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1 Introduction

It has long been recognized that markets subject to adverse selection can unravel to a

no-trade equilibrium. As shown by Akerlof (1970), this can occur even if trade would always

be mutually beneficial if the quality of the goods for sale were commonly known. This failure

of the price mechanism has been recently invoked to explain phenomena such as insurance

rejections (Hendren (2013)) and to justify public intervention in the presence of liquidity or

credit freezes (Philippon and Skreta (2012), Tirole (2012)). In this paper, we build on this

insight to provide a new approach to the characterization of competitive allocations under

adverse selection, based on the standard premise that a perfectly competitive market should

be immune to entry.

To this end, we consider a general adverse-selection economy in which little structure

is imposed on buyers’ preferences. This setting encompasses insurance economies as well

as standard trade environments, with or without wealth effects. The main restrictions are

a single-crossing condition and a monotonicity condition on costs implying weak adverse

selection, in the sense that buyer types who are more willing to make larger purchases are

on average more costly to serve. The corresponding expected costs turn out to play a key

role in the description of market outcomes, as they do in Akerlof (1970).

In this context, entry-proofness provides a tractable and detail-free alternative to the

strategic approaches adopted in the literature. We apply this requirement to prove two

theorems that respectively pertain to inactive and active markets, depending on whether or

not trade opportunities are available on the market. At the core of our approach is a unified

treatment of these two cases.

Theorem 1 states a necessary and sufficient condition for entry to be unprofitable in

an inactive market, which generalizes the market-unraveling condition first formulated by

Akerlof (1970) and recently extended by Hendren (2013) to Rothschild and Stiglitz (1976)

insurance economies. The intuition is as follows. Under weak adverse selection, the cost of

selling a unit of the good depends on the buyer types who purchase it; on average, the cost is

the upper-tail conditional expectation of unit costs, starting from the first type who purchases

this unit. Our entry-proofness (EP) condition then simply states that the willingness to pay

of each type at the no-trade point should not exceed this cost. The necessity of Condition

EP for entry-proofness is straightforward and only requires the use of single-contract offers.

By contrast, its sufficiency must account for an entrant’s ability to offer a menu of contracts.

To complete the proof of Theorem 1, we identify a weak assumption on buyers’ preferences

under which entry with a menu of contracts is unprofitable as soon as entry with a single
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contract is unprofitable.

We next consider active markets, on which trade opportunities are available. Rothschild

and Stiglitz (1976) have characterized the set of exclusive contracts that prevent an entrant

from making a profit. However, in many financial and insurance markets, a seller cannot

monitor the trades a given buyer makes with his competitors. A natural question is thus

to characterize the outcomes of nonexclusive markets that meet the requirement that entry

be unprofitable. This leads us to define a set of contracts, or a market tariff, as entry-proof

if it prevents an entrant from profitably offering a menu of contracts that complements the

tariff in the sense that buyers are free to combine any contract offered by the entrant with

any trade along the tariff.

Nonexclusivity makes screening difficult as sellers do not observe the aggregate quantity

purchased by any buyer. In particular, each seller anticipates that a buyer may purchase a

large quantity by splitting it between several sellers. Under weak adverse selection, this is a

concern for him, because these additional trading opportunities are especially attractive for

buyers who happen to be on average more costly to serve. One way to hedge against this

risk is to offer a convex tariff that prices successive marginal quantities at an increasing rate.

An illustration is a discriminatory limit-order book, such as the NASDAQ, in which market

makers place limit orders that are executed in order of price priority. This motivates us to

focus on convex market tariffs in the bulk of our analysis; we argue in Section 6 that this

assumption can be significantly relaxed without affecting our results.

