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Abstract

We analyze security price formation in a dynamic setting in which long-lived dealers re-

peatedly compete for trading with potentially informed retail traders. For a class of market

microstructure models, we characterize equilibria in which dealers’ dynamic pricing strate-

gies are optimal no matter the private information each dealer may possess. In a generalized

version of the Glosten and Milgrom model, these equilibria deliver price dynamics reminis-

cent of well-known stylized facts: price/trading-flow correlation, volatility clustering, price
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Introduction

In this paper, we consider a class of market microstructure models, in which some long-lived

market participants (“dealers”) repeatedly interact in a market that is open to short-lived market

participants (“traders”). We characterize equilibria that are robust to any form of asymmetry of

information among dealers.

It has been claimed in the market-microstructure empirical literature (see for instance Ellis,

Michaely, and O’Hara (2002)) that dealers have access to different sources of information and

that they need not be well aware of other dealers’ sources of private information. However, in

existing market microstructure models, tractability imposes strong informational assumptions,

and specific functional assumptions regarding the distribution of fundamentals and private sig-

nals.1 Because modeling dynamic interaction among asymmetrically informed dealers can be

a formidable task, the theory is silent about the robustness of canonical microstructure theory

predictions to changes in the dealers’ information environment.2 In practice, dealers’ actual infor-

mation structures are not directly observable, so that it is usually impossible to assess the extent

to which a given model’s assumptions on information structure reflect “real world” informational

asymmetries.

The objective of this paper is to provide a tractable price-formation theory delivering pre-

dictions that are robust to details in the information structure. To this purpose, we consider a

class of dynamic financial markets microstructure models in which risk-neutral financial inter-

mediaries (such as dealers or market-makers) interact with traders. For this class of models, we

characterize equilibria in which dealers’ dynamic pricing strategies remain optimal no matter the

private information of a dealer about the economy fundamentals (so called “belief-free equilibria”,

1For instance, almost all models assume that trading prices are set by equally uninformed dealers to a level
reflecting these dealers’ beliefs on fundamentals.

2At any point in time each dealer anticipates how its behavior affects its current expected payoff as well as
each competing dealer’s posterior beliefs and future behavior. The problem is even more complex if a dealer is
not certain about its competitors’ prior beliefs.
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BFE henceforth).3

There is no a priori reason why belief-free equilibria are more compelling than, for exam-

ple, the “classical” zero-profit equilibrium. Nevertheless, we believe that these equilibria are

interesting for a number of reasons. First, in terms of their scope: as we show, in a belief-free

equilibrium, hardly any assumption on the dealers’ information is called for. This seems more

realistic than assuming that all dealers share the same exact beliefs about fundamentals. Also

minimal assumptions are required concerning trading protocols, and the model is flexible enough

to encompass many real-world trading protocols. Second, in terms of their ability to explain seem-

ingly unrelated empirical findings: we present an example that supports various stylized facts:

price-volume correlation, volatility clustering, price bubbles, and inventory-trading correlations.

While each of these facts can be explained by some models, none delivers them simultaneously.

Third, in terms of tractability: we actually focus on a subset of belief-free equilibria that are

arguably as tractable as the classical zero-profit models in market microstructure. Finally, in

the presence of multiple equilibria, it might be sensible for dealers to coordinate on equilibria

generating positive profits. This is a feature of all belief-free equilibria.

All BFE equilibria enjoy the following properties: 1) Dealers can gain or lose money in the

short run, but their long-run profit is strictly positive independently of the asset’s fundamental

value. This contrasts with the traditional prediction that dealers’ expected per trading period

profit is nil; 2) Risk-neutral dealers tend to maintain balanced inventories and make profits trough

the intermediation of traders’ order flow. This contrasts with the view that (absent risk aversion

or institutional constraints on inventory size) inventory levels should not affect dealers’ behavior.4

Also, our finding de-emphasizes the role of information (about the asset) on dealers’ behavior.

In a BFE, what matters for a dealer is the level of quotes that induce an abundant but balanced

3See Hörner and Lovo (2009), Fudenberg and Yamamoto (2010) and Hörner, Lovo and Tomala (2010) for the
general definition and analysis of belief-free equilibria in repeated games of incomplete information.

4For instance, in Ho and Stoll (1981) balanced inventory results from dealers’ risk-aversion, whereas in Gromb
and Vayanos (2002) and Brunnermeier and Pedersen (2009) it results from the dealers’ institutional inability to
take a position beyond a certain size. Our model displays neither factor.
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order flow from traders. Hence dealers can ignore all information that does not affect traders’

behavior. 3) As in the canonical market microstructure models, movement in asset quotes are

caused by the public information provided by the trading order flow. However, unlike in models

in which quotes reflect beliefs about fundamentals, it is not the case that given a sufficient amount

of public information, an asset trading price eventually stabilizes around its fundamental value.

In other words, equilibrium quotes need not reflect any of the dealers’ (Bayesian) belief, and

price sensitivity to trading volume does not fade away as public information accumulates. Thus,

long-term price volatility remains large even without exogenous shocks on fundamentals.

The rationale behind these results is as follows. First, dealers can always guarantee zero

profit by abstaining from trading. Because in equilibrium dealers’ strategy must be optimal no

matter the dealer’s belief about fundamentals, each dealer’s equilibrium long-term profit must

be positive for each possible value of fundamentals. Second, given the range of possible asset

values, a strategy leading to a sufficiently unbalanced inventory would correspond to a negative

value portfolio for some level of the asset fundamentals, and hence for some level of a dealer’s

belief about fundamentals. On the contrary, when the equilibrium strategy leads to sufficiently

balanced inventories, the asset fundamental value will have little impact on dealers’ profits. As a

result, in a BFE, dealers’ long term profit must mainly result from intermediation of traders’ order

flow. This is achieved through (what we refer to as) “exploiting periods” during which dealers

set quotes prompting a balanced order flow and make positive profit from the bid-ask spread.

Third, because the specific strategies that dealers adopt during exploiting periods depend on the

fundamentals, dealers’ equilibrium strategies must also display “exploring periods." During an

exploring period, dealers’ quotes prompt informative order flow from traders. Quotes react to

the order flow, which then eventually provides enough information about the quoting strategy

to be followed during exploiting periods. Because dealers might lose money during exploring

periods, exploring phases cannot last very long, and while they point to the right exploiting

strategy most often than not, with low probability they also lead to incorrect exploiting rounds.
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Hence, a Bayesian dealer could possibly disagree with the consensus view during an exploiting

phase. For such a dealer not to deviate, it must be that he expects the flow of public information

to correct this view rapidly. Hence, unlike Bayesian beliefs that take arbitrarily long to budge

once they are sufficiently degenerate, belief-free equilibrium prices must be sensitive to the order

flow at all times –hence, they cannot simply reflect Bayesian beliefs about fundamentals. As a

result, exploiting phases must always alternate with exploring phases, and quote sensitivity to

order flow cannot fade away.

In the first part of the paper, we illustrate the functioning of such belief-free equilibria in the

simple framework of the Glosten and Milgrom (1985) model, modified in two respects. First,

to the standard quote driven market open to dealers making a market to traders, we add an

inter-dealer market only accessible to dealers. Second, we make no assumption about dealers’

private information.

The notion of belief-free equilibrium is more demanding than standard game-theoretic re-

finements. Therefore, it imposes stronger restrictions on equilibrium outcomes. Despite this,

there remains considerable leeway in their specification. This flexibility suffices to explain some

regularities documented in the empirical literature. First, because the flow of trade and any

other relevant public information is used by dealers as a coordination device, movements in

asset quotes are caused by the public information provided by the order flow or possibly the

exogenous arrival of news. This is consistent with a wide body of empirical work, spanning

from security markets (see for instance Chordia, Roll and Subrahmanyam (2002) and Boehmer

and Wu (2008)), bond markets (Pasquariello and Vega (2005)), currency markets (Evans and

Lyons (2002)), weather-sensitive commodity markets (Fleming, Kirby and Ostdiek (2006)), etc.

