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Intentionally Disordered Superlattices 
with High-DC Conductance 

Enrique Diez, Angel Sinchez, and Francisco Dominguez-Adame 

Abstract- We study disordered quantum-well-based semicon- 
ductor superlattices where the disorder is intentional and 
short-range correlated. Such systems consist of quantum wells of 
two different thicknesses randomly distributed along the growth 
direction, with the additional constraint that wells of one kind 
always appears in pairs. Imperfections due to interface roughness 
are considered by allowing the quantum-well thicknesses to 
fluctuate around their ideal values. As particular examples, 
we consider wide-gap (GaAs-Gal-,AI,As) and narrow-gap 
(InAs-GaSb) superlattices. We show the existence of a band of 
extended states in perfect correlated disordered superlattices, 
giving rise to a strong enhancement of their finite-temperature 
dc conductance as compared to usual random ones whenever the 
Fermi level matches this band. This feature is seen to survive 
even if interface roughness is taken into account. Our predictions 
can be used to demonstrate experimentally that structural 
correlations inhibit the localization effects of disorder, even in 
the presence of imperfections. This effect might be the basis of 
new, filter-like or other specific-purpose electronic devices. 

I. INTRODUCTION 
N the past few years, a considerable amount of work I has been devoted to establish that electron localization 

may be suppressed and bands of extended states appear in 
one-dimensional disordered systems whenever disorder ex- 
hibits spatial correlations [ 11-[ 121. This unexpected result 
arising from purely theoretical research is indeed important 
because such effect is likely to be of interest for applications. 
Unfortunately, these predictions have never been verified 
experimentally, and as a consequence there is still some 
controversy as to their relevance, their physical implications 
on transport properties, and the fabrication of new devices 
based on those peculiar properties. Therefore, it is crucial to 
find physically realizable systems to ascertain the existence 
of this new phenomenon. Since there has been much the- 
oretical and experimental work in disordered semiconductor 
superlattices (SL’s) related to localization electronic effects 
[13]-[ 151, it seems reasonable to propose random SL’s with 
some kind of structural correlation as good candidates to 
check experimentally the validity of the above mentioned 
theoretical results. The advances achieved in molecular beam 
epitaxy (MBE), which allow to fabricate SL’s tailored with 
the desired conduction- and valence-band profiles, support the 
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feasibility of our suggestion. On the other hand, previous 
results of us on simple, highly idealized models of narrow- 
barrier SL’s indicate that the effects of correlated disordered 
should be clearly visible in such systems [6]. Nevertheless, 
the theoretical description of actual SL’s requires a more 
accurate model than the one we have previously proposed 
[6]. In particular, effects such as finiteness of barrier widths, 
nonparabolicity effects and fluctuations due to imperfections 
originated during growth should be taken into account. In 
this paper, we concern ourselves with the analysis of all 
those effects and study their influence on the theoretically 
predicted set of extended states, aiming to clarify whether 
those uncontrolled factors modify or not transport properties 
of random SL’s with intentional correlated disorder. 

The paper is organized as follows. In Section 11, we present 
our system and our analytical results on transport properties 
(transmission coefficient and dc conductance) of intentionally 
disordered SL’s. In the first stage, we consider the case of 
decoupled host bands (one-band model) and later we extend 
the results to narrow-gap semiconductors, using a two-band 
model describing nonparabolicity effects and coupling of host 
bands. Correlated disorder is introduced by taking quantum 
wells (QW’s) with two different average thicknesses, placing 
them at random with the constraint that one of them always 
appears in pairs. The body of the paper is Section 111, where 
we discuss our results on transmission coefficient and dc con- 
ductance for several temperatures. We show that the existence 
of bands of extended states in these structures reveals itself 
through well-defined peaks in the dc-conductance. In addition, 
we also consider imperfect SL’s by allowing the QW thickness 
to fluctuate around their nominal values and study how this 
unintentional randomness affects electron transport. Results 
are compared with those obtained in uncorrelated disordered 
SL’s. Finally, in Section IV, we summarize our results and 
give a brief explanation, at the actual experiment level, on 
how our predictions can be used to demonstrate experimentally 
that structural correlations inhibit the localization effects of 
disorder, concluding by suggesting possible applications of 
the so designed devices. 

