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Abstract Our purpose is both conceptual and practical. On the one hand, we dis-
cuss the question which properties are basic ingredients of a general conceptual
notion of a multivariate quantile. We propose and argue that the object “quantile”
should be defined as a Markov morphism which carries over similar algebraic, order-
ing and topological properties as known for quantile functions on the real line. On
the other hand, we also propose a practical quantile Markov morphism which com-
bines a copula standardization and the recent optimal mass transportation method
of Chernozhukov et al.(2017). Its empirical counterpart has the advantages of being
a bandwidth-free, monotone invariant, a.s. consistent transformation. The proposed
approach gives a general and unified framework to quantiles and their corresponding
depth areas, for both a continuous or a discrete multivariate distribution.
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1. Introduction

1.1. Outline The objective of this paper is two-fold: the first part (Sec-
tions 2 to 4) is a discussion and an elucidation at the conceptual level of
the notion of multivariate quantile. We argue that the concept of quantile
should not be considered as a function but as a Markov kernel from a refer-
ence distribution to the considered one. We organize our discussion in three
stages of increasing conceptual generality. In Section 2, we adopt an analyt-
ical point of view: we review the properties of univariate quantile functions
(q.f.) and briefly summarize the different approaches considered in the litera-
ture to define multivariate q.f. and the related notion of depth. In Section 3,
we discuss how q.f. and cumulative distribution functions (c.d.f.) arise nat-
urally as reciprocal (randomized) transformations of random variables. We
show similarly how copula and conditional q.f./c.d.f. can be viewed from this
probabilistic viewpoint. In Section 4, we eventually take the final conceptual
step and argue, on abstract algebraic grounds, that the object “quantile”
should be regarded at the categorical level as a Markov morphism between
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probability measures, compatible with some algebraic, ordering and topolog-
ical structures.

In the second part (Sections 5 to 6), we intent to show that the above
conceptual discussion can be concretized by proposing a multivariate quantile
Markov morphism which combines the copula view and the mass transporta-
tion view, elaborating on the recent article by ( ). The
proposed Markov morphism is the composition of a copula transformation
which, although a random transformation, leaves invariant the dependence
structure while regularising the distribution, and a Monge transform arising
from a mass transportation problem between a reference spherical measure
and the copula measure. The proofs of the consistency of the empirical ver-
sion of the proposed quantile and its corresponding depth areas to their
population versions are deferred to Section 6.

1.2. Notation

e Let (X,B(X)) be a measurable Polish space endowed with its Borel
sigma algebra B(X);

e F(X) stands for B(X)-measurable real-valued functions fy : X — R;
e P(X) stands for the set of Borel Probability measures PX on (X, B(X));

e Unless specified otherwise, we will work in practice on the Euclidean
measurable space (R, B(R?)). Denote vectors X by bold letters, and
interpret operations between vectors componentwise. PX will stand for
the probability measure associated with its representing variable X.

2. Quantile as a function: a discussion of the analytical view in
the literature

Let’s briefly recall some basic facts about univariate quantile functions
(q.f.), which, although elementary, will help to motivate the approaches of
Sections 3 and 4.

2.1. Univariate quantile functions as inverse functions Let X :
) — R be an univariate real r.v. and denote by P~ its corresponding law. The
probability measure P¥X on (R,B(R)) can be characterized analytically by
its cumulative distribution function (c.d.f.) Fx(x) := P¥X((—o0,z]), (see any
probability book and e.g. ( ) for other analytical characterisations).
The classical textbook view on the q.f. Qx of Fx is usually to define it as
the left-continuous generalised inverse function of Fy,

Qx(t) =Fx (t):= Fx'(t) :=inf{z e R: Fx(z) >t}, 0<t<l. (1)

An informal rationale for such an “inverse” view could be the following: if
X is, as in insurance theory, thought as a random positive monetary quantity
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which stands for the loss incurred by an insurer, the “risk” carried by X can
be approached via two dual paths:

e for a given level x, what is the degree of occurrence that the random loss
X be larger than = ? This is quantified by the tail or survival function
Fx(x) == P(X > z) (or equivalently by the c.d.f. Fx(z) := P(X <
x) =1—Fx(z));

e for a given degree of occurrence ¢, what is the value z; such that the
insurer has probability (at least) ¢ that he will not lose more than x; 7
This is quantified by the q.f. z; := Qx ().

More formally, definition (1) entails that the c.d.f. Fly and q.f. Qx are in
a sort of “inverse duality”: for 0 <t < 1 and = € R,

Fx(x) >tz > Qx(1), (2)

which entails,
Fx(Qx(t)) > t, and Qx(Fx(z)) < z. (3)

Note, that even in the one-dimensional case, the definition (1) of the q.f.
as a left generalised inverse of F' is not the sole possibility: one could have
chosen as well the right generalised inverse, F'(t) := inf{zx : F(z) > t}.
Therefore, the choice of a left-continuous inverse for the q.f. and of a right-
continuous c.d.f. is a matter of convention, (see e.g. ( ) p- 34).
The ambiguity in the definition of these generalised inverses comes from the
fact that, although the operation Fx : x + t := F(x) defines a function, the
inverse operation x <« t is an “inverse problem”, i.e. F )}1 : x « t defines only
a correspondence, i.e. a multi-valued or the set-valued mapping, see

( ) or ( ) for general references
on the set-valued analysis.

2.2. A summary of some key properties of univariate q.f. (
( ) advocates that it is often advantageous to “think quantile func-
tions” in univariate statistical modeling instead of thinking in terms of c.d.f.:

e q.f. are well-suited for asymptotic inference:

— they characterize their parent probability measure (so there are
no identifiability issues)

PX:PY<:>FX:Fy<=>QX:QY- (4)

— they are convergence-determining, in the sense that weak and
strong convergence can be expressed via q.f. Indeed,
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x univariate q.f. characterizes weak convergence:
d d
F,—-F<Q,—Q, (5)

where @, LA @, stands for convergence in quantile, i.e. Q, () —
Q(t) at each continuity point ¢ of @) in (0,1) (See also Propo-
sition 7.3.1 p. 112 in ( ));

* univariate q.f. gives a simple constructive proof of Skorokhod’s
representation Theorem that turns weak convergence into a.s.
convergence.

« The distance between univariate probability measures (Wasser-
stein’s distances) can be expressed via quantile functions.

e univariate q.f. enjoy good invariance properties w.r.t to left-continuous
monotone transformations:

Let g : R — R monotone, left-continuous, g~ (y) = sup{z € R: g(x) <
y} and Y = g(X).

— if g monotone non-decreasing, left-continuous, then
Qv (t) =9(@x (1)), and Fy(z) = Fx(9~ (y)); (6)

— if g monotone non-increasing, left-continuous, then Qy (t) = g(Qx (1—
t)).

e univariate q.f. enjoy good algebraic properties: ( ) notices
that q.f. can be added and multiplied (when positive);

e Moreover, ( ) argues that univariate q.f. and their empirical
version also facilitate the study of order and extreme value distribu-
tions: they are the unifying concept behind the notion of confidence
intervals, order, ranks, and sign statistics, trimmed means and vari-
ances.

2.3. Multivariate quantile functions If PX is now a probability mea-
sure on (R?, B(R?)), it can also be characterized analytically by its multivari-
ate c.d.f. F(x) := PX((—o0,x]), as in the univariate case. Unfortunately, as

discussed by e.g. ( ), “the absence of a natural ordering of Eu-
clidean spaces of dimension greater than one [...]” makes the definition of a
multivariate q.f. more complicated and diverse. ( ) lists the large

literature on the subject and classifies several ad-hoc approaches to defining
a multivariate q.f. by the type of method used to obtain them: methods based
on a depth functions (method 1), M-estimator based on norm minimization
(method 2), Z-estimator of gradients (method 4), inversion of surrogate distri-
butions (method 3), methods based on generalized quantile process (method
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5). Refer to (2002), (2000), (2000),
( ), ( ) for a detailed discussion of the
merits and shortcomings of each approach.

These authors favor the “geometric” approach based on depth: In short,
the depth D(x, F) of a point x € R? with respect to a multivariate cdf F is
a measure of the “centrality” of x w.r.t. to the distribution of mass F', see

( ), ( ), ( ). The “central
point” of maximal depth is a “central point” from which one can define a
measure of “outlyingness” and a “center-outward inner region of specified
probability”, or depth region or area,

AT, F):={xeR,Dx,F)>71}, 0<71<]l, (7)
whose defining property,
P(X e A(1,F)) >,

is the multivariate analogue of (3). Depth regions can thus be considered
as multivariate extensions of the univariate confidence interval [Qx((1 —
t)/2),Qx((1 +t)/2)] of coverage probability ¢, centered around its median.

( , ( ), propose a set of desirable
properties depth functions should satisfy and draw some perspectives on
quantiles and depths.

