(�ij(x; t); x; t)) = 0 by deKnition and, on the other hand, (i) implies

d
ds

�ij(y
�̂(s; x; t); s) = �ijx(dy

�̂=ds) + � i
js = �ijxf + �ijs �= 0:

Applying the Implicit Function Theorem to the equation

�ij(y
�̂(s; x; t); s) = 0; (6)

we arrive at the conclusion that (6) admits a C1 local solution s = �ij(x; t). Thus the

composition y�̂(�ij(x; t); x; t) is also smooth. Hence we can di)erentiate it with respect
to x.
Now let us denote the instants of time where y�̂ intercepts C by t=�0 ¡�1 ¡ · · ·¡

�q ¡�q+1 = T . We have

J i(x; t; �̂) =
∫ T

t
Li(y�̂(s; x; t); s; �̂(y�̂(s; x; t); s)) ds+ Si(y�̂(T ; x; t); T )

=
q∑

n=0

(∫ �n+1

�n
Li(y�̂(s; x; t); s; �̂(y�̂(s; x; t); s)) ds

)
+ Si(y�̂(T ; x; t); T ):

We can di)erentiate under integral sign to obtain

J i
x(x; t; �̂) =

q∑
n=0

(∫ �n+1

�n

9
9x Li(y�̂(s; x; t); s; �̂(y�̂(s; x; t); s)) ds

+ Li(�n+1; y�̂(�n+1; x; t); �̂(�n+1; y�̂(�n+1; x; t)))
9
9x �n+1

−Li(y�̂(�n; x; t); �n; �̂(y�̂(�n; x; t); �n))
9
9x �n

)

+
9
9x Si(y�̂(T ; x; t); T ):

As (9=9x)�0 = (9=9x)�q+1 = 0 and �̂ is continuous, we have

J i
x(x; t; �̂) =

∫ T

t

9
9x Li(y�̂(s; x; t); s; �̂(y�̂(s; x; t)); s) ds+

9
9x Si(y�̂(T ; x; t); T ):

Now, as it is shown in the proof of Theorem 4.1 in Rinc-on-Zapatero et al. (1998),
the last term in the above equality coincides with �i(x; t; �̂). It is at this point that we
use the fact that �̂ is a solution of (4), (5) when it is smooth.

To continue with the proof, let us denote by y(s) the trajectory associated with the
proKle �=(�i|�̂−i), where �i ∈Ui is arbitrary, and with initial condition (x; t). It then
follows that

d
ds

J i(y(s); s; �) = J i
t (y(s); s; �) + J i

x(y(s); s; �)f(y(s); s; �)
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and, by the deKnition of J i, J i
t (y(s); s; �) =−Li(y(s); s; �), so we have the identity

J i
t (y(s); s; �) + J i

x(y(s); s; �)f(y(s); s; �) + Li(y(s); s; �) = 0:

Taking in this equation �i = �̂i and replacing J i
x(y(s); s; �̂) by �i(y(s); s; �̂) we have

0 = J i
t (y(s); s; �̂) + �i(y(s); s; �̂)f(y(s); s; �̂) + Li(y(s); s; �̂)

= J i
t (y(s); s; �̂) + Hi(y(s); s; �(y(s); s; �̂); �̂)

¿ J i
t (y(s); s; �̂) + Hi(y(s); s; �(y(s); s; �̂); �)

= J i
t (y(s); s; �̂) + �i(y(s); s; �̂)f(y(s); s; �) + Li(y(s); s; �)

=
d
ds

J i(y(s); s; �̂) + Li(y(s); s; �)

with the inequality being due to the Nash property of �̂. After integration between t
and T we obtain the desired inequality J i(x; t; �̂)¿ J i(x; t; �), because J i(y(T ); T; �̂)=
Si(y(T ); T ).
To complete the proof, if (x; t)∈C, then it is possible to choose a sequence (xn; tn)

of points not in C converging to (x; t). By continuity, we can take limits in J i
x(xn; tn; �̂)

to arrive at the desired result.

Remark 2.

1. There exist results in the literature guaranteeing condition (ii) of the theorem; see
Fleming and Rishel (1975). These are in the context of single player games (i.e.,
optimal control problems) where the controls present surfaces of discontinuity. We
provide here a partial extension of these results to N -person games.