Second, the alternation of exploring phases and exploiting phases implies that periods of high

price volatility follow periods of low volatility, that is, high-volatility events tend to cluster in

time.5 Exploring phases attract informed traders, leading to quotes that are highly sensitive to

5See Cont (2001) for a discussion of volatility clustering and other stylized facts.
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the volume of trade. In exploiting phases, trading flow is balanced and originates from liquidity

traders; as a result quote volatility is reduced. Third, the inter-dealer market is used as a tool to

redistribute among dealers the profits and losses they make against traders. As a consequence,

trades in the quote driven market are a predictor of the trade a dealer subsequently makes in

the inter-dealer market. That is, a dealer buying (selling) in the quote driven market is more

likely to later sell (resp. buy) to other dealers in the inter-dealer market. This provides an expla-

nation to the finding that dealers use the inter-dealer market to re-balance their inventory (see

for instance Hasbrouck and Sofianos (1993), Reiss and Werner (1998) and (2005), Hansch, Naik

and Viswanathan (1998), Evans and Lyons (2002)). Broadly speaking, dealers prefer sharing the

profits that result from imperfect competition to competing them away.6 As a result, whereas in

the short-run dealers might gain or lose money, in the long run, they achieve positive profits. In

fact, long-run profits are positive not only on average but also ex post, i.e., independently of the

fundamental value of the asset.

Compared to the zero-profit equilibrium (GME henceforth) described by Glosten and Milgrom

(1985), both explain correlation between trading volume and price changes. However, whereas

in a GME dealers set quotes equal to the asset’s expected value given past and current public

information, so that expected per-period profits are zero, neither property holds in a BFE. These

traditional predictions are not robust to changes in the dealers’ information structure. A GME

does not predict volatility clustering, nor does it explain inter-dealer trading. Furthermore, while

a GME only applies to situations in which dealers are symmetrically uninformed, a BFE remains

an equilibrium no matter the extent of information asymmetries among dealers.

In the second part of the paper, we consider a broader class of market microstructure models,

in which some long-run market participants (“dealers”) repeatedly interact in a market that is

open to short-run market participants (“traders”). The class of models we analyze is broad along

6While our model focuses on the market for a single asset, its underlying logic of dealers’ shared profits carries
over to markets for different assets. This explains the finding by Ellis et al. (2002) that each market has a
dominant dealer who makes most of the profit.
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a number of dimensions. First it encompasses different trading protocols. Second, it comprises

both fundamental uncertainty (i.e., uncertainty about the fundamental value of the asset) and

non-fundamental uncertainty (for instance, uncertainty about the fraction of informed traders in

the economy, the precision of their signals or traders’ preferences). Third, within a given trading

protocol and type of uncertainty, all specifications of asymmetries of information among dealers

are covered.

We show that a dynamic trading game admits belief-free equilibria as long as the static game

describing one trading round satisfies four simple conditions. Loosely speaking, for any given

value of the fundamentals that is statistically learnable from the traders’ behavior: first, there

exists a way for dealers to earn a positive profit; second, there also exists a way to lose money;

third, dealers have a way to “punish” a dealer in case of an observable deviation. The fourth

condition is more technical but obtains in particular whenever inter-dealer trading is allowed.

Whenever the trading game satisfies these conditions, and discounting between consecutive

trading rounds is sufficiently low, a “folk theorem” type result holds: for any given candidate

dealers’ strategy profile displaying the exploring and the exploiting features (as in the illustrative

example), there is a belief-free equilibrium whose outcome coincides with the candidate profile.

What matters for our construction is that long-run market participants can use public infor-

mation to coordinate on mutually profitable actions. Financial intermediaries that repeatedly

meet in a stock market possess this ability. Implicit collusion in the stock market has been

documented by Christie and Schultz (1994), Christie, Harris and Schultz (1994) and Ellis, et al.

(2002). Evidence of long-term relationships is reported by Battalio, Ellul and Jennings (2007).

In the market microstructure literature, Dutta and Madhavan (1997) model implicit collusion

among dealers, while Benveniste et al. (1992) and Desgranges and Foucault (2005) analyze

long-term relationships. These papers assume either no informational asymmetry, or short-lived

informational asymmetries. Here instead, the state of nature is chosen once and for all, so that a
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dealer owning some private information might possibly take advantage of it over a long horizon.7

Few theoretical papers analyze the effect of asymmetric information among dealers. Even

fewer do so within a dynamic framework. Some static examples in which dealers, or more gen-

erally liquidity providers, are asymmetrically informed are Roël (1988), Bloomfield and O’Hara

(2000), de Frutos and Manzano (2005) and Boulatov and George (2010). Within a dynamic

framework, Moussa Saley and De Meyer (2003) and Calcagno and Lovo (2006) study the case of

one better-informed price maker. De Meyer (2010) considers the case of two-sided incomplete in-

formation. However, their findings are sensitive to the precise assumptions regarding the dealers’

information. Du and Zhu (2012) results are closer in spirit to our work. Within the framework

of a double auction they show that for a specific additive functional form of bidders values, the

static auction has an ex-post equilibrium and that this property extends to the repeated auction

leading to a belief-free equilibrium.

The paper is organized as follows. Section 1 presents an example based on the model of

Glosten and Milgrom. Section 2 develops the main model and states the central result. Section

3 discusses extensions to imperfect monitoring about dealers’ actions, non-stationary states of

nature and dealers’ strategies based on private information. Section 4 concludes. All proofs are

in Appendix.

1 A Model of Price Formation

In this section, we illustrate the definition, the logic and the main features of a belief-free equi-

librium. The purpose of this section is not to construct a model that replicates all institutional

features of a specific existing market, but rather to illustrate the logic of belief-free equilibria

in a simple, well-known financial market microstructure framework à la Glosten and Milgrom

(1985). In Section 3, we illustrate how the equilibrium strategy can be modified to account for

7The same results hold if the frequency of trading is high compared to the frequency with which the state of
nature changes.
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some institutional features of real markets that are ignored in the baseline model.

Set-up: A risky asset is exchanged for money among short-lived traders and n > 1 long-lived

dealers (n is finite). Trading takes place over infinitely many periods t = 1, 2, . . . At time 0,

Nature chooses the state ω in the set Ω (with at least four elements). The asset’s fundamental

value is W (ω) = v(ω) + ψ(ω), where v(ω) ∈ {v1, v2} and ψ(ω) ∈ {e, e}, with e < 0 < e and

0 < v1 < v2. Thus, W (ω) takes values in {v1 + e, v1 + e, v2 + e, v2 + e}. As in Back and Barush

(2004), a public release of information takes place at a random time θ, and conditional on it

not having occurred yet, the probability that it occurs in the next period is constant. After the

public announcement, all dealers’ positions are liquidated at price W (ω).

The stage trading game: Each trading round t unfolds as follows. First, all dealers

simultaneously choose their actions in an inter-dealer market and post their bid and ask quotes

in a quote driven market. The inter-dealer market is closed to traders.8 Second, a trader

randomly arrives in the quote driven market, observes dealers’ quotes, decides whether to trade

or not one unit of the asset with dealers and then leaves the market.

As far as the inter-dealer market is concerned, it is sufficient to focus on its reduced form.9 We

denote by AID
i the finite set of actions available to dealer i in the inter-dealer market in any given

period t. Let AID := ×iA
ID
i denote the set of dealers’ action profiles in the inter-dealer market.

Given aID ∈ AID, let QID
i (aID) ∈ R and P ID

i (aID) ∈ R denote the resulting net transfers of the

asset and cash, respectively, from other dealers to dealer i. Note that

∑

i

QID
i (aID) =

∑

i

P ID
i (aID) = 0, (1)

meaning that the inter-dealer market leads to cash and asset redistribution among dealers. We

8We can dispense with the introduction of an inter-dealer market. In this case, transactions across dealers
occur through the quote driven market.

