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Abstract 
We study motion and capture of incoherent excitons in one-dimensional lattices with randomly placed, perfectly absorbing 

traps. Large-scale numerical simulations of both the master equation and the random walk version of the problem disagree 
with the result for the survival fraction obtained long ago by Movaghar et al. [J. Stat. Phys. 27 (1982) 473]. We carry 
out exact calculations for this problem and find that the disagreement can be traced back to rare-event contributions to the 
analytical result which cannot be seen in simulations. We conclude that for practical purposes, Le., for averages taken over 
any finite number of realizations, the only asymptotics observable is the one we have found in our simulations. 

PACS: 71.35.+z; 05.60.+w; 02.60.Cb; 61.43.-j 

1. Introduction 

Models of diffusion and trapping of excitations 
in one-dimensional (ID) random lattices are of 
interest in different physical situations, which in-
clude sensitized luminescence experiments in molec-
ular aggregates, polymers in random media, and 
diffusion-limited reactions (see Ref. [1] and refer-
ences therein). Whenever the trapping process (for 
example of an exciton) is rapid in comparison with 
the characteristic time scale associated with the dif-
fusion mechanism of motion (of the excitons), the 
diffusion process becomes the most important factor 
in determining the kinetics of the system [2]. In this 
context, random walks on lattices with randomly 10-

cated traps have received a lot of attention in the past 
few years as suitable models of those phenomena. 
Numerous researchers devoted their attention to this 
problem in the seventies and early eighties. Thus, it 
was established that for traps randomly distributed 
in ad-dimensional Euclidean space, the asymptotic 
decay of the survival fraction of random walkers, 
net), is given by a stretched exponential net) '" 
exp[ _ac2/(d+2)td/(d+2)], with c the concentration 
of traps and a a dimension-dependent constant [3]. 
There are more detailed results for one dimension 
(see Refs. [4,5] and references therein), computing 
even the prefactor to the exponential dependence. To 
our knowledge, however, none of these results was 
ever compared to simulations. 
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After the mid-eighties, the interest in this problem 
considerably decreased, as it was regarded as basi-
cally solved. In fact, even analytical solutions of the 
master equation for the exciton motion in the infinite 
chain with a single trap have been found by several 
authors [6-8]. Recently, however, a renewed inter-
est in this question arose in connection to results on 
electron localization in disordered systems (see ref-
erences in Ref. [9]), and diffusion of excitations in 
one-dimensional systems with traps placed at random 
but with some correlation among their position was 
studied, both in the classical [9] and the quantum case 
[ 10]. In Ref. [9], we carried out simulations to com-
pare the correlated with the pure random case and the 
results were (in both cases) closer to exp( -At'/2) 
than to exp ( - At' /3), the theoretical result predicted 
by several authors [3,4,11]. As the amount of com-
putational work in Ref. [9] was not enough to make 
any definite claim on this question, we postponed its 
analysis until more data were available. 

In this paper, we present results of a large scale 
simulation program intended to clarify this point. In 
Section 2 we report on the outcome of our numerical 
work, which can be summarized by saying that it was 
definitely established that the asymptotic regime was 
described with great accuracy by a functional depen-
dence of the form exp ( - At' /2). In view of this, we 
undertook the task of analytically studying the prob-
lem, to find out what was the reason for the discrep-
ancy between the known results and our simulations. 
This we describe in full detail in Section 3, where we 
show how the key to understand the different expo-
nents is found by a careful analysis. As we discuss 
below, our computations allow us to identify the ori-
gin of the disagreement with rare-event contributions 
to the analytical result which cannot be seen in simu-
lations. Finally, in Section 4 we summarize our main 
conclusions. 

2. Model and simulations 

The basic equation governing the time evolution of 
the probability Pk(t) to find a walker (or exciton) at 
site k in a ID lattice is the following master equation, 

(1) 

where a is the lattice spacing and D is the diffusion 
coefficient, which is assumed to be constant over the 
whole lattice. Here Yk is the trapping rate, taken to be 
either infinite with probability w or zero with proba-
bility ( I - w). In many physical situations of interest, 
and in others at sufficiently low temperature, traps are 
quenched, and then we will consider a static arrange-
ment of traps. This master equation is solved assum-
ing that the exciton is initially at arbitrary lattice site 
ko, that is, Pk(O) = OHo' Once this equation is solved, 
the survival fraction n(t) = L,k Pk(t), which is the 
magnitude of interest in luminescence experiments as 
well as in other contexts, can be readily evaluated. 