2. We establish here the connection between the HJB system and the quasi-linear
system. We take n = 1 to simplify the arguments, but the same holds in the mul-
tidimensional case as well. Let �̂ satisfy the hypotheses of Theorem 1. Then, the
value function of each player, V i, is given by

V i(x; t) =

x∫
�i(z; t; �̂(z; t)) dz; i = 1; : : : ; N;

where �i is deKned in DeKnition 1. It then follows that V i ∈C1;2 and (V 1; : : : ; V N )
satisfy the HJB equations:

V i
t (x; t) + max

ui∈Ui
{Li(x; t; (ui|�̂−i)) + V i

x(x; t)f(x; t; (u
i|�̂−i))}= 0; (7)

V i(x; T ) = Si(x; T ); (8)

which is shown next. It is readily seen that system (4) can be rewritten in the
conservative form

9
9t �

i(x; t; �̂(x; t)) +
9
9x Hi(x; t; �̂(x; t)) = 0; i = 1; : : : ; N; (9)
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where Hi = Li +�if. Integrating with respect to x in (9) and interchanging di)er-
entiation and integration, we have

9
9t

x∫
�i dz +Hi = V i

t +Hi = 0; (10)

where we have suppressed the arguments. Hence

V i
t (x; t) + Li(x; t; �̂) + V i

x(x; t)f(x; t; �̂) = 0 (11)

because �i(x; t; �̂(x; t)) = V i
x(x; t). But from the Nash property of �̂,

Li(x; t; �̂) + V i
x(x; t)f(x; t; �̂)¿Hi(x; t; (ui|�̂−i); V i

x) (12)

for all i = 1; : : : ; N , for all ui ∈Ui. Therefore, (11) and (12) imply (7). The Knal
condition (8) is trivially fulKlled by construction.
Equality (10) admits a useful interpretation. It expresses a balance equation with
the following meaning: the time variation of

∫ b
a �i dz is equal to −Hi|ba, where

a; b∈R. As shown in Theorem 1, �i is the shadow price of the state variable x
for player i. On the other hand, Hi, the maximized Hamiltonian, is the sum of
the instantaneous payo) and the future value of x at the ‘price’ �i, that is to say,
the overall payo) due to the MPNE �̂ by considering present and future e)ects of
playing �̂. Hence the time variation of the accumulated shadow price in the interval
a6 x6 b equals minus the di)erence between overall payo)s obtained for player i
in [a; b].

3. The proof of the theorem shows that �̂ is also an MPNE with respect to an en-
larged class of feedback rules, possibly discontinuous. Let us observe that it is only
the continuity of �̂ that is used in the proof. The remaining strategies could be
discontinuous, provided that the dynamics admit a well-deKned solution.

4. Application to non-renewable resource games

In this section, we apply the above result to the problem of optimal management
of a natural resource. This is a classical problem in the economics literature and has
received much attention during the last 20 years; see Levhari and Mirman (1980),
Clemhout and Wan (1985), Benhabib and Radner (1992) and Sorger (1998). The
problem is generally cast in the inKnite-horizon framework. When the problem is au-
tonomous, this framework leads to consider stationary strategies which facilitate the
analysis.
Now suppose that N agents exploit on a bounded time horizon a non-renewable

resource which is of common property. The evolution of the resource obeys the dif-
ferential equation

ẋ =−
N∑
i=1

ui; x(0) = x0 ¿ 0; (13)
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where x0 is the total quantity of the resource. The rate of depletion for player i is ui

which is assumed to be nonnegative. The payo) function is given by

Ji(0; x0; u) =
∫ T

0
exp (−rit)Li(ui) dt + exp (−riT )Si(x(T )); 0¡T ¡∞; (14)

where u = (u1; : : : ; uN ). We consider feedback strategies �i, admissible in the sense
of Section 2. We need to add the condition �(0; t) = 0 in view of the non-negativity
constraints placed over the state variable and the controls of the players. The instan-
taneous utility function of the ith player is Li; ri¿ 0 and Si denote, respectively, the
preference rate and the residual value of the resource.

We wish to show the existence of an MPNE of the game (13), (14) and study its
qualitative properties. We suppose that all players have identical tastes and we look
for a symmetric MPNE, �̂1 = · · ·= �̂N = �̂. Hence Li=L, Si=S, ri= r, Ei=E, ’i=’
and Ui =U, i = 1; : : : ; N . We will impose the following two hypotheses.

H1: L is C3 on (0;∞), monotone increasing and strictly concave; S is C2 on (0;∞),
monotone increasing and concave.

By E, we denote the inverse of the Arrow–Pratt index of risk aversion of the players:
E(u) =−L′(u)=L′′(u). H1 implies E(u)¿ 0.

