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Abstract. We present a method for the characterization of subgame-
perfect Nash equilibria being Pareto efficient in a class of differential
games. For that purpose, we propose a new approach based on new
necessary and sufficient conditions for computing subgame-perfect
Nash equilibria.
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1. Introduction

In the economic literature, there is a large number of papers where
interactions between the decisions of the economic agents arise. One inter-
esting subject is when these interactions can lead to an efficient solution,
without the consideration of binding agreements between the agents.

In Ref. 1, Friedman states that it is not known whether the noncooper-
ative outcome is Pareto efficient. The aim of this paper is to establish neces-
sary and sufficient conditions giving an a priori characterization of the
Pareto efficiency of feedback Nash equilibria for differential games with
unidimensional state and control variables and where each control is a
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smooth function of the state and time variables. To this end, we propose a
new approach based on the characterization of feedback Nash equilibria as
solutions to a system of quasilinear partial differential equations as shown
in Ref. 2. It is well known that, in general, the use of feedback strategies in
noncooperative games prevents the attainment of efficient outcomes. To our
knowledge, there are not necessary and sufficient conditions in the literature
to be applied to general differential game models that allow the determi-
nation of whether the feedback Nash equilibrium is or is not a Pareto opti-
mum. This paper is devoted to establishing this type of conditions.

2. Game Description and Characterization of Subgame-Perfect Nash
Equilibria

We consider a two-person nonzero-sum differential game over a fixed
time interval,

max
ui 5J i (t0 , x0 , u1, u2)G#

tf

t0

Li (t, x, u1, u2) dtCSi (tf , x(tf ))6 , (1)

s.t. ẋGf (t, x, u1, u2), x(t0)Gx0 , (2)

ui (t)∈Ui, ∀t∈[t0 , tf ], Ui an open subset of R, (3)

for iG1, 2. Here, the functions Li, f, Si are assumed to be twice continuously
differentiable. We denote by x the state variable of the game, and ui rep-
resents the control variable for the i th player. We associate to each ui a
smooth function φ i : [t0 , tf ]BR→Ui such that ui (t)Gφi (t, x(t)). We denote
by U

i the set of functions φi and U GU
1BU

2.

The system

ẋGf (t, x, φ1(t, x), φ2(t, x)), x(t0)Gx0 ,

is the closed-loop system associated to the pair of feedback strategies
(φ1, φ2).

We remit the reader to Ref. 3 for the definitions of subgame-perfect
Nash equilibrium and Pareto optimum.

In this note, we use a method proposed in Ref. 2 for computing Nash
equilibria in feedback strategies. This method gives necessary and sufficient
conditions characterizing subgame-perfect equilibria by means of the
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following system of quasilinear partial differential equations:

Hi
uitCHi

uix fC ∑
2

jG1

Hi
uiu j (φ j

tCφ j
x f )CHi

uiλ i1−Hi
xA ∑

2

jG1

Hi
u j φ j

x2G0,

i, jG1, 2, (4)

where Hi (t, x, u1, u2, λ i ) is the Hamiltonian function associated to the i th
player, defined by

Hi (t, x, u1, u2, λ i )GLi (t, x, u1, u2)Cλ i f (t, x, u1, u2),

with λi the costate variable. In Eq. (4), φ1, φ2 are the dependent variables
and t, x the independent variables.

The boundary condition over the costate variable established by the
maximum principle and the expression obtained from the maximization of
the Hamiltonian function provide a complete set of final conditions for the
system (4) given by

Li
ui (tf , x, φ1, φ2)Cfui (tf , x, φ1, φ2)Si

x (tf , x)G0, iG1, 2. (5)

In Theorem 4.1 of Ref. 2, we show that, under suitable hypotheses
about the Hamiltonian functions, a classical solution φ̂ of system (4)
becomes a subgame-perfect Nash equilibrium of the differential game. That
is, this system gives a set of conditions not only necessary, but also sufficient
for optimality. Furthermore, in the infinite-horizon case, the condition

lim
t→S

(∂yy∂x)(t)(− f −1
ui Li

ui)(t, y (t), φ̂ (t, y (t))G0, iG1, . . . , N, (6)

where ẏGf (s, y, φ̂ ) and y (t)Gx, implies that φ̂ is a subgame-perfect Nash
equilibrium.

3. Necessary and Sufficient Conditions for Pareto Efficiency of a
Subgame-Perfect Nash Equilibrium

From now on, we center our attention on the statement of the necessary
and sufficient conditions for Pareto efficiency of subgame-perfect Nash
equilibrium.