However, the classification of q.f. by their methods in ( ), the
statement of desirable properties of depth functions in ( ),
( ), and the perspectives drawn in (

have a sort of ad-hoc character. A structural classification of the properties
of Section 2.2 will be proposed in Section 4, once a paradigmatic shift on the
subject will have been properly motivated, as we now propose.

3. Quantile as a transformation of random variables: the prob-
abilistic view In this section, we shift our focus and adopt a probabilistic
view on the quantile object. This sort of intermediate point of view between
those of Sections 2 and 4 will be helpful to motivate the more abstract ap-
proach of Section 4. It will also allow to view copulas through the probabilistic
lens, which will be helpful for understanding the explanations included in the
second part of the paper.

3.1. Univariate reciprocal transforms of random variables Our
starting point is that in the univariate case, it is well known that one can
transform a r.v. U uniform on [0, 1] into a r.v. X € R with prescribed c.d.f.
Fx, via the quantile transform mapping

Qx :[0,1] - R, U~ Qx(U),

with
4

Qx(U) = X, (8)
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where Qx is the (left or right) generalised inverse of equation (1). This trans-
formation is the key, e.g. to prove (the easy version of) Skorohod’s Theorem,
results on stochastic order, association and a.s. coupling constructions (the
method of a single probability space) in the classical empirical process the-
ory, see e.g. ( ), chapter one, ( ),

(1956), (1981),

The reciprocal transformation is known as the Probability integral trans-
formation
FX:R—>[0,1], X — Fx(X).

If F'x is continuous, then

Fx(X) LU (9)

However, if F'x is discontinuous, the latter distributional equality is no longer
true. Hopefully, define the extended c.d.f.

Fx(z,)) == P(X <)+ AP(X =), Ae[0,1],

and let V' a uniform [0, 1] r.v., independent of X. Then, the distributional
transform is the randomized transformation of random variables

Fx(LV):R—=1[0,1], X Fx(X,V):=U
and is the generalisation of (9) to an arbitrary F': one has, see ( )
ULUpy, and Qx(U)=X as. (10)

Such a “randomized mapping” Fx (., V) allows to view the pair (Qx(.), Fx(.,V))

U 9 x
v " x

as genuine reciprocal transformations between r.v.: it bypasses the issue, ex-
plained in Section 2, of having to represent the inverse operation F)zl as
a multivalued-mapping and even strengthens (8) into an a.s. statement. Of
course, the choice of the reference distribution of U, uniform on [0, 1] is con-
ventional. It can be motivated by Laplace’s view on randomness: one should
generate random variables from an “equiprobable” continuous distribution,
viz. a uniform one. It may prove advantageous to use, say, an Exponential or
Poisson distribution, as reference distribution and the corresponding trans-
formations then have a different interpretation (in particular, as a hazard
function, see ( ))-

3.2. Multivariate transforms of random vectors For a multivariate
X=(Xy,...,Xy) € R?, one can similarly look for a transformation

T:00,1]-RY U—X
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from a univariate U ~ Ujgy. Such a generalisation to X € R? or even
to X € X a Polish space, would be given by Borel’s isomorphism The-
orem, see ( ), chapter one. Unfortunately, such isomor-
phisms (which would be perfect candidates for higher-dimensional “quantile
functions”) are not very convenient tools: no explicit construction, even for
X = RR?, is known; they may be unsmooth and present some pathologies, see
(1967), (1990).

Therefore, it is more convenient to look for a transformation between
vectors of the same dimensionality, i.e. not from a single univariate U but
from a vector U = (Uy,...,Uy),

0,17 = RY, st Us X,

Moreover, it is expedient for interpretative purposes to impose that the
marginals of the reference vector U have some prescribed distribution, say
uniform on [0, 1]. Basically, there are two competing routes, depending on the
dependence structure of the (Uy,...,Uy), which leads to either multivariate
quantile representations, or copula representations.

3.2.1. Multivariate quantile representations Starting from a vector
U = (Uy,...,Uy) of mutually independent Upp,1) r-v.s, one wants to generate
a copy of the vector X whose distribution is a prescribed c.d.f. F.

e The direct transformation Q := (Q1,...,Q4),

Q:[0,1]¢ = RY, U Q(U) (11)
is the multivariate conditional quantile transform, which is the set of
successive conditional quantile transforms: set

Qi(w) = Qx,(wm)=121, 0<u <1,
Qi(uilui-1,...;u1) = Qxyx,_i,..x (WilTiz1,...,21) =t 2,
O<u; <1, 2<i<d.
the successive conditional q.f. of the conditional distributions of Xj;

given (X;_1,...,X7), for 1 < i < d, see ( ). Then,
letting

X = Q(U) = (Q1(U1),...,Qq(Uy|Uys_1,...,U1)),

one obtains a random vector X < X, i.e. the multivariate analogue of
(8).

e Starting from a vector X = (X1,..., Xy) with prescribed c.d.f. F', the
reciprocal transformation (known as Rosenblatt’s transform in the con-
tinuous case, see ( ), and generalised to the general case

in (2009)),

R:RY—[0,1]%, X+—R(X,V)
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is defined similarly as in (10) via the set of successive extended condi-
tional c.d.f.

(FXi|Xi,1,...,X1($ia)\i’xi—lv- . .,.CC1), 1<t < d), 0< <l

and an additional randomizer vector V.= (V1,...Vy), made of i.i.d.
marginals Upg 1) r.v., also jointly independent of X. The multivariate
conditional distributional transform is the randomized transformation

R(X, V) = (Fx,(X1,V1), s Fxyixyq,x (Xa, Val Xa1, -+ X1)).
Then, one has the analogue of (10): if
U :=R(X,V), (12)

then U is uniform on the unit cube and

Q(U)=X as.

Again, this view encapsulates Laplace’s view on randomness and is similar to
the engineers’ approach on modeling time series, (see ( ), chapter
2): the most unpredictable time series is a strong white noise, viz. a sequence
(U;) of ii.d. r.v. with a common prescribed distribution (here uniform on
[0,1], but which is often taken standard Gaussian in the context of time
series). Hence, starting from such a sequence (U;) of i.i.d. r.v. considered as a
“source of randomness”, Nature generates successively the next output X; 1
from the “past” realizations (X1, ..., X;) by a random mechanism involving
an independent U, 1. Such a random mechanism is described by the “response
functions” formed by the successive conditional ¢.f. One obtains a “Markov
(quantile) regression representation” of X ~ F' from the source of i.i.d U; r.v.
Reciprocally, one can consider that such a stochastic temporal model, made
of the successive extended conditional c.d.f., has captured all the stochastic
dependence in a vector X, if it can transform the latter vector into strong
white noise, i.e. into a sequence of i.i.d. r.v. with a prescribed univariate
reference distribution(here uniform).

3.2.2. Copula representations In an approach dual to the multivari-
ate conditional quantile representation of the previous Section 3.2.1, one may
start from a vector X = (Xi,...,Xy) with the given multivariate c.d.f. F,
and wish to obtain a vector U = (Uy,...,Uy), which is no longer made of
independent marginals as in (12), but captures the “dependence”, irrespec-
tively of the marginals. This is obtained by standardizing the marginals of X
by using the marginal distributional transforms, thus obtaining a vector U,
whose c.d.f. is a copula function, as is explained below.
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e A primer on copulas as probabilistic transforms:

For X ~ F, denote by G = (Gy,...,Gy) its corresponding vector of
marginal cdfs, namely

Gi(x;) = F(o0,...,00,x;,00,...,00).

Recall that a d-dimensional copula function C : [0,1]? — [0,1] is de-
fined analytically as a grounded, d—increasing function, with uniform
marginals whose domain is [0, 1]¢ (see ( )). Alternatively, it
can be defined probabilistically as the restriction to [0, 1] of the mul-
tivariate cdf of a random vector U, called a copula representer, whose

marginals are uniformly distributed on [0, 1] (see ( ),
( )). Their interest stems from Sklar’s Theorem (see
( ), ( )), which asserts that, for every random vector

X ~ F, there exists a copula function connecting, or associated with
X, in the sense that:

THEOREM 3.1 For every multivariate cdf F, with marginal cdfs G,
there exists a copula function C' such that

F(x) = C(G(x)), VxR (13)

Conversely, if C' is a copula function and G = (G1,...,Gq) a vector of
marginal univariate distribution functions, then the function F defined
by (13) is a joint distribution function with marginals G.