H2: E(0) = 0 and E′(u)6N=(N − 1).
For example, the homogeneous utility function L(u)=u1+$, $¡ 0, satisKes H2 when-

ever −(N − 1)=N ¡$. Let us observe that for this particular class of utility functions,
when the last equality is binding, Eq. (15) reduces to �̂� = rE(�̂). Now we deKne
the function ’(x) + (L′)−1(S ′(x)) which is obtained from (5); ’ gives the Knal
value of the optimal control of the players. Taking into account the initial condition
�̂(x; 0) = ’(x), the unique solution is �̂(x; �) = exp (r�)’(x). Note, however, that this
solution is not admissible if ’(0)¿ 0. In fact, if r = 0 and ’(0)¿ 0, there is no
continuous and piecewise smooth solution to the equation. So we leave this case aside.

The assumption E(0)= 0 is essential for the fulKllment of the condition �̂(0; �)= 0.
A utility function such as L(u) = 1 − exp (−%u), %¿ 0, does not meet the condition
E(0) = 0.

Hypothesis H2 implies that the intertemporal rate of substitution of each player,
E(u)=u, is less than N=(N − 1). Hence the willingness to substitute consumption across
time must be bounded by N=(N − 1). As we can see, the condition is more restrictive
as the number of players increases and it is vacuous when N = 1, i.e., in the optimal
control problem. It can be shown that if this condition does not hold, then the unique
solution (in a weak sense) of the Cauchy problem (15), (16) displayed below is dis-
continuous. This fact admits a simple interpretation: if the agents are not suIciently
risk averse or if the number of players is large, then a strong competition takes place
in the extraction of the resource. The aim of adapting his or her strategy to the com-
petitor’s strategies in an optimum way motivates the discontinuity of the solution. The
veriKcation of optimality in this case is beyond the scope of this paper.
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4.1. Analytical solution

System (4) reduces to the equation

�̂� + E(�̂)�̂x = rE(�̂); x¿ 0; �¿ 0: (15)

The initial condition is

�̂(0; x) = ’(x); x¿ 0; (16)

where E(u) = Nu− (N − 1)E(u) and �= T − t. Let us observe that we have reversed
time and that H1 implies that ’ is monotone increasing.

Problem (15), (16) was studied in Rinc-on-Zapatero et al. (1998), where the existence
and uniqueness for a wide class of utility functions were established. However, the
result does not apply if ’(0)¿ 0, because in this case, �̂(0; T ) = ’(0)¿ 0, so no
solution of (15), (16) is admissible. For instance, the inequality ’(0)¿ 0 happens
when the residual function is linear, S(x) = 'x, because then ’(x) ≡ k = (L′)−1(').
Note that �̂(x; �) ≡ k is a solution to (15). This brings up the question of whether the
discontinuous rule

�(x; �) =

{
0 if x = 0;

k if x¿ 0

is a Nash equilibrium (of course, in a more general class of policy functions than that
considered here). As will be shown in Theorem 2, the hypotheses made on the model
– together with the assumption r = 0 whenever ’(0)¿ 0 – imply the existence of a
unique, continuous and piecewise smooth MPNE of the game.

In the proof of the following result, we will employ some concepts from the theory
of quasi-linear partial di)erential equations of Krst order.

Theorem 2. Let us suppose that in the symmetric game (13), (14) hypotheses H1
and H2 hold. Then there exists a unique, symmetric MPNE (�̂; N ): : : ; �̂) in the two
following cases:

(i) ’(0) = 0 and limu→∞L′(u) = 0.
(ii) ’(0)¿ 0 and r = 0.

Moreover, in case (ii) the optimal strategy satis&es the equation

�̂(x; t) = ’(x − (T − t)E(�̂(x; t))) (17)

in the region x¿E(’(0))(T − t), and it is given by

�̂(x; t) = E−1
(

x
T − t

)
(18)

in the region 06 x6E(’(0))(T − t).

Proof. The Krst part was already proved in Rinc-on-Zapatero et al. (1998, Theorem 5.1).
Thus we return to item (ii). Let us consider Eq. (15) associated with the symmetric
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game (13), (14) with r = 0:

�̂� + E(�̂) �̂x = 0; x¿ 0; �¿ 0; (19)

�̂(x; 0) = ’(x); x¿ 0; (20)

together with the admissibility condition

�̂(0; �) = 0; �¿ 0; (21)

where �=T− t. This is a mixed problem with boundary values which can be expressed
as one of the initial values. To this end, we deKne �̂(x; 0) = 0, for all x¡ 0. The
characteristic system associated with (19) is given by

(d=d�)x = E(�̂);

(d=d�)�̂= 0: (22)

For x¿ 0, the Knal condition (20) can be parameterized as

�(); 0) = 0; (23)

x(); 0) = ); (24)

�̂(); 0) = ’()) (25)

with ) a positive parameter. It is clear that for all )¿ 0 there exists a unique solution
of (22), given by

x(); �) = ) + E(’()))�; �̂(); �) = ’()):