9See for instance Evans and Lyons (2002) for a specification of FX inter-dealer market.
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Figure 1: Stage trading round.

assume that there exists a no trade action aID
i ∈ AID

i allowing a dealer i to abstain from trading

in this market. Also, assume that there are Q > 0 and P > 0, large but finite, such that any

vector of (QID, P ID) of inter-dealer transfers satisfying (1) and |QID
i | ≤ Q, |P ID

i | ≤ P for all i

can be attained with an appropriate (possibly mixed) action profile aID ∈ ∆AID.10

Let αt
i and βt

i be dealer i’s bid and ask quotes posted in the quote driven market in period

t, respectively. Quotes belong to a finite grid G of non-negative prices whose largest (smallest)

element is larger than v2 + e (resp. smaller than v1 − e). Let βt := maxi β
t
i and αt := mini α

t
i

denote the best bid and ask quotes in period t. Overall, an action profile for dealers in one

trading round specifies for each dealer the action that it takes in the inter-dealer market as well

as the bid and ask quotes it posts in the quote driven market. Formally, the set of dealers’ action

profiles is A := AID × Gn × Gn. We make no assumption about the private information of any

given dealer regarding the true state ω, nor about the distribution of W (ω). In a belief-free

equilibrium, defined below, each dealer’s strategy must be optimal for each realization of the

state ω, so the profile constitutes a (subgame-perfect) equilibrium independently of the presence

or the extent of informational asymmetries among dealers and of dealers’ beliefs about W (ω).

10Here and in what follows, ∆B denotes the set of distributions over a finite set B.
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Assumptions: Traders have information about ω, but they also come to the market for liq-

uidity reasons unrelated to ω. Namely, we posit that traders’ information is about the v(ω)

component of W (ω), but not the ψ(ω) component. Let at ∈ A be any given dealers’ action

profile. Then F (ω, at, s) ∈ [0, 1] denotes the probability that, after observing at, trader t chooses

action

s ∈ S := {buy, sell, no trade, buy and sell},

given that the state is ω. Because traders have no information about the value of the ψ(ω)

component of the asset fundamental, their behavior cannot depend on ψ. Thus, with some abuse

of notation, assume:

Non-learnable States (NLS): If v(ω) = v(ω′), then F (ω, at, s) = F (ω′, at, s) =: F (v(ω), at, s)

for all at ∈ A and s ∈ S.

By contrast, traders’ demand may depend on the realization of v(ω). That is, there exists

a subset A(v1, v2) ⊆ A of dealers’ action profiles for which traders’ behavior is sensitive to the

value of v(ω). Formally:

Learnable States (LS): There is a non-empty set A(v1, v2) ⊆ A such that, if at ∈ A(v1, v2),

then

F (v1, a
t, s) 6= F (v2, a

t, s),

for some s ∈ S.

Assumption LS states that because some traders might have private information about the

v(ω) component of the asset value W (ω), this component affects both the asset’s liquidation

value and traders’ behavior. More precisely, there are suitable choices of dealers’ actions (i.e.,

for at ∈ A(v1, v2)), for which the distribution of traders’ reactions s is measurable with respect

to v(ω). In general, this obtains as long as the bid-ask spread αt − βt is neither too large to
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induce no trading, nor negative so as to induce arbitrage trading. Thus, as long as at is in

A(v1, v2), a sufficiently long history of the traders’ order flow allows to statistically tell apart

whether v(ω) = v1 or v(ω) = v2.

To the contrary, Assumption NLS means that the ψ(ω)-component of the asset value W (ω)

affects the asset liquidation value, but because no trader is informed of it, the way traders react

to dealers’ quotes does not depend on the true ψ(ω). As a consequence, trading flow does not

allow to tell apart whether ψ(ω) = e, or ψ(ω) = e. That is to say, LS implies that v(ω) is

statistically learnable from traders’ behavior, whereas NLS implies that ψ(ω) is not.

We also assume that traders never buy the asset at a price that is too high nor sell at a

price that is too low. The range of prices at which traders do trade depends on traders’ private

information and hence on the level of v(ω). Formally,

Elastic Trader Demand (ETD): There is ρ > 0 such that

F (v(ω), at, sell) = 0 for βt < v(ω) − ρ

F (v(ω), at, buy) = 0 for αt > v(ω) + ρ,

for all ω ∈ Ω.

For concreteness, assume that the trader’s buy and sell order are executed against the best

ask, αt, and bid, βt, quotes, respectively. Let ui(ω, a
t) denote dealer i’s expected payoff, or

reward, in period t given the state ω and dealers’ action profile at.11 Dealers’ aggregate expected

11Here, expectations are taken with respect to the possible trader’s orders (i.e., buy, sell and no trade) given
the fundamentals ω. For instance, if orders are executed by the dealers setting the best quotes,

ui(ω, a
t) = (W (ω) − βt

i)F (ω, at, sell)1{βt

i
=βt}ηβ(at) + (αt

i −W (ω))F (ω, at, buy)1{αt

i
=αt}ηα(at)

+ W (ω)qID
i (at) + cID

i (at),

where ηβ and ηα are tie-breaking rules applied in case more than one dealer sets the best bid or ask, respectively.
However equation (2) holds no matter the identity of the dealer executing a trader’s order as long as this order
is executed at the best price.
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payoff in period t can be written as

U(ω, at) :=
∑

i

ui(ω, a
t) = (W (ω) − βt)F (v(ω), at, sell) + (αt −W (ω))F (v(ω), at, buy). (2)

Condition ETD and expression (2) imply that dealers’ aggregate trading stage payoff U(ω, at)

is positive independently of the non-learnable component ψ(ω) only if at induces a bounded

change in dealers’ aggregate inventory. That is, only if 12

−ρ
e
<
F (v(ω), at, sell) − F (v(ω), at, buy)

F (v(ω), at, sell) + F (v(ω), at, buy)
< −ρ

e
. (3)

In other words, only a relatively balanced traders’ order flow can guarantee that dealer’s aggregate

profit be non-negative for some realization of the non-learnable component ψ(ω). On the other

hand, a positive bid-ask spread inducing a non-nil but relatively balanced traders’ order flow

guarantees that dealers’ aggregate profit is positive independently of the asset value W (ω).

Namely we assume:

Positive Payoffs (PP): For any given ω ∈ Ω, there is a non-empty set set A⋆(ω) ⊂ A such

that if at ∈ A⋆(ω), then βt < αt and F (v(ω), at, sell) = F (v(ω), at, buy) > 0.

Note that for at ∈ A⋆(ω), we have

U(ω, at) = (αt − βt)F (v(ω), at, sell) > 0. (4)

Thus, PP implies that, if the state is ω, and dealers pick their action in A⋆(ω), they make strictly

positive aggregate profit from pure intermediation, i.e., without taking a net position in the asset.

This implies that given the true state ω, dealers’ aggregate profits from setting a ∈ A⋆(ω) remain

strictly positive independently of the asset’s fundamental value W (ω).

12Inequality (3) is obtained noting that condition ETD implies U(ω, at) ≤ (W (ω)−v(ω)+ρ)F (v(ω), at, sell)+
(v(ω) + ρ−W (ω))F (v(ω), at, buy).
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Consider the partition Ω̂ = {ω̂1, ω̂2} of the set Ω, where ω̂1 := {ω|v(ω) = v1} and ω̂2 := Ω\ω̂1.

Fix j ∈ {1, 2}. Note that because of NLS, the traders’ behavior does not change with ω′ ∈ ω̂j.

It follows from the assumptions that for any given ω̂ ∈ Ω̂, the static trading game satisfies the

following four properties:

1. Positive maximum payoffs: there is a dealers’ action profiles for which their trading round

payoff is strictly positive, independently of ω′ ∈ ω̂. For instance, for a ∈ A⋆(ω′), expression

(4) implies U(ω′, at) > 0 for all ω′ ∈ ω̂ and one can choose the inter-dealer market action

profile so that each dealer gets a strictly positive share of the aggregate payoff U(ω′, at).