The convexity assumption is analytically convenient because it allows us to characterize

entry-proof markets tariffs by building on the results derived for inactive markets. The basic

idea is to factor all available trade opportunities into the buyers’ preferences. Indeed, from

an entrant’s viewpoint, everything happens as if he were facing an inactive market in which

the buyers’ preferences for any trade he may make available are represented by indirect

utility functions incorporating their optimal trades along the market tariff. The key point is

that, when this tariff is convex, these indirect utility functions inherit single-crossing from

the primitive utility functions. This, in turn, implies that the entrant faces weak adverse

selection, exactly as in an inactive market. More technically, convexity of the market tariff

ensures that the buyers’ indirect utility functions satisfy all the regularity properties needed

to apply Theorem 1.

Theorem 2 singles out a unique budget-feasible allocation implemented by an entry-proof

convex market tariff, and an essentially unique such tariff; existence obtains under very

general conditions, unlike in the exclusive-competition case. The market tariff is typically
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nonlinear, contradicting a common presumption that nonexclusivity should lead to linear

pricing. Thus pricing is discriminatory, in the sense that the successive quantity layers

offered along this tariff are priced at different rates. Specifically, each layer is priced at

the expected cost of serving the types who optimally choose to purchase it, so that the

corresponding profit is zero; under weak adverse selection, this cost is equal to the upper-tail

conditional expectation of unit costs, starting from the marginal type. When the buyers’

preferences are linear, subject to a capacity constraint, these properties lead to Akerlof (1970)

pricing and to the competitive-equilibrium allocation that maximizes the gains from trade.

When the buyers’ preferences are strictly convex, they lead to a marginal version of Akerlof

(1970) pricing and to an allocation generalizing those highlighted, in specific contexts, by

Jaynes (1978), Hellwig (1988), and Glosten (1994). We will accordingly refer to the JHG

allocation and to the JHG tariff.

A noticeable feature of the JHG allocation is its recursive structure. On the first layer,

the price is the expected cost of serving all types, and the quantity purchased by each of

them is exactly the demand of the first type at this price. Indeed, supplying less would

inefficiently ration demand, while supplying more would entail losses on the excess quantity.

On the second layer, the first type is no longer active, and the same reasoning applies: the

price is the expected cost of serving all types except the first, and the quantity purchased

by each of them is the residual demand of the second type at this price—and so on. Overall,

on each layer, what sellers are ready to supply exactly matches the residual demand of the

marginal type. Thus supply equals marginal residual demand on each layer, at a price equal

to expected cost. In that sense, the JHG allocation is competitive.

The existence, uniqueness, and competitive features of the JHG allocation are arguably

strong arguments in favor of using entry-proofness as a conceptual tool for predicting the

outcomes of nonexclusive markets under adverse selection. However, this approach remains

silent on how to implement this allocation in a decentralized way, because it does not explain

how the JHG tariff comes into existence. It is thus natural to ask whether the JHG allocation

and the JHG tariff can be derived as the aggregate equilibrium outcome of a game in which

strategic sellers compete to serve the buyers’ demand.

In this respect, the recursive structure of the JHG allocation suggests a setting in which

competition takes place sequentially, layer by layer. To validate this intuition, we model

the strategic interactions between sellers as a discriminatory ascending auction. Prices

are quoted sequentially, in increasing order, and according to a discrete price grid with

a minimum tick size. Each time a new price is quoted, each seller publicly announces the
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maximum quantity he stands ready to trade with each buyer at this price; that is, he places

a limit order at this price. Once this process is completed, each buyer selects from the

limit-order book sequentially built in this way the orders she wishes to execute, according

to her type. As it is optimal for her to start with the best price offers, she effectively faces a

convex market tariff. Trading is nonexclusive in the sense that each buyer can simultaneously

trade with several sellers.

These simple trading rules define a standard extensive-form game with almost-perfect

information. Our main results are encapsulated in two theorems. Theorem 3 exhibits a

simple equilibrium in which, at each price and in each subgame, sellers equally share the

buyers’ profitable residual demand. By construction, the resulting aggregate equilibrium

allocation converges to the JHG allocation when the tick size goes to zero. Theorem 4

then reinforces this result, by showing that, modulo a natural refinement, any sequence of

aggregate equilibrium allocations converges to the JHG allocation when the tick size goes

to zero. Thus the JHG allocation emerges as the essentially unique outcome of competition

when each seller can quickly react to his competitors’ offers. These positive results, which

stand in stark contrast with the pervasive nonexistence results that plague the literature on

competitive screening under adverse selection, invite us to reconsider the role of sequential

trading for financial and insurance markets.