Theorem 3.1. Let φ̂ ∈U be a smooth subgame-perfect Nash equili-
brium of the game (1)–(3), with fui (t, x, φ̂ )≠0. Let Hi be of class C

2 with
respect to (u1, u2)∈U for all t∈[0, tf ] and x∈R. If φ̂ is Pareto optimum, then
there exists i∈{1, 2} such that, for all j∈{1, 2}, j≠ i,

(Li
u j fuiALi

ui fu j) u(t,x,φ̂ )G0, for all t∈[t0 , tf ], x∈R. (7)

Proof. See Ref. 4. h

3



Remark 3.1. The concavity of the Hamiltonian Hi with respect to
variables (u1, u2) guarantees that the necessary condition (7) for the i th
player is sufficient too. If condition (7) is satisfied for iG1, 2, together with
the supplementary hypothesis of the Hamiltonians Hi, iG1, 2, being con-
cave with respect to all the control variables for all t, x, then the subgame-
perfect Nash equilibrium is an absolutely cooperative solution. On the other
hand, let us observe that condition (7) is fulfilled for zero-sum games and
team problems.

Our purpose now is to establish sufficient conditions for Pareto
efficiency of a subgame-perfect Nash equilibrium. We denote by u2G
Θ(t, x, u1) the necessary relation (7) between the strategies of the two play-
ers. By replacing this relation in (4), we obtain an overdetermined system.
We look for conditions ensuring the existence of solutions to this system. To
this end, we introduce the following notation for the two partial differential
equations that arise from (4) once we have substituted u2GΘ(t, x, u1):

Fi (t, x, u1, p, q)Gai (t, x, u1)pCbi (t, x, u1)qCci (t, x, u1), iG1, 2.

Here,

pGu1
t , qGu1

x ,

and

aiGHi
uiuiCHi

uiu j Θu ,

biGHi
uiui fCHi

uiu j Θu fAfui H i
u j Θu ,

ciGHi
uitCHi

uix fCHi
uiu j (ΘtCΘx f )Afui (Hi

xCHi
u j Θx).

All functions are evaluated at (t, x, u1, Θ(t, x, u1)) and λ iG− f −1
ui Li

ui .
Assuming that

∆G*a1 b1

a2 b2
*≠0, for all t, x, u1,

then

3p

q4G3a1 b1

a2 b2
4

−1

3Ac1

Ac2
4 . (8)

We denote by [F1 , F2 ] the expression

∂(F1 , F2)y∂(x, q)Cp(∂(F1 , F2)y∂(u1, p))

C∂(F1 , F2)y∂(t, p)Cq(∂(F1 , F2)y∂(u1, q)),

once we have replaced p, q by their expressions given by (8).
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Theorem 3.2. Suppose that the following conditions are satisfied:

(C1) The pair ( φ̂ 1, Θ) is a smooth feedback Pareto optimum of prob-
lem (1)–(3), such that fui (t, x, φ̂ 1, Θ)≠0.

(C2) [F1 , F2 ]G0.
(C3) The pair (φ̂ 1, Θ) satisfies the final condition required in (5)

associated to problem (1)–(3).
(C4) For all u1∈U1, u2∈U2, t∈[0, tf ], x∈R,

H1(t, x, φ̂1, Θ, Γ1)XH1(t, x, φ̂1, u2, Γ1),

H2(t, x, φ̂1, Θ, Γ2)XH2(t, x, u1, Θ, Γ2),

where Γ i equals Af −1
ui Li

ui evaluated at (t, x, φ̂1, Θ), iG1, 2.

Then, ( φ̂1, Θ) is a subgame-perfect Nash equilibrium.

Proof. See Ref. 4. h

Remark 3.2. As we did in Remark 2.1, when an infinite horizon is
considered, the final condition (C3) in Theorem 3.2 must be replaced by the
sufficient transversality condition (6).

Remark 3.3. When ∆≠0 and the compatibility condition (C2) stated
in Theorem 3.2 is not fulfilled, then the Pareto optimum cannot be a Nash
equilibrium. In fact, [F1 , F2 ]G0 is a necessary condition for efficiency of
the Nash equilibrium. This provides a negative criterion based on a full
computational method. When ∆G0 and the equations F1G0, F2G0 are not
such that one implies the other, then there is no common solution to the
equations.

4. Application to a Monetary and Fiscal Regulation Differential Game

We are aware that the efficiency of Nash equilibrium is a very rare
property; in fact, there are few examples in the economic literature. How-
ever, this property can be found in the familiar linear–quadratic differential
games, as the following example shows.