2. Negative minimum payoffs: There is a dealers’ action profile for which their trading round

payoff is negative independently of ω′ ∈ ω̂. There are many ways dealers’ can make an

aggregate loss that can be “shared” among dealers in the inter-dealer market.13

3. Non-positive expected payoffs: For any given dealer i, and any probability distribution

µ ∈ ∆ω̂, the other dealers have some action profiles a−i(µ) forcing dealer i’s trading round

expected payoff to be non-positive (the expectation is w.r.t. the distribution µ). Formally,

max
ai

∑

ω∈ω̂j

µ(ω)ui(ω, ai, a−i(µ)) ≤ 0.

For example, if dealers other than dealer i adopt the no-trade actions aID
−i in the inter-dealer

market and then set quotes such that mink 6=i αk = maxk 6=i βk = v(ω̂) +
∑

ω∈ω̂j
µ(ω)ψ(ω),

then dealer i’s trading round expected payoff (computed according to µ) cannot be positive.

4. Non-equivalent payoffs: There exist feasible payoffs in which any given dealer has a lower

profit than any other dealer’s. For instance, fix dealer i and take an action profile a ∈ A⋆(ω′)

13For example, by setting at such that v+e < βt = αt and F (ω′, at, sell) > F (ω′, at, buy), it results U(ω′, qt) ≤
(v + e− βt)(F (ω′, at, sell)− F (ω′, at, buy)) < 0 for all ω′ ∈ ω̂j.
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resulting in a strictly positive aggregate payoff that is then shared in the inter-dealer market

leaving to dealer i strictly less than what each other dealer gets.

The repeated game: We can now move to the repeated game. The stage game payoffs (or

rewards) of the dealers are discounted at the common factor δ < 1 and the (overall) game payoff

is the average discounted sum of rewards. The discount factor δ accounts both for the dealers’

time preference and for the possibility that the public information gets released in the current

period.14 In each period, dealers’ actions and traders’ reactions are observed by all dealers. Let

H t denote the set of public histories ht = {aτ , sτ}t−1
τ=0. Given some sequence of action profiles

{at}∞t=1 by the dealers, dealer i’s expected payoff in state ω is15

∞
∑

t=1

(1 − δ)δtui(ω, a
t). (5)

A public strategy profile (strategy henceforth) is a mapping σ : ∪tH
t → ×i∆Ai. A strategy

σ and a state ω induce a probability distribution over histories in the standard fashion. Let

Vi(ω, σ|ht) denote dealer i’s expected continuation payoff after observing the public history ht

given state ω and strategy profile σ.

Definition 1 A belief-free equilibrium (hereafter, BFE) is a strategy profile σ∗ such that, for

every state ω, σ∗ is a subgame-perfect Nash equilibrium of the repeated game with rewards u(ω, ·),

that is, of the repeated game with complete information in which the state ω is common knowledge

among dealers:

σ∗
i ∈ argmax σi

Vi(ω, σi, σ
∗
−i|ht), (6)

for all players i, all ω ∈ Ω, all t and all ht ∈ H t.

14Allowing for a stochastic discount factor complicates exposition but does not affect results as long as the
discount factor remains close enough to one.

15Here, expectation is taken with respect to the possible realizations of traders’ orders {st}∞t=1
, taking the state

ω as given.
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Some remarks are in order. First, a BFE is a subgame-perfect equilibrium given any initial

prior distribution of dealers’ belief about ω and any additional private information a dealer

might possess.16 Second, a BFE is an equilibrium even if dealers are ambiguity averse, as long

as ambiguity pertains to the distribution of the possible states of nature ω ∈ Ω.17

The equilibrium: Our purpose is to construct a particular class of equilibria. Here, we de-

scribe the logic underlying their structure for the simple model presented above. To begin with,

let us consider the canonical equilibrium (i.e., the GME) that can be obtained if we make the

additional assumptions that all dealers are equally uninformed and start from the common prior

p0 = Pr(v(ω) = v2) and that E[ψ(ω)] = 0. Then there is a perfect Bayesian equilibrium in which,

in any period t: (i) each dealer’s expected profit is nil; (ii) there is no trade in the inter-dealer

market; (iii) best bid and ask quotes in the quote driven market satisfy

αt = α(pt) := E
[

v(ω)|ht−1, st = buy
]

, (7)

βt = β(pt) := E
[

v(ω)|ht−1, st = sell
]

, (8)

pt+1 = φB(pt, at, st), (9)

where φB(pt, (αt, βt), st) denotes the posterior probability that v(ω) = v2 resulting from the prior

pt and from the trader’s reaction st to dealers’ quotes at.18 This equilibrium has the advantage

of being Markovian: first, in every period t, best bid and ask quotes only depend on dealers’

16To see this, note that in a perfect Bayesian equilibrium, dealers’ strategies satisfy

σ∗
i ∈ argmax σi

E
[

Vi(ω, σi, σ
∗
−i|ht)|Ii

]

,

where expectations are taken with respect to both the possible states ω and the possible realizations of traders’
orders {st}∞t=1

, and Ii is dealer i’s private information. Hence, a BFE is a perfect Bayesian equilibrium, but a
perfect Bayesian equilibrium need not be belief-free.

17Unlike in Easley and O’Hara (2010), where some of the traders are ambiguity averse, here ambiguity aversion
applies to dealers.

18In order to simplify the exposition and notation we neglect the rounding required from the fact that quotes
belong to a grid.
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common belief pt; second, next period dealers’ common posterior beliefs pt+1 only depend on the

common prior pt and on (at, st), dealers’ and trader’s actions at time t. However this quoting

strategy is not an equilibrium as soon as there is at least one dealer whose belief that v(ω) = v2

is not pt.19

In a BFE, the same dynamic quoting strategy must be optimal no matter the belief a dealer

might have about the true ω. Because dealers beliefs might differ arbitrarily, a dealer’s strategy

must be optimal no matter what the true realization of ω is. We first briefly illustrate how, if

dealers are patient enough, this can be achieved with strategies that have a Markov structure that

is as simple as the one of the canonical equilibrium. Initially, dealers post quotes that depend on

an arbitrary given distribution on the possible values of v(ω), we will call this distribution the

market measure. Assumption LS guarantees that these quotes can be chosen in A(v1, v2) so that

the resulting flow of trade provides information about the true v(ω). This information affects the

value of the market measure and hence the evolution of quotes. This is what we call an exploring

phase. None of the dealers’ beliefs need reflect the market measure, but nevertheless no dealer

deviates. This is because the “Non-positive expected payoffs” property guarantees that other

dealers can ensure that the deviating dealer makes zero profits with sufficiently low discount rate

(using standard repeated-game logic). The order flow eventually conveys sufficient information

about the true value of v(ω) and then dealers switch to an exploiting phase where quotes belong

to A⋆(ω), that is: best bid and ask quotes induce a balanced order flow and provide dealers with a

flow of aggregate profit that is strictly positive no matter the value of W (ω). Each dealer obtains

a strictly positive share of this profit through the redistribution of cash and asset taking place in

the inter-dealer market. In response to the order flow during an exploiting phase, however, play

can revert to the exploring phase, and so on. The reason why an exploiting phase cannot last

forever is that a dealer who disagrees with the consensus asset value must be given incentives to

19To see this, note that if at some time t, dealer i’s belief that v(ω) = v2 is pt
i 6= pt, then dealer i has a profitable

deviation that consists in setting either βt
i > β(pt) or αt < α(pt).
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play along and wait for play to shift towards the asset value that he might believe in. To preserve

the Markovian structure, the level of current quotes and the transition from one phase into the

other must only depend on the current level of the market measure (and possibly on the level

of dealers aggregate inventory). At the same time, no matter the current level of the market

measure and a dealer belief about ω, the dealer must expect that the play will shift toward the

correct exploiting phase within a bounded period of time. Otherwise, even a patient dealer would

prefer to deviate and generate extra profits in the current trading round (even if held down to

zero profits afterwards), rather than to make losses during the long transition period required

for the market measure to adjust to what it thinks the right exploiting phase is. This is possible

only if, first, during an exploiting phase the market measure “transition rule” attaches decreasing

probability to states that are unlikely in view of the flow of information provided by traders’

orders; second, during an exploiting phase the market measure is not too persistent, but instead

is sensitive to the new public information provided by traders’ orders. Bayesian updating, for

instance, would not satisfy these two properties: while it allows to pin down the true v(ω) almost

surely eventually, it is too persistent for our purpose: once the market measure is sufficiently

concentrated on a state, it takes arbitrarily long for a Bayesian belief to budge.