We can see that the solution �̂ is constant along the characteristics x(); �). Hypothesis
H2 implies that E is strictly increasing in [0;∞), thus E(·)¿ 0, because E(0)= 0. As
a result, the straight lines x(); �) have positive slope. The solution along characteristics
is well deKned if and only if its envelope is empty; see Li Ta-Tsien (1994, Theorem
1.1). This is true if (9=9))x(); �)¿ 0. But

9
9) x(); �) = 1 + E′(’()))’′())¿ 0

because E′ ¿ 0 and ’′ = (1=L′′(S ′))S ′′¿ 0. So we have a global, smooth solution
of (19), in the region {(x; �) : x¿ �E(’(0)); �¿ 0} which is characterized by (17);
see Li Ta-Tsien (1994). In Fig. 1, we sketch the characteristics in this region in the
case where S is a linear function. In the region x6 0 the unique solution of (22) is
x(); �) = �̂(); �) = 0. Hence the solution in this region is identically null. There is a
gap in the characteristics in the cone generated by the lines x=0 and �=E(’(0))x. It
is well known that this cone can be Klled with a rarefaction wave: �̂(x; �) =E−1(x=�).
H1 guarantees the existence of E−1. The solution decreases continuously from ’(0) to
E−1(0) = 0 along the fan of straight lines shown in Fig. 1. It is clear that the solution
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Fig. 1. Characteristics of the quasi-linear equation with linear residual function.

is continuous except at the unique point (0; 0) (when the game is Knished), piecewise
smooth and that �̂(0; �) = 0. In fact, �̂ is locally Lipschitz with respect to x, so the
trajectory associated with �̂ is well deKned (at least locally). Furthermore, y�̂ is convex
with respect to � – see Proposition 1 – hence it meets the curve of non-smoothness,
C = {(x; �) : �(x; �)+ x− �E(’(0))= 0}, in at most one point. We now show that this
must happen in a non-tangential way.
Let (x; �) belong to C. We then have

�x(x; t)f(x; t; �̂(x; t)) + �t(x; t) = �x(x; t)(−N�̂(x; t)) + �t(x; t)

=−N’(0) + E(’(0))

=−(N − 1)E(’(0)) �= 0:

In the second equality we have used the property that �̂(x; t) = ’(0) along C and the
third is due to the deKnition of E and E.
Uniqueness is a consequence of the construction of the solution.
To complete the proof, let us observe that the Hamiltonians of the players are strictly

concave with respect to ui, so according to (i) of Remark 1, any proKle has the Nash
property. As a consequence, Theorem 1 applies and (�̂; N ): : : ; �̂) is an MPNE.
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Remark 3.

1. Actually, in case (i) or in case (ii) in the region {(x; �) : x¿E(’(0))�; �¿ 0}, the
solution is as smooth as ’. This is easily seen from the construction of the solution.

2. Direct application of Theorem 1.1 in Li Ta-Tsien (1994) requires that the initial
condition ’ must be uniformly bounded. However, a careful review of the proof
reveals that this restriction is superUuous in our problem because E(’()))¿ 0 for
all )¿ 0.

3. When the residual function is linear, S(x) = 'x, then ’ ≡ k, with k = (L′)−1('), so
�̂ ≡ k on the region x¿E(k)�. In this case the Markovian rules of the players are
explicitly given by

�̂(x; t) =




k if
x

T − t
¿E(k);

E−1
(

x
T − t

)
if

x
T − t

6E(k):
(26)

The positive quadrant is partitioned into two di)erent regions, with the solution
being smooth in each one. In the region of the rarefaction wave, the solution decays
from ’(0) to zero. The extraction rate is constant along the rays in the fan of the
characteristics. In Fig. 2 we show three di)erent trajectories, depending on the initial
condition. In the region of the rarefaction wave the extraction rate is decreasing along
the optimal path.
Next, we study some qualitative aspects of the MPNE and the associated trajectory.

To this end, let us deKne the sets

X = {(x; t) : 06 t ¡T; 0¡x6NE(’(0))(T − t)};

Y = {(x; t) : 06 t ¡T; x¿NE(’(0))(T − t)}:

Proposition 1. Let the hypotheses of Theorem 2 hold. Then

(i) �̂ is increasing with respect to x.
(ii) The trajectory associated to �̂, y�̂(s; x; t), is convex with respect to s.

Proof. As E is increasing, �̂ is also increasing in the rarefaction wave region X . Let
�¿ 0 be Kxed and take x¿x′, with (x; �); (x′; �)∈Y . Let ), )′ be such that x=x(); �),
x′ = x()′; �). Since the slopes of the characteristics increase with the parameter ), we
must have )¿)′, and hence ’())¿’()′) because ’ is strictly increasing. Since �̂
is constant along characteristics,

�̂(x; �) = �̂(x(); �); �) = ’())¡’()′) = �̂(x()′; �); �) = �̂(x′; �):

Finally, if (x′; �)∈X and (x; �)∈Y , then the above reasoning also applies. This
proves (i).
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Fig. 2. Trajectories associated with MPNE for three di)erent initial conditions.