Contributions to the Literature

Theorem 1 generalizes results obtained by Akerlof (1970), Glosten (1994), and Mailath and

Nöldeke (2008) in the quasilinear case, and by Hendren (2013) in the case of a Rothschild

and Stiglitz (1976) economy. Our contribution is to state a general necessary and sufficient

condition for an inactive market to be entry-proof, to point out a technical condition on

preferences that has been so far overlooked, and to provide a comprehensive yet elementary

proof that may be useful for pedagogical purposes. We also argue that, under strict single-

crossing, Condition EP is necessary and sufficient for entry-proofness even when selection is

not adverse, so that the ordering of costs with respect to types is arbitrary. This significant

extension of the scope of Hendren’s (2013) result may be relevant for the empirical study of

insurance markets where consumers differ both in riskiness and in risk aversion.

The unique allocation that survives entry in a nonexclusive market in which supply is

described by a convex tariff corresponds to the allocations characterized by Akerlof (1970)

in the case of an indivisible good, and by Jaynes (1978), Hellwig (1988), and Glosten (1994)

in the case of a divisible good. Beyond extending these results to general preferences, our
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contribution is to apply our results on inactive markets to active markets, exploiting the

idea that a nonexclusive tariff is entry-proof if and only if no additional trades are both

incentive-feasible and profitable. This original approach allows for a unified treatment of

linear and strictly convex preferences.

Entry-proofness in exclusive markets has been well understood since Rothschild and

Stiglitz (1976). The unique candidate is the Riley (1979) allocation, characterized by the

absence of cross-subsidies between types and downward-binding local incentive-compatibility

constraints. However, this allocation generally fails to be entry-proof when there are many

types (Riley (1985)). We argue in Section 6 that the main difference with the nonexclusive

markets studied in this paper is that the buyers’ indirect utility functions induced by an

exclusive tariff do not satisfy single-crossing, so that an entrant can engage in cream-skimming

without worrying about adverse selection. By contrast, single-crossing is satisfied under

nonexclusivity as long as the market tariff is convex; as a result, cream-skimming is impossible

and adverse selection is unavoidable. This explains why we are able to obtain a general

existence result.

Despite the renewed interest for competitive nonexclusive markets under adverse selection,

the literature has not yet delivered a sharp prediction for the corresponding market outcomes.

The early works of Bisin and Gottardi (1999, 2003) establish the existence of competitive

equilibria when bid-ask spreads or entry fees are allowed for, but do not characterize these

equilibria. Subsequent oligopolistic approaches have made more concrete steps towards the

characterization of equilibrium trades by considering competitive-screening games in which

sellers simultaneously offer menus of contracts, or tariffs, from which a buyer is free to choose

according to her private information.

In this spirit, Biais, Martimort, and Rochet (2000) construct an equilibrium in convex

tariffs in a setting where the buyer has strictly convex preferences and the distribution of

types is continuous. The aggregate equilibrium tariff is not entry-proof, but it converges to

the JHG tariff when the number of sellers grows large. This sounds promising, but Attar,

Mariotti, and Salanié (2014, 2019) argue that slightly perturbing this model by discretizing

the distribution of types leads to a completely different picture: the JHG allocation becomes

the unique candidate-equilibrium allocation, but it can be supported in equilibrium only in

the extreme case where it features a single layer.1 These discontinuity and existence problems

1When the buyer’s preferences are linear subject to a capacity constraint, Attar, Mariotti, and Salanié
(2011) show that, for any distribution of types, the Akerlof (1970) competitive-equilibrium allocation that
maximizes the gains from trade is the unique aggregate equilibrium allocation, and that it can be sustained
in equilibrium by each seller posting the JHG tariff, which in this case consists of a single layer.
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make the equilibrium predictions of competitive-screening games somewhat fragile, as they

ultimately hinge on fine modeling details.2 By contrast, focusing on entry-proof market

tariffs has enabled us to derive a sharp and robust prediction for nonexclusive competitive

markets. Existence and uniqueness hold under fairly general assumptions, and the JHG

allocation may be seen as a compelling extension of Akerlof (1970) to the case of a divisible

good and general preferences.