A formal description: To define equilibrium play more precisely, consider the partition Ω̂ =

{ω̂1, ω̂2} and fix some small ε > 0 and some arbitrary π0 ∈ Π := [ε/4, 1− ε/4] as the initial

weight the market measure assigns to ω̂2. The following updating rule φ : Π × A × S → Π is

an example of rule that allows to identify the true state but is less persistent than a Bayesian

updating rule:

πt+1 = φ(πt, at, st) := arg min
π∈Π

∥

∥π − φB(πt, at, st)
∥

∥ . (10)

The (on-path) equilibrium play can then be seen as the alternation of two type of phases:

exploring phases and exploiting phases. Whenever πt ∈ [ε, 1 − ε], the game is in an exploring
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phase and dealers’ actions are such that at ∈ A(v1, v2). This guarantees that dealers’ quotes

induce an informative flow of trades in the quote driven market. Thus, as time passes the market

measure attaches more and more weight to the true ω̂. An exploiting phase is defined to start

as soon as the market measure attaches enough weight to a particular state. Namely, whenever

πt < ε (resp., πt > 1 − ε), the game is in the ω̂1-exploiting phase (resp. ω̂2-exploiting phase).

In this phase, at ∈ A⋆(ω̂1) (resp. at ∈ A⋆(ω̂2)). This guarantees that dealers gain the spread

without taking a net permanent position in the asset. In a BFE, a dealer’s payoff must be positive

no matter its belief about ψ(ω), a component that, because of NLS, cannot be integrated by

the market measure. Assumption PP guarantees that for any given v(ω), dealer’s can maintain

balanced aggregate positions that generate strictly positive aggregate profits that do not depend

on the asset true value W . However, the recurrence of exploring phases can lead dealers to

accumulate relatively unbalanced portfolios leading to average inventories that would not satisfy

condition (3) and hence to dealers’ aggregate long term profits that are negative for some value

of ψ(ω). This can be easily avoided by appropriately biasing dealers’ quotes on the basis of the

current level of their aggregate inventory, so as to induce traders to absorb dealers’ excessive

inventory .

Finally to make sure that each single dealer makes strictly positive profits, dealers can use the

inter-dealer market at time t to share the dealers’ aggregate positions and trades resulting from

the orders at time t− 1. A sharing rule and resulting inter-dealer trade can be easily set so that

at beginning of each round, each dealer i gets a strictly positive fraction of dealers’ aggregate

profit or loss resulting from the trade in the previous round made in the quote driven market.

Overall, we have defined a partial strategy profile, i.e., a mapping σ : Π × S → ∆A, so that

dealers’ actions in the inter-dealer market and dealers’ quotes at time t only depend on st−1 and

on πt and possible on the level of dealers’ aggregate inventory. This partial strategy together

with the market measure updating rule ψ defined in (10) satisfies the following two properties:
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It is ε-learning : For any current level of the market measure πt ∈ Π, the expected time that

it takes for the market measure to assign at least probability 1− ε to the true state is bounded,

uniformly in πt.

It is ε-exploiting : Whenever the market measure assigns at least probability 1− ε to the true

state ω̂, each dealer’s trading round payoff is strictly positive.

In Section 2, we consider a generalization of this microstructure model, and show that, as

long as the general trading game satisfies Properties 1–4, one can define partial strategies that

are ε-learning and ε-exploiting. The main result establishes that any such strategy profile defines

a behavior that coincides with a belief-free equilibrium outcome, provided the dealers are patient

enough.

We conclude this section with an example to illustrate some salient differences between such

a BFE and the GME.

1.1 BFE Market Making vs. zero expected profit equilibrium: An

Example

We consider here a specification of the model outlined above to compare dealers’ quotes in a

BFE to the quote resulting from the canonical belief-based equilibrium in which dealers make zero

expected profit in every period. This is the equilibrium characterized by Glosten and Milgrom

(1985), referred to as GME.

We assume that half of the population of traders is composed of potential buyers. The

remainder are potential sellers. Traders trade both for liquidity and speculative reasons. They

are informed about the component v(ω), but not about the ψ(ω) component. The following
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specification of the function F for βt ≤ αt, satisfies Assumptions NLS, LS, PP and ETD:20

F (v(ω), at, sell) = max

{

0,min

{

1

2
,
βt − v(ω) + ρ

4ρ

}}

, (11)

F (v(ω), at, buy) = max

{

0,min

{

1

2
,
v(ω) + ρ− αt

4ρ

}}

, (12)

F (v(ω), at, no trade) = 1 − F (ω, βt, sell) − F (ω, αt, buy). (13)

First, let us consider the GME. In this case, two additional assumptions are required: first,

dealers are equally uninformed with belief pt, and second, E[ψ(ω)] = 0. Then, for ρ >
√

2(v2−v1),

we can express time t ask and bid quotes resulting from dealers’ zero-profit condition as

α(pt) := E[v|ht] +
ρ

2
− 1

2

√

ρ2 − 4Var[v|ht], (14)

β(pt) := E[v|ht] − ρ

2
+

1

2

√

ρ2 − 4Var[v|ht]. (15)

where E[v|ht] and Var[v|ht] are the expectation and the variance of v(ω), respectively, computed

using the common belief pt that evolves according to (9).

Now, let us consider the following BFE. Fix some small ε > 0 and π0 ∈ Π and let πt evolve

according to equation (10), so that πt ∈ Π for all t. We say that for π > 1 − ε (resp. for

π < ε), the game is in v1-exploiting phase (resp. v2-exploiting phase). Fix d and c such that

0 < c < d < ρ − c. Let invt denote dealers aggregate inventory at t and let ct := c(invt),

where c(.) is decreasing satisfying c(0) = 0. During a v-exploiting phase, the best ask and bid

equilibrium quotes satisfy

αt = v + d+ ct, (16)

βt = v − d+ ct, (17)

20Namely, A⋆(ω) is the set of a ∈ A such that (αt, βt) = (v(ω) + γ, v(ω)− γ) with γ ∈ (0, ρ). The set A(v1, v2)
satisfies αt ≥ βt with αt < v2 + ρ or βt > v1 − ρ, so that F (v1, a

t, s) 6= F (v2, a
t, s) for some s ∈ S. Furthermore

F (v(ω), at, sell) and F (v(ω), at, buy) are nil for βt < v(ω) − ρ and αt < v(ω) + ρ, respectively
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respectively. For πt ∈ [ε, 1 − ε], the game is in the exploring phase and best ask and bid quotes

satisfy

αt = α(πt) + d+ ct, (18)

βt = β(πt) − d+ ct. (19)

Note that for a level of the market measure in the BFE that is identical to the Bayesian belief

in the GME, best quotes in the two equilibria differ by at most d+ ct. However, the evolution of

dealers’ belief can substantially differ across the two equilibria. As a result, the same history of

past trades may lead to sharply different quotes in GME and in BFE.