We have carried out numerical simulations by usual 
random-walk techniques. Our starting point is the mas-
ter equation (1) with a given concentration of ran-
domly distributed, perfectly absorbing traps. Numer-
ical simulation proceeds as follows. We consider an 
exciton initially at site ko of the lattice. This site is 
chosen at random over the whole lattice. Let Ot be 
the time step and Lt == DOt. The exciton jumps to the 
neighboring left or right site with equal probability Lt 
if there is not any trap at its current position, whereas 
if there is a trap the exciton is trapped (i.e., it is an-
nihilated). Periodic boundary conditions are used, so 
that there is no annihilation at the edges of the lattice. 
Once the exciton is annihilated, or the maximum time 
of the simulation is reached, a new exciton is started 
from another initial site ko. Averages over an ensem-
ble of excitons straightforwardly yields the survival 
fraction as a function of time, or any other quantity 
of interest. We have performed simulations with up 
to 5 X 104 excitons and 1<P time steps maximum per 
exciton, finding a very good agreement between si m-
ulations with these and smaller parameters. As a fur-
ther test, we simulated several cases with 107 excitons 
and 106 time steps, finding always the· same results. 
Besides, direct numerical integration of Eq. (I) with 
finite values of 'Yk [9] also agree with the outcome of 
the above described simulation procedure. In order to 
compare with previous analytical results [4], we have 
considered the high dilution limit, that is, the proba-
bility w never exceeds the value 0.1. 

A typical example of the outcome of our simulations 
is shown in Fig. 1, where results for different values 
of w = a are collected. In order to extract information 
about the time dependence of the survival fraction, 
we have plotted In [ - In n ( t)] versus In (a2 t). There-
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Fig. I. Survival fraction of random walkers as a function of time 
for different values of the lattice spacing a and probability w 
(from bottom to top w = a = 0.01, ... ,0.06). To extract the 
time dependence we plot In[ -Inn(t) I versus In(a2t). Curves 
are well fitted by stretched exponentials n( t) '" exp( - Atf3 ). For 
comparison, dashed lines indicate f3 = 1/2 and f3 = 1/3. 

fore, the slope of those curves is simply the value of 
the exponent of the stretched exponential. In Fig. 1 
parameters are D = 1 and 8t = 0.01. Results com-
prise 25 ensemble averages per value of the probabil-
ity w. Other choices of parameters give basically the 
same results. In all cases the results are very well de-
scribed by stretched exponentials of the form n(t) ,....., 
exp( -AtP), the exact value of the parameter A being 
dependent on the probability w. However, the parame-
ter f3 is independent, within the numerical uncertainty, 
of w. The value of the exponent is f3 ~ 1/2 in all cases 
we have studied, quite different from the theoretically 
predicted value f3 = 1/3 in one dimension. 

3. Analytical results and discussion 

The exact calculation of the survival fraction is pos-
sible in the limit of perfect absorption since the exci-
ton can only be captured by the nearest traps. Assum-
ing that these traps are placed 1 sites to the left and m 
sites to the right of the initial position of the exciton, 
the survival fraction can be written as 

00 00 

n(t) = 2:2:w(l,m)P-1,m(t). (2) 
1=1 m=1 

Here w( I, m) is the probability of having the already 
mentioned configuration of traps, which in the uni-
form case with probability w reduces to w(l, m) = 
wl+m ( 1 - w) 2, and P -I,m is the survival probability of 
a single particle starting at k = 0 and with perfectly 
absorbing boundaries at k = -I and k = m. This proba-
bility is calculated as P-I,m(t) = I:~=-I Pdt), where 
Pk (t) is the solution of the master equation ( 1) with-
out the absorbing term (n = 0) but with P-I(t) = 
Pm(t) = ° as boundary conditions. The direct calcula-
tion of Pk (t) in the discrete case is quite complicated. 
However, in terms of the Laplace transform, P -I,m (s), 
the master equation becomes algebraic and can be eas-
ily solved. Thus, in the case of uniform distribution of 
traps, the Laplace transformed survival fraction n(s) 
is readily calculated [4] but now the difficulty ap-
pears in the inversion to the time variable. In Ref. [4] 
a plausible but uncontrolled approximation has been 
developed. In this approximation the survival fraction, 
given by 

