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Markov morphisms: a combined copula and mass
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Abstract Our purpose is both conceptual and practical. On the one hand, we dis-
cuss the question which properties are basic ingredients of a general conceptual
notion of a multivariate quantile. We propose and argue that the object “quantile”
should be defined as a Markov morphism which carries over similar algebraic, order-
ing and topological properties as known for quantile functions on the real line. On
the other hand, we also propose a practical quantile Markov morphism which com-
bines a copula standardization and the recent optimal mass transportation method
of Chernozhukov et al.(2017). Its empirical counterpart has the advantages of being
a bandwidth-free, monotone invariant, a.s. consistent transformation. The proposed
approach gives a general and unified framework to quantiles and their corresponding
depth areas, for both a continuous or a discrete multivariate distribution.
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1. Introduction

1.1. Outline The objective of this paper is two-fold: the first part (Sec-
tions 2 to 4) is a discussion and an elucidation at the conceptual level of
the notion of multivariate quantile. We argue that the concept of quantile
should not be considered as a function but as a Markov kernel from a refer-
ence distribution to the considered one. We organize our discussion in three
stages of increasing conceptual generality. In Section 2, we adopt an analyt-
ical point of view: we review the properties of univariate quantile functions
(q.f.) and briefly summarize the different approaches considered in the litera-
ture to define multivariate q.f. and the related notion of depth. In Section 3,
we discuss how q.f. and cumulative distribution functions (c.d.f.) arise nat-
urally as reciprocal (randomized) transformations of random variables. We
show similarly how copula and conditional q.f./c.d.f. can be viewed from this
probabilistic viewpoint. In Section 4, we eventually take the final conceptual
step and argue, on abstract algebraic grounds, that the object “quantile”
should be regarded at the categorical level as a Markov morphism between

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Toulouse Capitole Publications

https://core.ac.uk/display/300463161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.14708/ma.v45i1.2921


4 Quantiles as Markov morphisms

probability measures, compatible with some algebraic, ordering and topolog-
ical structures.

In the second part (Sections 5 to 6), we intent to show that the above
conceptual discussion can be concretized by proposing a multivariate quantile
Markov morphism which combines the copula view and the mass transporta-
tion view, elaborating on the recent article by Chernozhukov et al.(2017). The
proposed Markov morphism is the composition of a copula transformation
which, although a random transformation, leaves invariant the dependence
structure while regularising the distribution, and a Monge transform arising
from a mass transportation problem between a reference spherical measure
and the copula measure. The proofs of the consistency of the empirical ver-
sion of the proposed quantile and its corresponding depth areas to their
population versions are deferred to Section 6.

1.2. Notation

• Let (X ,B(X )) be a measurable Polish space endowed with its Borel
sigma algebra B(X );

• F(X ) stands for B(X )-measurable real-valued functions fX : X → R;

• P(X ) stands for the set of Borel Probability measures PX on (X ,B(X ));

• Unless specified otherwise, we will work in practice on the Euclidean
measurable space (Rd,B(Rd)). Denote vectors X by bold letters, and
interpret operations between vectors componentwise. PX will stand for
the probability measure associated with its representing variable X.

2. Quantile as a function: a discussion of the analytical view in
the literature

Let’s briefly recall some basic facts about univariate quantile functions
(q.f.), which, although elementary, will help to motivate the approaches of
Sections 3 and 4.

2.1. Univariate quantile functions as inverse functions Let X :
Ω→ R be an univariate real r.v. and denote by PX its corresponding law. The
probability measure PX on (R,B(R)) can be characterized analytically by
its cumulative distribution function (c.d.f.) FX(x) := PX((−∞, x]), (see any
probability book and e.g. Szekli(1995) for other analytical characterisations).
The classical textbook view on the q.f. QX of FX is usually to define it as
the left-continuous generalised inverse function of FX ,

QX(t) = F←X (t) := F−1
X (t) := inf{x ∈ R : FX(x)  t}, 0 < t < 1. (1)

An informal rationale for such an “inverse” view could be the following: if
X is, as in insurance theory, thought as a random positive monetary quantity
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which stands for the loss incurred by an insurer, the “risk” carried by X can
be approached via two dual paths:

• for a given level x, what is the degree of occurrence that the random loss
X be larger than x ? This is quantified by the tail or survival function
FX(x) := P (X > x) (or equivalently by the c.d.f. FX(x) := P (X ¬
x) = 1− FX(x));

• for a given degree of occurrence t, what is the value xt such that the
insurer has probability (at least) t that he will not lose more than xt ?
This is quantified by the q.f. xt := QX(t).

More formally, definition (1) entails that the c.d.f. FX and q.f. QX are in
a sort of “inverse duality”: for 0 < t < 1 and x ∈ R,

FX(x)  t⇔ x  QX(t), (2)

which entails,
FX(QX(t))  t, and QX(FX(x)) ¬ x. (3)

Note, that even in the one-dimensional case, the definition (1) of the q.f.
as a left generalised inverse of F is not the sole possibility: one could have
chosen as well the right generalised inverse, F→X (t) := inf{x : F (x) > t}.
Therefore, the choice of a left-continuous inverse for the q.f. and of a right-
continuous c.d.f. is a matter of convention, (see e.g. Williams(1991) p. 34 ).
The ambiguity in the definition of these generalised inverses comes from the
fact that, although the operation FX : x 7→ t := F (x) defines a function, the
inverse operation x← t is an “inverse problem”, i.e. F−1

X : x← t defines only
a correspondence, i.e. a multi-valued or the set-valued mapping, see Aubin
and Frankowska(1990) or Rockafellar and Wets(1998) for general references
on the set-valued analysis.

2.2. A summary of some key properties of univariate q.f. Parzen(1979),
Parzen(1980) advocates that it is often advantageous to “think quantile func-
tions” in univariate statistical modeling instead of thinking in terms of c.d.f.:

• q.f. are well-suited for asymptotic inference:

– they characterize their parent probability measure (so there are
no identifiability issues)

PX = P Y ⇔ FX = FY ⇔ QX = QY . (4)

– they are convergence-determining, in the sense that weak and
strong convergence can be expressed via q.f. Indeed,



6 Quantiles as Markov morphisms

∗ univariate q.f. characterizes weak convergence:

Fn
d→ F ⇔ Qn

d→ Q, (5)

whereQn
d→ Qn stands for convergence in quantile, i.e.Qn(t)→

Q(t) at each continuity point t of Q in (0, 1) (See also Propo-
sition 7.3.1 p. 112 in Shorack(2000));

∗ univariate q.f. gives a simple constructive proof of Skorokhod’s
representation Theorem that turns weak convergence into a.s.
convergence.

∗ The distance between univariate probability measures (Wasser-
stein’s distances) can be expressed via quantile functions.

• univariate q.f. enjoy good invariance properties w.r.t to left-continuous
monotone transformations:

Let g : R 7→ R monotone, left-continuous, g→(y) = sup{x ∈ R : g(x) ¬
y} and Y = g(X).

– if g monotone non-decreasing, left-continuous, then

QY (t) = g(QX(t)), and FY (x) = FX(g→(y)); (6)

– if g monotone non-increasing, left-continuous, thenQY (t) = g(QX(1−
t)).

• univariate q.f. enjoy good algebraic properties: Gilchrist(2000) notices
that q.f. can be added and multiplied (when positive);

• Moreover, Parzen(1980) argues that univariate q.f. and their empirical
version also facilitate the study of order and extreme value distribu-
tions: they are the unifying concept behind the notion of confidence
intervals, order, ranks, and sign statistics, trimmed means and vari-
ances.

2.3. Multivariate quantile functions If PX is now a probability mea-
sure on (Rd,B(Rd)), it can also be characterized analytically by its multivari-
ate c.d.f. F (x) := PX((−∞,x]), as in the univariate case. Unfortunately, as
discussed by e.g. Serfling(2002), “the absence of a natural ordering of Eu-
clidean spaces of dimension greater than one [. . .]” makes the definition of a
multivariate q.f. more complicated and diverse. Serfling(2002) lists the large
literature on the subject and classifies several ad-hoc approaches to defining
a multivariate q.f. by the type of method used to obtain them: methods based
on a depth functions (method 1), M-estimator based on norm minimization
(method 2), Z-estimator of gradients (method 4), inversion of surrogate distri-
butions (method 3), methods based on generalized quantile process (method
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5). Refer to Serfling(2002), Serfling and Zuo(2000), Serfling and Zuo(2000),
Serfling and Zuo(2010), Hallin et al.(2010) for a detailed discussion of the
merits and shortcomings of each approach.

These authors favor the “geometric” approach based on depth: In short,
the depth D(x, F ) of a point x ∈ Rd with respect to a multivariate cdf F is
a measure of the “centrality” of x w.r.t. to the distribution of mass F , see
Serfling and Zuo(2000), Serfling and Zuo(2000), Serfling(2002). The “central
point” of maximal depth is a “central point” from which one can define a
measure of “outlyingness” and a “center-outward inner region of specified
probability”, or depth region or area,

A(τ, F ) := {x ∈ Rd, D(x, F )  τ}, 0 < τ < 1, (7)

whose defining property,

P (X ∈ A(τ, F ))  τ,

is the multivariate analogue of (3). Depth regions can thus be considered
as multivariate extensions of the univariate confidence interval [QX((1 −
t)/2), QX((1 + t)/2)] of coverage probability t, centered around its median.
Serfling and Zuo(2000, Serfling and Zuo(2010), propose a set of desirable
properties depth functions should satisfy and draw some perspectives on
quantiles and depths.

However, the classification of q.f. by their methods in Serfling(2002), the
statement of desirable properties of depth functions in Serfling and Zuo(2000),
Serfling and Zuo(2000), and the perspectives drawn in Serfling and Zuo(2010
have a sort of ad-hoc character. A structural classification of the properties
of Section 2.2 will be proposed in Section 4, once a paradigmatic shift on the
subject will have been properly motivated, as we now propose.

3. Quantile as a transformation of random variables: the prob-
abilistic view In this section, we shift our focus and adopt a probabilistic
view on the quantile object. This sort of intermediate point of view between
those of Sections 2 and 4 will be helpful to motivate the more abstract ap-
proach of Section 4. It will also allow to view copulas through the probabilistic
lens, which will be helpful for understanding the explanations included in the
second part of the paper.

3.1. Univariate reciprocal transforms of random variables Our
starting point is that in the univariate case, it is well known that one can
transform a r.v. U uniform on [0, 1] into a r.v. X ∈ R with prescribed c.d.f.
FX , via the quantile transform mapping

QX : [0, 1]→ R, U 7→ QX(U),

with
QX(U) d= X, (8)



8 Quantiles as Markov morphisms

where QX is the (left or right) generalised inverse of equation (1). This trans-
formation is the key, e.g. to prove (the easy version of) Skorohod’s Theorem,
results on stochastic order, association and a.s. coupling constructions (the
method of a single probability space) in the classical empirical process the-
ory, see e.g. Thorisson(2000), chapter one, Szekli(1995), Shorack and Well-
ner(1986), Csörgő and Révész(1981).