Namely, in a BFE quotes are intrinsically more volatile than in the GME. This is due to the

fact that in the GME, dealers’ eventual belief will attach probability arbitrarily close to 1 to

the true value of v. This cannot happen for the BFE market measure, which can never be too

concentrated on a given state and hence remains unstable. Thus, independently of the previous

history of trade, and on dealers’ actual beliefs about v(ω), the market measure and quotes will

remain sensitive to the trading volume. As a result, exploring phases are recurrent. This is

illustrated in Figure 2 that reports a simulation of the two equilibria for for v(ω) = v1 (blue line

for BFE and red dashed line for GME).21 The sequence of potential buying and selling traders

is the same for the two equilibria. The right panel of Figure 2 reports the evolution of dealers’

aggregate inventory for the two equilibria. The left panel reports the evolution of the market

measure in a BFE and of the Bayesian belief in the GME. Because in the simulation v(ω) = v1,

traders tend to sell more than buy the asset. As a result in GME dealers’ aggregate inventory

tends to explode. Not so in the BFE where dealer’s aggregate inventory remain more balanced

thanks to the bias in quotes ct. Exploiting phases correspond to the periods in which the market

21The parameters used for this simulation are: v1 = $15, v2 = $18, ρ = 15, d = $0.05, ε = 0.05, p0 = π0 = 0.5,
e = −e = 3 and c(invt) = −0.02invt. The Figure reports time series of 3000 trades.
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measure is below the threshold ε (left graphic, solid magenta line). In these regions volatility

and sensitivity to the volume of trade are low. Exploring phases occur when the market measure

is above ε and display higher volatility and sensitivity to the trading volume. This is illustrated

in Figure 3: the negative relation between the evolution of dealers’ aggregate inventory and the

market measure is stronger in exploring phases than in exploiting phases, whereas it is negligible

in GME.
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Figure 2: Red dashed line are used for the GME and blue solid lines for BFE. The left panel displays
the evolution of the BFE market measure and of the GME Bayesian belief. The right panel reports the
evolution of dealers aggregate inventory in the GME and in the BFE.

Figure 4 represents the evolution of quotes in the GME and in the BFE. In both cases, the

flow of trade provides enough information about v(ω) allowing the Bayesian dealers’ belief to

eventually converge to the truth about v(ω). In the GME, this leads to a vanishing volatility

and bid ask spread with quotes that remain arbitrary close to v1. This is illustrated in the left

panel of Figure 4.

In the BFE, quotes keep moving with the market measure depicted in Figure 2. Note that the

spread remains bounded away from 0 even when the market measure is relatively concentrated,

leading to an exploiting phase (see Figure 4, right panel). As a result, while in the GME the

average dealers’ aggregate per-period profit quickly converges to 0, it is of the same magnitude
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Figure 3: Market measure and dealers’ inventory in an exploiting phase (left panel) and an exploring
phases (right panel).
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Figure 4: Evolution of bid and ask quotes in the GME (left panel) and in the BFE (right panel). Ask
quotes and bid quotes are in blue, and magenta, respectively.
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as d in the BFE (See Figure 5).
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Figure 5: Evolution of the average per-period profit taking ψ(ω) = 0 in GM (red dashed line) and in
the BFE (blue solid line).

Note that a dealer’s ex post profit also depends on the value of ψ(ω) ∈ {e, e}. Figure 6

represents the ex post cumulative profit for ψ(ω) = e and ψ(ω) = e. Note that in the GME (left

panel of Figure 6), the dealers’ cumulative profit remains negative for at least one realization

of ψ(ω). In the BFE, the dealers’ cumulative profit eventually becomes positive no matter the

realized ψ(ω). This can be achieved also thanks to the fact that dealers aggregate inventory does

not explode.
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Figure 6: Cumulative dealers’ profits for ψ(ω) = 0 (dashed line), ψ(ω) = e (blue line) and ψ(ω) = e

(red line).
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We stress that GME is a perfect Bayesian equilibrium of the economy considered in this

example only if dealers are equally uninformed, have common initial prior Pr[v(ω) = v2] = p0

and E [ψ(ω)] = 0. The BFE remains a perfect Bayesian equilibrium even when dealers are

asymmetrically informed and no matter dealers’ prior beliefs about ω.

2 A General Model of Market Microstructure

Set-up: At time 0, Nature chooses a state ω in an arbitrary set Ω. In each period t = 1, 2, . . . ,

first n dealers choose an action profile in the finite set A. Second, traders react with an action in

the finite set S. Depending on the specific trading mechanism, a dealer’s action might specify bid

and ask quotes and maximum quantities dealers stand ready to trade, but it can also correspond

to a limit order or a market order in a limit order market, and/or to the trade in an inter-dealer

parallel market. Traders’ reactions can consist of market orders specifying the quantities to be

traded at dealers’ best quotes, and/or limit orders that will compete with existing limit orders.

Let W (ω) be the fundamental value of the risky asset in state ω. Dealers’ actions and traders’

reactions are publicly observable. For a given action profile a ∈ A of dealers’ actions and traders

reaction s ∈ S, let Qi(a, s) and Pi(a, s) denote the resulting amount of the risky asset and money,

respectively, that other market participants transfer to dealer i. Then, if the state of nature is

ω, dealer i’s stage payoff is

ui(ω, a, s) := W (ω)Qi(a, s) − Pi(a, s). (20)

Let F : Ω×A→ ∆S summarize traders’ behavior. Namely, F (ω, a, s) is the probability that, in

a given trading round, the traders’ reaction is s, given that the state of nature is ω and dealers’

actions are a. Thus, given state ω and dealers action profile a, we obtain dealer i’s expected
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stage payoff by taking the expectations with respect to the possible reactions s:

ui(ω, a) :=
∑

s∈S

ui(ω, a, s)F (ω, a, s). (21)

Let u := maxω,a,i |ui(ω, a)|. Stage game payoffs are discounted at the common discount factor

δ < 1.22

Note that uncertainty about the state of nature ω can be fundamental and/or non-fundamental.

Fundamental uncertainty pertains to the liquidation value of the asset. It affects dealers’ payoffs

directly through W (ω) and, because of the presence of traders with private information about

W (ω), indirectly via F (ω, ·). The non-fundamental uncertainty relates to the behavior of traders,

for example, it might pertain to their risk aversion, their inventory or the amount and quality of

the information they possess regarding the asset value. The non-fundamental uncertainty solely

affects F (ω, ·).

We define the information that can be gathered by observing the realization of the public

signal s. For any pair of states ω, ω′ ∈ Ω, we denote by A(ω, ω′) ⊆ ∆A the set of actions profiles

a satisfying F (ω, a) 6= F (ω′, a). A state ω can be statistically distinguished from ω′ only if

A(ω, ω′) 6= ∅. Let Ω̂ be the partition over Ω induced by the function F . That is, ω, ω′ ∈ ω̂ if

and only if A(ω, ω′) = ∅. We assume that Ω̂ is finite with cardinality M , and denote ω̂(ω) the

element of Ω̂ containing ω ∈ Ω.

Note that the fact that the value of the asset differs in two states does not imply that the two

states are statistically distinguishable. This happens for instance when no trader can tell those

two states apart.23 Similarly, even if the value of the asset is the same in two states, the two

states could be distinguishable because the traders’ reaction could be different, possibly because

ω affects the traders’ risk aversion.

22As for the example of Section 1, δ can be interpreted as a measure of both time preference and the probability
that no public announcement disclosing ω is made within the period.

23For instance, in the model of Section 1, states that differ only for the ψ(ω) component are indistinguishable.
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We make the following Assumptions on ui(ω, a), that subsume our earlier assumptions and

Properties 1-4.

Assumption B: For any given ω̂ ∈ Ω̂:

1. Positive maximum payoffs: There exists a non-empty set A⋆(ω̂) ⊆ A, such that ui(ω, a) > 0

for all a ∈ A⋆(ω̂), ω ∈ ω̂ and dealer i.

2. Negative minimum payoffs: There exists an action profile a(ω̂) ∈ ∆A such that ui(ω, a(ω̂)) <

0 for all ω ∈ ω̂ and dealer i.

3. Non-positive expected payoffs: For any given dealer i and probability measure µω̂ ∈ ∆ω̂,

there exists ai
−i (µω̂) ∈ ×j 6=i∆Aj such that,

max
ai

∑

ω∈ω̂

µω̂(ω)ui

(

ω, ai, a
i
−i (µω̂)

)

≤ 0.