2 00 I 
n(t) = 7T2 2: (1+ 1)2 

1=0 2 

00 

J ( ~w2(21 + 1)2Dt) 
X dyyexp -y- 22 ' ay 

o 
(3a) 

exhibits an asymptotic behavior as 

net) ,....., exp -3 :a2 t . [ (~ 2D) 1/3] 
(3b) 

Hence, this is the classical analytical result that one 
would expect to obtain in simulations. As it does not 
occur, first we have analyzed the above mentioned 
approximation. It is not difficult to check that this 
approximation coincides exactly with the continuum 
limit a -. 0, in which c = w / a is the concentration of 
traps and the survival fraction becomes 

00 00 

n(t) = J dy J dxc2 exp[-c(x+y)]P_y,x(t), 
o 0 

(4) 
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P -y,X< t) being the corresponding survival probability 
g~ven by J~ y dz P (z, t). The function P (z, t) can be 
directly calculated from the classical diffusion equa-
tion a,p(z, t) = DazzP(z, t) with absorbing bound-
ary conditions P( -y, t) = P(x, t) = 0, obtaining 

P(z, t) = f (_1_) cos (1T(21 + l)(y - x») 
1=-00 x+y 2(x+y) 

(
1T(21 + I)Z) ( x cos exp 

x+y 
1T2(21 + 1)2Dt) 

(x+y)2 . 
(5) 

Substituting P _ y,x (t), calculated from (5), into (4) 
we obtain (3a). 

In view of the preceding discussion, expression 
(3b) from Ref. [4] should describe our simulations 
in the continuum limit. The continuum limit can be 
approximated in simulations taking values of param-
eters such that D and c remain constant when I 

a -> O. However, as we have shown in the above 
section, instead of the expected result exp( -At l / 3 ) 

we have always obtained the asymptotic behavior 
exp( -At l / 2), and therefore the differences between 
the continuum and discrete versions of the problem 
are not responsible for the discrepancy. Hence, in 
order to pursue further the origin of this disagree-
ment we have analyzed with more detail the physical 
meaning of the expression (3a). First, we introduce 
in our analysis the span S as the length of the small-
est interval that entirely contains the random walk. 
In terms of S the survival fraction can be written, 
from (4), as n(t) = Jooo dS exp( -Sc)Os(t), where 
Os(t) = J: dxaSP_(s-x),At) is the probability den-
sity of having a span S in time t. Taking dimensionless 
times by setting z = 2~c2Dt and measuring spans 
in units of the diffusion length with the change of 
variable S = yz 1/2 we have 

00 

n(z) = J dy exp( _ YZ l/2)O(y), (6a) 

° 
with 

I In our simulations we take D = c = 1. Plotting results of Fig. 1 
as a function of In t one finds that all curves overlap. This indicates 
that we are simulating correctly the limit a ...... O. 

O(y) = ~ ~ (~(21 + 1)2 _ I) 
y36 y2 

1=0 

( 
1T2 (21 + I) 2 ) 

X exp - 2y2 . (6b) 

The shape of this function, as can be seen in Ref. 
[ 12], is quite asymmetric. For small spans, y < 1, 
the function has a tail of very low probability, 0 (y) rv 
exp( _1T2 /2y2) as y -> O. Any event comprised in this 
tail cannot be reproduced in simulations and this is the 
reason for the disagreement between theory and si m-
ulations. The true asymptotic behavior of the survival 
fraction is dominated by these rare events since the 
maximum of the integrand in (6a) goes like Ymax rv 
1T2/3Z-I/6. An analytical treatment of (6a), for in-
stance using a steepest descent method, gives the the-
oretical result, but any technique based on the occur-
rence of real events can lead to a very different behav-
ior. To estimate this behavior we take into account that 
the integrand of (6a) is dominated by the low prob-
ability tail of 0 when y « Ymax and by the exponen-
tial term exp( -yz 1/2) when y » Ymax' On increasing 
time Ymax -> 0 and the asymptotic survival fraction 
is dominated by more and more rare events. Using a 
method able to take into account events with y > Yo, 
after a time t » to = 1T4 fyg, the survival fraction can 
be estimated by 