With regard to (ii), when y�̂ is twice di)erentiable, we have

d2y�̂

ds2
(s) =− d

ds
(N�̂(y�̂(s); s))

=−N

(
�̂x(y�̂(s); s)

dy�̂

ds
(s) + �̂t(y�̂(s); s)

)

=−N
(
−N�̂(y�̂(s); s))�̂x(y�̂(s); s) + �̂t(y�̂(s); s)

)

=N (N − 1)E(�̂(y�̂(s); s))�̂x(y�̂(s); s)¿ 0:

The fourth equality comes from (19), having taken into account �=T− t, the deKnition
of the function E(u) = Nu− (N − 1)E(u) and item (i). We see that the facts that y�̂

is non-tangential to the set C and that it is strictly decreasing assure that the points
of intersection of the trajectory with C are at most one. Henceforth the trajectory is
twice di)erentiable except at most at a point, with non-negative second derivative. It
turns out that it is convex on both time intervals. However, because y�̂ is di)erentiable
everywhere with respect to s, then y�̂ is convex on [t; T ].
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It is interesting to analyze how much of the resource remains when the game ends.
There exist initial conditions for which the resource is exhausted exactly at time T ,
whereas for other ones there remains a positive quantity of the resource at the end of
the game. For the case when the salvage value of the players is linear, we can obtain
more explicit results. Let us denote

Y1 = {(x; t) : 06 t ¡T; NE(k)(T − t)6 x¡Nk(T − t)};

Y2 = {(x; t) : 06 t ¡T; x¿Nk(T − t)}:
Recall that when S is linear, ’ ≡ k = (L′)−1('), and note that Y1 ∪ Y2 = Y , where Y
was deKned just prior to Proposition 1.

Proposition 2. Suppose that the assumptions of Theorem 2 hold and that S(x) = 'x.
Then, for all (x; t)∈X ∪ Y1, y�̂(T ; x; t) = 0 and for all (x; t)∈Y2, y�̂(T ; x; t)¿ 0.

Proof. Recall the characteristic system associated with (19)–(21):

d
d�

x = E(�̂); (27)

d
d�

�̂= 0 (28)

with initial conditions

x(); 0) =

{
k if )¿ 0;

0 if )¡ 0;
�̂(); 0) = 0; ∀)∈R:

The following reasonings all pertain to the (x; �) plane. In Y , the optimal trajectories
are parallel to the line x = Nk� which separates regions X ∪ Y1 and Y2. Hence if the
initial condition belongs to X ∪ Y1, then the optimal trajectory meets X and converges
to zero. On the other hand, if the initial condition belongs to Y2, then the optimal
trajectory is a straight line that intersects the x axis at time t = T .

Next we study the dependence of the equilibrium with respect to the data of the
model. The case ’(0) = 0 was explored in Rinc-on-Zapatero et al. (1998, Corollaries
5.2 and 5.3). There the following were established for Kxed values of time and the
stock variable x: (i) The extraction rate increases with the number of players whenever
the intertemporal rate of substitution is less than 1. (ii) A higher intertemporal rate of
substitution speeds up the extraction rate. It could be shown, with the same techniques,
that the consumption rate also increases with the discount rate. Of course, this is not
surprising because a higher discount rate makes the agent more indi)erent about the
future, given that the instantaneous utility of long-run consumption is weighted by an
exponential factor decreasing in time. It is possible to reach similar conclusions for the
game with ’(0)¿ 0 but r = 0.
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Proposition 3. Suppose that the assumptions of Theorem 2 hold. Then the following
are true:

(a) Let N ′ ¡N ′′ be two natural numbers. Then, for every &xed time 06 t6 T and
stock value x∈ [0; x0], the extraction rate �̂(x; �) is higher (lesser) in the game
with N = N ′ than in the game with N = N ′′, whenever E(u)=u¡ 1 (E(u)=u¿ 1).

(b) Let E(1), E(2) be two positive, strictly increasing real functions of class C1, sat-
isfying E(1)(u)¿E(2)(u) for all u¿ 0. Then, for every &xed time 06 t6 T and
stock value x∈ [0; x0], the extraction rate �̂(x; �) is higher in the game with
E= E(1) than in the game with E= E(2).