The recursive structure of the JHG allocation has motivated us to design an ascending

discriminatory auction in which the market tariff is built sequentially. This contrasts with

the competitive-screening games studied by Biais, Martimort, and Rochet (2000), Back

and Baruch (2013), and Attar, Mariotti and Salanié (2019), which can be interpreted as

discriminatory auctions in which sellers simultaneously bid at all prices. The advantage of a

sequential auction lies in its transparency, a point that has been emphasized in other contexts

by Milgrom (2000) and Ausubel (2004): each seller can directly react at each stage of the

auctioning phase to the past supply decisions of his competitors. This allows for a richer set

of punishments than in competitive-screening games, where deviations can be punished only

through the buyers’ decisions. Our contribution is to provide a fully strategic foundation for

the JHG allocation, a result that has so far eluded the literature.3

An alternative derivation of the JHG allocation is provided by Beaudry and Poitevin

(1995), who study a sequential game in which a risk-averse entrepreneur whose project

can be of low or high riskiness can repeatedly solicit financing from successive cohorts of

uninformed lenders, thereby signaling the type of her project. In comparison, a realistic

feature of our setting is that the set of sellers is fixed throughout the auctioning phase, so

that each seller must anticipate the future consequences of his supply decisions at any price.

Moreover, while signaling is an integral part of Beaudry and Poitevin (1995) and requires

an appropriate selection of lenders’ beliefs off the equilibrium path, it plays no role in our

analysis as buyers choose their optimal quantities only once all offers have been made.

The paper is organized as follows. Section 2 describes the model. Section 3 analyzes

inactive markets. Section 4 extends the analysis to active markets. Section 5 studies the

2Back and Baruch (2013) and Biais, Martimort, and Rochet (2013) further argue that the equilibrium
constructed by Biais, Martimort, and Rochet (2000) only exists under rather stringent joint restrictions on
the cost function and the distribution of types.

3To be fair, Attar, Mariotti, and Salanié (2019) show that, as the number K of sellers grows large, a
standard competitive-screening game admits an ε-equilibrium, with ε of the order of 1/K2, that supports
the JHG allocation. The results in this paper are significantly stronger in that they rely neither on a notion
of approximate equilibrium nor on the consideration of a fictitious competitive limit, and deliver a new
perspective on market design by showing that a sequential auction implements the JHG allocation as an
essentially unique equilibrium outcome.
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discriminatory ascending auction. Section 6 discusses our results. Section 7 concludes. The

main appendix provides the proofs of Theorems 1–4. The online appendices A through D

collect supplementary material.

2 The Economy

Consider a buyer (she) endowed with private information, and whose type i = 1, . . . , I can

take a finite number of values with strictly positive probabilities mi; alternatively, we can

view the economy as populated by a continuum of buyers, a proportion mi of which is of

type i. Type i’s preferences are represented by a utility function ui(q, t) that is continuous

and weakly quasiconcave in (q, t) and strictly decreasing in t, with the interpretation that q

is the nonnegative quantity of a divisible good she purchases and t is the payment she makes

in return. Types are ordered according to the weak single-crossing condition (Milgrom and

Shannon (1994)), which states that higher types are at least as willing to increase their

purchases than lower types are:

For all i < j, q < q′, t, and t′, ui(q, t) ≤ (<)ui(q
′, t′) implies uj(q, t) ≤ (<)uj(q

′, t′).

For future reference, we also state the slightly stronger, strict single-crossing condition:

For all i < j, q < q′, t, and t′, ui(q, t) ≤ ui(q
′, t′) implies uj(q, t) < uj(q

′, t′).