The reciprocal transformation is known as the Probability integral trans-
formation

FX : R→ [0, 1], X 7→ FX(X).

If FX is continuous, then

FX(X) d= U (9)

However, if FX is discontinuous, the latter distributional equality is no longer
true. Hopefully, define the extended c.d.f.

FX(x, λ) := P (X < x) + λP (X = x), λ ∈ [0, 1],

and let V a uniform [0, 1] r.v., independent of X. Then, the distributional
transform is the randomized transformation of random variables

FX(., V ) : R→ [0, 1], X 7→ FX(X,V ) := U

and is the generalisation of (9) to an arbitrary F : one has, see Rüschendorf(2009),

U
d= U[0,1], and QX(U) = X a.s. (10)

Such a “randomized mapping” FX(., V ) allows to view the pair (QX(.), FX(., V ))

U
QX−→ X

U
FX(.,V )←− X

as genuine reciprocal transformations between r.v.: it bypasses the issue, ex-
plained in Section 2, of having to represent the inverse operation F−1

X as
a multivalued-mapping and even strengthens (8) into an a.s. statement. Of
course, the choice of the reference distribution of U , uniform on [0, 1] is con-
ventional. It can be motivated by Laplace’s view on randomness: one should
generate random variables from an “equiprobable” continuous distribution,
viz. a uniform one. It may prove advantageous to use, say, an Exponential or
Poisson distribution, as reference distribution and the corresponding trans-
formations then have a different interpretation (in particular, as a hazard
function, see Szekli(1995)).

3.2. Multivariate transforms of random vectors For a multivariate
X = (X1, . . . , Xd) ∈ Rd, one can similarly look for a transformation

T : [0, 1]→ Rd, U 7→ X



O.P. Faugeras, L. Rüschendorf 9

from a univariate U ∼ U[0,1]. Such a generalisation to X ∈ Rd or even
to X ∈ X a Polish space, would be given by Borel’s isomorphism The-
orem, see Parthasarathy(1967), chapter one. Unfortunately, such isomor-
phisms (which would be perfect candidates for higher-dimensional “quantile
functions”) are not very convenient tools: no explicit construction, even for
X = R2, is known; they may be unsmooth and present some pathologies, see
Parthasarathy(1967), Rachev and Rüschendorf(1990).

Therefore, it is more convenient to look for a transformation between
vectors of the same dimensionality, i.e. not from a single univariate U but
from a vector U = (U1, . . . , Ud),

[0, 1]d � Rd, s.t. U� X.

Moreover, it is expedient for interpretative purposes to impose that the
marginals of the reference vector U have some prescribed distribution, say
uniform on [0, 1]. Basically, there are two competing routes, depending on the
dependence structure of the (U1, . . . , Ud), which leads to either multivariate
quantile representations, or copula representations.

3.2.1. Multivariate quantile representations Starting from a vector
U = (U1, . . . , Ud) of mutually independent U[0,1] r.v.s, one wants to generate
a copy of the vector X whose distribution is a prescribed c.d.f. F .

• The direct transformation Q̃ := (Q̃1, . . . , Q̃d),

Q̃ : [0, 1]d → Rd, U 7→ Q̃(U) (11)

is the multivariate conditional quantile transform, which is the set of
successive conditional quantile transforms: set

Q̃1(u1) := QX1(u1) =: x1, 0 < u1 < 1,

Q̃i(ui|ui−1, . . . , u1) := QXi|Xi−1,...,X1(ui|xi−1, . . . , x1) =: xi,

0 < ui < 1, 2 ¬ i ¬ d.

the successive conditional q.f. of the conditional distributions of Xi

given (Xi−1, . . . , X1), for 1 ¬ i ¬ d, see Rüschendorf(2009). Then,
letting

X̃ := Q̃(U) = (Q̃1(U1), . . . , Q̃d(Ud|Ud−1, . . . , U1)),

one obtains a random vector X̃ d= X, i.e. the multivariate analogue of
(8).

• Starting from a vector X = (X1, . . . , Xd) with prescribed c.d.f. F , the
reciprocal transformation (known as Rosenblatt’s transform in the con-
tinuous case, see Rosenblatt(1952), and generalised to the general case
in Rüschendorf(2009)),

R̃ : Rd → [0, 1]d, X 7→ R̃(X,V)
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is defined similarly as in (10) via the set of successive extended condi-
tional c.d.f.

(FXi|Xi−1,...,X1(xi, λi|xi−1, . . . , x1), 1 ¬ i ¬ d), 0 < λi < 1

and an additional randomizer vector V = (V1, . . . Vd), made of i.i.d.
marginals U[0,1] r.v., also jointly independent of X. The multivariate
conditional distributional transform is the randomized transformation

R̃(X,V) := (FX1(X1, V1), . . . , FXd|Xd−1,...,X1(Xd, Vd|Xd−1, . . . , X1)).

Then, one has the analogue of (10): if

U := R̃(X,V), (12)

then U is uniform on the unit cube and

Q̃(U) = X a.s.

Again, this view encapsulates Laplace’s view on randomness and is similar to
the engineers’ approach on modeling time series, (see Priestley(1988), chapter
2): the most unpredictable time series is a strong white noise, viz. a sequence
(Ui) of i.i.d. r.v. with a common prescribed distribution (here uniform on
[0, 1], but which is often taken standard Gaussian in the context of time
series). Hence, starting from such a sequence (Ui) of i.i.d. r.v. considered as a
“source of randomness”, Nature generates successively the next output Xi+1

from the “past” realizations (X1, . . . , Xi) by a random mechanism involving
an independent Ui+1. Such a random mechanism is described by the “response
functions” formed by the successive conditional q.f. One obtains a “Markov
(quantile) regression representation” of X ∼ F from the source of i.i.d Ui r.v.
Reciprocally, one can consider that such a stochastic temporal model, made
of the successive extended conditional c.d.f., has captured all the stochastic
dependence in a vector X, if it can transform the latter vector into strong
white noise, i.e. into a sequence of i.i.d. r.v. with a prescribed univariate
reference distribution(here uniform).

3.2.2. Copula representations In an approach dual to the multivari-
ate conditional quantile representation of the previous Section 3.2.1, one may
start from a vector X = (X1, . . . , Xd) with the given multivariate c.d.f. F ,
and wish to obtain a vector U = (U1, . . . , Ud), which is no longer made of
independent marginals as in (12), but captures the “dependence”, irrespec-
tively of the marginals. This is obtained by standardizing the marginals of X
by using the marginal distributional transforms, thus obtaining a vector U,
whose c.d.f. is a copula function, as is explained below.
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• A primer on copulas as probabilistic transforms:

For X ∼ F , denote by G = (G1, . . . , Gd) its corresponding vector of
marginal cdfs, namely

Gi(xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞).

Recall that a d-dimensional copula function C : [0, 1]d 7→ [0, 1] is de-
fined analytically as a grounded, d−increasing function, with uniform
marginals whose domain is [0, 1]d (see Nelsen(2006)). Alternatively, it
can be defined probabilistically as the restriction to [0, 1]d of the mul-
tivariate cdf of a random vector U, called a copula representer, whose
marginals are uniformly distributed on [0, 1] (see Rüschendorf(2009),
Rüschendorf(2013)). Their interest stems from Sklar’s Theorem (see
Sklar(1959), Sklar(1973)), which asserts that, for every random vector
X ∼ F , there exists a copula function connecting, or associated with
X, in the sense that:

Theorem 3.1 For every multivariate cdf F , with marginal cdfs G,
there exists a copula function C such that

F (x) = C(G(x)), ∀x ∈ Rd. (13)

Conversely, if C is a copula function and G = (G1, . . . , Gd) a vector of
marginal univariate distribution functions, then the function F defined
by (13) is a joint distribution function with marginals G.

When G is continuous, the copula C associated with X in relation
(13) is unique and can be defined from F either analytically by C =
F◦G−1, where G−1 = (G−1

1 , . . . , G−1
d ) is the vector of marginal quantile

functions, or probabilistically as the cdf of the multivariate marginal
probability integral transforms, namely C(u) = P (G(X) ¬ u), u ∈
[0, 1]d. Whenever discontinuity is present, C is no longer unique: in
other words C, as a functional parameter, is not identifiable from the
multivariate cdf F alone. In such a case, the most natural way to derive
a probabilistic construction of a copula representer U associated with
X is to use the d-variate marginal distributional transform: set

U = G(X,V)

where G is the vector of extended marginal cdfs, and V is a vector of
uniform [0, 1] marginals (i.e. its cdf is itself a copula function), indepen-
dent of X. Then, the cdf C of U is a copula function which satisfies (13),
see Moore and Spruill(1975), Rüschendorf(1981), Rüschendorf(2009),
Rüschendorf(2013), Faugeras(2013), Faugeras(2015). The distribution
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function of V = (V1, . . . , Vd) can be any copula, but the most natu-
ral choice is to choose the independent one, so that dependence mea-
sures computed on U match those computed on X, see Faugeras(2015).
Hence, one can view again the pair (G−1(.),G(.,V)) as reciprocal
transformations between X and its copula representer U,

U G−1−→ X

U
G(.,V)←− X. (14)

• Empirical copulas:

If F is unknown, but one has instead a sample X1,X2, . . . of copies
distributed according to F on a probability space (Ω,A, P ), one can
define the ecdf Fn,

Fn(x) =
1
n

n∑
i=1

1Xi¬x,

and the corresponding vector of marginal ecdfs Gn. Sklar’s Theorem
therefore entails that there exists some copula function Cn associated
with Fn. As the ecdf is discrete, Cn is no longer unique and can no longer
be defined, in parallel with the continuous case, as C∗n := Fn◦G−1

n , or as
C∗∗n (u) := P ∗(Gn(X∗n) ¬ u), with X∗n ∼ Fn, conditionally on the sam-
ple, and where P ∗ is the corresponding conditional probability (more
on this below). Indeed, C∗n and C∗∗n do not have uniform marginals
and hence are not genuine copula functions associated with Fn. C∗n and
C∗∗n are versions of the improperly called empirical “copula” functions,
introduced by Rüschendorf(1976) under the name of the multivariate
rank order function and Deheuvels(1979), Deheuvels(2009) under the
name of the empirical dependence function.