(c) Let S(1), S(2) be two positive, strictly increasing real functions of class C2, satisfy-
ing S(1)(x)6 S(2)(x) for all x¿ 0. Then, for every &xed time 06 t6 T and stock
value x∈ [0; x0], the extraction rate �̂(x; �) is higher in the game with S = S(1)
than in the game with S = S(2).

Proof. We will prove the assertions of the proposition with the aid of Lemma A.1
in the Appendix. For part (a), take f(u) = N ′u − (N ′ − 1)E(u) and g(w) = N ′′w −
(N ′′−1)E(w). The condition E(u)=u¡ 1(¿ 1) implies f6 g (f¿ g) and we can
apply Lemma A.1. For part (b), let f(u) be the function Nu− (N − 1)E(1)(u) and let
g(u) be the function Nu− (N − 1)E(2)(u). It is clear that f6 g; applying Lemma A.1
we reach the conclusion. Finally, for part (c), let us consider v0(x) = (L′)−1(S ′

(1))(x))
and w0(x) = (L′)−1(S ′

(2))(x)). It is evident that w06 v0 and that all the hypotheses of
Lemma A.1 are fulKlled.

It is possible to prove that the MPNE of the game is ineIcient. It is well known
that, in general, the competition between two or more agents for the exploitation of the
same resource stock leads to overconsumption. This is so because each player believes
that the resource not consumed now could be used by the competitors. This common
belief causes a rapid extraction of the resource.
Rinc-on-Zapatero et al. (2000) developed a general approach for derivation of ef-

Kcient MPNE for two person di)erential games. The paper provides necessary and
suIcient conditions. However, this approach will not be used here because we want to
establish not only the ineIciency of the MPNE, but also the conditions under which
the tragedy of commons applies. Let us assume that the agents determine their con-
sumption rates in order to maximize the joint payo). In the symmetric case, with
r=0, the cooperative solution can be obtained from the solution of the optimal control
problem

max
u∈U

∫ T

0
L(u) dt + 'x(T ) (29)

s:t : ẋ =−Nu; (30)

x(0) = x0: (31)
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The partial di)erential equation and boundary conditions associated with the above
problem are

�p
� + N�p

x�
p = rE(�p); x¿ 0; �¿ 0; (32)

�p(x; 0) = ’p(x); x¿ 0; (33)

�p(0; �) = 0; �¿ 0; (34)

where ’p(x) = (L′)−1(NS ′(x)). Here �p stands for the Pareto optimal solution.
The following result can be proved in the same way as Theorem 2, hence it is stated

without proof.

Theorem 3. Under hypothesis H1, there exists a unique feedback solution of the
control problem (29)–(31) in the class U in the two following cases:

(i) ’p(0) = 0 and lim
u→∞L′(u) = 0.

(ii) ’p(0)¿ 0 and r = 0.

Moreover, in case (ii) the optimal strategy satis&es the equation

�p(x; t) = ’p(x − (T − t)N�p(x; t))

in the region x¿N’p(0)(T − t) and it is given by

�p(x; t) =
x

N (T − t)

in the region x6N’p(0)(T − t).

The line x=N’p(0)(T−t) separates the two regions of smoothness of �p. Neither the
coeIcient of risk aversion of the players nor the number of players have an e)ect on
the existence of a Markov solution to the Pareto optimal control. This is due to the co-
operation between the agents. Another observation is that, for any initial condition, the
trajectory associated with �p is a straight line; in fact, the cooperative trajectories coin-
cide with the characteristics of the quasi-linear equation �p

�(x; �)+N�p(x; t)�p
x(x; t) =0.

Furthermore, the optimal control is constant along the optimal trajectory. That is to say,
the rate of extraction is constant under the cooperative management of the resource, in
contrast with the non-cooperative case.

Proposition 4. Under the assumptions of Theorem 2, the MPNE of the game is
ine>cient and the tragedy of the commons apply, that is to say, �p ¡�̂.

Proof. We only need to check that all conditions listed in Lemma A.1 are fulKlled in
order to obtain the result. To this end we consider f(v)=E(v)=Nv−(N−1)E(v)¡Nv=
g(v) and v0 = ’¿’p = w0.