To define marginal rates of substitution without assuming differentiability, let τi(q, t) be the

supremum of the set of prices p such that

ui(q, t) < max{ui(q + q′, t+ pq′) : q′ ≥ 0}.

Thus τi(q, t) is the slope of type i’s indifference curve at the right of (q, t). Quasiconcavity

ensures that τi(q, t) is finite, except possibly when q = 0, and that it is nonincreasing along

an indifference curve of type i. We additionally make the intuitive assumption that, in the

absence of transfers, a positive endowment of q reduces this marginal rate of substitution.

Assumption 1 For all i and q > 0, τi(q, 0) ≤ τi(0, 0).

Our assumptions on the buyer’s preferences hold in a Rothschild and Stiglitz (1976)

insurance economy, which is the case studied by Hendren (2013); then i indexes the buyer’s

riskiness, q is the amount of coverage she purchases, and t is the premium she pays in return.

As we illustrate in Appendix C, they also hold under many alternative specifications, allowing
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for multiple loss levels or various forms of nonexpected utility. Finally, they encompass a

broad variety of other applications, such as financial and labor markets. It should be noted

that we do not require strict single-crossing nor strict convexity of preferences. This choice is

not motivated by an idle desire for generality, but is meant to pave the way for the analysis

of active markets provided in Section 4.

The supply side of the economy is represented by a linear technology, with unit cost

ci > 0 when the buyer’s type is i. For each i, we denote by ci the upper-tail conditional

expectation of unit costs,

ci ≡ E[cj |j ≥ i] =

∑
j≥imjcj∑
j≥imj

.

Adverse selection occurs if the unit cost ci is nondecreasing in i. Here, and unless indicated

otherwise, we make the slightly weaker assumption that ci is nondecreasing in i. This weak

adverse-selection condition is exactly equivalent to

For all j ≤ i, cj ≤ ci. (1)

Each seller (he) is risk-neutral and thus maximize his expected profit.

In the continuum-of-buyers interpretation of the model, contracting is bilateral and

nonanonymous. Thus each seller fully monitors the trades each buyer makes with him,

allowing him to charge a different price for different marginal units. We make the standard

assumption that buyers of the same type facing the same choices behave in the same way.

3 Entry-Proofness in Inactive Markets

In this section, we describe the circumstances under which private information impedes trade

altogether. We shall adopt the following terminology. A contract is a pair (q, t) for some

nonegative q, and the null contract is the pair (0, 0). A market is inactive if, for whichever

reason, only the null contract is available. An inactive market is entry-proof if and only

if for any menu of contracts offered by an entrant, the buyer has a best response such that

the entrant earns at most zero expected profit. Later in this section, we will strengthen

this definition in relation to the stronger notion of market breakdown. Our first task is to

characterize markets that are both inactive and entry-proof.

Let us first analyze the simple case where the entrant offers a single contract, designed

so as to attract some type i. To do so, the entrant can choose some unit price p slightly

below τi(0, 0). Then, by definition of τi(0, 0), there exists a quantity q that strictly attracts
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type i at this price, that is, ui(q, pq) > ui(0, 0). As types are ordered according to the weak

single-crossing condition, we also have uj(q, pq) > uj(0, 0) for all j > i. Thus any type j ≥ i

is strictly attracted by the offer (q, pq), and the entrant bears an expected unit cost ci when

trading with these types. Finally, some other types j < i may also be attracted, but (1)

ensures that this can only reduce the entrant’s expected unit cost.4 This simple reasoning

shows that the following condition is necessary for entry to be unprofitable.

Condition EP For each i, τi(0, 0) ≤ ci.

The following theorem, a formal proof of which is provided in the main appendix, states

that this necessary condition is also sufficient, even when menus of contracts are allowed.

Theorem 1 An inactive market is entry-proof if and only if Condition EP is satisfied.