When G is continuous, the copula C associated with X in relation
(13) is unique and can be defined from F' either analytically by C' =
FoG™! where G~ = (G, ..., G;l) is the vector of marginal quantile
functions, or probabilistically as the cdf of the multivariate marginal
probability integral transforms, namely C(u) = P(G(X) < u), u €
[0,1]¢. Whenever discontinuity is present, C' is no longer unique: in
other words C, as a functional parameter, is not identifiable from the
multivariate cdf F' alone. In such a case, the most natural way to derive
a probabilistic construction of a copula representer U associated with
X is to use the d-variate marginal distributional transform: set

U=G(X,V)

where G is the vector of extended marginal cdfs, and V is a vector of
uniform [0, 1] marginals (i.e. its cdf is itself a copula function), indepen-
dent of X. Then, the cdf C of U is a copula function which satisfies (13),

see (1975), (1981), (2009),
( ), ( ), ( ). The distribution
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function of V.= (V3,...,Vy) can be any copula, but the most natu-
ral choice is to choose the independent one, so that dependence mea-
sures computed on U match those computed on X, see ( ).
Hence, one can view again the pair (G71(.),G(.,V)) as reciprocal
transformations between X and its copula representer U,

u ¢

v Y x, (14)
Empirical copulas:
If F' is unknown, but one has instead a sample X;,Xs,... of copies

distributed according to F' on a probability space (2,4, P), one can
define the ecdf F,,,

1 n
Fo(x) = n Z Ix;<x
i=1

and the corresponding vector of marginal ecdfs G,,. Sklar’s Theorem
therefore entails that there exists some copula function C,, associated
with F,. As the ecdf is discrete, C), is no longer unique and can no longer
be defined, in parallel with the continuous case, as C := F,,0G, !, or as
C#*(u) := P*(Gp(X}) < u), with X* ~ F,,, conditionally on the sam-
ple, and where P* is the corresponding conditional probability (more
on this below). Indeed, C} and C}* do not have uniform marginals
and hence are not genuine copula functions associated with F,,. C}; and
C}* are versions of the improperly called empirical “copula” functions,
introduced by ( ) under the name of the multivariate
rank order function and ( ), ( ) under the
name of the empirical dependence function.

When F is continuous, the disadvantage of estimating C' = F o G~! by
estimators which are not proper, in the sense that they do not belong to
the same functional class of the parameter to be estimated, is mitigated
by the fact that these estimators coincide, with any copula function
associated with F,, on the grid of points uy = (k1/n,...,kq/n) for

ki,...,kqg = 0,...,n; see ( ). Moreover, any version of
the corresponding empirical “copula” process weakly converges, see e.g.
(2004), (2009), or (1970). Hence,

in the continuous case, the choice of which “empirical copula” function
to use is often of little relevance for statistical purposes.

However, we will see in Section 5 that defining the empirical copula as
a genuine copula function will be a key element in the construction of
empirical quantile morphisms, even in the continuous case. Hence, let
us define the empirical copula representer, conditionally on the sample,
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as follows: on an extra probability space (2*, A%, P*), let X* ~ F,,. Set
U, = Gu(X},V), (15)

the multivariate distributional transforms for the ecdf F;,, with inde-
pendent randomisation V. Denote as (), the cdf of U,, i.e. the copula
function associated with Fj,.

4. Quantile as Markov morphisms: an algebraic categorical view
What often matters in probability and statistics is not the random elements
X per se, but the distribution they induce PX and the properties of the
latter. Hence, it is advantageous to see the transformations (14), (12), (11)
of random elements of Section 2 as transformations of probability measures,

pPX = pyU,

(Such view can be rendered rigorous, subject to some measure theoretic
subtleties which we leave aside, see details in ( ) chapter 1,

( ), chapter 2 or the introduction in ( )). This final
change of perspective will allow us to eventually motivate the forthcoming
definition of the quantile object from an abstract algebraic viewpoint, in-
spired by category theory.

4.1. The category of Markov morphisms Informally, category the-
ory is made of “objects” or abstract sets denoted by A, B, ... and a system of
mappings, morphisms or “arrows” «, 3, ... of the objects into one another. It
will often be necessary to precise the domain and codomain of morphisms by
subscripts, so that A % B, be denoted by aap. Such a system of morphisms
must obey the following two axioms:

e Associativity of composition: morphisms with compatible domains and
co-domains can be composed, i.e. if aag : A — B, Bgc : B — C then
aapofpc: A— Cis also a morphism. (We will use ( )’s
left-to right convention so that Aa = B (and not «(A) = B) de-
notes the “transformation” of A into B under the “action” of «, so
that composition of morphisms is reversed from the usual o compo-
sition operation, as in e.g. ( )). Moreover,

the composition law is associative, i.e. if A = B LA C 2 D, then
(@ap o Bpc) o vep = aap © (Bec © YoD)-

o Identity law: For every object A, the system includes the identical map-
ping id4 = €44 which is both the right and left identity: €44 0 agap =
aap, and Bpa o €aa = Bpa.

The system of morphisms forms an abstract category and the pair (objects,
morphisms) is called a concrete category: it is the conceptual framework to
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carry the idea that a class of objects or “figure” A can be transformed into
another figure B via “motions” «. It paves the way to study the properties
of those figures which remain invariants under structure-preserving transfor-

mations, see ( ) ( ),
( ), ( ) for readable introductions.
In his seminal book, ( ) shows how statistical inference can

be studied from such a viewpoint. To that purpose, let us recall the definition
of a Markov probability kernel or Markov morphism:

DEFINITION 4.1 Let (£24,.41), (22,.42) be two measurable spaces, a func-
tion Ko : Q1 x Ay — [0,1] is a Markov probability kernel (or transition
probability distribution) from (1, A;) to (2, A2) iff

i) for every wy € Q1, As € Ay — Kia(w1, A2) is a probability measure on

As;

ii) for every As € Ay, w1 € Q1 — Ki2(w1, A2) is a Aj-measurable function.

Markov kernels K12 will also be denoted Markov morphisms: K12 induces two
morphisms preserving the algebraic structure (i.e. homomorphisms), which
will be denoted by the same letter Cqo:

e a positive bounded linear operator on the convex set of probability
measures : K19 transforms a probability measure P; on (€;,.4;) into a
probability measure P, on ({2,.43), by acting on the right on measures

as
PQ() = (Pllclg)() = 0 Pl(dwl)lC12(w1,.), (16)
1
see ( ) Lemma 5.2 p. 67. Symbolically,
P2 p,

e a positive bounded linear operator K12 on the vector space Fy(§22,.A2) of
bounded measurable functions fa : (22,.42) — R into the vector space
of bounded measurable functions F3(€1,.41) := {f1 : (1, A1) — R},
by acting on the left on functions as

fi() = (Ki2f2)(1) i:/Q Kia(., dws) f2(w2), (17)

see ( ) Lemma 5.1 p. 66. Symbolically,

K12

f1 < fa.
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e and one has commutation, see ( ) Lemma 5.3 p. 68, i.e.
(PiK12) f2 = Pi(Ki2f2). (18)
where
P(f)i= [ fdP = (P.1) (19)

is the expectation of f w.r.t. P, viz. the duality bracket between mea-
sures and functions. In view of (16, 17, 18), the action of K12 on mea-
sures and functions will be written without neither parentheses nor
brackets in the remainder.

Such Markov probability kernels K12 : (Q21,.41) — (Q2,.A2) and Kag :
(Q2, A2) — (23, A3) obey the composition law,

Ki3(w1, A3) 1=/Q Ki2(w1, dwo) a3 (wa, A3) (20)
2

which is associative ( ( ) Lemmas 5.4 and 5.6), and the Dirac
kernel 7 : (Q, A) — (€2, .A) defined by

I(W7A) = 5w(A)7 (21)

corresponding to the Dirac measure in w, is the identity on (2,.4) for the
composition law (20), (cf. ( ) Lemma 5.8). In other words, the
system of Markov morphisms is an abstract category (see ( )
Theorem 5.1) and together with the class of probability (or signed) measures
a concrete category (cf. ( ) Theorem 5.2 and Lemma 5.9). In view
of (16, 17, 18, 20), we drop the composition symbol o and denote composition
by mere juxtaposition, viz. K13 = K12K23. Let us state out this key result as
a Theorem:

THEOREM 4.2 (CENCOV’S THEOREM 5.2) The class of objects P(2,.A) of
probability measures on (£, A) with the system of Markov morphisms {K} of
Markov probability kernels forms the concrete category CAP of all probability
measures.

REMARK 4.3 By duality (18), (19), the class of objects Fy(£2, .A) of bounded,
measurable, real-valued functions f : @ — R with the system of Markov
morphisms {K} of Markov probability kernels forms the concrete category of
all bounded measurable functions.

4.2. Quantiles as Markov morphisms: qualitative aspects The
conceptual framework introduced in the previous subsection allows us to re-
cast the problem of defining a quantile object of Section 1 and to review the
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transformations between random variables of Section 2 at the right categor-
ical level of Markov morphisms.