11. MODEL AND THEORY 

A. Electronic Structure of One-Band SL’s 
In the simplest picture, the SL potential derives directly 

from the different energies of the conduction- and valence- 
band edges at the interfaces. A single QW consists of a 
layer of thickness d A  of a semiconductor A embedded in 
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a semiconductor B. In our model of disordered SL with no 
imperfections, we consider that d A  takes at random only 
two values, a and a’. The thickness of layers B separating 
neighboring QW’s is assumed to be the same in the whole SL, 
d~ = b. A random dimer QW SL (DQWSL) is constructed 
by imposing the additional constraint that QW’s of thickness 
a’ appear only in pairs, called hereafter a dimer QW (DQW), 
as shown in Fig. 1. As already mentioned, we also discuss 
the case of actual SL’s, where imperfections during growth 
appear. We introduce excess or defect of monolayers during 
growth by allowing the width of the layers of semiconductor 
A to fluctuate uniformly around the mean values a and a’. 
Therefore, d,q = a( 1 +Wen) or d~ = a’(1 +We,), where W 
is a positive parameter measuring the maximum deviation from 
the mean and E ,  is chosen according to a uniform probability 
distribution P(E,) = 1 if \e,(  < 1/2 and zero otherwise. It is 
important to stress that { e n }  is a set of random uncorrelated 
variables even when the lattice is constructed with the dimer 
constraint. Therefore, each QW presents a slightly different 
value of its thickness and resonant coupling between electronic 
states of neighboring wells decreases. 

We focus now on electron states close to the bandgap with 
kll = 0 and use the one-band effective-mass framework to 
calculate the electron wave functions and allowed energies 
in wide-gap SL’s. Within this approach, the wave function is 
written as a product of a band-edge orbital with a slowly vary- 
ing envelope-function F ( x )  . The envelope-function satisfies a 
Ben Daniel-Duke equation with an effective-mass m*(x) ,  x 
being the coordinate along the growth direction, as follows 

with 
if 1x - x,1 < b / 2  , 
otherwise, V ( x  - 2,) = { ;“? 

where AE,  is the conduction-band offset defined as E,B - E c ~  
and x ,  denotes the position of the centre of the n th barrier. An 
explicit dependence of both E and F ( x )  on quantum numbers 
is understood and they will be omitted in the rest of the paper. 
The energy is measured from the bottom of the conduction- 
band in the semiconductor A ( E c ~  = 0). Let us consider 
states below the barrier (0 < E < AE,), which are the 
most interesting ones to study quantum confinement effects. 
The corresponding envelope-function in the QW between the 
barriers centered at x, and xn+l is 

, (2) 

for xn + b / 2  < x < xn+l - b /2 .  Here y2 = 2mr;lE/hlZ, 
m: being the effective-mass in the QW’s. p t  and qk are two 
constants to be determined later. Inside the nth barrier the 
envelope-function can be written 

A iy(X-x,-b/Z) A -iy(~-~,-b/2) = Pne + qn e 

F,B(x) = p,Be-qx + q,Beqxr (3) 

for x ,  - b / 2  < x < x ,  + b / 2  and now q2 = 2mk(AE,  - 
E ) / h 2 ,  m$ being the effective-mass in the barriers. Here p: 
and qf are also constants. 

Imposing continuity of F ( z )  and [m*(x)]-’dF(x)/dx at 
the interfaces, we can relate the corresponding envelope- 
function values at both sides of the n th barrier via a 2 x 2 
transfer-matrix M ( n )  of the form 

@) = M ( n ) ( P i - ’ )  4,-1 E (;: ”) an F-l), 4n-1 
(4) 

where we have defined 

with Ax, E x ,  - x , -~ ,  and a: and /3: are the complex 
conjugates of a, and Pn respectively. Letting N be the total 
number of barriers, the transfer-matrix T ( N )  of the SL is 
obtained as the product 

T ( N )  = M ( N ) M ( N  - l ) . . . M ( l )  z ( A N  B;Y z!). (6) 

The element AN can be easily calculated recursively from the 
relationship [5] 

supplemented by the initial conditions Ao = 1, A1 = al.  
The knowledge of AN enables us to obtain relevant quantities 
like the transmission coefficient at a given energy E, T ( E )  = 
1/(ANI2. Notice that these expressions are valid for any 
arbitrary value of QW’s thicknesses and, consequently, they 
can be used in perfect as well as in imperfect disordered SL’s 
within the one-band framework. 