4. Non-equivalent payoffs: There exist n action profiles {a1(ω̂), . . . , an(ω̂)} ∈ [∆A]n such that

ui(ω, a
i(ω̂)) < ui(ω, a

j(ω̂)) for all i 6= j and ω ∈ ω̂.

Let u⋆ = mini minω minA⋆(ω̂(ω)) ui (a, ω) > 0 denote a lower bound on payoffs from actions

in A⋆ (ω̂). Roughly speaking, Assumptions B-1 and B-2 guarantee that for each statistically

distinguishable state ω̂, there are action profiles providing each dealer with at least u⋆ > 0 and

action profiles leading to strictly negative payoffs, respectively. Assumption B-3 guarantees that

it is possible to punish each dealer in each state. Assumption B-4 states that for each ω̂ one can

find as many action profiles as there are dealers such that dealer i prefers all the other n − 1

action profiles to the i-th action profile.

Note that whenever the public information does not allow to pin down the exact value of

W (ω), as long as traders demand is elastic, and thus they are not willing to trade the asset at a
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too high expected loss, an action in A⋆(ω̂) cannot conduce to a too imbalance change in dealers

aggregate inventory.

Equilibrium strategies ingredients: The following generalizes the construction of the ex-

ample of Section 2.

We start by defining a market measure π. Let Π ⊆ ∆Ω̂ be a closed set of probability

distributions over Ω̂ and π denote an element in Π. Let π(ω̂) denote the probability that π

attaches to ω̂. Let φ : Π × A × S → Π be a probability updating rule, i.e. πt+1 = φ(πt, at, st).

Thus, πt can be recursively computed from the map φ, given the sequence (aτ , sτ ) of actions

and signals, and the initial value π0. We are interested in simple strategies such that, on the

equilibrium path and in each period t, dealers’ actions depend on πt (and possibly on st−1) only.

That is, given φ, we define a partial strategy to be a map σ : Π × S → ∆A. Instead, a public

strategy profile (strategy henceforth) is a mapping σ̂ : ∪tH
t → ×i∆Ai, where H t is the set of

histories ht = {aτ , sτ}t−1
τ=0 specifying dealers’ actions and traders’ reactions until time t.

For a given updating rule φ and a partial strategy σ, we have the following definitions.

Definition 2 1. The pair (φ, σ) is ε-learning, for ε > 0, if for any ω ∈ Ω and any π0 ∈ Π,

Pr
ω,σ

[

lim inf
T→∞

1

T

T
∑

t=0

1{πt(ω̂(ω))>1−ε} < 1 − ε

]

< ε, (22)

2. The pair (φ, σ) is ε-exploiting, for ε > 0, if for all ω̂ ∈ Ω̂ and all ht such that πt(ω̂) ≥ 1−ε,

we have Prσ [at ∈ A⋆(ω̂)|ht] > 1 − ε.

Let us say that that the market measure πt points to a state ω̂ if πt(ω̂) ≥ 1− ε. Then we can

interpret the two definitions as follows: ε-learning means that, over many periods, the market

measure will not point at the ω̂ that contains the true state ω with a frequency that is smaller

than ε. In other words, the market measure is rarely far from the truth, in terms of long-run
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frequency. The ε-exploiting property guarantees that whenever the market measure points at a

some ω̂, play is such that a dealers’ payoff is strictly positive in all states ω included in ω̂.

For (φ, σ) to be ε-learning, note that it is necessary that dealers’ actions do not block the

flow of information coming from traders’ reactions. That is to say, no matter the level of the

market measure π, the actions that allow to distinguish the true ω̂ from the other ω̂′ ∈ Ω̂ must

be played with strictly positive frequency. Formally, (φ, σ) must be exploratory in the sense that

∀ω ∈ Ω, ∀ω̂′ ∈ Ω̂ such that ω̂′ 6= ω̂(ω), and for any π0 ∈ Π,

Pr
ω,σ

[

lim inf
T→∞

1

T

T
∑

t=0

1{at∈A(ω̂′,ω̂(ω))} > 0

]

= 1. (23)

Note also that if, as in the illustrative example, the pair (φ, σ) is such that the expected time

required for the market measure to point at the true ω̂ is finite, then (φ, σ) satisfies (22).

Then we have the following:

Theorem 1 Suppose that Assumption B is satisfied. Then there exists ε̄ > 0 such that for any

ε < ε̄, if (φ, σ) is ε-learning and ε-exploiting, then there exists δ < 1 such that the outcome

induced by σ is a belief-free equilibrium outcome, for all δ ∈ (δ, 1).

That is, there exists a belief-free equilibrium σ̂ that specifies the same action profile as the

partial strategy σ, after any history after which no player has deviated.

3 Extensions

Our environment is restrictive in several dimensions. In particular, dealers’ actions are ob-

served by all other dealers. Furthermore, the state of the world that determines the fundamentals

is fixed once for all at time 0. Also, long-term market participants do not take advantage of their

private information. Here, we sketch how the model can be extended and the analysis adapted

to deal with these modifications.
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A restriction of our model is that dealers’ actions are observable. This might not be the

case for some opaque markets as for instance when dealers’ quotes are anonymous. Imperfect

monitoring of actions makes it more difficult to detect a dealer’s deviating from the mutually

profitable collusive-type strategy. This reduces the threat of punishment and complicates imple-

menting collusive-like behaviors. However, this does not eliminate the dealers’ ability to sustain

a BFE, as long as equilibrium strategies are built in a way that make deviations detectable.

For example, Christie and Shultz (1994) document how Nasdaq dealers used to quote only on

even-eight quotes. Deviations from such a collusive scheme can be easily detected even when

quotes are anonymous. More generally, imperfect monitoring of players actions is not an issue

for the existence of a BFE (as demonstrated in Fudenberg and Yamamoto (2011)). However, im-

perfect monitoring of dealers’ actions might impose further restriction on the type of equilibrium

strategies that can be sustained in a BFE.

Allowing for fluctuations in the value of the asset raises no difficulty as long as these fluctu-

ations take place at a much slower rate than does the learning process. That is, in the definition

that (φ, σ) be ε-learning, we must now account for the fact that ω̂(ωt) depends on time t. Hence,

the learning requirement is considerably stronger. We must think of learning the fundamental

value as occurring at another time scale as the fluctuations of the value itself –perhaps learning

occurs within a day of trading, an interval of time over which the fluctuations in the fundamental

value are sufficiently small to be considered negligible. If trading periods are at high frequency

(say, milliseconds), fundamentals hardly change from one such period to the next. Of course,

we have in mind that the flow of trades itself does not affect fundamentals. The verification

that σ is a belief-free equilibrium follows exactly the same steps as in the main proof. As for the

corresponding payoffs, if for every partial strategy, the pair consisting of the asset’s value and the

public signal follows an irreducible Markov chain, then computing the limiting payoff as δ → 1

is straightforward, by integration with respect to the invariant distribution. However, there is

clearly a tension between the assumption that the value of the asset changes slowly enough for
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learning to occur fast, and the assumption that market participants are patient enough for the

long-run distribution to be the only payoff-relevant aspect of the Markov chain. Therefore, if we

view δ (or rather, 1− δ) as capturing the delay between consecutive trades rather than intrinsic

patience by market participants, it makes little sense to assume that the fluctuations occur at

a rate that is independent of delay –higher δ should correspond to slower fluctuations of the

fundamentals. In that case, computing equilibrium payoffs as δ → 1 is more difficult.

A third important restriction is that long term market participants do not take advantage

of their private information, if any. One can view this as an implication of our definition of

belief-free equilibrium: dealers’ beliefs do not affect their actions because what really matters is

identifying the set of quotes that balance supply and demand coming from the mass of investors.

As these quotes can be ultimately learned from the observation of the trading flow, dealers’

private information is not crucial. However, in our equilibrium, dealers cannot take advantage

of the private information they might possess. Still, there is no difficulty in redefining belief-free

equilibrium appropriately. Rather than taking the asset value as a primitive that determines a

distribution over the players’ private signals, one can think of the players’ private signals as a

primitive that determines the asset’s value. In that case, we can re-define a strategy profile to be

belief-free if it is the case that, for every player, given his private signal, his strategy (that can

depend on his private signal) is optimal independently of the other players’ possible strategies.