Indeed, such Markov morphisms allow to subsume probability measures
and (the measure induced by) random variables into the same abstract con-
ceptual object:

e a probability measure P, on (£22,.42) is simply a constant Markov kernel
Ip: (1, A1) — (Q2,Az), defined as,

IP2 (wl,Ag) = PQ(AQ) (22)

e a measurable function fi2 : (21,.41) — (£22,.42) can be described (em-
bedded) as a degenerate Markov morphism Z/12 : (Q, A1) — (Qa, As),
as

If12 ((/.)1, AQ) = 6f12(w1)(A2) = 5w1 (][.1_21 (AQ)) (23)

so that the image measure Py(.) := Py o f5'(.) on (Qq,F2) induced
by fi2 from the measure P; on (1,F1) (or in the push-forward no-
tation fio#P) =: P») simply writes as a composition (20) of Markov
morphisms,

Py = P72 = Ip 12,

For further reference, let us single out this family of degenerate Markov
morphisms by stating out a definition:

DEFINITION 4.4 A Markov morphism 12 from (Q1,.41) to (22,.A2) is
of degenerate type if there exists a measurable funtion fio : (€1,.41) —
(QQ,AQ) s.t.

K19 = 7he.

Such notation is consistent with the identity morphism Z on (€2, .4) of
(21), as the Dirac kernel can be expressed as T = Z%, where id : Q —
is the identity function.

As a consequence, the transformations between random vectors of Sec-
tion 2, can be reformulated as transformations between measures through a
Markov morphism. In particular, we already noted that the univariate quan-
tile transform (8), Qx : U — X as a mapping between random variables, can
be construed as a morphism Z9X between univariate measures,

pU X pX

9

where Z9X is a Markov morphism of the degenerate type (4.4), whereas its
reciprocal, the distributional transform (10) F(.,V) : X — V as a random-
ized transform between univariate random variables, can be construed as a
genuine, non degenerate Markov morphism Dx

D
PU X PX,



O.P. Faugeras, L. Riischendorf 17

where Dy (x, A) is the conditional probability of U := F(X,V) € A given
X = z. Let us define similarly 76" and Dx their multivariate counterparts
transforming corresponding to (14), i.e. transforming a multivariate PX into

its copula representer distribution PY = PG(XV),
a1
PU I_} PX
py Px pXx (24)

REMARK 4.5 (MARKOV MORPHISMS AS DEGENERATE MARKOV MORPHISM
ON AN ENLARGED PROBABILITY SPACE) Note that a randomised transform
between random vectors (i.e. genuine Markov morphisms of the nondegen-
erate type) could also be written as a purely functional transform (i.e. as a
degenerate Markov morphism), at the price of having to enlarge the proba-
bility space.

For example, for the univariate distributional transform (10), enlarge
(Q,A, P) to (2 x[0,1], A® B([0,1]), P ® A), denote F'x the c.d.f. of X and
X\ = PV the Lebesgue measure on [0, 1], transfer all previously defined random
elements on this new, enlarged probability space, and consider the bivariate

mapping
Fx(.,.):Rx[0,1] = [0,1], (X,V)— Fx(X,V).
and the corresponding bivariate product mapping Fx ® id,
Fx ®id:Rx[0,1] —[0,1] x [0,1], (X,V)— (Fx(X,V),V).

Then, with U := Fx(X,V) and 7 : (u,v) — u the projection mapping on the
first coordinate,

RS pwUVv) 17, pU _

PX @A
Hence, the univariate distributional transform (10) can be construed as the
composition of two degenerate Markov morphisms, i.e. as a degenerate Markov
morphism, on the enlarged space.

More generally, see ( ) chapter 3, ( ) Lemma
2.22, Lemma 5.9 and Theorem 5.10 p. 89 and ( )
Lemma 1.1 p. 18 and Lemma 1.3 p. 20 for a rigorous formulation of the prin-
ciple that “a randomized decision for an experiment £ is a non-randomized
decision, but for an experiment £ which is an ”extension” of £ (see

( ) p- 17). The same remark applies to the multivariate con-
ditional quantile (11), distributional (12), and copula (14) transforms of Sec-
tion 2. However, from the categorical perspective, limiting oneself to purely
functional transforms is awkward and we prefer to unify all kind of transfor-
mations into the same category of Markov morphism.
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Eventually, note also that when we will represent the Markov morphism
corresponding to the transformations (14) and (15) by the random elements
U=G(X,V) and U, = G,(X},V), we use the same random vector V in
both cases, in order to obtain a.s. convergence (see the forthcoming Theorem
6.2 in Section 5).

We are now in a position to formulate a (preliminary) definition of the
object multivariate quantile as a Markov morphism, which combines the idea
(2) in Section 1 of quantile as an inverse, and those of Section 2 of quantile
as a reciprocal (randomized) transformation between vectors (or measures),
one of which being thought of as a reference distribution (see (8), (10) in
Section 2):

DEFINITION 4.6 (PRELIMINARY) Let (S,B(S)) and (X, A) = (RY, B(R?))
be two measurable spaces. Consider as an object on &, the one set consisting
of a single probability measure { PS}, which is thought as a reference distri-
bution, and as objects on X’ the collection P(X, A) := { PX} of all probability
measures on X. A Quantile morphism Q of PX w.r.t. PS is an isomorphism

whose inverse R,

will be called a Rank morphism of PX w.r.t. PS. In other words, the pair of
Markov morphisms (Q,R) satisfy QR = Zs, and RQ = Zy, where Zs,Zx
are the identity morphism (21) on S, X, respectively.

REMARK 4.7 We used the term rank morphism instead of distributional (or
probability integral, or c.d.f) morphism to agree with the terminology of
( ), see Section 5 below.

We temporarily leave aside the question of existence and unicity of these
Quantile and Rank morphisms, since this qualitative view of reciprocal trans-
formations of measures will be turned into a quantitative problem, via mass
transportation theory, as we now show.

4.3. Quantitative transformation of measures via Mass Trans-
portation The Monge-Kantorovich optimal transportation problem aims at
finding a joint measure P%Y on the product measurable space, say (X x) =
RY x R, B(RY) @ B(RY)), with prescribed marginals (PX, PY), which is the
solution of the optimisation problem:

Be(PPY) = v Bl e P (Y], (25)



O.P. Faugeras, L. Riischendorf 19

where ¢ : R? x R? — R7 is a cost function and the infimum is on the set
P(PX, PY) of joint distribution with marginals PX, PY. Informally, mass at
x of PX is transported to y, according to the conditional distribution P(dy|x)
of the transportation plan P*Y € P(PX,PY), in order to recover PY while
minimising the average cost of transportation PXY [¢(X,Y)]. See

( ), ( ), ( ) for book-length treatment on
the subject, ( ), ( ), ( ) for survey
articles. This topic is closely related to coupling (see ( )) and
probability metrics (see ( ), ( ), ( ).

The related Monge transportation problem is when one looks for a solution
of (25) which is “deterministic” in the sense that the laws of (X,Y) are
restricted to those of (X, H(X)) for a measurable transportation map H :=
Hpx . py : R — R4 s.t. PHX) = PY 5o that

me(PX, PY) := . Hi(r)l(f):PY PX[¢(X,H(X))]. (26)

By disintegrating the transportation plan PXY into the fibered product
XY _ pX Y
P =P*®P,,

where PY is a regular conditional distribution (i.e. a Markov kernel) of Y
given X = x, it is clear that mass transportation can be translated in the lan-
guage of Markov morphisms: the Monge-Kantorovich optimal transportation

problem amounts to finding a Markov morphism Kxy := P,

PX Kxvy PY,

which is a genuine Markov kernel, whereas the Monge optimal transportation
problem amounts to finding a degenerate Markov morphism ZH of the kind
(23) induced by a transportation map H,

pX % pY.

The cost function c is often specialised to the squared euclidean distance,
c(x,y) = ||x —y||?, which yields the so-called Ly Wasserstein probability
distance, see e.g. ( ). The characterization of the
optimal Ly solution of (25) was given by Theorem 1 in

( ), and can be rewritten in the language of Markov morphisms
as follows: for PX almost all x, there exists some l.s.c. convex function 1 :
R? — R, s. t.

supp(Kxy (x,.)) C 9Y(x),

where supp stands for the support and 9 for the subgradient. The reciprocal
optimal kernel,

pX Kyx PY,
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is characterized by

where ©* is the convex conjugate of v, see ( ).
In particular, if PX << A%, this result implies the existence part of
( )’s Theorem on existence PX a.e. of Monge’s transportation map

H, and the optimal Markov kernel is degenerate, Kxy = ZH. Under addi-
tional existence of second moments of both PX and PY, one obtains, via
Kantorovich-Fenchel-Legendre duality, unicity of the transportation maps H
and its reciprocal optimal transformation H™ corresponding to

px T pY
as gradients of ¢ and its dual ¥*,
H=Vy, H™ =Vy* (27)

see ( ) ( ), (
(2007), (1985).