Finally, once we have computed the transmission coeffi- 
cient, the dimensionless finite-temperature dc conductance can 
be obtained through the following expression, earlier discussed 
in detail by Engquist and Anderson [16] 

s ( - % ) W E  (8) 

s (-%) [I - 7(E)1 
K ( T , P )  = dE, 

where integrations are extended over the allowed bands, f 
is the Fermi-Dirac distribution and /I denotes the chemical 
potential of the sample. 

B. Electronic Structure of Two-Band SL’s 
In this Section we extend our treatment to the case of 

disordered SL’s made of narrow-gap semiconductors. Narrow- 
gap SL’s requires a more complex analysis than those of 
wide-gap ones. The scalar equation arising from the effective- 
mass approximation is no longer valid at all. In particular, 
nonparabolicity effects (an energy-dependent effective-mass) 
must be taken into account. The simplest model that includes 
nonparabolicity effects and coupling of host bands is a two- 
band Hamiltonian obtained from the k. p theory [ 171, [ 181. The 
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envelope-functions in the conduction- (F,) and valence-band 
(F,) satisfy the following Dirac-like equation, 

where = d/dx. Here Eg(z )  denotes the gap (E,A or E g ~ )  
of each layer. V,(z) gives the absolute energy of the center of 
the gap and we fix the origin of energies such that it vanishes 
in layer A. The parameter 71, having dimensions of velocity, is 
related to the Kane’s matrix element and we will consider it as 
a constant in the whole superlattice. This assumption is valid 
in most direct gap 111-V semiconductors due to the similarities 
of the Brillouin zone centre. Again we appeal to the transfer- 
matrix technique to compute the transmission coefficient. To 
this end, let us write down explicitly the solution of (9) as 
follows 

for x,, + b/2 < x < x,+1 - 6/2 and 

for x, - b / 2  < x < x, + b f 2. For brevity, we have defined 
the following real parameters 

E - 
p =  hvk 

where VB is the energy of the gap centre in the layer B. 
Assuming the continuity of the envelope-functions at the 

interfaces, we obtain a 2 x 2 transfer-matrix M ( n )  whose 
elements are now given by 

By means of the relationships (7) and (8) we can calculate 
recursively the transmission coefficient along the SL for the 
two-band model and then the dc conductance. 

C. Transmission Through a Single DQW 
We now consider a single DQW as shown in Fig. 1, with the 

kth barrier in between, in an otherwise perfect and periodic 
SL. We are going to show that there is an specific energy 
value for which the so built SL is perfectly transparent. To 
this end, we first consider the condition for energy values to 

- 

b 

- 

1 AEc 

1 

Fig. 1. 
a DQW. 

Schematic diagram of the conduction-band profile of a SL containing 

be in an allowed miniband of the periodic SL, which reads in 
the one-band model as follows 

.sin(ya)sinh($~) 5 1. (13) 

The second condition we have to take into account is simply 
(7) for n = k .  k + 1, k + 2; renaming for simplicity a k  = 
ak+l = d and a,, ct (n  # k .  k + l), eliminating Ak and 
A k + l ,  and further setting Re(n’) = 0 we obtain after a little 
algebra 

-Ap+2 = (0 + ~ * ) A k - l  - A k - 2 .  (14) 

Besides a constant phase factor of T ,  which has no effects on 
the magnitudes of interest, (14) reduces to (7) for a periodic 
SL in which barriers k and k + 1 have been eliminated from 
(12) (note that for a periodic SL j j 7 )  = This amounts 
to say that the reflection coefficient at the DQW vanishes 
and, consequently, there exists complete transparency at the 
resonant energy E,  satisfying Re(”) = 0, i.e., 

. sin(y,n’) sinh(qTb) = 0. (15) 

where the subscript r refers to the resonant energy E,. 
Interestingly, choosing a’ appropriately allows us to locate the 
resonant energy E, within an allowed miniband of the periodic 
SL, that is, the resonant energy in the range of energies given 
by (13). Hence, the position of the resonance for which perfect 
transmission exists is fixed simply from the values of the 
layers thickness and can be tailored as required by choosing 
appropriate parameters during growth. 