When F is continuous, the disadvantage of estimating C = F ◦G−1 by
estimators which are not proper, in the sense that they do not belong to
the same functional class of the parameter to be estimated, is mitigated
by the fact that these estimators coincide, with any copula function
associated with Fn on the grid of points uk = (k1/n, . . . , kd/n) for
k1, . . . , kd = 0, . . . , n; see Deheuvels(2009). Moreover, any version of
the corresponding empirical “copula” process weakly converges, see e.g.
Fermanian et al.(2004), Deheuvels(2009), or Rüschendorf(1976). Hence,
in the continuous case, the choice of which “empirical copula” function
to use is often of little relevance for statistical purposes.

However, we will see in Section 5 that defining the empirical copula as
a genuine copula function will be a key element in the construction of
empirical quantile morphisms, even in the continuous case. Hence, let
us define the empirical copula representer, conditionally on the sample,
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as follows: on an extra probability space (Ω∗,A∗, P ∗), let X∗n ∼ Fn. Set

Un := Gn(X∗n,V), (15)

the multivariate distributional transforms for the ecdf Fn, with inde-
pendent randomisation V. Denote as Cn the cdf of Un, i.e. the copula
function associated with Fn.

4. Quantile as Markov morphisms: an algebraic categorical view
What often matters in probability and statistics is not the random elements
X per se, but the distribution they induce PX and the properties of the
latter. Hence, it is advantageous to see the transformations (14), (12), (11)
of random elements of Section 2 as transformations of probability measures,

PX � PU.

(Such view can be rendered rigorous, subject to some measure theoretic
subtleties which we leave aside, see details in Zolotarev(1997) chapter 1,
Rachev(1991), chapter 2 or the introduction in Chentsov(1982)). This final
change of perspective will allow us to eventually motivate the forthcoming
definition of the quantile object from an abstract algebraic viewpoint, in-
spired by category theory.

4.1. The category of Markov morphisms Informally, category the-
ory is made of “objects” or abstract sets denoted by A,B, . . . and a system of
mappings, morphisms or “arrows” α, β, . . . of the objects into one another. It
will often be necessary to precise the domain and codomain of morphisms by
subscripts, so that A α→ B, be denoted by αAB. Such a system of morphisms
must obey the following two axioms:

• Associativity of composition: morphisms with compatible domains and
co-domains can be composed, i.e. if αAB : A → B, βBC : B → C then
αAB ◦ βBC : A→ C is also a morphism. (We will use Chentsov(1982)’s
left-to right convention so that Aα = B (and not α(A) = B) de-
notes the “transformation” of A into B under the “action” of α, so
that composition of morphisms is reversed from the usual ◦ compo-
sition operation, as in e.g. Lawvere and Schanuel(2009)). Moreover,

the composition law is associative, i.e. if A α→ B
β→ C

γ→ D, then
(αAB ◦ βBC) ◦ γCD = αAB ◦ (βBC ◦ γCD).

• Identity law: For every object A, the system includes the identical map-
ping idA = εAA which is both the right and left identity: εAA ◦ αAB =
αAB, and βBA ◦ εAA = βBA.

The system of morphisms forms an abstract category and the pair (objects,
morphisms) is called a concrete category : it is the conceptual framework to
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carry the idea that a class of objects or “figure” A can be transformed into
another figure B via “motions” α. It paves the way to study the properties
of those figures which remain invariants under structure-preserving transfor-
mations, see Chentsov(1982), Lawvere and Rosebrugh(2003), Lawvere and
Schanuel(2009), Mac Lane and Birkhoff(1999) for readable introductions.

In his seminal book, Chentsov(1982) shows how statistical inference can
be studied from such a viewpoint. To that purpose, let us recall the definition
of a Markov probability kernel or Markov morphism:

Definition 4.1 Let (Ω1,A1), (Ω2,A2) be two measurable spaces, a func-
tion K12 : Ω1 × A2 7→ [0, 1] is a Markov probability kernel (or transition
probability distribution) from (Ω1,A1) to (Ω2,A2) iff

i) for every ω1 ∈ Ω1, A2 ∈ A2 → K12(ω1, A2) is a probability measure on
A2;

ii) for every A2 ∈ A2, ω1 ∈ Ω1 → K12(ω1, A2) is a A1-measurable function.

Markov kernels K12 will also be denoted Markov morphisms: K12 induces two
morphisms preserving the algebraic structure (i.e. homomorphisms), which
will be denoted by the same letter K12:

• a positive bounded linear operator on the convex set of probability
measures : K12 transforms a probability measure P1 on (Ω1,A1) into a
probability measure P2 on (Ω2,A2), by acting on the right on measures
as

P2(.) := (P1K12)(.) :=
∫

Ω1
P1(dω1)K12(ω1, .), (16)

see Chentsov(1982) Lemma 5.2 p. 67. Symbolically,

P1
K12−→ P2.

• a positive bounded linear operatorK12 on the vector space Fb(Ω2,A2) of
bounded measurable functions f2 : (Ω2,A2) 7→ R into the vector space
of bounded measurable functions Fb(Ω1,A1) := {f1 : (Ω1,A1) 7→ R},
by acting on the left on functions as

f1(.) := (K12f2)(.) :=
∫

Ω2
K12(., dω2)f2(ω2), (17)

see Chentsov(1982) Lemma 5.1 p. 66. Symbolically,

f1
K12←− f2.
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• and one has commutation, see Chentsov(1982) Lemma 5.3 p. 68, i.e.

(P1K12)f2 = P1(K12f2). (18)

where
P (f) :=

∫
fdP := 〈P, f〉 (19)

is the expectation of f w.r.t. P , viz. the duality bracket between mea-
sures and functions. In view of (16, 17, 18), the action of K12 on mea-
sures and functions will be written without neither parentheses nor
brackets in the remainder.

Such Markov probability kernels K12 : (Ω1,A1) → (Ω2,A2) and K23 :
(Ω2,A2)→ (Ω3,A3) obey the composition law,

K13(ω1, A3) :=
∫

Ω2
K12(ω1, dω2)K23(ω2, A3) (20)

which is associative (Chentsov(1982) Lemmas 5.4 and 5.6), and the Dirac
kernel I : (Ω,A)→ (Ω,A) defined by

I(ω,A) = δω(A), (21)

corresponding to the Dirac measure in ω, is the identity on (Ω,A) for the
composition law (20), (cf. Chentsov(1982) Lemma 5.8). In other words, the
system of Markov morphisms is an abstract category (see Chentsov(1982)
Theorem 5.1) and together with the class of probability (or signed) measures
a concrete category (cf. Chentsov(1982) Theorem 5.2 and Lemma 5.9). In view
of (16, 17, 18, 20), we drop the composition symbol ◦ and denote composition
by mere juxtaposition, viz. K13 = K12K23. Let us state out this key result as
a Theorem:

Theorem 4.2 (Cencov’s Theorem 5.2) The class of objects P(Ω,A) of
probability measures on (Ω,A) with the system of Markov morphisms {K} of
Markov probability kernels forms the concrete category CAP of all probability
measures.

Remark 4.3 By duality (18), (19), the class of objects Fb(Ω,A) of bounded,
measurable, real-valued functions f : Ω → R with the system of Markov
morphisms {K} of Markov probability kernels forms the concrete category of
all bounded measurable functions.

4.2. Quantiles as Markov morphisms: qualitative aspects The
conceptual framework introduced in the previous subsection allows us to re-
cast the problem of defining a quantile object of Section 1 and to review the
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transformations between random variables of Section 2 at the right categor-
ical level of Markov morphisms.

Indeed, such Markov morphisms allow to subsume probability measures
and (the measure induced by) random variables into the same abstract con-
ceptual object:

• a probability measure P2 on (Ω2,A2) is simply a constant Markov kernel
IP : (Ω1,A1)→ (Ω2,A2), defined as,

IP2(ω1, A2) = P2(A2). (22)

• a measurable function f12 : (Ω1,A1)→ (Ω2,A2) can be described (em-
bedded) as a degenerate Markov morphism If12 : (Ω1,A1)→ (Ω2,A2),
as

If12(ω1, A2) = δf12(ω1)(A2) = δω1(f
−1
12 (A2)) (23)

so that the image measure P2(.) := P1 ◦ f−1
12 (.) on (Ω2,F2) induced

by f12 from the measure P1 on (Ω1,F1) (or in the push-forward no-
tation f12#P1 =: P2) simply writes as a composition (20) of Markov
morphisms,

P2 = P1If12 = IP1If12 .

For further reference, let us single out this family of degenerate Markov
morphisms by stating out a definition:

Definition 4.4 A Markov morphism K12 from (Ω1,A1) to (Ω2,A2) is
of degenerate type if there exists a measurable funtion f12 : (Ω1,A1)→
(Ω2,A2) s.t.

K12 = If12 .

Such notation is consistent with the identity morphism I on (Ω,A) of
(21), as the Dirac kernel can be expressed as I = Iid, where id : Ω→ Ω
is the identity function.

As a consequence, the transformations between random vectors of Sec-
tion 2, can be reformulated as transformations between measures through a
Markov morphism. In particular, we already noted that the univariate quan-
tile transform (8), QX : U → X as a mapping between random variables, can
be construed as a morphism IQX between univariate measures,

PU
IQX−→ PX ,

where IQX is a Markov morphism of the degenerate type (4.4), whereas its
reciprocal, the distributional transform (10) F (., V ) : X → V as a random-
ized transform between univariate random variables, can be construed as a
genuine, non degenerate Markov morphism DX

PU
DX←− PX ,
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where DX(x,A) is the conditional probability of U := F (X,V ) ∈ A given
X = x. Let us define similarly IG−1 and DX their multivariate counterparts
transforming corresponding to (14), i.e. transforming a multivariate PX into
its copula representer distribution PU = PG(X,V ),

PU
IG−1−→ PX

PU
DX←− PX (24)

Remark 4.5 (Markov morphisms as degenerate Markov morphism
on an enlarged probability space) Note that a randomised transform
between random vectors (i.e. genuine Markov morphisms of the nondegen-
erate type) could also be written as a purely functional transform (i.e. as a
degenerate Markov morphism), at the price of having to enlarge the proba-
bility space.

For example, for the univariate distributional transform (10), enlarge
(Ω,A, P ) to (Ω × [0, 1],A ⊗ B([0, 1]), P ⊗ λ), denote FX the c.d.f. of X and
λ = P V the Lebesgue measure on [0, 1], transfer all previously defined random
elements on this new, enlarged probability space, and consider the bivariate
mapping

FX(., .) : R× [0, 1]→ [0, 1], (X,V ) 7→ FX(X,V ).

and the corresponding bivariate product mapping FX ⊗ id,

FX ⊗ id : R× [0, 1]→ [0, 1]× [0, 1], (X,V ) 7→ (FX(X,V ), V ).

Then, with U := FX(X,V ) and π : (u, v) 7→ u the projection mapping on the
first coordinate,

PX ⊗ λ IFX⊗id−→ P (U,V ) Iπ−→ PU = λ.