REMARK 4.8 ( ) shows how one can recover the multidimen-
sional conditional quantile and distributional transform from such a mass
transformation problem. Copulas, completely monotone dependent random
variables and Fréchet-Hoeffding bounds also arise from mass transportation,
see ( ).

4.4. Towards a structural point of view One of the main interests of
category theory is to propose a framework that allows to study which trans-
formations of the objects in the category preserve the structures attached
to these objects, i.e. which leave invariant the properties of the objects, see

( ) paragraph 4 to 8.

As announced in Section 1, we are now equipped with the right conceptual
tools to substantiate our claim that the multivariate q.f. and related depth
proposals of Subsection 2.3 should be evaluated according to their structural
properties instead of their method. To that purpose, let us reexamine the
properties of q.f. listed in Subsection 2.2, classify them according to this
structural point of view, and translate them in categorical terms, so that we
can let emerge a set of desirable axioms that multivariate quantile and rank
objects should obey (some of which will be loosely stated).

e Algebraic Structure:

— [A1] Identifiability / Isomorphism:
in view of (4), (Qx, Fx) characterizes their parent distribution.
In the language of Markov morphisms, the pair of isomorphims

(Q,R) in definition 4.6 precisely achieve such a characterization:
PSQ = PX, and PSR = PX.
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— [A2] Algebraic compatibility:

We viewed in Section 1 that q.f. have good algebraic properties.
Moreover, the collection of probability measures on some fixed
measurable space forms a convex subset of the vector space of
signed measures. Therefore, multivariate extensions of quantile ob-
jects should be compatible with addition and scalar multiplication
in a way that reflects the underlying structure of the collection of
measures. In view of (20), (16) and (17), and the fact that the
set of Markov morphisms between two fixed measurable space is
convex, such a desideratum will be automatically satisfied if the
objects quantile and rank are taken as Markov morphisms.

e Ordering structure:

— [O1] Galois connection between two ordered spaces.

The fundamental property of univariate q.f. (2) and (3), can be
illuminated by introducing the notion of Galois connection (see
( ), Chapter 1 and also the related idea of residuated

mapping):

DEFINITION 4.9 Let (X,<x), (Y,<y) be two ordered sets and
L: X~ YU:Y — X be a pair of mappings. Then (X,<x
), (Y,<y),L,U is an isotone Galois connection

« iff for every x € X and every y € Y L(z) <y y & = <x U(y)

« iff L,U are monotone (or isotone) and for every z € X and
every y €Y, 2 <x U(L(x)) & L(U(y)) <v y.

Indeed, consider the two ordered sets (I, <), with I = (0,1) the
unit interval and <;=< the usual order < and (R, <gr) with its
usual order <g=<. Then, for univariate q.f. properties (2) and (3),
simply mean that (I, <), (R, <), Qx, Fx is an isotone Galois con-
nection. Therefore, the desirable property for Quantile and Rank
morphisms: Quantile and Rank morphisms should form a Galois
connection between two ordered spaces.

In the spirit of Section 2, this concept of a Galois connection can
be reformulated in probabilistic terms: starting from a r.v. U uni-
formly distributed on [0, 1], setting X’ := Qx(U), one has that
U € (0,Fx(z)] iff X’ €] — o00,z]. In other words, starting from a
reference distribution PV, and given a quantity of mass 0 < 7 < 1,
these considerations amount to construct on a common probability
space some copies X' ~ PX = PUT®xX of X from a transformation
of U ~ PY s.t. if A, :=] — 00, 2], is a subset of R with P~ mass
7, viz. PX(A;) = 7, then B, = Fx(A,) is a subset of [0, 1] with
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PY mass 7, with
Qx(U) e A, & U € Fx(A,),
as

T = PY(A)=P(X' € A,)=PQx(U) € A,)
P(U € Fx(A;)) = P(U € B;).

In addition, the set of subsets Of = {B,,7 € [0,1]}, Of =
{A;,7 €[0,1]} should have an order structure (for the inclusion)
compatible with the order relations <j, <g, in the sense that 7 <y
T A, CA., & B, C B,

Turning to the general case, the setting can be (loosely) formu-
lated in terms of the Markov morphisms (Q,R) as follows: let
F*(S) :=={s — 1p,(s)} be a collection of the indicator functions
S — R, indexed by 0 < 7 < 1, where {B;} C B(S) is a collection
of measurable depth regions of PS mass 7, PS(B,) = 7. Define
F*(X) :=R(F*(S)) = {A; :== Rlp, }, the image of F*(S) by the
Rank Morphism R. Then,

PX(4,) = PX(R1p,) = (PXR)(1p,) = PS(B,) =,

i.e. A, is of PX mass 7. These are depth “regions” (functions) for
X, see Section 4.5 for a detailed description of the order structure,
its preservation by Markov morphisms and its interpretation.

[02] Equivariance w.r.t. left-continuous univariate monotone trans-
formation:

in view of (6), one should have some form of scale invariance
w.r.t. a monotone non-decreasing univariate transformation. In
the multivariate case, let g : R — R? be made of d univari-
ate monotone non-decreasing functions ¢; : R — R, 1 < ¢ < d,
viz. g(x) = (g1(z1),-..,94(xq)). In the language of Markov mor-
phisms, if @ and Qg are quantile morphisms of X, g(X) respec-
tively, i.e.

psS 2. pX & peX)
pS & ps(X)

one should have commutativity of the composition diagram,

Qg = QIg-

e Topological structure:
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— [T1] Compatibility with weak convergence of measures.

In view of (5), it is desirable that quantile generalisations should be
compatible with the notion of weak convergence on the space of prob-
ability measures: Let PX», PS» a sequence of probability measures on
X, S respectively. Let (Q,,, Ry,), respectively (Q, R) their corresponding
quantile and rank morphisms of definition 4.6,

PSnQ, = PXn, PX*"R, = PSn,
PSQ = pX, PXR = PS.

One requires that PX» 4 pX & pSn 2 pS,

Combining the preliminary definition (4.6) and these desirable properties,
we can state an eventual possible definition of quantile and rank morphisms:

DEFINITION 4.10 Let PS be a fixed reference distribution and PX be the
distribution considered on the measurable space (R, B(R%)). A Quantile and
Rank morphism of PX w.r.t. PS is a pair of Markov isomorphisms (Q, R)

PS & PX

PS & PX
compatible with the algebraic, topological and ordering structures given by
the axioms [A1,A2,01,02,T1].

4.5. Order structure and depth regions The concept of depth re-
quires a way to quantify a measure of “remoteness” of a distribution from a
“deepest” or most central point. The minimal requirement to translate these
phenomenological notions into a mathematical concept seems to give a pre-
order structure (a reflexive, transitive relation <s) on the reference space S.
In order to be able to define such a “median” or “deepest point”, it is neces-
sary that the preordered space (S, <s) possesses the smallest element 0, so
that one can evaluate the degree of “remoteness” of two points in s1,80 € S
w.r.t. 0. In other words, one considers that (S, <g) is a preordered set with a
universal lower bound 0, so that (S — 0, <s) has the structure of a downward
directed set, viz a preordered set s.t. every pair of elements has a lower bound.

(See ( )s ( ) for background on order).

If S is chosen as a subset of R% and has the algebraic and metric structure
given by the usual Euclidean distance ||.||, such a framework is obtained by
setting

s1 <582 < [[s1 = 0f[ <[s2 = O[] = [[s1]] < [[s2][-
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As in ( ), let us choose S to be the unit ball of R?
of center 0. (Notice that (S,<s) is not a lattice (two points on a same
sphere have the same radius and can not be distinguished) and also that this
preorder is not compatible with the vector space structure of S, in the sense
that s1 <5 s2 # s1 +s3 <s Sz + s3 for s1,s2,83 € S).

The general idea is as follows:

1. transfer this preorder on S into a stochastic preorder on P(S), the set
of probability measures on S, via an order embedding s — dg;

2. then use Markov kernels (Q,R) in Galois connection to transfer this
preorder onto P(X);

3. obtain a preorder on X via the mapping §x — x, or at least a depth
function or area on X.