Finally, since (7) holds also for the two-band model, a 
similar resonance condition can be obtained straightforwardly 
in narrow-gap SL’s using the same arguments as before. The 
result is 
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Hence, since there exists also a resonance energy for which 
the reflection coefficient at a single DQW vanishes in the two- 
band framework, we can conclude that nonparabolicity effects 
do not suppress resonant tunneling in the DQW. 

111. TRANSPORT THROUGH A DWQSL 
The above result concerning resonant tunneling through a 

single DQW in an otherwise periodic SL without imperfections 
does not imply that such a resonant phenomenon will survive 
in a disordered SL, that is, when more than one DQW’s are 
randomly placed in the SL. The transfer-matrix formalism al- 
lows us to compute exactly, although not in a closed analytical 
fashion, the transmission coefficient and the dc conductance at 
finite temperature in an arbitrary SL. Thus, in this section we 
present the numerical calculation of transport magnitudes in 
perfect as well as in imperfect DQWSL’s, aiming to elucidate 
whether resonant scattering is to be expected in those cases. 

As a typical SL described accurately by a one-band model 
we have chosen a GaA-Ga065Alo.35As structure. In this 
case, the conduction-band offset is AE, = 0.25 eV, and the 
effective masses are m> = 0.067 m and m; = 0.096 m, m 
being the electron mass. In our computations we have taken 
a = b = 32 A and a’ = 26 A. With these parameters we 
find from (13) only one allowed miniband below the barrier, 
ranging from 0.1 16 eV up to 0.180 eV. The resonant energy at 
a single DQW is E, = 0.141 eV, obtained from (13 ,  and thus 
it lies within the allowed miniband. To simulate imperfections, 
the fluctuation parameter W ranges from 0 up to 0.05. The 
maximum value considered here represents excess or defect 
of several monolayers with the chosen thickness. This value 
is above the degree of perfection now achievable with MBE, 
so that the results we present are realistic in this sense. 

As an example of a narrow-gap SL described by the two- 
band model we consider nearly lattice-matched InAs-GaSb 
SL. These two semiconductors present an almost equal Kane’s 
matrix element leading to FLW = 7.7 eV A, thus supporting our 
previous assumption that this parameter is constant through 
the whole SL. In our case E g ~  = 0.36 eV, E g ~  = 0.67 eV, 
and V = 0.665 eV, as shown in Fig. 2. We set layer thickness 
leading to a = 20 A, a’ = 22 A, and b = 40 A in our numerical 
computations. With these parameters we find, as in the one- 
band system, only one allowed miniband below the barrier, 
ranging from 0.607 eV up to 0.719 eV. From (16), we find 
that the resonant energy is now E, = 0.661 eV. 

A. Transmission CoefJicient 
An example of the behavior of the transmission coefficient 

r around the resonant energy E, is shown in Fig. 3 for a 
GaAs-Gao.65Alo.35As SL with N = 200 barriers. In Fig. 3(a) 
and (b), we show results for perfect (W = 0) and imperfect 
(W = 0.05) DQWSL’s, respectively, generated with the 
constraint of pairing and with a 1 /2  dimer fraction. This 
fraction is defined as the ratio between the number of wells of 
width a’ and the total number of wells in the lattice. Since we 
have checked that the main conclusions of the present work are 
independent of this value, we take a fraction of 1/2 hereafter. 
As a comparison, Fig. 3(c) shows the transmission coefficient 

InAs GaSb 

10.36 eV ~ 

4 .... ~~~ ........ ~ ........ ~ 

Fig. 2. 
a InAs-GaSb interface. 

Schematic diagram of the conduction- and valence-band profiles in 

for a perfect (W = 0) disordered SL without the constraint of 
pairing (random QWSL) with the same number of QW’s of 
thicknesses a and a’. We observe that for both DQWSL’s close 
to the resonant energy E, there is an interval of energies that 
shows also very good transmission properties, similar to that of 
the resonant energy, in spite of the disordered character of the 
SL, even when uncorrelated fluctuations due to imperfections 
are present. On the contrary, this strong enhancement is not 
observed at all in random QWSL without pairing. We note that 
these results are obtained for a specific DQWSL; however, 
we have checked that for different random realizations of 
DQWSL’s the transmission coefficient behaves similarly, with 
only minor changes in its fine structure. 