Hence, the univariate distributional transform (10) can be construed as the
composition of two degenerate Markov morphisms, i.e. as a degenerate Markov
morphism, on the enlarged space.

More generally, see Thorisson(2000) chapter 3, Kallenberg(1997) Lemma
2.22, Lemma 5.9 and Theorem 5.10 p. 89 and Shiryaev and Spokoiny(2000)
Lemma 1.1 p. 18 and Lemma 1.3 p. 20 for a rigorous formulation of the prin-
ciple that “a randomized decision for an experiment E is a non-randomized
decision, but for an experiment Ẽ which is an ”extension” of E” (see Shiryaev
and Spokoiny(2000) p. 17). The same remark applies to the multivariate con-
ditional quantile (11), distributional (12), and copula (14) transforms of Sec-
tion 2. However, from the categorical perspective, limiting oneself to purely
functional transforms is awkward and we prefer to unify all kind of transfor-
mations into the same category of Markov morphism.
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Eventually, note also that when we will represent the Markov morphism
corresponding to the transformations (14) and (15) by the random elements
U = G(X,V) and Un = Gn(X∗n,V), we use the same random vector V in
both cases, in order to obtain a.s. convergence (see the forthcoming Theorem
6.2 in Section 5).

We are now in a position to formulate a (preliminary) definition of the
object multivariate quantile as a Markov morphism, which combines the idea
(2) in Section 1 of quantile as an inverse, and those of Section 2 of quantile
as a reciprocal (randomized) transformation between vectors (or measures),
one of which being thought of as a reference distribution (see (8), (10) in
Section 2):

Definition 4.6 (Preliminary) Let (S,B(S)) and (X ,A) = (Rd,B(Rd))
be two measurable spaces. Consider as an object on S, the one set consisting
of a single probability measure {PS}, which is thought as a reference distri-
bution, and as objects on X the collection P(X ,A) := {PX} of all probability
measures on X . A Quantile morphism Q of PX w.r.t. PS is an isomorphism

PS
Q−→ PX,

whose inverse R,
PS

R←− PX

will be called a Rank morphism of PX w.r.t. PS. In other words, the pair of
Markov morphisms (Q,R) satisfy QR = IS , and RQ = IX , where IS , IX
are the identity morphism (21) on S,X , respectively.

Remark 4.7 We used the term rank morphism instead of distributional (or
probability integral, or c.d.f) morphism to agree with the terminology of
Chernozhukov et al.(2017), see Section 5 below.

We temporarily leave aside the question of existence and unicity of these
Quantile and Rank morphisms, since this qualitative view of reciprocal trans-
formations of measures will be turned into a quantitative problem, via mass
transportation theory, as we now show.

4.3. Quantitative transformation of measures via Mass Trans-
portation The Monge-Kantorovich optimal transportation problem aims at
finding a joint measure PX,Y on the product measurable space, say (X ×Y =
Rd × Rd,B(Rd)⊗ B(Rd)), with prescribed marginals (PX, PY), which is the
solution of the optimisation problem:

kc(PX, PY) := inf
PX,Y∈P(PX,PY)

PX,Y[c(X,Y)], (25)
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where c : Rd × Rd 7→ R+ is a cost function and the infimum is on the set
P(PX, PY) of joint distribution with marginals PX, PY. Informally, mass at
x of PX is transported to y, according to the conditional distribution P (dy|x)
of the transportation plan PX,Y ∈ P(PX, PY), in order to recover PY while
minimising the average cost of transportation PX,Y[c(X,Y)]. See Rachev and
Rüschendorf(1998), Villani(2003), Villani(2009) for book-length treatment on
the subject, Rachev(1985), Rüschendorf(2007), Rüschendorf(1991) for survey
articles. This topic is closely related to coupling (see Thorisson(2000)) and
probability metrics (see Zolotarev(1997), Rachev(1991), Rachev et al.(2013)).

The related Monge transportation problem is when one looks for a solution
of (25) which is “deterministic” in the sense that the laws of (X,Y) are
restricted to those of (X,H(X)) for a measurable transportation map H :=
HPX→PY : Rd 7→ Rd, s.t. PH(X) = PY, so that

mc(PX, PY) := inf
H:PH(X)=PY

PX[c(X,H(X))]. (26)

By disintegrating the transportation plan PX,Y into the fibered product

PX,Y = PX ⊗ PYx ,

where PYx is a regular conditional distribution (i.e. a Markov kernel) of Y
given X = x, it is clear that mass transportation can be translated in the lan-
guage of Markov morphisms: the Monge-Kantorovich optimal transportation
problem amounts to finding a Markov morphism KXY := PYx ,

PX
KXY−→ PY,

which is a genuine Markov kernel, whereas the Monge optimal transportation
problem amounts to finding a degenerate Markov morphism IH of the kind
(23) induced by a transportation map H,

PX
IH−→ PY.

The cost function c is often specialised to the squared euclidean distance,
c(x,y) = ||x− y||2, which yields the so-called L2 Wasserstein probability
distance, see e.g. Cuesta-Albertos et al.(1997). The characterization of the
optimal L2 solution of (25) was given by Theorem 1 in Rüschendorf and
Rachev(1990), and can be rewritten in the language of Markov morphisms
as follows: for PX almost all x, there exists some l.s.c. convex function ψ :
Rd → R, s. t.

supp(KXY(x, .)) ⊂ ∂ψ(x),

where supp stands for the support and ∂ for the subgradient. The reciprocal
optimal kernel,

PX
KYX←− PY,
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is characterized by
supp(KYX(y, .)) ⊂ ∂ψ∗(y),

where ψ∗ is the convex conjugate of ψ, see Rüschendorf and Rachev(1990).
In particular, if PX << λd, this result implies the existence part of Bre-
nier(1991)’s Theorem on existence PX a.e. of Monge’s transportation map
H, and the optimal Markov kernel is degenerate, KXY = IH. Under addi-
tional existence of second moments of both PX and PY, one obtains, via
Kantorovich-Fenchel-Legendre duality, unicity of the transportation maps H
and its reciprocal optimal transformation H← corresponding to

PX
IH←←− PY,

as gradients of ψ and its dual ψ∗,

H = ∇ψ, H← = ∇ψ∗ (27)

see Rüschendorf and Rachev(1990), Cuesta-Albertos et al.(1993), Rachev(1985),
Rüschendorf(2007), Rüschendorf(1985).

Remark 4.8 Rüschendorf(1985) shows how one can recover the multidimen-
sional conditional quantile and distributional transform from such a mass
transformation problem. Copulas, completely monotone dependent random
variables and Fréchet-Hoeffding bounds also arise from mass transportation,
see Rüschendorf(2013).

4.4. Towards a structural point of view One of the main interests of
category theory is to propose a framework that allows to study which trans-
formations of the objects in the category preserve the structures attached
to these objects, i.e. which leave invariant the properties of the objects, see
Chentsov(1982) paragraph 4 to 8.

As announced in Section 1, we are now equipped with the right conceptual
tools to substantiate our claim that the multivariate q.f. and related depth
proposals of Subsection 2.3 should be evaluated according to their structural
properties instead of their method. To that purpose, let us reexamine the
properties of q.f. listed in Subsection 2.2, classify them according to this
structural point of view, and translate them in categorical terms, so that we
can let emerge a set of desirable axioms that multivariate quantile and rank
objects should obey (some of which will be loosely stated).

• Algebraic Structure:

– [A1] Identifiability / Isomorphism:
in view of (4), (QX , FX) characterizes their parent distribution.
In the language of Markov morphisms, the pair of isomorphims
(Q,R) in definition 4.6 precisely achieve such a characterization:
PSQ = PX, and PSR = PX.
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– [A2] Algebraic compatibility:
We viewed in Section 1 that q.f. have good algebraic properties.
Moreover, the collection of probability measures on some fixed
measurable space forms a convex subset of the vector space of
signed measures. Therefore, multivariate extensions of quantile ob-
jects should be compatible with addition and scalar multiplication
in a way that reflects the underlying structure of the collection of
measures. In view of (20), (16) and (17), and the fact that the
set of Markov morphisms between two fixed measurable space is
convex, such a desideratum will be automatically satisfied if the
objects quantile and rank are taken as Markov morphisms.

• Ordering structure:

– [O1] Galois connection between two ordered spaces.
The fundamental property of univariate q.f. (2) and (3), can be
illuminated by introducing the notion of Galois connection (see
Blyth(2005), Chapter 1 and also the related idea of residuated
mapping):

Definition 4.9 Let (X,¬X), (Y,¬Y ) be two ordered sets and
L : X 7→ Y,U : Y 7→ X be a pair of mappings. Then (X,¬X
), (Y,¬Y ), L, U is an isotone Galois connection

∗ iff for every x ∈ X and every y ∈ Y L(x) ¬Y y ⇔ x ¬X U(y)
∗ iff L,U are monotone (or isotone) and for every x ∈ X and

every y ∈ Y , x ¬X U(L(x))⇔ L(U(y)) ¬Y y.

Indeed, consider the two ordered sets (I,¬I), with I = (0, 1) the
unit interval and ¬I=¬ the usual order ¬ and (R,¬R) with its
usual order ¬R=¬. Then, for univariate q.f. properties (2) and (3),
simply mean that (I,¬), (R,¬), QX , FX is an isotone Galois con-
nection. Therefore, the desirable property for Quantile and Rank
morphisms: Quantile and Rank morphisms should form a Galois
connection between two ordered spaces.
In the spirit of Section 2, this concept of a Galois connection can
be reformulated in probabilistic terms: starting from a r.v. U uni-
formly distributed on [0, 1], setting X ′ := QX(U), one has that
U ∈ (0, FX(x)] iff X ′ ∈] −∞, x]. In other words, starting from a
reference distribution PU , and given a quantity of mass 0 ¬ τ ¬ 1,
these considerations amount to construct on a common probability
space some copies X ′ ∼ PX = PUIQX of X from a transformation
of U ∼ PU s.t. if Aτ :=] −∞, x], is a subset of R with PX mass
τ , viz. PX(Aτ ) = τ , then Bτ = FX(Aτ ) is a subset of [0, 1] with
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PU mass τ , with

QX(U) ∈ Aτ ⇔ U ∈ FX(Aτ ),

as

τ = PX(Aτ ) = P (X ′ ∈ Aτ ) = P (QX(U) ∈ Aτ )

= P (U ∈ FX(Aτ )) = P (U ∈ Bτ ).