More precisely,
1. Step one:

e Preorder interval: On (S, <s), define the (pre-)order interval [r, t] :=
{s € §,r <5 s <s t}, so that the closed balls B; := {s € S,|s| <
7} = [0, s] for some s € S s.t. [s| = 7.

e Down-sets : Recall that for A C S, A is a down-set if
tecAs<sgt=sc A

Denote the set of down-sets of S as O(S). Define the down-closure
or order ideal of A C S as the smallest down-set containing A:
Al = {s,s <st for some t € A}. Hence, the ball st := {s}! =
[0, s] is the principal ideal generated by s. Set O*(S) = {s!,x € S}
the set of balls/principal ideals of S.

e Partial embedding into the powerset: Although (S,<s) is only a
preordered space, its set of principal down-sets O*(S) is a par-
tially ordered set (poset) included in the powerset (2%, C), via the
mapping

(S.<s) — (0°(S)c2%,0)
s — sl=][0,s]
since
s<st<[0,s] C ot

(Notice however that s — [0, s] is not injective, hence one has only
a partial embedding)

Each element of O*(S) is obviously measurable, so the embedding
is in reality in B(S). This principal ideal O*(S) makes up the
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collection of depth areas for PS: for each set/ball B € O*(S),
there exists 7 € [0,1] s.t. PS(B) = 7. Hence, they capture the
features required for their interpretation as central regions of S
with a given PS mass.

e Order embedding on P(S): inspired from ( ), one can
now define a stochastic preorder <gs on the space P(S) of proba-
bility measures compatible with the embedding x — Jx, according
to the following definition:

DEFINITION 4.11 <s is a stochastic preorder on P(S) if
i) <g is a preorder on P(S);
ii) s — Js is an order-embedding: for all s,t € S, s <s t holds iff
55 =S 5t-

In our case, the stochastic preorder <s on P(S) is defined via the
previous embedding on the principal ideal (S, <s) — (0*(S), C):

PSt <5 P52 & PS1([0,s]) < P52([0,s]), VscS.

By duality or by considering the embedding S — F(S) = {f :
S — R}, obtained via the mapping s — 1jg4), the stochastic
preorder <s corresponds to an integral preorder whose generator
is the set of indicator functions (see ( )): F*(S) ={s —

1[0,5]}:
PSt <5 P52 & PS1(f) < PS2(f), Vf e FY(S).

2. Step two: Galois connections for probability measures.
Given a pair of Markov morphisms,
pS =2 pX
ps R pX

and a stochastic preorder <s on P(S) defined by the function set

F*(S) = {s — 1jgq} on F(S), the image of the latter by R defines

a function set F*(X) := R(F*(S)) = {g := Rf, f € F*(S)} which in

turn defines an integral stochastic preorder <y for P(X) so that
PSQ <y PX & PS <5 PXR.

Indeed,

PSQ <y PX & PSQ(y) < PX(g),Vg € F*(X)
& PSQ(Rf) < PX(
& PS(QR)f <
& PS <5 PXR
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since QR = Zs. In other words, (Q,R) is a Galois connection between
the preordered sets (P(S), <s) and (P(X), <x)

. Step three: depth areas in the X space.

In turn, such a preorder structure (P(X), <x) can sometimes be “de-
scended” down to a preorder structure on (X, <y), in case the mapping
dx — X induces a compatible preorder structure. In particular, depth
areas (set objects) in the & world, corresponding to the balls or princi-
pal down sets O*(S) can become depth areas R(O*(S)) in the X world,
in case the rank morphism R is of the degenerate type (4.4). Indeed, if
R =1/, for some f: X — S and B, € O*(S) is of PS mass 7, then

R(Br)(2) = 1jw)eB, = locs-1(B,) = Li-1(B,)(2)

is a function X — {0, 1} = 2 isomorphic to the measurable set f~!(B,)
of B(X'). This is in particular the case for quantile and rank morphisms
obtained by Monge’s optimal transportation of Section 4.3: if

Psﬁpx

pS I£1 pX
are obtained with the optimal transportation map H of (27), then
-1
R(BT) = IH (BT) = 1H(BT)7

that is to say, the depth regions in the X world are the direct image by
the optimal transportation map of the depth regions in the S world.

In the case where the morphisms are not degenerate, one only obtains
as an object a non binary function, i.e. an object interpretable at best
as a random set in an enlarged space, see the discussion in remark 4.5.
Moreover, having “depth areas” which are not deterministic subsets
also poses epistemological issues and is a matter of debate, see the
discussion in Section 5.1.

5. A copula and mass transportation approach to quantile mor-

phism

5.1. A discussion on randomization of statistical functionals and

a motivation for a combined copula-Monge approach The discus-
sion of Section 3 and of Subsection 4.2 showed the necessity to allow for
random transformations between probability measures in order to be able to
define Quantile and Rank morphisms as reciprocals of each other. However,
such a stance, mathematically legitimated on the abstract algebraic grounds
of category theory, may be objectionable from an epistemological /statistical
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point of view. Indeed, quoting ( ) p. 6, “The decision-making
procedure II(w,de) requires that, after observing the outcome w, an addi-
tional, independent, random choice of the inference e be made, based on the
law II(w;.). This random answer is then a statistical decision by the rule
I1.” Consequently, switching from the classical viewpoint of statistics f(w) as
measurable functions of the observations w to the Blackwell-Le Cam-Cencov
theory of statistical inference based on a randomized procedure (i.e. Markov
kernels II(w,de)) may be considered problematic from the scientific view-
point: two statisticians, having the same observation w, with the same non
degenerate decision rule II(w;.), may obtain two different answers on the in-
ference considered. In other words, if used improperly, randomized statistical
inference procedures may fail to abide by one of the main criteria of the sci-
entific method, i.e. reproducibility and objectivity of its conclusions in face of
common empirical evidence. (Note, however, that extraneous randomisation
appears in disguise in several statistical procedures like smoothing, regular-
ization, which may appear “deterministic” at first glance, see the discussion
of Subsection 3.2).

One is confronted with an issue similar when one endorses the subjec-
tivist/ Bayesian interpretation of probability: introducing arbitrary or sub-
jective a-priori randomness is likely to introduce an arbitrary and subjective
conclusion (in finite samples), unless a Bernstein-Von Mises type Theorem
can come to our rescue and allows us to recover (asymptotically) the true
value of the parameter under investigation, whose ontological (and not merely
mathematical) existence is posited. Since our intent is neither to stir contro-
versy, nor to get too far in “philosophical” discussions, we let the interested
reader refer to ( ) for an examination of those issues. Let us mention
that a comparable problem can occur in copula theory: by defining a copula
attached to a discrete vector X by the randomised distributional transform
(10), one can twist the dependence structure of the copula representer U cor-
responding to X, by choosing a randomiser V with a distribution different
from the independence copula, see ( ), ( ).

In this respect, in order to minimise the subjectivity /perturbation intro-
duced by extraneous randomization, we advocate that Quantile and Rank
morphisms should be based, as far as possible, on deterministic transforms
(a credo which might seem paradoxical at first glance with the content of
Section 4). To this end, we propose a Quantile morphism which combines
the copula view of Section 3 and the Monge transportation approach of Sec-
tion 4. It builds on a mass transportation approach to depth functions by

( ), which we now present.

5.2. The Monge transportation based depth of
( ) In , a (Monge) transportation approach
to quantiles and depths functions is proposed. Their basic idea is that in
a spherical distribution, balls give a natural definition of a region which is
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central for the distribution and which contains most of its mass. Therefore,
their basic device is to transform a multivariate X ~ F into a S := (r,a) ~
PS with spherical uniform distribution on the unit ball By := {x € R? :
||x|| < 1} of R, and conversely,

PX&?PS
PX&PS

with Ry = ZRF and Qp = ZQF. More precisely, their scheme is as follows:

e One transforms (“polarizes”) X into S := (r,a), where r stands for a
radius uniformly distributed, r ~ Ujg 1), and a for an angle vector, also
uniformly distributed on the unit sphere of R?, with r and a mutually
independent. In transportation theory terms, one transforms PS into
PX and conversely, via a pair of (deterministic) Monge transformation
maps Qp and Rp s.t.

QF#PS = PX, RF#PX = PS,

e One then computes the depth region of content 7 on this spherical
uniform distribution S: it is simply the ball B, of radius 7, since
PS(B,) =T.

e One back transforms the ball B, of radius 7 to the original space R?
where X lives, via the transformation Qp:

A(r, F) := Qp(B;).

One then obtains a depth region A(r, F) of the kind (7), whose PX
probabilistic content is 7:

PX(A(r,F)) = P(Qr(S) € Qr(B;)) = P5(B,) =7

e Depth measures for X can be transfered from depth measures for S
(e.g. Tukey’s depth): D(x,F) = DTukey(RF(x), PS)

The empirical versions are defined similarly: for samples X, Xo, ... (re-
spectively S1,Ss,...) of copies distributed according to F' (resp. PS), let F},
(resp. F3) the corresponding ecdf. Several variants are proposed, depend-
ing on whether one uses smoothed versions Fn, Fns of the ecdfs F},, Fns, and
whether one uses the sample S1,Ss, ... or a fixed reference PS distribution.

5.3. A combined approach We propose to elaborate on the previous
approach of Section 5.2, by composing it with a preliminary step of reduction
to the copula representation of Section 3.2.2. More precisely, the proposed
scheme is as follows:



O.P. Faugeras, L. Riischendorf 29

. Transform X ~ F' into its copula representer U = G(X, V), whose

c.d.f. C satisfy Sklar’s identity (13).