We now discuss the details of the transmission coeffcient 
behavior. We can see an enlarged view of the transmission 
coefficient for energies very close to E, in the insets of 
Figs. 3(a) and 3(b). There are several narrow peaks displaying 
a very high value of the transmission coefficient. The number 
of peaks is related to the number of wells in the SL; the 
level spacing would only be zero in the highly ideal case 
of an infinite SL.’ In Fig. 3(b), we can see also how large 
fluctuations destroy some of those peaks but an important 
number of them survive, the smaller the fluctuations the larger 
this number. Of course, the location of these peaks is the 
specific feature of particular realizations of DQWSL’s. From 
Fig. 3(c), we conclude that in perfect random QWSL’s those 
peaks are absent, thus indicating localization of electrons, in 
contrast to the situation described in DWQSL’s. Therefore, the 
loss of quantum coherence of states close to E, is much more 
dramatic in perfect random QWSL’s than in those DQWSL’s 
with relatively large fluctuations, suggesting that inhibition of 
localization by structural correlations is, in fact, a robust effect. 

For brevity we do not show the corresponding results 
for the two-band model because the qualitative features are 
exactly the same. Thus, resonant scattering is not destroyed 
by nonparabolicity effects and coupling of host bands. We do 

‘We have confirmed this assertion by using the Poincare-map formalism 
developed by us in [5 ] ,  which allows us to study transmission properties of a 
disordered SL of finite length embedded in an infinite and periodic ( d ~  = a )  
SL; we do not dwell further in this matter because this work is devoted to the 
study of realistic superlattices which can be built and measured. 

4



0.024 

0.012 

0.000 

0.016 
b) 

c, 3 
0 
1 

0.008 

3 
O.Oo0 

1.4e-5 

7.Oe-6 

1 .o 
1.0 - 

0.5 

0.5 - 

0.0 

I 0.139 0.141 0.143 

0.0 I I 

1 .o 

0.5 

0.0 
141 0.143 

Fig. 3. Transmission Coefficient T versus energy E for (a) perfect (W = 
0) DQWSL, (b) imperfect (W = 0.05) DQWSL, and (c) random (W = 0) 
QWSL (c). Every ~ s - G a O . 6 5 ~ . 3 5 A s  SL consists of N = 200 barriers 
of b = 32 A whereas the thic)olesses of QW are a = 32 A and a' = 26 
A. Insets of (a) and (b) show enlarged views of the transmission coefficient 
around the remnant energy E,. Note that the scale in (c) is much smaller 
than in the other two ones. 

discuss them later, in our conductance study, where we present 
both results for one and two-band model, so we postpone any 
comment to the next subsection. 

B. Finite-Temperature DC Conductance 
So far, we have summarized the main properties of the 

DQWSL and the behavior of transmission coefficient. One of 
the main conclusions has been already mentioned There is a 
set of extended states in the DQWSL in spite of the intentional 
disorder. We have provided enough theoretical evidence and 
then we can be quite sure of the correctness of that statement. 
The most important point, however, co~cerns applications of 
this result, and this immediately rises one question: Do these 
bands of extended states originate experimentally measurable 
features? We will answer this question in the remainder of the 
papet. Specifically, we will devote ourselves to show how 
the energy of the resonant states may be determined from 
finite-tempe" dc conductance measurements. This would 
allow us to check whether the predicted energy close to E,. 
(recall that E,. depends essentially on the value of the layer 
thicknesses and thus it is w i l y  determined, or else the SL can 

n " 0.00 0.05 0.10 0.15 0.20 0.25 
Chemical potential (eV) 

Fig. 4. dc conductance at 77 K as a function of chemical potential for (a) 
perfect (W = 0) DQWSL, (b) imperfect (W = 0.05) DQWSL, and (c) 
random (W = 0) QWSL. The SL's parameters are the same as in Fig. 3. 
Note that the scale in figure (c) is much smaller than in the other two ones. 

be built as to show the desired value of E,.) agrees with the 
measured value in an experimental situation. 