Example 4.1. We consider a two-person scalar linear-quadratic
differential game as proposed and analyzed in Ref. 5. In this model, the
government debt accumulation ḋ is the sum of interest payments on govern-
ment debt rd plus primary fiscal deficits f minus seignorage m,

ḋGrdCfAm, d (0)Gd0 .
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In that paper, the authors assume that fiscal and monetary policies are con-
trolled by the fiscal authority and the monetary authority, respectively, with
different objectives. The players wish to minimize the deviations from fixed
targets fr, m̄, dr . We suppose that the two institutions wish a balanced budget,
that is to say,

rdrCfrAm̄G0.

In this case, the game can be formulated as follows:

max
u1

(1y2)5#
tf

0

exp(−δ1t)(−(u1)2Aη(u2)2Aλx2) dt6 ,

max
u2

(1y2)5#
tf

0

exp(−δ2 t)(−(u2)2Aκx2) dt6 ,

s.t. ẋGrxCu1Au2, x(0)Gd0Adr ,

where xGdAdr , u1GfAfr, u2GmAm̄,

and η, λ , κ are positive constants. Condition (7) for the first player implies

u2GΘ(u1)G(−1yη)u1.

System (4) satisfying the above relation between the strategies of the two
players reads as follows:

u1
tCu1

x ((1C1yη)u1Crx)G(δ1Ar)u1Cλx, (9)

u1
tCu1

x ((2C1yη)u1Crx)G(δ2Ar)u1Cηκx. (10)

It can be shown that there is no common solution to (9)–(10) satisfying the
final condition u1(tf , x)G0 in the finite-horizon game. For that reason, we
center on the infinite-horizon case because there is no necessary trans-
versality condition for optimal strategies. Since the problem is autonomous,
stationary strategies are considered.

In order to test if there is some solution to system (9)–(10) satisfying
the above relation between the strategies of the two players, we make use
of the compatibility condition (C2). For this game, it appears as a homo-
geneous polynomial of degree two in the variables x, u1, namely,

a1x
2Ca2xu1Ca3(u

1)2.

There are only two possible cases.

Case 1. We assume that the identity

λAκηG0
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holds. This condition and a3G0 imply that all the coefficients of the poly-
nomial are zero. It could be proved that there are no common linear solu-
tions to Eqs. (9)–(10). Therefore, the compatibility condition guarantees the
existence of at least one solution of Eqs. (9)–(10) simultaneously, that is
nonlinear in this case. Nevertheless, for this kind of solutions, the fulfilment
of the transversality condition (6) is not guaranteed. Therefore, we cannot
assure that the solution is a Pareto efficient Nash equilibrium.

Case 2. When

λAκη ≠0,

but

δ1Gδ2GδG2r and λC2ληAκηAκη2G0,

the polynomial is identically null. When ηκAλH0, the common solutions
independent of time of Eqs. (9)–(10) are

u1(x)JGJ(√ηκAλ ) ux u,

and the unique strategy that can make stable the dynamics is

u1(x)G− (√ηκAλ )x.

Condition (6) is verified if

rA(1C1yη)√ηκAλF0.

The concavity of Hi with respect to his or her own control variable ui is
ensured. As we pointed out in Remark 4.1 in Ref. 2, this assures the fulfill-
ment of (C4) of Theorem 3.2. Moreover, the Hamiltonians H1 and H2 are
strictly concave in the variables (u1, u2) and u2, respectively, that makes
applicable Remark 3.1, assuring the Pareto optimality of the pair (u1, (−1y
η)u1). Consequently, all the conditions listed in Theorem 3.2 are fulfilled.

Even though we have shown our method for a linear-quadratic
differential game, let us note that our technique applies to more general
models. The method presents a very useful computational advantage that
allows one to handle nonlinear models.

References

1. FRIEDMAN, A., Differential Games, Handbook of Game Theory, Edited by R. J.
Aumann and S. Hart, North Holland, Amsterdam, Holland, Vol. 2, pp. 782–799,
1994.

7
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terization of Subgame-Perfect Nash Equilibria with the Property of Pareto
Efficiency, Preprint, Universidad de Valladolid, Valladolid, Spain, 1998.

5. AARLE, B., BOVENBERG, L., and RAITH, M., Monetary and Fiscal Policy Interac-
tion and Government Debt Stabilization, Journal of Economics, Vol. 62, pp. 111–
140, 1995.

8