In addition, the set of subsets O+
I := {Bτ , τ ∈ [0, 1]}, O+

R :=
{Aτ , τ ∈ [0, 1]} should have an order structure (for the inclusion)
compatible with the order relations ≺I ,≺R, in the sense that τ1 ≺I
τ2 ⇔ Aτ1 ⊂ Aτ2 ⇔ Bτ1 ⊂ Bτ2 .
Turning to the general case, the setting can be (loosely) formu-
lated in terms of the Markov morphisms (Q,R) as follows: let
F∗(S) := {s → 1Bτ (s)} be a collection of the indicator functions
S → R, indexed by 0 ¬ τ ¬ 1, where {Bτ} ⊂ B(S) is a collection
of measurable depth regions of PS mass τ , PS(Bτ ) = τ . Define
F∗(X ) := R(F∗(S)) = {Aτ := R1Bτ }, the image of F∗(S) by the
Rank Morphism R. Then,

PX(Aτ ) = PX(R1Bτ ) = (PXR)(1Bτ ) = PS(Bτ ) = τ,

i.e. Aτ is of PX mass τ . These are depth “regions” (functions) for
X , see Section 4.5 for a detailed description of the order structure,
its preservation by Markov morphisms and its interpretation.

– [O2] Equivariance w.r.t. left-continuous univariate monotone trans-
formation:
in view of (6), one should have some form of scale invariance
w.r.t. a monotone non-decreasing univariate transformation. In
the multivariate case, let g : Rd → Rd be made of d univari-
ate monotone non-decreasing functions gi : R → R, 1 ¬ i ¬ d,
viz. g(x) = (g1(x1), . . . , gd(xd)). In the language of Markov mor-
phisms, if Q and Qg are quantile morphisms of X, g(X) respec-
tively, i.e.

PS
Q−→ PX

Ig−→ P g(X)

PS
Qg−→ P g(X),

one should have commutativity of the composition diagram,

Qg = QIg.

• Topological structure:
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– [T1] Compatibility with weak convergence of measures.

In view of (5), it is desirable that quantile generalisations should be
compatible with the notion of weak convergence on the space of prob-
ability measures: Let PXn , PSn a sequence of probability measures on
X ,S respectively. Let (Qn,Rn), respectively (Q,R) their corresponding
quantile and rank morphisms of definition 4.6,

PSnQn = PXn , PXnRn = PSn ,

PSQ = PX, PXR = PS.

One requires that PXn d→ PX ⇔ PSn
d→ PS.

Combining the preliminary definition (4.6) and these desirable properties,
we can state an eventual possible definition of quantile and rank morphisms:

Definition 4.10 Let PS be a fixed reference distribution and PX be the
distribution considered on the measurable space (Rd,B(Rd)). A Quantile and
Rank morphism of PX w.r.t. PS is a pair of Markov isomorphisms (Q,R)

PS
Q−→ PX

PS
R←− PX,

compatible with the algebraic, topological and ordering structures given by
the axioms [A1,A2,O1,O2,T1].

4.5. Order structure and depth regions The concept of depth re-
quires a way to quantify a measure of “remoteness” of a distribution from a
“deepest” or most central point. The minimal requirement to translate these
phenomenological notions into a mathematical concept seems to give a pre-
order structure (a reflexive, transitive relation 6S) on the reference space S.
In order to be able to define such a “median” or “deepest point”, it is neces-
sary that the preordered space (S,6S) possesses the smallest element 0, so
that one can evaluate the degree of “remoteness” of two points in s1, s2 ∈ S
w.r.t. 0. In other words, one considers that (S,6S) is a preordered set with a
universal lower bound 0, so that (S −0,6S) has the structure of a downward
directed set, viz a preordered set s.t. every pair of elements has a lower bound.
(See Davey and Priestley(2002), Schröder(2003) for background on order).

If S is chosen as a subset of Rd and has the algebraic and metric structure
given by the usual Euclidean distance ||.||, such a framework is obtained by
setting

s1 6S s2 ⇔ ||s1 − 0|| ¬ ||s2 − 0|| ⇔ ||s1|| ¬ ||s2||.
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As in Chernozhukov et al.(2017), let us choose S to be the unit ball of Rd
of center 0. (Notice that (S,6S) is not a lattice (two points on a same
sphere have the same radius and can not be distinguished) and also that this
preorder is not compatible with the vector space structure of S, in the sense
that s1 6S s2 ; s1 + s3 6S s2 + s3 for s1, s2, s3 ∈ S).

The general idea is as follows:

1. transfer this preorder on S into a stochastic preorder on P(S), the set
of probability measures on S, via an order embedding s→ δs;

2. then use Markov kernels (Q,R) in Galois connection to transfer this
preorder onto P(X);

3. obtain a preorder on X via the mapping δx → x, or at least a depth
function or area on X .

More precisely,

1. Step one:

• Preorder interval: On (S,6S), define the (pre-)order interval [r, t] :=
{s ∈ S, r 6S s 6S t}, so that the closed balls Bτ := {s ∈ S, |s| ¬
τ} = [0, s] for some s ∈ S s.t. |s| = τ .

• Down-sets : Recall that for A ⊂ S, A is a down-set if

t ∈ A, s 6S t⇒ s ∈ A

Denote the set of down-sets of S as O(S). Define the down-closure
or order ideal of A ⊂ S as the smallest down-set containing A:
A↓ := {s, s 6S t for some t ∈ A}. Hence, the ball s↓ := {s}↓ =
[0, s] is the principal ideal generated by s. Set O∗(S) = {s↓,x ∈ S}
the set of balls/principal ideals of S.

• Partial embedding into the powerset: Although (S,6S) is only a
preordered space, its set of principal down-sets O∗(S) is a par-
tially ordered set (poset) included in the powerset (2S ,⊂), via the
mapping

(S,6S) → (O∗(S) ⊂ 2S ,⊂)

s 7→ s↓ = [0, s]

since
s 6S t⇔ [0, s] ⊂ [0, t].

(Notice however that s 7→ [0, s] is not injective, hence one has only
a partial embedding)
Each element of O∗(S) is obviously measurable, so the embedding
is in reality in B(S). This principal ideal O∗(S) makes up the
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collection of depth areas for PS: for each set/ball B ∈ O∗(S),
there exists τ ∈ [0, 1] s.t. PS(B) = τ . Hence, they capture the
features required for their interpretation as central regions of S
with a given PS mass.

• Order embedding on P(S): inspired from Massey(1987), one can
now define a stochastic preorder ≺S on the space P(S) of proba-
bility measures compatible with the embedding x→ δx, according
to the following definition:

Definition 4.11 ≺S is a stochastic preorder on P(S) if

i) ≺S is a preorder on P(S);
ii) s→ δs is an order-embedding: for all s, t ∈ S, s 6S t holds iff

δs ≺S δt.

In our case, the stochastic preorder ≺S on P(S) is defined via the
previous embedding on the principal ideal (S,6S) ↪→ (O∗(S),⊂):

PS1 ≺S PS2 ⇔ PS1([0, s]) ¬ PS2([0, s]), ∀s ∈ S.

By duality or by considering the embedding S ↪→ F(S) = {f :
S → R}, obtained via the mapping s → 1[0,s], the stochastic
preorder ≺S corresponds to an integral preorder whose generator
is the set of indicator functions (see Müller(1997)): F∗(S) := {s→
1[0,s]}:

PS1 ≺S PS2 ⇔ PS1(f) ¬ PS2(f), ∀f ∈ F∗(S).

2. Step two: Galois connections for probability measures.

Given a pair of Markov morphisms,

PS
Q−→ PX

PS
R←− PX

and a stochastic preorder ≺S on P(S) defined by the function set
F∗(S) := {s → 1[0,s]} on F(S), the image of the latter by R defines
a function set F∗(X ) := R(F∗(S)) = {g := Rf, f ∈ F∗(S)} which in
turn defines an integral stochastic preorder ≺X for P(X ) so that

PSQ ≺X PX ⇔ PS ≺S PXR.

Indeed,

PSQ ≺X PX ⇔ PSQ(g) ¬ PX(g),∀g ∈ F∗(X )

⇔ PSQ(Rf) ¬ PX(Rf),∀f ∈ F∗(S)

⇔ PS(QR)f ¬ PXR(f),∀f ∈ F∗(X )

⇔ PS ≺S PXR
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since QR = IS . In other words, (Q,R) is a Galois connection between
the preordered sets (P(S),≺S) and (P(X ),≺X )

3. Step three: depth areas in the X space.

In turn, such a preorder structure (P(X ),≺X ) can sometimes be “de-
scended” down to a preorder structure on (X ,6X ), in case the mapping
δx 7→ x induces a compatible preorder structure. In particular, depth
areas (set objects) in the S world, corresponding to the balls or princi-
pal down sets O∗(S) can become depth areas R(O∗(S)) in the X world,
in case the rank morphism R is of the degenerate type (4.4). Indeed, if
R = If , for some f : X → S and Bτ ∈ O∗(S) is of PS mass τ , then

R(Bτ )(x) = 1f(x)∈Bτ = 1x∈f−1(Bτ ) = 1f−1(Bτ )(x)

is a function X → {0, 1} ∼= 2 isomorphic to the measurable set f−1(Bτ )
of B(X ). This is in particular the case for quantile and rank morphisms
obtained by Monge’s optimal transportation of Section 4.3: if

PS
IH−→ PX

PS
IH−1←− PX

are obtained with the optimal transportation map H of (27), then

R(Bτ ) = IH−1(Bτ ) = 1H(Bτ ),

that is to say, the depth regions in the X world are the direct image by
the optimal transportation map of the depth regions in the S world.

In the case where the morphisms are not degenerate, one only obtains
as an object a non binary function, i.e. an object interpretable at best
as a random set in an enlarged space, see the discussion in remark 4.5.
Moreover, having “depth areas” which are not deterministic subsets
also poses epistemological issues and is a matter of debate, see the
discussion in Section 5.1.

5. A copula and mass transportation approach to quantile mor-
phism

5.1. A discussion on randomization of statistical functionals and
a motivation for a combined copula-Monge approach The discus-
sion of Section 3 and of Subsection 4.2 showed the necessity to allow for
random transformations between probability measures in order to be able to
define Quantile and Rank morphisms as reciprocals of each other. However,
such a stance, mathematically legitimated on the abstract algebraic grounds
of category theory, may be objectionable from an epistemological/statistical
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point of view. Indeed, quoting Chentsov(1982) p. 6, “The decision-making
procedure Π(ω, de) requires that, after observing the outcome ω, an addi-
tional, independent, random choice of the inference e be made, based on the
law Π(ω; .). This random answer is then a statistical decision by the rule
Π.” Consequently, switching from the classical viewpoint of statistics f(ω) as
measurable functions of the observations ω to the Blackwell-Le Cam-Cencov
theory of statistical inference based on a randomized procedure (i.e. Markov
kernels Π(ω, de)) may be considered problematic from the scientific view-
point: two statisticians, having the same observation ω, with the same non
degenerate decision rule Π(ω; .), may obtain two different answers on the in-
ference considered. In other words, if used improperly, randomized statistical
inference procedures may fail to abide by one of the main criteria of the sci-
entific method, i.e. reproducibility and objectivity of its conclusions in face of
common empirical evidence. (Note, however, that extraneous randomisation
appears in disguise in several statistical procedures like smoothing, regular-
ization, which may appear “deterministic” at first glance, see the discussion
of Subsection 3.2).