We have computed the electsical dc conductance by means 
of expression (8) for three different temperatures, 4, 77, and 
300 K, and for the three kinds of SL that we are studying, 
namely DQWSL, DQWSL with fluctuations, and random 
QWSL. A global view of the results is presented in Figs. 4 
and 5. In Fig. 4, the dc conductance at 77 K as a function 
of the chemical potential of the sample is seen for the three 
different SL's, with the same parameters as in Fig. 3. A 
marked peak of finite width in the dc conductance pattem is 
clearly observed whenever the chemical potential lies close to 
E,. in the perfect DQWSL [Fig. 4(a)]. This peak persists when 
we add imperfections during growth, even when fluctuations 
are as large as a 5% [Fig. 4 @)I, and their only appreciable 
effect is a slight reduction of its height. On the contrary, this 
strong peak is not observed when DQW's are absent and the 
SL is purely random [Fig. 4(c)]. It is not difficult to understand 
why this is so. The derivative of the Fermi-Dirac function 
in (8) at not very high temperatures is very peaked around 
the chemical potential. Therefore, only when the chemical 
potential lies close to the set of extended states, that is to say, 
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Fig. 5. 
with the same parameters as in Fig. 3 at for (a) 4, (b) 77, and (c) 300 K. 

dc conductance as a function of chemical potential for a DQWSL 

close to the resonance, there will be positive contributions to 
the conductance due to conducting states. Of course, if there 
are no extended states as in ordinary random QWSL's, never 
exist positive contributions and the sample will always show 
almost zero dc conductance. 

In Fig. 5 ,  we present the dc conductance at three different 
temperatures for the same DQWSL as in Fig 4. As temper- 
ature is increased, the derivative of the Fermi-Dirac function 
broadens and, consequently, it is not necessary to choose a 
chemical potential close to the resonance to obtain a high 
dc conductance. In fact, even if it is placed far from E, 
the integrals will include the contribution of the extended 
states, leading to an enhancement of the dc conductance. 
The peak height decreases because, for higher temperatures 
and chemical potentials very close to resonance, not only 
extended states are included by the Fermi-Dirac derivative 
in the integrals, but also a great number of localized states 
far from resonance, with low values of 7, are weighted in the 
integral. The behavior we show in Figs. 4 and 5 coincides then 
with the intuitive expectations. 

Let us now turn to narrow-gap SL's. In Fig. 6 we present the 
dc conductance results at 77 K obtained within the two-band 
framework for InAs-GaSb SL's, for perfect (W = 0) DQWSL, 
imperfect (W = 0.05) DQWSL and random (W = 0) QWSL. 

0.32 

0.16 

0.00 

0.16 
e, 
0 s 
U 
0 
5 2 0.08 s 

0.00 

0.02 

0.0 1 

1 

0.00 
0.5 0.6 0.7 0.8 

Chemical potential (eV) 
_ _  _ _  ~. ^ . . .  . .  Fig 6 dc conductance at 77 K as a functlon or chemical potentlal in 

InAs-GaSb SL's for (a) perfect (U = 0) DQWSL, (b) imperfect (It '  = 
005) DQWSL, and (c) random (11- = 0) QWSL. Every InAs-GaSb SL 
consist of S = 200 bamers of b = 40 8, whereas the thicknesses of QW 
are (I = 20 8, and a' = 22 8, Note that the scale in ( c )  is much smaller 

This figure shows that a strong peak of dc conductance in 
perfect as well as in imperfect DQWSL's is also observable 
in narrow-gap semiconductors, and then the discussions we 
present for the one-band model apply to these results as well. 
Once again, extended states appear when correlated disorder 
exists, producing a strong enhancement of dc conductance at 
finite temperature. This result confirms our previous statement 
that nonparabolicity effects and coupling of host bands do not 
prevent the existence of extended states. 