. Transport PUY into a spherical distribution PS, via transportation maps

Qc, R
Qc#PS =PY, Rc#PY = P8

. Compute the depths regions A(r, PS) of level 7, i.e. balls B, of radius

7: A(t, PS) := B, and PS(A(r, PS)) = PS(B,) = ;

. Use the transportation maps Qc, R¢ to turn these balls into depth

regions A(7, PY) of level T at the copula level, i.e. for U;

A(r,C) == Qc(B,), PY(A(r.C))=r

. Use the multivariate marginal quantile transform G~! to obtain depth

regions

A, P) = GTH(A(r, PY))
for the original variable X: PX(A(r, PX)) = 1.

In other words, one defines a pair of Quantile and Rank Morphism (Qx, Rx)

as,

Ox =19 o1%"' Rx:=DxoIRe, (28)

where Dx is the distributional transform Markov morphism of (24), according
to the following diagram,

PS
ps ¢ pu Px pX

The empirical version is defined similarly:

1.

conditionally on the sample X (w), Xa(w), . .., set (one bootstrap repli-
cation) X* ~ F),, and define as in (15), U,, := G, (X}, V) ~ C,,, where
C,, is the empirical copula function;

. transport PY» into a spherical distribution PS, via transportation maps

Qc,..Re,;
Qc, #P% = PY", Rg,#PY" = PS

. the rest of the procedure is the same: one obtains an empirical depth

area of content 7, as
A(1,Cy) == Qgc, (B,), PY(A(r,C,)) =T

and
A(r, PXn) = G;l (A(1,Ch)).
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Symbolically, in terms of morphisms,

pX: Pxs, pUn I%Cn pS

* Gr_ll Q n
pX. I pU.IZ% ps,
where Dx: is the distributional transform Markov morphism of (24) for X}
into U, i.e. the empirical Quantile and Rank Morphisms are

Q, :=1%n1G" R, .= Dx.TRen (29)

5.4. Discussion The advantage of such a combined copula transporta-
tion approach to quantile and depth areas is fourfold:

1. first, as with many copula approaches, standardizing the marginals to
uniform distributions on [0, 1] allows to separate the randomness in PX
pertaining to the marginals G alone from the randomness pertaining
to the “dependence” C' only. Hence, one reduces the computation of
depth regions only to the dependence structure PU of PX. Moreover,
as copulas are invariant w.r.t. monotone increasing transformations of
the marginals, the corresponding depth regions on U computed from
the balls of PS are invariant w.r.t. monotone increasing transformations
of the marginals: combined with the multivariate quantile transforms
G, one obtains a Markov morphism which automatically satisfies the
axiom [02] of Section 4.2. In addition, the corresponding depth mea-
sures at the copula level PY will obey an axiom of monotone invariance
which is much more stronger and natural that the axiom (A1) of affine
invariance in ( ), ( ) and

(2000).

2. second, the adjunction of a (continuous, non singular) randomizer V
in the copula transformation step smoothes the empirical copula func-
tion C), (it is even at least Lipshitz). Hence, the empirical copula mea-
sure PY» is absolutely continuous w.r.t to the d-variate Lebesgue mea-
sure \?. In addition, since U, U € [0,1]%, moments of all order exist.
Therefore, the assumptions of Brenier and McCann (Theorem 2.1 in

( )) on the existence and unicity of a trans-
portation map are automatically satisfied. The consequence in terms of
Markov morphisms is clear: all morphisms in (28) and (29) are of the
degenerate type (23), except for the copula morphism ZGV) and its
empirical companion (one obviously chooses a randomizer V made of
independent uniform components, in order not to modify the depen-

dence structure of X, X}, when viewed in the copula world, through

U, U}). Hence, the proposed combined Quantile and Rank morphism

proposed are in agreement with the credo of Section 5.1. Moreover,
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one complies with the assumptions of the powerful Theorems 3.2 and
3.4 by ( ), which will prove expedient for the
asymptotic analysis of Section 6.

3. third, one obtains a smoothing device of the empirical (copula) measure
which does not rely on ad-hoc bandwidth parameters as in the classical
kernel smoothing approach in ( ): this is rele-
vant from the finite sample point of view, since it is well known that
the classical kernel smoothed empirical measure is biased. Hence the re-
sulting transportation maps and depths of ( )
are likely to be also biased in a finite sample, and one has to optimize
the bandwidth in practice.

4. fourth, one obtains a unified approach for both a discrete or a con-
tinuous X, and one can therefore extend depth areas to multivariate
discrete distributions and dispense with the continuity assumptions in

(2017).

6. Asymptotic results
The proofs of the consistency in probability of transportation maps and

depth measures in ( ) (their Theorem 3.1) are ana-
lytical and are based on results on the local uniform convergence of subd-
ifferentials, via duality analysis. As in ( ), ( ), we
favor the use of the method of a single probability space (a.s. construc-
tions, see ( ), ( ), ( )) which allows to
use Theorem 3.4 in ( ), results by ( ), and
( ), ( ) to obtain simple and short probabilistic proofs.

6.1. Framework The setting is as follows:

e Framework:

Let X1, Xo,... an infinite dimensional sample defined, w.l.o.g. on the
canonical countably infinite product probability space

(Q,AP):=RIxRYx ... BR)@BR) @...,P).

In other words w = (wy,ws,...) and X;(w) = w;, are the coordinate
projections. Let P, be the empirical measure based on the n—sample
X1, X,

Pal) = PO = -3 b0
=1

and F,, G, its c.d.f. and the corresponding vector of marginal e.c.d.f.
Such P,(.) = P¥(.) is a random measure, i.e. it can be construed as
a Markov kernel from (€2, A) to (R?, B(R?)), (and we suppress the de-

pendence on w, as it is customary).
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e Ergodicity hypothesis:

Assume that X, Xo, ..., is an ergodic sample of PX, in the sense that,
for each real-valued function g on R%, s.t. PX(|g|) = [ |g|dP* < oo,

P,.(g9) := /g(x)Pn(dx) — PX(g), P — almost everywhere (30)

REMARK 6.1 The above definition is a specialization of ( )’s
definition of ergodicity to a non-random invariant measure, similar
to definition (E) of ( ) and the framework of

(2015).

e Assumption on PX:
We will also make one of the following assumption:
— (C): PX << )\,
— (D): PX is discrete.

6.2. Main theorem

THEOREM 6.2 Assume (30) and either (C) or (D). Then, with P-probability
one, one can construct on some probability space (2*, A*, P*) a sequence
S,..S of random vectors distributed as PS, and a sequence of copula repre-
senters U,, U distributed as Cyp,C, a sequence of random vectors X, X*
distributed as F,,, F' s.t., with P—probability one,

(Un,S0) % (U, 8),
and also, with P—probability one,
(X5,Up,,S,) — (X*,U,S) P"—a.s.

ProOOF e Step one: ergodicity implies weak convergence of empirical mea-
sures with probability one.

By Varadajan-Ranga Rao’s extension of the Glivenko-Cantelli’s Theo-
rem (See ( ) Theorem 6.1 and ( )), (30) implies

plp, % PX =1 (31)

In other words, there exists Qg C Q, with P(Qg) = 1, s.t. for all w € Qy,
P, 4, pX_ Pick some fixed w € Q.
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e Step two: a.s. convergence of copula representers on a suitable proba-
bility space.

On some (uninteresting) extra probability space (2*, A*, P*), define,
conditionally on w, one (bootstrap) representing variable X* : Q* — R?
of P,, for each n € N*, i.e. X* ~ P,. Define similarly X* : Q* — R?
in such a conditional manner s.t. its law be P*X = PX. (We have
dropped the dependency of these random elements on the chosen w €
Q). Note that such conditional measures are guaranteed to exists and
to be genuine probability measures, since the underlying spaces are
Polish. In the remaining, we will also suppress “with P probability
one” in our statements, corresponding to the fact that w € Qy with
P(Qp) = 1 according to (31). By Skorohod’s Theorem, (£2*, A*, Px),
X5, X* can be chosen so that

X;,; P*a.s. X*

Set V, defined also on (Q2*, A*), a vector with uniform marginals, inde-
pendent of (X7, X3, ..., X*) (Enlarge the probability space by product
if necessary). Set

U, =G,(X,V)~C,

so that X¥ = G, 1(U,,). Similarly, set U := G(X*, V).

n

*—a.s.

If assumption (D) is true (i.e. when PX is discrete), then U, Frogs y,
thanks to the almost sure convergence theorem of the empirical copula
representer for an ergodic sample (see Theorem 3.1 by ( ))-

If assumption (C) is true, then F' is continuous and a.s. consistency of
the copula representer is an easy consequence of Skorohod’s Theorem,
as shown in the the following lemma, whose proof is relegated in the
appendix:

LEmMMA 6.3 If F' is continuous, then Uy, Plas .

e Step three: a.s. convergence of copula-Monge transportation represen-
ters

As proposed in Section 5.3, transport PY» towards the reference spher-
ical distribution PS and conversely by solving the Monge-Kantorovich
problem with quadratic cost (Wasserstein distance),

pUx Qon PS,

R
PUn Cn PS 7
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where the Markov morphism, as solution of Monge’s problem with
quadratic cost (see Section 4.3) are of the degenerate type (see defi-
nition 4.4 or (23)), i.e. are induced by the transportation maps Qc¢,
and R¢,,,

Qc, =I%n, Re, =IRon,

Equivalently, in the push-forward notation,
Qc, #P% = PU", Re,#P" = P5.