One is confronted with an issue similar when one endorses the subjec-
tivist/ Bayesian interpretation of probability: introducing arbitrary or sub-
jective a-priori randomness is likely to introduce an arbitrary and subjective
conclusion (in finite samples), unless a Bernstein-Von Mises type Theorem
can come to our rescue and allows us to recover (asymptotically) the true
value of the parameter under investigation, whose ontological (and not merely
mathematical) existence is posited. Since our intent is neither to stir contro-
versy, nor to get too far in “philosophical” discussions, we let the interested
reader refer to Bunge(1988) for an examination of those issues. Let us mention
that a comparable problem can occur in copula theory: by defining a copula
attached to a discrete vector X by the randomised distributional transform
(10), one can twist the dependence structure of the copula representer U cor-
responding to X, by choosing a randomiser V with a distribution different
from the independence copula, see Faugeras(2015), Rüschendorf(2009).

In this respect, in order to minimise the subjectivity/perturbation intro-
duced by extraneous randomization, we advocate that Quantile and Rank
morphisms should be based, as far as possible, on deterministic transforms
(a credo which might seem paradoxical at first glance with the content of
Section 4). To this end, we propose a Quantile morphism which combines
the copula view of Section 3 and the Monge transportation approach of Sec-
tion 4. It builds on a mass transportation approach to depth functions by
Chernozhukov et al.(2017), which we now present.

5.2. The Monge transportation based depth of Chernozhukov
et al.(2017) In Chernozhukov et al., a (Monge) transportation approach
to quantiles and depths functions is proposed. Their basic idea is that in
a spherical distribution, balls give a natural definition of a region which is
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central for the distribution and which contains most of its mass. Therefore,
their basic device is to transform a multivariate X ∼ F into a S := (r,a) ∼
PS with spherical uniform distribution on the unit ball B1 := {x ∈ Rd :
||x|| ¬ 1} of Rd, and conversely,

PX
RF−→ PS

PX
QF←− PS,

with RF = IRF and QF = IQF . More precisely, their scheme is as follows:

• One transforms (“polarizes”) X into S := (r,a), where r stands for a
radius uniformly distributed, r ∼ U[0,1], and a for an angle vector, also
uniformly distributed on the unit sphere of Rd, with r and a mutually
independent. In transportation theory terms, one transforms PS into
PX and conversely, via a pair of (deterministic) Monge transformation
maps QF and RF s.t.

QF#PS = PX, RF#PX = PS.

• One then computes the depth region of content τ on this spherical
uniform distribution S: it is simply the ball Bτ of radius τ , since
PS(Bτ ) = τ .

• One back transforms the ball Bτ of radius τ to the original space Rd
where X lives, via the transformation QF :

A(τ, F ) := QF (Bτ ).

One then obtains a depth region A(τ, F ) of the kind (7), whose PX

probabilistic content is τ :

PX(A(τ, F )) = P (QF (S) ∈ QF (Bτ )) = PS(Bτ ) = τ

• Depth measures for X can be transfered from depth measures for S
(e.g. Tukey’s depth): D(x, F ) = DTukey(RF (x), PS)

The empirical versions are defined similarly: for samples X1,X2, . . . (re-
spectively S1,S2, . . .) of copies distributed according to F (resp. PS), let Fn
(resp. FSn ) the corresponding ecdf. Several variants are proposed, depend-
ing on whether one uses smoothed versions F̂n, F̂Sn of the ecdfs Fn, FSn , and
whether one uses the sample S1,S2, . . . or a fixed reference PS distribution.

5.3. A combined approach We propose to elaborate on the previous
approach of Section 5.2, by composing it with a preliminary step of reduction
to the copula representation of Section 3.2.2. More precisely, the proposed
scheme is as follows:
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1. Transform X ∼ F into its copula representer U = G(X,V), whose
c.d.f. C satisfy Sklar’s identity (13).

2. Transport PU into a spherical distribution PS, via transportation maps
QC ,RC ;

QC#PS = PU, RC#PU = PS

3. Compute the depths regions A(τ, PS) of level τ , i.e. balls Bτ of radius
τ : A(τ, PS) := Bτ and PS(A(τ, PS)) = PS(Bτ ) = τ ;

4. Use the transportation maps QC ,RC to turn these balls into depth
regions A(τ, PU) of level τ at the copula level, i.e. for U;

A(τ, C) := QC(Bτ ), PU(A(τ, C)) = τ

5. Use the multivariate marginal quantile transform G−1 to obtain depth
regions

A(τ, PX) = G−1(A(τ, PU))

for the original variable X: PX(A(τ, PX)) = τ .

In other words, one defines a pair of Quantile and Rank Morphism (QX,RX)
as,

QX := IQC ◦ IG−1 , RX := DX ◦ IRC , (28)

whereDX is the distributional transform Markov morphism of (24), according
to the following diagram,

PS
IQC−→ PU

IG−1−→ PX

PS
IRC←− PU

DX←− PX .

The empirical version is defined similarly:

1. conditionally on the sample X1(ω),X2(ω), . . ., set (one bootstrap repli-
cation) X∗n ∼ Fn, and define as in (15), Un := Gn(X∗n,V) ∼ Cn, where
Cn is the empirical copula function;

2. transport PUn into a spherical distribution PS, via transportation maps
QCn ,RCn ;

QCn#PS = PUn , RCn#PUn = PS

3. the rest of the procedure is the same: one obtains an empirical depth
area of content τ , as

A(τ, Cn) := QCn(Bτ ), PUn(A(τ, Cn)) = τ

and
A(τ, PX

∗
n) = G−1

n (A(τ, Cn)).
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Symbolically, in terms of morphisms,

PX
∗
n

DX∗n−→ PUn
IRCn−→ PS

PX
∗
n

IG
−1
n←− PUn

IQCn←− PS,

where DX∗n is the distributional transform Markov morphism of (24) for X∗n
into Un, i.e. the empirical Quantile and Rank Morphisms are

Qn := IQCnIG
−1
n , Rn := DX∗nI

RCn (29)

5.4. Discussion The advantage of such a combined copula transporta-
tion approach to quantile and depth areas is fourfold:

1. first, as with many copula approaches, standardizing the marginals to
uniform distributions on [0, 1] allows to separate the randomness in PX

pertaining to the marginals G alone from the randomness pertaining
to the “dependence” C only. Hence, one reduces the computation of
depth regions only to the dependence structure PU of PX. Moreover,
as copulas are invariant w.r.t. monotone increasing transformations of
the marginals, the corresponding depth regions on U computed from
the balls of PS are invariant w.r.t. monotone increasing transformations
of the marginals: combined with the multivariate quantile transforms
G−1, one obtains a Markov morphism which automatically satisfies the
axiom [O2] of Section 4.2. In addition, the corresponding depth mea-
sures at the copula level PU will obey an axiom of monotone invariance
which is much more stronger and natural that the axiom (A1) of affine
invariance in Chernozhukov et al.(2017), Serfling and Zuo(2000) and
Serfling and Zuo(2000).

2. second, the adjunction of a (continuous, non singular) randomizer V
in the copula transformation step smoothes the empirical copula func-
tion Cn (it is even at least Lipshitz). Hence, the empirical copula mea-
sure PUn is absolutely continuous w.r.t to the d-variate Lebesgue mea-
sure λd. In addition, since Un,U ∈ [0, 1]d, moments of all order exist.
Therefore, the assumptions of Brenier and McCann (Theorem 2.1 in
Chernozhukov et al.(2017)) on the existence and unicity of a trans-
portation map are automatically satisfied. The consequence in terms of
Markov morphisms is clear: all morphisms in (28) and (29) are of the
degenerate type (23), except for the copula morphism IG(.,V) and its
empirical companion (one obviously chooses a randomizer V made of
independent uniform components, in order not to modify the depen-
dence structure of X,X∗n, when viewed in the copula world, through
U,U∗n). Hence, the proposed combined Quantile and Rank morphism
proposed are in agreement with the credo of Section 5.1. Moreover,
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one complies with the assumptions of the powerful Theorems 3.2 and
3.4 by Cuesta-Albertos et al.(1997), which will prove expedient for the
asymptotic analysis of Section 6.

3. third, one obtains a smoothing device of the empirical (copula) measure
which does not rely on ad-hoc bandwidth parameters as in the classical
kernel smoothing approach in Chernozhukov et al.(2017): this is rele-
vant from the finite sample point of view, since it is well known that
the classical kernel smoothed empirical measure is biased. Hence the re-
sulting transportation maps and depths of Chernozhukov et al.(2017)
are likely to be also biased in a finite sample, and one has to optimize
the bandwidth in practice.

4. fourth, one obtains a unified approach for both a discrete or a con-
tinuous X, and one can therefore extend depth areas to multivariate
discrete distributions and dispense with the continuity assumptions in
Chernozhukov et al.(2017).

6. Asymptotic results
The proofs of the consistency in probability of transportation maps and

depth measures in Chernozhukov et al.(2017) (their Theorem 3.1) are ana-
lytical and are based on results on the local uniform convergence of subd-
ifferentials, via duality analysis. As in Faugeras(2013), Faugeras(2015), we
favor the use of the method of a single probability space (a.s. construc-
tions, see Skorokhod(1956), Varadarajan(1958), Rao(1962)) which allows to
use Theorem 3.4 in Cuesta-Albertos et al.(1997), results by Rao(1962), and
Faugeras(2013), Faugeras(2015) to obtain simple and short probabilistic proofs.

6.1. Framework The setting is as follows:

• Framework:

Let X1,X2, . . . an infinite dimensional sample defined, w.l.o.g. on the
canonical countably infinite product probability space

(Ω,A, P ) := (Rd × Rd × . . . ,B(Rd)⊗ B(Rd)⊗ . . . , P ).

In other words ω = (ω1, ω2, . . .) and Xi(ω) = ωi, are the coordinate
projections. Let Pn be the empirical measure based on the n−sample
X1, . . . ,Xn,

Pn(.) := Pωn (.) =
1
n

n∑
i=1

δXi(ω)(.),

and Fn, Gn its c.d.f. and the corresponding vector of marginal e.c.d.f.
Such Pn(.) = Pωn (.) is a random measure, i.e. it can be construed as
a Markov kernel from (Ω,A) to (Rd,B(Rd)), (and we suppress the de-
pendence on ω, as it is customary).
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• Ergodicity hypothesis:

Assume that X1,X2, . . . , is an ergodic sample of PX, in the sense that,
for each real-valued function g on Rd, s.t. PX(|g|) =

∫
|g|dPX <∞,

Pn(g) :=
∫
g(x)Pn(dx)→ PX(g), P − almost everywhere (30)

Remark 6.1 The above definition is a specialization of Rao(1962)’s
definition of ergodicity to a non-random invariant measure, similar
to definition (E) of Chernozhukov et al.(2017) and the framework of
Faugeras(2015).