The extended or localized nature of electronic states close to 
the Fermi level can be evaluated from the dependence of the 
dc conductance on the number of layers in the SL. The states 
are extended (localized) when the dc conductance is constant 
(decays exponentially) as the SL size increases, thus leading 
to an ohmic (nonohmic) behavior of the sample. In Fig. 7, 
we can see the dependence of the dc conductance at 77K on 
the number of barriers for LL = E,. and for the three different 
reference systems (DQWSL without and with imperfections, 
and random QWSL without imperfections). In this case, we 
present the results of an average over 100 SL's. In the 
perfect DQWSL, the behavior is purely ohmic, characteristic 

6



c 
40 80 1 20 160 200 240 

N 
Fig. 7. dc conductance at 77 K as a function of the number of barriers 
in GaAs-Gao.ssAlo.aaAs for j t  = E, = 0.141 eV in perfect (W = 0) 
DQWSL's (upper curve), imperfect (W = 0.05) DQWSL's (middle curve), 
and random (W = 0) QWSL's (lower curve). Parameters are the same as 
in Fig. 3. In this particular plot, we present results of averages over 100 
different SL's for each case. 

of extended states. When fluctuations are included, a small  
departure from the perfect ohmic behavior is observed, giving 
rise to an exponential decrease of the dc conductance as the 
system size increases, according to the theory of uncorrelated 
disordered systems (let us stress once again that fluctuations 
are uncorrelated). Nonohmic behavior also appears in random 
QWSL's, the separation from the ohmic trend being actually 
dramatic. Therefore, even in the presence of fluctuations, 
electrical conduction is much higher in imperfect DQWSL's 
than in perfect random QWSL's. It is then quite clear that this 
difference would be even larger if fluctuations are to be taken 
into account in random QWSL's. 

From a more theoretical point of view, it is interesting 
to evaluate exactly the localization length at the resonant 
energy. This can be done computing the dc conductance 
at zero temperature, being nothing but KO 6(0 ,ET)  = 
T ( E , ) / [ ~  -T(E,.)] from (8). The rate of the exponential decay 
of this magnitude versus the number of barriers--the so called 
Lyapunov coefficient-is the inverse of the localization lenght 
in units of the SL period or, in other words, the number of 
Q W  s over which the wave function spreads. For brevity we do 
not show here &e corresponding plots since they are similar to 
those shown in*Fig. 7, and we simply quote the main results. 
In G~As-G~c,.~&~o.&s DQWSL's we have observed that 
the dependence of KO with the number of barriers N is of the 
form InKO 0; - y ( W ) N  where, using a least square fit, we 

have obtained that y(W) = vW2 (v > 0). On the contrary, 
similar fits in random QWSL's give r (W)  = v'W2 + 70 
(v' > 0 and yo > 0). Therefore, in this case the behavior is 
intrinsically nonohmic even in the limit W -+ 0. However, 
in DQWSL's the parameter y(W) vanishes quadratically for 
small values of fluctuations, indicating that the behavior is 
almost ohmic. Notice that, strictly speaking, the localization 
length diverges only at W = 0 (y vanishes in this limit), 
and only in this case electronic states are truly extended. This 
agrees with more elaborated multifractal analysis results [5].  
However, the localization length still remains very large for 
low level of fluctuations, so that states are almost unscattered 
by disorder. Therefore, they can be regarded as extended for 
the SL's with actually available sizes, thus contributing to 
electronic transport. 