The key to the proof lies in the following remark. Suppose the entrant offers an arbitrary

menu of contracts. Under weak single-crossing, a standard monotone-comparative-statics

argument implies that the buyer has a best response with nondecreasing quantities; that is,

the entrant ends up trading (qi, ti) with every type i, with qi ≤ qj for all i < j. Then his

expected profit is ∑
i

mi(ti − ciqi),

which, using a summation by parts in the spirit of Wilson (1993), we can rewrite as

∑
i

(∑
j≥i

mj

)
[ti − ti−1 − ci(qi − qi−1)], (2)

where (q0, t0) ≡ (0, 0). Now, because type i is willing to trade (qi− qi−1, ti− ti−1) in addition

to (qi−1, ti−1), each bracketed term in (2) cannot exceed

[τi(qi−1, ti−1)− ci](qi − qi−1),

and thus, as qi ≥ qi−1, will be nonpositive if the marginal rate of substitution is lower than

the upper-tail conditional expectation of unit costs,

τi(qi−1, ti−1) ≤ ci.

To show that this holds, recall that, by construction, type i − 1 prefers her optimal choice

(qi−1, ti−1) to the no-trade contract (0, 0). Under weak single-crossing, the same property is

4Alternatively, if we were to assume strict single-crossing, then we could design (q, pq) so that types below
i are not attracted. Then assumption (1) on costs would not be needed anymore for Theorem 1 to hold.
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τi(qi−1,ti−1)

Figure 1: A graphical illustration of (3).

satisfied by type i, and thus (qi−1, ti−1) lies in the nonnegative orthant, below the indifference

curve of type i that goes through the origin. (That we can focus on menus with nonnegative

transfers is established in the main appendix.) As illustrated in Figure 1, we can apply

in turn the concavity of the indifference curve of type i, then Assumption 1, and finally

Condition EP to obtain the desired inequality:

τi(qi−1, ti−1) ≤ τi(qi, 0) ≤ τi(0, 0) ≤ ci. (3)

This concludes the proof of Theorem 1.

A noticeable feature of this proof is that it does not consider each contract (qi, ti) in

isolation. Instead, the key role is played by layers of the form (qi − qi−1, ti − ti−1). Under

weak single-crossing, the ith layer can be thought of as traded by all types j ≥ i, and

thus has expected unit cost ci. Condition EP then states that, at this price, type i is not

strictly willing to trade, so that each layer must yield a nonpositive expected profit. By

contrast, some of the contracts proposed in a menu may yield positive profits. For example,

although the condition t1 ≤ c1q1 ensures that the expected profit on the first layer (q1, t1)

is nonpositive, it may well be that t1 > c1q1. Hence Condition EP does not rule out gains

from trade, in the usual first-best sense of the term.

The assumptions of Theorem 1 can be weakened in three directions. First, the finiteness

of the type distribution is not crucial: we show in Appendix B that the result holds for an

arbitrary type distribution with bounded support over the real line. Second, the convexity
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of preferences can be relaxed if we reinforce Assumption 1 into τi(q, t) ≤ τi(0, 0) for all (q, t)

such that t ≥ 0 and ui(q, t) ≥ ui(0, 0). Third, the monotonicity assumption (1) on costs is

not needed if we assume strict single-crossing.5 Thus, whereas our result relies on private

information, it does not require adverse selection, even in the weak form (1). This makes it

applicable when selection is advantageous (Hemenway (1990)) or in any intermediate case,

a notable feature in light of the literature that questions the empirical relevance of adverse

selection (Finkelstein and McGarry (2006), Fang, Keane, and Silverman (2008)).

By contrast, the weak single-crossing condition and the seemingly innocuous Assumption

1 are tight. The key role of the weak single-crossing condition in the proof of Theorem 1 is to

ensure that the quantity profile chosen by the buyer in the entrant’s menu is nondecreasing

in her type. As for Assumption 1, Example 1 in Appendix D shows that, in its absence,

entry with a menu of contracts can be profitable even though Condition EP is satisfied—the

intuition being that type i’s marginal rate of substitution can then take values higher than

τi(0, 0) in the relevant area illustrated in Figure 1.