• Assumption on PX:

We will also make one of the following assumption:

– (C): PX << λd,

– (D): PX is discrete.

6.2. Main theorem

Theorem 6.2 Assume (30) and either (C) or (D). Then, with P -probability
one, one can construct on some probability space (Ω∗,A∗, P ∗) a sequence
Sn,S of random vectors distributed as PS, and a sequence of copula repre-
senters Un,U distributed as Cn, C, a sequence of random vectors X∗n,X

∗

distributed as Fn, F s.t., with P−probability one,

(Un,Sn) d→ (U,S),

and also, with P−probability one,

(X∗n,Un,Sn)→ (X∗,U,S) P ∗ − a.s.

Proof • Step one: ergodicity implies weak convergence of empirical mea-
sures with probability one.

By Varadajan-Ranga Rao’s extension of the Glivenko-Cantelli’s Theo-
rem (See Rao(1962) Theorem 6.1 and Varadarajan(1958)), (30) implies

P [Pn
d→ PX] = 1 (31)

In other words, there exists Ω0 ⊂ Ω, with P (Ω0) = 1, s.t. for all ω ∈ Ω0,

Pn
d→ PX. Pick some fixed ω ∈ Ω0.
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• Step two: a.s. convergence of copula representers on a suitable proba-
bility space.

On some (uninteresting) extra probability space (Ω∗,A∗, P ∗), define,
conditionally on ω, one (bootstrap) representing variable X∗n : Ω∗ → Rd
of Pn, for each n ∈ N∗, i.e. X∗n ∼ Pn. Define similarly X∗ : Ω∗ → Rd

in such a conditional manner s.t. its law be P ∗
X∗

= PX. (We have
dropped the dependency of these random elements on the chosen ω ∈
Ω0). Note that such conditional measures are guaranteed to exists and
to be genuine probability measures, since the underlying spaces are
Polish. In the remaining, we will also suppress “with P probability
one” in our statements, corresponding to the fact that ω ∈ Ω0 with
P (Ω0) = 1 according to (31). By Skorohod’s Theorem, (Ω∗,A∗, P∗),
X∗n,X

∗ can be chosen so that

X∗n
P ∗a.s.−→ X∗

Set V, defined also on (Ω∗,A∗), a vector with uniform marginals, inde-
pendent of (X∗1,X

∗
2, . . . ,X

∗) (Enlarge the probability space by product
if necessary). Set

Un := Gn(X∗n,V) ∼ Cn

so that X∗n = G−1
n (Un). Similarly, set U := G(X∗,V).

If assumption (D) is true (i.e. when PX is discrete), then Un
P ∗−a.s.→ U,

thanks to the almost sure convergence theorem of the empirical copula
representer for an ergodic sample (see Theorem 3.1 by Faugeras(2015)).

If assumption (C) is true, then F is continuous and a.s. consistency of
the copula representer is an easy consequence of Skorohod’s Theorem,
as shown in the the following lemma, whose proof is relegated in the
appendix:

Lemma 6.3 If F is continuous, then Un
P ∗a.s.→ U.

• Step three: a.s. convergence of copula-Monge transportation represen-
ters

As proposed in Section 5.3, transport PUn towards the reference spher-
ical distribution PS and conversely by solving the Monge-Kantorovich
problem with quadratic cost (Wasserstein distance),

PUn
QCn←− PS,

PUn
RCn−→ PS,
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where the Markov morphism, as solution of Monge’s problem with
quadratic cost (see Section 4.3) are of the degenerate type (see defi-
nition 4.4 or (23)), i.e. are induced by the transportation maps QCn

and RCn ,
QCn = IQCn , RCn = IRCn .

Equivalently, in the push-forward notation,

QCn#PS = PUn , RCn#PUn = PS.

Indeed, since both distributions PUn and PS have compact support
and are absolutely continuous, the assumptions of Rachev-Rüschendorf-
Brenier-Mc Cann’s Theorem are satisfied and the transportation maps
QCn and RCn exist and are unique. Similarly, assumption (C) or (D)
yields that the transportation maps

QC#PS = PU, RC#PU = PS

also exist and are unique.

Hence, one can realize these distributions on (Ω∗,A∗) by defining the
random vectors Sn and S, distributed as PS, by

Sn := RCn(Un), S := RC(U)

which also satisfy

QCn(Sn) = Un, QC(S) = U.

Now, the assumptions of Theorems 3.2 and 3.4 in Cuesta-Albertos
et al.(1997) (see also Theorem 3.2 in Tuero(1993)) are satisfied. Hence,

Un
P ∗a.s.→ U yields

(Un,Sn) d→ (U,S)

and
Sn := RCn(Un) P

∗a.s.→ RC(U) := S (32)

Thanks to (31), the latter results are true with P -probability one.

6.3. Convergence of depth areas in average symmetric difference
distance The (population and empirical) depth areas of mass τ are defined
from the centered ball Bτ of radius τ via the combined Markov morphism
QX of (28) and Qn of (29) as

A := QXBτ = DXIRCBτ
An := QnBτ = DX∗nI

RCnBτ
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which reduces, due to the degeneracy of the Markov morphisms, to the sets

A := G−1 ◦QC(Bτ )

An := G−1
n ◦QCn(Bτ )

A way to measure the distance between these sets is through their average
symmetric difference

PX(An∆A) = PX|1An − 1A|

(which generalizes to the L1 distance w.r.t. PX when An, A are functions).

Corollary 6.4 With P -probability one, the L1(PX) or symmetric differ-
ence distance between the PX depth area and its empirical counterpart con-
verges towards zero, as n→∞,

PX(An∆A)→ 0.

Proof By definition of the random variables of the previous subsection,
X∗ ∈ A ⇔ X∗ ∈ G−1 ◦ QC(Bτ ) ⇔ S ∈ Bτ and X∗ ∈ An ⇔ RCn ◦
Gn(X∗,V) ∈ Bτ , P ∗ a.s.

Hence,

PX(An∆A) = P ∗|1S∈Bτ − 1RCn◦Gn(X∗,V)∈Bτ |
= P ∗(S ∈ Bτ ,RCn ◦Gn(X∗,V) /∈ Bτ )

+ P ∗(S /∈ Bτ ,RCn ◦Gn(X∗,V) ∈ Bτ )

By the continuous mapping Theorem, RCn ◦Gn(X∗,V) P ∗a.s.−→ S, hence the
above two probabilities go to zero as n → ∞, since Bτ is a PS continuity
set. �

Remark 6.5 (Hausdorff convergence of depth areas) The L1(PX)
distance is well suited to the problem at hand, whereas the Hausdorff distance
of Hallin et al.(2010), being intrinsic, mandates special restrictive conditions
to the ranges of the c.d.fs. and also to avoid infinities. For completeness,
let us briefly sketch an argument for convergence in the Hausdorff metric:
by Corollary A.1 in Chernozhukov et al.(2017), it suffices to show uniform
convergence of

G−1
n ◦QCn → G−1 ◦QC (33)

on some suitable compact subsets of the unit ball B1.
First, uniform convergence on compacta of optimal mappings QCn → QC

is provided by checking conditions of their Theorems A.1 and A.2:
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• in the notation of Chernozhukov et al.(2017), U = B1, Y = [0, 1]d are
compact and convex;

• PS, PUn are absolutely continuous w.r.t. d−variate Lebesgue measure,
under the choice of of a coordinate independent randomizer V (see
Section 3.2.2). Under assumption (C) or (D) of our paper, PU is also
absolutely continuous w.r.t. d−variate Lebesgue measure;

• condition (W) in Theorem A.2 of Chernozhukov et al.(2017) holds by
Theorem 6.2;

• condition (C) in Theorem A.2 of Chernozhukov et al.(2017) holds for
optimal gradient mappings (QC ,RC) and (QCn ,RCn) on the sets U0 =
int(suppPS) and Y0 = int(suppPU) = (0, 1)d.

Hence, one obtains uniform convergence of QCn → QC on compact subsets
K of U0. This implies that dH(QCn(Bτ ),QC(Bτ ))→ 0, with P− probability
one.

Next, one needs to prove uniform or continuous convergence of

G−1
n → G−1. (34)

The most simple case is when G−1 is strictly increasing on its domain.
Then, (34) holds pointwise everywhere and uniform convergence holds on
{|G−1| ¬ α} or any α <∞ and (33) holds uniformly on

K ∩RC({|G−1| ¬ α}) =: Kα,

for any compact K ⊂ U0.
In the general case, under (C) or (D), the discontinuity set D of G−1 is at

most a “grid” parallel to the coordinate axis of dimension lower than d− 1,
and we can replace Kα above by K ′α := K ∩RC({|G−1| ¬ α} ∩ L) where L
is any compact subset in the complement of D. One then obtains (33) on Kα

or K ′α and Hausdorff convergence of the depth areas restricted on those sets,
with P−probability one, follows.

7. Conclusion Summarizing what has been achieved so far, the concep-
tual part of the paper shows how univariate quantile functions, their prop-
erties and the quantile transformations of random variables can be recast in
the framework of category theory as a Markov morphism between probability
measures. This mathematical viewpoint gives a convenient way to general-
ize the concept of quantile to the multivariate case and to study how the
algebraic, ordering and topological structures can be transfered by such a
quantile Markov morphism from a reference distribution PS to the distribu-
tion PX under consideration. In turn, principal down-sets in the reference
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space S can be transfered into depth areas in X , exactifying the idea of an
ordered centrality area of given probability. For epistemological reasons and
statistical interpretability of the objects obtained, we suggest it can be ad-
vantageous to reduce the possible extraneous randomization involved in the
quantile Markov morphism.

In the practical and empirical part of the paper, we show how such ideas
can be rendered concrete by constructing a Markov morphism which em-
bodies those requirements. The proposed approach combines a copula stan-
dardization with the Monge optimal transportation method from a spherical
distribution of Chernozhukov et al.(2017). Compared to the latter, the pro-
posed combined approach is fully equivariant to nonlinear monotone trans-
formations of the marginals, has no bandwidth to optimize, requires no reg-
ularity assumptions on the distribution, extends also to the case of discrete
distributions, and gives a.s. consistent representing variables in the ergodic
setting. In turn, one obtains an empirical depth area of given mass which is
asymptotically consistent for the population counterpart.

Appendix

A. Proof of Lemma 6.3

Proof Under Assumption (C), (31) imply the usual Polya-Glivenko-Cantelli
Theorem, ||Fn−F ||∞ → 0, and ||Gn−G||∞ → 0, by Ranga-Rao’s Theorem
4.1 (see also his Theorem 3.4) applied to the coordinate projections li(x) = xi.