IV. CONCLUSION 
To summarize, we have studied transport properties at finite 

temperature of intentionally disordered SL's with and without 
DQW's. We have demonstrated that there exists a resonant 
energy for which electronic states remain unscattered by a 
single RQW in an otherwise perfect and periodic SL, due to the 
resonant coupling between the two neighboring QW's forming 
the dimer. One of the main points we have found is that these 
resonance effects also arise when a fihite number of DQW's 
are randomly placed in the SL, in spite of the inherent disorder. 
Moreover, this result is indepthdent of the model adopted 
to describe the SL, namely one- or two-band Hamiltonians. 
Hence, we are led to the conclusion that nonparabolicity effects 
and coupling of conduction- and valence-bands do not affect 
or qualitatively modify this phenomenon. In addition, we have 
demonstrated that those unscattered states reveal themselves 
through a dramatic enhancement of the dc conductance at 
finite temperature whenever the Fermi level lies close to the 
resonance, this effect being more apparent at low temperatures. 
Our present results prove that this enhancemest should be 
experimentally observable in actual SL' s since imperfections 
inadvertently introduced during growth do not severely affect 
the observed increase of the dc conductance, at least within 
the available degree of accuracy in MBE techniques. This is 
indeed an important remark from a practical viewpoint since it 
means that deviations of few monolayers from the ideal values 
of the well thicknesses cannot destroy the quantum coherence 
required to observe delocalization and to have dc conductance. 
On the contrary, those resonance phenomena are completely 
absent in random SL's, even if fluctuations are neglected. It is 
important to stress that the study of delocalization goes beyond 
the mere conceptual interest and, actually, new devices may 
be developed based in this effect. For instance, one can choose 
appropriate layer thicknesses (a, a' and b) in such a way that 
E, lies close to the Fermi level of the sample, leading to the 
already mentioned enhancement of the dc conductance. In this 
way it is possible to disregard all electronic states other than 
unscattered ones; this may be the basis of a design of electronic 
filters. It is also conceivable that systems whose conductance 
would change abruptly with temperature could be fabricated, 
as for a given chemical potential the conductance of the sample 
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would jump when the temperature is such that extended states 
become involved. In the same way, systems with other peculiar 
properties of interest can be thought of. 

To conclude, let us also comment that other scattering mech- 
anisms (phonons, impurities) should also be taken into account 
in future works to get insight into these new phenomena. 
Nevertheless, on the basis of this as well as previous works, we 
believe that they will not modify our conclusions, inasmuch 
theoretical calculations on regular SL’ s where those effects 
are neglected describe to a good approximation actually built 
SL’s. Finally, a word is in order to draw attention to this 
problem from the experimental viewpoint. It is clear that there 
is a fundamental question pertaining to basic research involved 
here, namely the generality of localization phenomena in 
physical systems. We have already discussed this implication 
in more theoretically oriented works [SI. Here, we want to 
insist instead on the fact that experimental efforts to verify 
the results we present are required for a better understanding 
of delocalization by correlated disorder. The necessity of such 
understanding is clear from the perspective of technological 
applications of SL’s. The class of devices we deal with here 
are but a first attempt to design microelectronic systems with 
unexpected transport properties, its only virtue being their 
simplicity. Once the way is paved to the construction of 
other devices with exotic properties by the comprehension 
of the relevance of correlations, it is not difficult to realize 
that specific-purpose-systems could be built by using more 
sophisticated correlation rules. Such advances will not be 

[I21 A. Chakrabarti, S. N. K m a k a r ,  and R. K. Moitra, “On the role of 
a new type of correlated disorder in extended electronic states in the 
Thue-Morse lattice,” Phys. Rev. Lett., vol. 74, pp. 1403-1406, 1995. 

[13] M. Kasu, T. Yamamoto, S .  Noda, and A. Sasaki, “Photoluminescence 
lifetime of AlAs/GaAs disordered superlattices,” Appl. Phys. Lett., vol. 
59, pp. 8-802, 1991. 

[ 141 X. Chen and S .  Xiong, “Optical properties of GaAs/AlAs superlattices 
with randomly distributed layer thicknesses,” Phys. Rev. B , vol. 47, pp. 
71467154, 1993. 

[15] A. Wakahara, T. Hasegawa, K. Kuramoto, K. V. Vong, and A. Sasaki, 
“Photoluminescence properties of Si1 ~ GezSi disordered superlat- 
tices,” Appl. Phys. Lett., vol. 64, p. 1850, 1994. 

[16] H. L. Engquist and P. W. Anderson, “Definition and measurement of the 
electrical and thermal resistances,” Phys. Rev. B, vol. 24, pp. 1151-1 154, 
1981. 

[ 171 R. Beresford, “Exact eigenfunctions of a two-band semiconductor 
in a uniform electric field,” Semiconduct. Sci. Technol., vol. 8, pp. 
1957-1965, 1993. 

[18] F. Dominguez-Adame and B. Mkndez, “Sawtooth superlattices in a two- 
band semiconductor,” Semiconduct. Sci. Technol., vol. 9, 1358-1 362, 
1994. 
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ena in quasiperiodic and 
possible unless the simple problem we have been discussing 
is understood in actually fabricated devices. 

in solidi. 
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