That is, given a player’s signal, there is a set of signal profiles of his opponents that are consistent

with his; for each such signal profile, his opponents play some strategy profile. Belief-freeness

requires the player’s strategy to be optimal against all these profiles. In fact, it is clear that

we do not need to impose that the players’ combined signals pin down the value of the asset.

Rather, it pins down a set of possible values, for all of which the best-reply property must hold.

This provides a natural extension of the definition of belief-free equilibrium that allows deal-

ers to take advantage of their private information. We believe that such an extension raises

interesting questions and technical challenges that motivate further study.

31



4 Conclusion

This paper considers market microstructure models in which long-lived dealers interact with

short-lived traders. We characterized equilibrium price formation strategies that are robust to

changes in dealers’ beliefs about fundamentals. Belief-free equilibria feature two key ingredients.

First, dealers collectively learn the value of those fundamentals that affect traders’ demand.

Second, for any given value of these fundamentals, dealers generate positive profits from the

intermediation of traders’ demand. This has has three robust implications that contrast with

those delivered by canonical microstructure models relying on the assumption of equally unin-

formed competitive dealers. First, dealers’ long-term profit is strictly positive independently of

the asset’s fundamental value. This profit is obtained through intermediation of traders’ demand.

Second, trading price need not reflect any of the dealers’ belief, and is generally more volatile

than prices that reflect the evolution of Bayesian beliefs. Third, dealers’ inventories tend to

be balanced even in the absence of risk aversion or institutional constraint. Given that belief-

free equilibrium is more stringent than traditional solution concepts, it might be surprising that

so much flexibility remains –in particular, equilibrium is not unique. Hence, we have focused

on a belief-free equilibrium with a simple Markovian structure. When applied to a version of

Glosten and Milgrom model, this explains well-documented stylized empirical facts. For specific

microstructure games, it might then be reasonable to focus on belief-free equilibria that satisfy

further criteria. For example, depending on the specific trading model considered, one could

analyze strategies that maximize dealers’ aggregate payoff or that minimize the expected time

required by the market measure to point at the true state, or even strategies that minimize the

aggregate cost of learning, or more generally strategies that form a belief-free equilibrium for the

lowest possible level of dealers’ patience.
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Appendix

Proof of Theorem 1

Fix a game and a profile (φ, σ) satisfying the assumptions of the theorem and let ω be the

true state. Consider the play on the equilibrium path. Let qt be the probability that at time t

the market measure satisfies πt(ω̂(ω)) > 1 − ε. Thus, following point 2 in Definition 2 and the

definitions of u⋆ and u, with probability qt, dealer i stage t payoff is at least (1−ε)u⋆−εu. Then,

at time τ ≥ 0, dealer i’s payoff satisfies

V δ
i (ω, σ|hτ) > (1 − δ)

∞
∑

t=τ

δt−τ
(

qt((1 − ε)u⋆ − εu) − (1 − qt)u
)

= (1 − ε)(u⋆ + u)(1 − δ)

∞
∑

t=τ

δtqt−τ − u. (24)

Now condition 1 of Definition 2, implies that

Pr
ω,σ

[

lim
δ→1

(1 − δ)

∞
∑

t=τ

δtqt−τ > 1 − ε

]

> 1 − ε. (25)

Hence we have that

lim
δ→1

V δ
i (ω, σ|hτ) > (1 − ε)3(u⋆ + u) − (1 + ε)u. (26)

As the r.h.s. is strictly positive for ε = 0, it is also positive for all ε smaller than some ε > 0.

Continuity of V δ
i in δ implies there exists δ < 1 such that for ε < ε, dealer i’ s continuation

payoff V δ
i (ω, σ|hτ) is strictly positive.

The next step is to show that dealers have no profitable deviations. To this purpose we first

establish a simple lemma.

Lemma 1 For any given ω̂ ∈ Ω̂, all ω ∈ ω̂ and any player i, and any a ∈ A⋆(ω̂), there exist n

action profiles {ã1(ω̂), . . . , ãn(ω̂)} ∈ [∆A]n such that

0 < ui(ω, ã
i(ω̂)) < ui(ω, ã

j(ω̂)) < u(ω, a). (27)

for all i 6= j.
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Proof. Consider the convex combination

ãi(ω̂) := β1(ω̂)β2(ω̂)a(ω̂) + β1(ω̂) (1 − β2(ω̂)) ai(ω̂) + (1 − β1(ω̂)) a, (28)

for some β1(ω̂), β2(ω̂) ∈ [0, 1], where a(ω̂) satisfies Assumption B-2, and ai(ω̂) is as in Assumption

B-4. Note that {ãi(ω̂)}i=1,...,n also satisfies Assumption B-4, as long as β1(ω̂) > 0, β2(ω̂) < 1.

Furthermore, because u (ω, a(ω̂)) < 0, we can pick β2(ω̂) close enough to one, and β1(ω̂) close

enough to zero to guarantee that all payoffs are between 0 and u(ω, a).

We may now define n partial strategy profiles σi,ε as follows. Let AL denote a set of learning

action profiles satisfying A(ω̂, ω̂′)∩AL 6= ∅ for each couple ω̂ 6= ω̂′. Let L denote the cardinality of

AL and Dω̂ denote the Dirac measure attaching probability 1 to ω̂. If ht is such that ‖πt −Dω̂‖ <
ε, then let σi,ε (ht) = (1 − ε) ãi(ω̂) + (ε/L) Σa∈AL

a For all other ht, let σi,ε (ht) = (1/L)Σa∈AL
a.

In addition, define n partial “punishment” strategies σi,ε as follows. Fix any ω̂ ∈ Ω̂. Con-

dition B-3 guarantees that we can extend the Blackwell (1956) approachability argument to

the discounted case: for any η > 0 there is δη<0, mη < ∞ and mη-period strategy a−i(ω̂)

for player −i such that if δ > δη, for any sequence {a1
i , . . . , a

mη

i } player i discounted payoff

during these mη periods is smaller than η in each ω ∈ ω̂. This Blackwell strategy is then an

ingredient for the punishment partial strategy σi,ε. If ht is such that, for some ω̂i, π
t assigns

probability no more than ε to states outside of ω̂i, but probability at least ε to all ω ∈ ω̂i, then

σi,ε (ht) = (1 − ε) ai(ω̂i)(h
t) + (ε/L)Σa∈AL

a, where ai
−i(ω̂i)(h

t) as defined above and ai
i (ω̂i) is

some fixed action. Note that, for ε > 0, each of these strategies is exploratory. Furthermore,

given any σi, any ω, and any history ht, the continuation payoff V δ
i

(

ω, σi, σ
i,ε
−i|ht

)

is such that

lim
δ→1,ε→0

V δ
i

(

ω, σi, σ
i,ε
−i|ht

)

≤ 0. (29)

From here, the proof is standard, see Fudenberg and Maskin (1986). Given the partial strategy

σ, define a strategy σ̂ as follows. As long as no player unilaterally deviates, actions are specified

by σ. As soon as a player (say i) unilaterally deviates, play proceeds according to σi,ε for T

periods (for some ε > 0, T ∈ N to be specified). If during this i-punishment phase, some player

(say j) unilaterally deviates from σi,ε, play switches to the j-punishment phase, in which σj,ε is

played for T periods. If T periods elapse without unilateral deviations during the i-punishment

phase, play is then given by σi,ε. If there is a unilateral deviation from σi,ε by j, play switches to

the j-punishment phase, etc. It is now standard to show that, for T large enough, and ε small
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enough, there exists δ ≤ δ < 1 such that for all δ ∈
(

δ, 1
)

, players do not gain from deviating.

Note that this construction yields a belief-free equilibrium: The strategy are optimal irre-

spective of dealers’ beliefs about ω on and off the equilibrium path.

�
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