As a result, the competition between agents leads to depletion of the resource faster
than in the cooperative case, giving rise to the tragedy of the commons.
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4.2. Numerical solution

The existence of a positive discount rate makes it diIcult to Knd a closed-form
solution to the game. Actually, it is not clear at the outset whether there is a global
admissible solution to the quasi-linear equation. Therefore, it would be of interest to
obtain – at least locally – numerical solutions in order to understand the behavior of
the symmetric Nash equilibrium. There is considerable literature on numerical methods
applied to quasi-linear equations. The monographs by Godlewski and Raviart (1991)
or LeVeque (1992) provide a good account of appropriate methods. Given that we
are looking for continuous solutions, we do not need to use the so-called conservative
methods. This type of method is designed to approximate discontinuous solutions. We
will use instead the simpler Courant–Isaacson–Rees (CIR) method. The idea is to make
use of the information provided by the characteristic equations. We will describe brieUy
how this algorithm constructs a numerical solution. Given a Cauchy problem of one
space dimension

u�(x; �) + f(u(x; �))ux(x; �) = g(u(x; �)); x∈R; �¿ 0;

u(x; 0) = ’(x);

we discretize the (x; �) plane by choosing a mesh width h and a time step k. The
approximate solution is to be computed at the mesh points (ih; jk), for i= : : : ;−1; 0; 1;
2; : : : ; j = 0; 1; 2; : : : : We let Uj

i approximate the values of the true solution u(ih; jk).
As initial data for the numerical method we use ’ to deKne U 0

i . The characteristics of
the equation in the (x; �) plane are

dx
d�

= f(u);

du
d�

= g(u):

The CIR method consists of solving certain equations along the characteristics going
back from the point (ih; (j+1)k). Given that the exact path of the characteristic is not
known, it is approximated by a straight line with slope f(Uj

i ). This yields a value of
x at �= j, ih− f(Uj

i )k, which is not in general in the mesh grid. Hence the method
uses linear interpolation between the two nearest mesh points, which are (Uj

i−1; U
j
i ) if

the characteristic speed, f(Uj
i ), is positive, or (U

j
i ; U

j
i+1) if it is negative. For example,

if f(Uj
i ) is positive, then the value of the approximate solution at point ih−f(Uj

i )k,
denoted now as Ũ j

i , is

Ũ j
i = Uj

i −
h
k
f(Uj

i )(U
j
i − Uj

i−1):

The determination of Uj+1
i is accomplished by means of the Euler method:

Uj+1
i = Ũ j

i + kg(Ũ j
i ):
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Fig. 3. The MPNE, �̂(x; t), in a smooth case.
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Of course, the algorithm also works – with obvious modiKcations – if f and g depend
also both on time and the spatial variable. A necessary condition for the method to be
useful is that |(k=h)f(Uj

i )|¡ 1, which makes the linear interpolation possible.
We should say that the CIR method is not a good one for a problem involving

discontinuous solutions. The trouble arises from the fact that there are multiple dis-
continuous solutions, that are deKned in the weak sense, and the CIR method does not
approximate, in general, the correct one. There are many experimental conKrmations
of this fact.
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Fig. 5. The MPNE, �̂(x; t), when the residual function is linear.

We have not been able to demonstrate theoretically the existence of a continuous
and piecewise smooth solution for all the problems studied in this section. However,
we suspect this to be the case, and hence will use the CIR method in the following.
Furthermore, it turns out that in problems where the analytical solution is known, the
agreement of the numerical and the true solution is very satisfactory.

We wish to apply the CIR method to the initial value problem

�̂� + E(�̂)�̂x = rE(�̂); (35)

�̂(x; 0) = ’(x): (36)

The algorithm with this data becomes

Ũ j
i = Uj

i −
h
k
E(Uj

i )
(
Uj

i − Uj
i−1

)
;

U j+1
i = Ũ j

i + krE(Ũ j
i )

with initial values U 0
i = ’(ih).

For the numerical experiments, we take the instantaneous utility function to be L(u)=
u1=3, the number of players two and T = 1. First, we compute the solution when there
is no discount rate, r=0, for the residual function S(x)=

√
2x=48. In this case Theorem

1 shows the existence of a unique solution for all T . The computed rate of extraction
is smooth, as it can be seen in Fig. 3. The surface is increasing in time and stock as
it is expected to be.
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Fig. 6. Comparison of the exact and the computed solution at two di)erent times.

Fig. 4 shows the proKles of the computed solution at three di)erent instants of time.
Next we consider the case when the residual function is a linear function, S(x)=ax.

Let us choose the constant a such that �̂(x; 0)= 3=2 for x¿ 0—see the section above.
The solution of (35), (36) is piecewise smooth. Fig. 5 depicts the computed rate of
extraction and Fig. 6 provides a comparison of the numerical and the exact solutions
at times t = 0 and t = 0:5. Note that the CIR method gives a smoother solution than
the true one. This is typical of a Krst-order method.

The e)ect of discount on the rate of extraction is shown in Fig. 7. As the players
become more impatient as their consumption increases.

5. Concluding remarks

This paper has introduced a new approach to the study of existence and uniqueness
of MPNE, based on a quasi-linear system of partial di)erential equations. Usually,
the HJB system associated with an N -person, non-zero sum di)erential game, exhibits
non-linearities with respect to the gradients of the value functions. This fact makes it
tedious to obtain results about the existence of solutions as well as to integrate the
equations to Knd their analytical expressions. The same diIculties arise when we look
for an approximate solution.
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Fig. 7. ProKles of the MPNE at three instants of time for three di)erent values of the discount factor.