Indeed, since both distributions PY» and PS have compact support
and are absolutely continuous, the assumptions of Rachev-Riischendorf-
Brenier-Mc Cann’s Theorem are satisfied and the transportation maps
Qc, and Rg, exist and are unique. Similarly, assumption (C) or (D)
yields that the transportation maps

Qc#PS =PY, Re#PY = P8

also exist and are unique.

Hence, one can realize these distributions on (Q2*, A*) by defining the
random vectors S,, and S, distributed as PS, by

S, :=R¢,(U,), S:=Rc(U)
which also satisfy

Qc, (Sn) =U,, Qc(S)="1U.

Now, the assumptions of Theorems 3.2 and 3.4 in
( ) (see also Theorem 3.2 in ( )) are satisfied. Hence,
U,, 7%* U vields
(UnS0) > (U.S)

and
P*a.s.

S, =R¢,(U,) =" Rec(U):=8 (32)
Thanks to (31), the latter results are true with P-probability one.

6.3. Convergence of depth areas in average symmetric difference
distance The (population and empirical) depth areas of mass 7 are defined
from the centered ball B, of radius 7 via the combined Markov morphism
Ox of (28) and Q,, of (29) as

A = QxB,=DxI®°B,
A, = QuB,=Dx:I%"B,
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which reduces, due to the degeneracy of the Markov morphisms, to the sets

A G 'oQc(B:)
A, = G,'0Qc,(B;)

A way to measure the distance between these sets is through their average
symmetric difference

PX(A,AA) = PX|1,, — 14

(which generalizes to the L distance w.r.t. PX when A, A are functions).

COROLLARY 6.4 With P-probability one, the Li(PX) or symmetric differ-
ence distance between the PX depth area and its empirical counterpart con-
verges towards zero, as n — o0,

PX(A,AA) — 0.

PROOF By definition of the random variables of the previous subsection,
X* € Ao X e GloQe(B,) & S € By and X* € A4, & Rg, o
G,(X*,V) € B;, P* as.

Hence,

PX(A,AA) = P*|lsen, — Irg, oG (X* V)R, |
P*(S € B;,R¢, 0o G, (X", V) ¢ B;)
+ P*(S¢ B:,R¢, 0 G,(X*,V) € B;)
By the continuous mapping Theorem, R¢, o G, (X*, V) Fag. S, hence the
above two probabilities go to zero as n — oo, since B; is a PS continuity
set. n

REMARK 6.5 (HAUSDORFF CONVERGENCE OF DEPTH AREAS) The L;(PX)
distance is well suited to the problem at hand, whereas the Hausdorff distance
of ( ), being intrinsic, mandates special restrictive conditions
to the ranges of the c.d.fs. and also to avoid infinities. For completeness,
let us briefly sketch an argument for convergence in the Hausdorff metric:
by Corollary A.1 in ( ), it suffices to show uniform
convergence of

G,'0Qc, - G 'oQq (33)

on some suitable compact subsets of the unit ball Bj.
First, uniform convergence on compacta of optimal mappings Q¢, — Q¢
is provided by checking conditions of their Theorems A.1 and A.2:
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e in the notation of ( ), U = By, Y = [0,1]¢ are
compact and convex;

e PS PUr are absolutely continuous w.r.t. d—variate Lebesgue measure,
under the choice of of a coordinate independent randomizer V (see
Section 3.2.2). Under assumption (C) or (D) of our paper, PY is also
absolutely continuous w.r.t. d—variate Lebesgue measure;

e condition (W) in Theorem A.2 of ( ) holds by
Theorem 6.2;
e condition (C) in Theorem A.2 of ( ) holds for

optimal gradient mappings (Qc, R¢) and (Qc,, Re,,) on the sets Uy =
int(suppPS) and Yy = int(suppPY) = (0,1)%

Hence, one obtains uniform convergence of Q¢,, — Q¢ on compact subsets
K of Up. This implies that dg(Qc, (B-), Qc(B:)) — 0, with P— probability
one.
Next, one needs to prove uniform or continuous convergence of
-1 -1

G, -G . (34)
The most simple case is when G~! is strictly increasing on its domain.
Then, (34) holds pointwise everywhere and uniform convergence holds on
{|IG7Y| < a} or any a < oo and (33) holds uniformly on

KNRc({|G™Y < a}) = K,

for any compact K C Uy.

In the general case, under (C) or (D), the discontinuity set D of G~! is at
most a “grid” parallel to the coordinate axis of dimension lower than d — 1,
and we can replace K, above by K/ := K NR¢({|G™!| < a} N L) where L
is any compact subset in the complement of D. One then obtains (33) on K,
or K/, and Hausdorff convergence of the depth areas restricted on those sets,
with P—probability one, follows.

7. Conclusion Summarizing what has been achieved so far, the concep-
tual part of the paper shows how univariate quantile functions, their prop-
erties and the quantile transformations of random variables can be recast in
the framework of category theory as a Markov morphism between probability
measures. This mathematical viewpoint gives a convenient way to general-
ize the concept of quantile to the multivariate case and to study how the
algebraic, ordering and topological structures can be transfered by such a
quantile Markov morphism from a reference distribution PS to the distribu-
tion PX under consideration. In turn, principal down-sets in the reference
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space S can be transfered into depth areas in X, exactifying the idea of an
ordered centrality area of given probability. For epistemological reasons and
statistical interpretability of the objects obtained, we suggest it can be ad-
vantageous to reduce the possible extraneous randomization involved in the
quantile Markov morphism.

In the practical and empirical part of the paper, we show how such ideas
can be rendered concrete by constructing a Markov morphism which em-
bodies those requirements. The proposed approach combines a copula stan-
dardization with the Monge optimal transportation method from a spherical
distribution of ( ). Compared to the latter, the pro-
posed combined approach is fully equivariant to nonlinear monotone trans-
formations of the marginals, has no bandwidth to optimize, requires no reg-
ularity assumptions on the distribution, extends also to the case of discrete
distributions, and gives a.s. consistent representing variables in the ergodic
setting. In turn, one obtains an empirical depth area of given mass which is
asymptotically consistent for the population counterpart.

Appendix
A. Proof of Lemma 6.3

Proor Under Assumption (C), (31) imply the usual Polya-Glivenko-Cantelli

Theorem, ||F,, — F||sc — 0, and ||G,, — G||cc — 0, by Ranga-Rao’s Theorem

4.1 (see also his Theorem 3.4) applied to the coordinate projections l;(x) = ;.
One has the decomposition,

U,-U = G,(X5,V)-G(X:V)+G(X: V) - G(X)
= Gu(X}, V) - G(X}) + G(X}) - G(X)

since G is continuous. But
where G(x—) denotes the left-hand limit of G. Therefore,

|G, (X5, V)=G(X3)| < [|G,,=Glloc + 1/n

By Skorohod’s Theorem, F), 4 F imply X* “% X for some copies on some
probability space. Hence, by the continuous mapping Theorem G(X) —
G(X) and

IUn = UJ[ =0,

as n — oQ.
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Morfizmy markowskie: zespolone podej$cie do wielowymiarowych
kwantyli oparte o funkcje tacznikowe i zagadnienie transportowe.

Streszczenie W artykule zaproponowano pewien sposobu wprowadzania kwantyli
wielowymiarowych, jak i metody ich wyznaczania. Z jednej strony podstawsg roz-
wazan sa podstawowe wlasnosci uogélnionego pojecia wielowymiarowego kwantyla,
ktéry jest morfizmem markowskim, zachowujacym podobne wlasnosci algebraiczne,
topologiczne oraz porzadku, jakie znamy dla linii kwantylowych na prostej rzeczy-
wistej. Z drugiej zas strony, zaproponowano morfiz markowski, ktéry laczy standa-
ryzowang kopule (funkcje tacznikows) z zastosowaniem zagadnienia transportowego
(v. Chernozhukov et al.(2017). Proponowane podejscie daje ogdlne i jednolite po-
dejscie do definicji kwantyli i ich estymacji, zaréwno dla ciagtych, jak i dyskretnych
rozkladéw wielowymiarowych.

2010 Klasyfikacja tematyczna AMS (2010): 62G15; 62E20.

Stowa kluczowe: kwantyle wielowymiarowe © kopuly ©® zalezno$¢ statystyczna
® morfizmy markowskie.
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