(7) 

Hence, the observed asymptotic behavior is repro-
duced. In simulations with N realizations a rough es-
timation of Yo would be N-I = J;o dyO(y). Nu-
merical analysis leads to Y5 rv 1/ log N, which indi-
cates the slow variation of the factor in the asymp-
totic behavior (7) with the number of realizations. To 
give an idea of this variation we have. calculated Yo 
and the time in which the exponential behavior ap-
pears for 20,5000, and 70000 realizations obtaining 
Yo = 0.974,0.658,0.589 and to = 5.77,60.79, 118.18 
respectively. Our simulations show also a slight de-
crease of the prefactor on the number of realizations, 
although this decrease is not quite as our rough esti-
mation predicts. This discrepancy calls for a more de-
tailed analysis of this specific point, which is out of 
the scope of the present work. 

We can summarize the above analysis by saying 
that, in mathematical terms, the limits N -> 00 and 
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t ---+ 00 do not commute at all. The asymptotic behav-
ior calculated from simulations, in which one takes 
the temporal limit before the number of realizations 
going to infinity, is different from calculations by ana-
lytical methods, which are independent of the realiza-
tions of events. Nonetheless, in physics these events 
are present, this being the reason why we claim that 
exp( -At l / 2 ) is the true (Le., physically relevant) 
asymptotic behavior. 

4. Conclusions 

In this paper, we have reexamined the problem of 
excitation diffusion in lattices with perfectly absorbing 
traps to understand the discrepancy of the exact results 
in Ref. [4] with the simulations in Ref. [9]. After 
carrying out more simulations, which confirmed the 
result that the asymptotics of the survival fraction was 
nU) rv exp( -At l / 2), we looked again at the previous 
analytical works. We verified that the expression given 
by Movaghar et al. [4], although derived through an 
uncontrollable assumption, is exact in the continuum 
limit a ---+ O. Simulations with parameters progres-
sively approaching this limit showed no sign of sep-
aration from the exp( -At l / 2 ) behavior, meaning that 
the discrepancy between theory and numerics cannot 
be due to differences between the continuum and the 
discrete versions of the problem. Further insight into 
this question was provided by the reformulation of the 
calculations in terms of the span, which finally pin-
pointed the key to understanding the discrepancy, by 
revealing that there are events (in the small span limit) 
with vanishing probability and which simulations can 
by no means include. We also discussed how this dif-
ficulty can be interpreted in terms of the fact that the 
N ---+ 00 and the t ---+ 00 limits do not commute, thus 
leading to different analytical and numerical results. 

We believe that our conclusions are important both 
theoretically and experimentally. From this last view-
point, our finding that the decreasing of the survival 
fraction in simulations is faster than exp( - At l /3) may 
be related to similar behavior observed in experiments 
by Hunt et al. [13], who found that when temperature 
was lowered the measurements departed progressively 
from the expected behavior. This might be interpreted 
in the light of the present work because our simulations 
and calculations should approach the experimental re-

suIts as temperature is lowered, when the assumption 
that traps are quenched holds. However, from the avail-
able data it is not possible to make a definite conclu-
sion on this point, because the experiments were not 
designed to clarify this specific question, and further 
work in this direction is needed to establish the rele-
vance of both theory and simulation to actual physical 
properties. We envisage that, as simulation and exper-
iment correspond to the same ordering in the N ---+ 00 

and t ---+ 00 limits, their conclusions will be compara-
ble. If, as we are confident about, this turns out to be 
the case, the theoretical analysis of diffusion problems 
in the presence of traps should be reexamined with the 
present conclusions in mind, and the contributions of 
rare events to situations where the traps are not per-
fect absorbers or there is spatial correlation between 
their location, to name just two examples, should be 
identified, thus establishing their relevance. We expect 
to pursue further this goal after new experiments or 
specifically designed, more precise simulations pave 
the way to a verification of these conclusions. 
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