One has the decomposition,

Un −U = Gn(X∗n,V)−G(X∗n,V) + G(X∗n,V)−G(X)

= Gn(X∗n,V)−G(X∗n) + G(X∗n)−G(X)

since G is continuous. But

Gn(X∗n−)¬ Gn(X∗n,V)¬ Gn(X∗n)

where G(x−) denotes the left-hand limit of G. Therefore,

|Gn(X∗n,V)−G(X∗n)| ¬ ||Gn−G||∞ + 1/n

By Skorohod’s Theorem, Fn
d→ F imply X∗n

a.s.→ X for some copies on some
probability space. Hence, by the continuous mapping Theorem G(X∗n) →
G(X) and

||Un −U|| → 0,

as n→∞.
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[11] P. Deheuvels. La fonction de dépendance empirique et ses propriétés, un
test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci.
(5), 65(6):274–292, 1979. ISSN 0001-4141. MR 573609.

[12] P. Deheuvels. A multivariate Bahadur-Kiefer representation for the em-
pirical copula process. Journal of Mathematical Sciences, 163(4):382–
398, 2009. ISSN 1573-8795. doi: 10.1007/s10958-009-9681-y.

[13] O. P. Faugeras. Sklar’s theorem derived using probabilistic continuation
and two consistency results. Journal of Multivariate Analysis, 122:271
– 277, 2013. ISSN 0047-259X. doi: 10.1016/j.jmva.2013.07.010. MR
3189323.

[14] O. P. Faugeras. Maximal coupling of empirical copulas for discrete
vectors. Journal of Multivariate Analysis, 137(11):179–186, 2015.
ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2015.02.013.
URL http://www.sciencedirect.com/science/article/pii/
S0047259X15000482.

[15] J.-D. Fermanian, D. Radulović, and M. Wegkamp. Weak convergence
of empirical copula processes. Bernoulli, 10(5):847–860, 2004. ISSN
1350-7265. doi: 10.3150/bj/1099579158. MR 2093613.

[16] W. Gilchrist. Statistical Modelling with Quantile Functions. Chapman
and Hall/CRC, 2000.

[17] M. Hallin, D. Paindaveine, and M. Siman. Multivariate quantiles and
multiple-output regression quantiles: From L1 optimization to halfspace
depth. The Annals of Statistics, 38(2):635–669, 04 2010. ISSN 0090-
5364. doi: 10.1214/09-AOS723. MR 2604670.

[18] O. Kallenberg. Foundations of Modern Probability. Springer, 1997. ISBN
0-387-94957-7. MR 1464694.

[19] W. F. Lawvere and R. Rosebrugh. Sets for Mathematics. Cam-
bridge University Press, 2003. ISBN 0-521-80444-2; 0-521-01060-8. doi:
10.1017/CBO9780511755460. MR 1965482.

[20] W. F. Lawvere and S. H. Schanuel. Conceptual Mathematics. Cam-
bridge University Press, Cambridge, second edition, 2009. ISBN 978-0-
521-71916-2. doi: 10.1017/CBO9780511804199. A first introduction to
categories. MR 2546886.

http://dx.doi.org/10.1017/CBO9780511809088
http://www.ams.org/mathscinet-getitem?mr=1902334&return=pdf
http://www.ams.org/mathscinet-getitem?mr=573609&return=pdf
http://dx.doi.org/10.1007/s10958-009-9681-y
http://dx.doi.org/10.1016/j.jmva.2013.07.010
http://www.ams.org/mathscinet-getitem?mr=3189323&return=pdf
http://www.ams.org/mathscinet-getitem?mr=3189323&return=pdf
http://dx.doi.org/https://doi.org/10.1016/j.jmva.2015.02.013
http://www.sciencedirect.com/science/article/pii/S0047259X15000482
http://www.sciencedirect.com/science/article/pii/S0047259X15000482
http://dx.doi.org/10.3150/bj/1099579158
http://www.ams.org/mathscinet-getitem?mr=2093613&return=pdf
http://dx.doi.org/10.1214/09-AOS723
http://www.ams.org/mathscinet-getitem?mr=2604670&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1464694&return=pdf
http://dx.doi.org/10.1017/CBO9780511755460
http://dx.doi.org/10.1017/CBO9780511755460
http://www.ams.org/mathscinet-getitem?mr=1965482&return=pdf
http://dx.doi.org/10.1017/CBO9780511804199
http://www.ams.org/mathscinet-getitem?mr=2546886&return=pdf


40 Quantiles as Markov morphisms

[21] S. Mac Lane and G. Birkhoff. Algebra. AMS Chelsea Publishing Series.
Chelsea Publishing Company, 3rd edition, 1999. ISBN 0-8284-0330-9.
MR 941522.

[22] W. A. Massey. Stochastic orderings for markov processes on partially
ordered spaces. Mathematics of operation research, 12(2):350–367, 1987.
ISSN 0364-765X. doi: 10.1287/moor.12.2.350. MR 888982.

[23] D. S. Moore and M. C. Spruill. Unified large-sample theory of general
chi-squared statistics for tests of fit. The Annals of Statistics, 3(3):599–
616, 1975. ISSN 0090-5364. MR 0375569.

[24] A. Müller. Stochastic orders generated by integrals: a unified study. Adv.
Apppl. Prob., 29:414–428, 1997. ISSN 0001-8678. doi: 10.2307/1428010.
MR 1450937.

[25] R. B. Nelsen. An introduction to copulas. Springer Series in Statistics.
Springer, New York, second edition, 2006. ISBN 978-0387-28659-4; 0-
387-28659-4. MR 2197664.

[26] K. R. Parthasarathy. Probability measures on metric spaces. Probability
and Mathematical Statistics, No. 3. Academic Press, Inc., New York-
London, 1967. ISBN 0-8218-3889-X. MR 0226684.

[27] E. Parzen. Nonparametric statistical data modeling. Journal of
the American Statistical Association, 74(365):105–121, 1979. doi:
10.1080/01621459.1979.10481621.

[28] E. Parzen. Quantile functions, convergence in quantile, and extreme
value distribution theory. Technical Report B-3, Statistical Institute,
Texas A & M University, College Station, Texas, 1980.

[29] M. B. Priestley. Non-Linear and Non-Stationary Time Series Analysis.
Academic Press, Inc. London, 1988. ISBN 0-12-564910-X. MR 991969.
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[55] A. Sklar. Random variables, joint distribution functions, and copulas.
Kybernetika, 9(6):449–460, 1973. ISSN 0023-5954. MR 0345164.

[56] A. V. Skorokhod. Limit theorems for stochastic processes. Theory of
Probability and its Applications, 1:261–290, 1956. doi: 10.1137/1101022.

[57] R. Szekli. Stochastic Ordering and Dependence in Applied Probabil-
ity, volume 97 of Lecture Notes in Statistics. Springer-Verlag, New
York, 1995. ISBN 0-387-94450-8. doi: 10.1007/978-1-4612-2528-7. MR
1329324.

[58] H. Thorisson. Coupling, stationarity, and regeneration. Probability and
its Applications (New York). Springer-Verlag, New York, 2000. ISBN
0-387-98779-7. doi: 10.1007/978-1-4612-1236-2. MR 1741181.

[59] A. Tuero. On the stochastic convergence of representations based on
Wasserstein metrics. The Annals of Probability, 21(1):72–85, 1993. ISSN
0091-1798. MR 1207216.

[60] V. S. Varadarajan. On the convergence of sample probability distribu-
tions. Sankhya, 19(1/2):23–26, 1958. ISSN 0972-7671. MR 0094839.

[61] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate
Studies in Mathematics. American Mathematical Society, 2003. ISBN
0-8218-3312-X. doi: 10.1007/b12016. MR 1964483.

[62] C. Villani. Optimal transport, volume 338 of Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 2009. ISBN 978-3-540-71049-3. doi:
10.1007/978-3-540-71050-9. Old and new. MR 2459454.

[63] D. Williams. Probability with Martingales. Cambridge University
Press, Cambridge, 1991. ISBN 0-521-40455-X; 0-521-40605-6. doi:
10.1017/CBO9780511813658. MR 1155402.

[64] V. M. Zolotarev. Modern Theory of Summation of Random Variables.
Modern Probability and Statistics. VSP, Utrecht, 1997. ISBN 90-6764-
270-3. doi: 10.1515/9783110936537. MR 1640024.

http://www.ams.org/mathscinet-getitem?mr=0345164&return=pdf
http://dx.doi.org/10.1137/1101022
http://dx.doi.org/10.1007/978-1-4612-2528-7
http://www.ams.org/mathscinet-getitem?mr=1329324&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1329324&return=pdf
http://dx.doi.org/10.1007/978-1-4612-1236-2
http://www.ams.org/mathscinet-getitem?mr=1741181&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1207216&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0094839&return=pdf
http://dx.doi.org/10.1007/b12016
http://www.ams.org/mathscinet-getitem?mr=1964483&return=pdf
http://dx.doi.org/10.1007/978-3-540-71050-9
http://dx.doi.org/10.1007/978-3-540-71050-9
http://www.ams.org/mathscinet-getitem?mr=2459454&return=pdf
http://dx.doi.org/10.1017/CBO9780511813658
http://dx.doi.org/10.1017/CBO9780511813658
http://www.ams.org/mathscinet-getitem?mr=1155402&return=pdf
http://dx.doi.org/10.1515/9783110936537
http://www.ams.org/mathscinet-getitem?mr=1640024&return=pdf


44 Quantiles as Markov morphisms

Morfizmy markowskie: zespolone podejście do wielowymiarowych
kwantyli oparte o funkcje łącznikowe i zagadnienie transportowe.

Streszczenie W artykule zaproponowano pewien sposobu wprowadzania kwantyli
wielowymiarowych, jak i metody ich wyznaczania. Z jednej strony podstawą roz-
ważań są podstawowe własności uogólnionego pojęcia wielowymiarowego kwantyla,
który jest morfizmem markowskim, zachowującym podobne własności algebraiczne,
topologiczne oraz porządku, jakie znamy dla linii kwantylowych na prostej rzeczy-
wistej. Z drugiej zaś strony, zaproponowano morfiz markowski, który łączy standa-
ryzowaną kopułę (funkcję łącznikową) z zastosowaniem zagadnienia transportowego
(v. Chernozhukov et al.(2017). Proponowane podejście daje ogólne i jednolite po-
dejście do definicji kwantyli i ich estymacji, zarówno dla ciągłych, jak i dyskretnych
rozkładów wielowymiarowych.

2010 Klasyfikacja tematyczna AMS (2010): 62G15; 62E20.

Słowa kluczowe: kwantyle wielowymiarowe • kopuły • zalezność statystyczna
• morfizmy markowskie.
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