The main idea brought forward in the paper is that in some cases it is possible
to work with a system of quasi-linear PDEs where the unknown functions are the
Markovian strategies of each player. The advantages of this system with respect to the
HJB system is that now the gradient of the strategies enter in the equations in a linear
way. This property makes the analysis easier.

The scope of our approach is limited to games where the dimension of the state space
and the dimension of the control region of each player are the same. Furthermore, it
is also necessary that the controls be interior to the control region. However, we hope
that further research should allow us to extend this approach to a more general class
of di)erential games. Constraints in the controls could be handled by incorporating
penalty terms in the objective functional of the players.

Our approach is applied to non-renewable resource games with Knite horizon and
symmetric players, obtaining existence and uniqueness, whenever the discount rate is
zero. Further research is needed to drop this assumption, to consider the asymmetric
case, and to study the renewable resource case. It is likely that in some of the new
situations listed above, discontinuous solutions appear; hence it will be of some interest
to extend the theoretical framework to establish optimality of discontinuous solutions
of the quasi-linear system.
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Appendix A.

Lemma 1. Consider the following Cauchy problems:

(P1)

{
v� + f(v)vx = 0;

v(0) = v0;
(P2)

{
w� + g(w)wx = 0;

w(0) = w0:

Here �¿ 0, x∈R, v0 = w0 = 0 if x¡ 0; the functions f, g, v0, w0 are C1, strictly
monotone increasing, satisfying f(0) = g(0) = 0, w0 ¡v0, f¡g, and with v0, w0

bounded. If v, w are the solutions of (P1) and (P2), respectively, then w¡v.

Proof. The solutions to (P1) and (P2) are continuous and piecewise smooth, with two
regions of smoothness separated by the lines x=f(v0(0))� and x= g(w0(0))�, respec-
tively. Let us consider two cases: (i) f(v0(0))¡g(w0(0)) and (ii) f(v0(0))¿ g(w0(0)).
In both cases, in the region where v and w are both given by rarefaction waves,
v(�; x) = f−1(x=�) and w(�; x) = g−1(x=�). Hence, v¡w because f¡g and f, g
monotone increasing imply g−1¡f−1. In case (i) let us denote

01 = {(x; �) : 06 �6 T; f(v0(0))�6 x6 g(w0(0))�};

02 = {(x; t) : 06 �6 T; g(w0(0))�6 x}:
Let (x; �)∈02 and, by way of contradiction, suppose that v(x; �)6w(x; �). Let )¿ 0,
)′ ¿ 0 be such that the characteristics xv; xw of (P1) and (P2) emanating from (); 0),
()′; 0), respectively, meet at point (x; �). Then v0())= v(x; �)6w(x; �)=w0()′), hence
f(v0()))6f(w0()′))¡g(w0()′)). On the other hand,

) + f(v0()))�= xv(); �) = x = xw()′; �) = )′ + g(w0()′))�:

We obtain )′−)=(f(v0())) − g(w0()′)))�¡ 0; therefore, )′¡) and w0()′)¡
w0())¡u0()), a contradiction. If (x; �)∈01, then w(x; �) = g−1(x=�)¡w0(0). But
w0(0)¡v0(0)6 v(x; �), for all (x; �)∈02, so we have the desired inequality.

In case (ii), let

0′
1 = {(x; �) : 06 �6 T; g(w0(0))�6 x6f(v0(0))�};

0′
2 = {(x; �) : 06 �6 T; f(v0(0))�6 x}:
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For (x; �)∈0′
2, the reasoning proving the inequality is the same as in case (i) for

(x; �)∈02. When (x; �)∈0′
1 we have v(x; �) = f−1(x=�) and w(x; �) = w0()) for suit-

able )¿ 0. From the theory of conservation laws, we know that in the rarefaction wave
region the value of v is the same at points of the line connecting (0; 0) and (x; �). Hence
v(x; �)=f−1(x=�)=f−1(m), where 1=m is the slope of the above line (in the plane (x; �))
which veriKes 1=g(w0(0))¡ 1=m¡ 1=f(v0(0)). The slope of the characteristic of equa-
tion (P1) passing through points (); 0) and (x; �) is 1=g(w0()))¡ 1=g(w0(0))¡ 1=m.
We then have

w(x; �) = w0())¡g−1(m)¡f−1(m) = v(x; �):

The Krst inequality follows because g is increasing and the second one is a consequence
of the fact that f¡g and f, g are monotone increasing.
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