Condition EP ensures that there exists a best response for the buyer such that entry on

an inactive market is unprofitable. However, the literature often focuses on characterizing

market breakdown, defined as a situation in which any menu of non-null contracts yields

a strictly negative expected profit, even if the buyer’s best response is most favorable to the

entrant. Condition EP clearly remains necessary for this stronger concept. We now argue

that, under slightly stronger conditions on preferences, it remains also sufficient. The proof

of the following result is provided in the main appendix, and Appendix D provides two

examples showing that the additional conditions are tight.

Corollary 1 Suppose that the buyer’s preferences are strictly convex and that types are

ordered according to the strict single-crossing condition. Then there is market breakdown if

and only if Condition EP is satisfied.

Mailath and Nöldeke (2008) obtain a related result for an economy in which the buyer has

quadratic quasilinear preferences, as in Glosten (1989), Biais, Martimort, and Rochet (2000,

2013), and Back and Baruch (2013). Yet they focus on competitive pricing, defined as a

situation in which each quantity traded yields zero profit, so that there are no cross-subsidies

between contracts. As noticed above, this is an important restriction: Example 3 in Appendix

D shows that the best pricing strategy for the entrant may not be competitive in this sense,

because what matters for entry-proofness is not so much the profit earned on each quantity

qi than the expected profit earned on each quantity layer qi − qi−1.

5See Footnotes 4 and 15 for the only change needed in the proof.
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Hendren (2013) studies a Rothschild and Stiglitz (1976) insurance economy, and his

Theorem 1 is the analogue of Corollary 1 in this particular setting. As emphasized by the

author, an implication of Condition EP is that the highest-risk type I must not be willing

to purchase coverage at the actuarially fair rate cI . Given that her preferences have an

expected-utility representation, this is possible only if type I incurs a loss with certainty. In

that case, type I’s preferences are no longer strictly convex, and the above result becomes

that all types except perhaps type I must be excluded from trade, as in Akerlof’s (1970)

classic example of market breakdown.

4 Entry-Proofness in Active Markets

We now turn to active markets, in which nonnull contracts are available. We follow Rothschild

and Stiglitz (1976) and characterize the set of contracts that deters subsequent entry. In

contrast with them, however, we focus on situations in which the buyer cannot be prevented

from trading with more than one seller—that is, trade is nonexclusive. In nonexclusive

markets, each seller aims at limiting the risk of attracting high-cost types buying large

quantities, and to do so can place limit orders—that is, offers to sell at a given price up to

a maximum quantity. Perhaps for this reason, limit orders are one of the main instruments

used on financial markets, and especially so when the market is organized as a limit-order

book (Glosten (1994)). The key property that we exploit below is that, if sellers on the

market place collections of limit orders, the buyer faces a convex market tariff T , obtained

by convoluting these orders. We use Condition EP to show that requiring that such a tariff

be entry-proof singles out a unique budget-feasible allocation, the construction of which

crucially hinges on upper-tail conditional expectations of unit costs.

We throughout assume that the domain of the convex tariff T is a compact interval

containing 0, with T (0) ≡ 0. Every type i selects qi so as to maximize ui(q, T (q)). We

then say that the allocation (qi, T (qi))
I
i=1 is implemented by the tariff T , and that it is

budget-feasible if ∑
i

mi[T (qi)− ciqi] ≥ 0. (4)

We also assume that types are ordered according to the strict single-crossing condition.

As a result, in any allocation implemented by the tariff T , the optimal quantities qi are

nondecreasing in i.

Now, suppose an entrant can propose additional trades to the buyer, in the form of a

menu of contracts. We say that the tariff T is entry-proof if for any menu of contracts offered

12



by an entrant, the buyer has a best response such that the entrant earns at most zero expected

profit, taking into account that the buyer is free to combine the entrant’s contracts with those

made available by the tariff T . The last clause of this definition is crucial, and captures the

nonexclusive nature of trade. Our goal is to characterize the set of budget-feasible allocations

that are implementable by entry-proof convex market tariffs.

Let us first observe that, from the entrant’s viewpoint, everything happens as if he were

facing modified types with indirect utility functions

uTi (q′, t′) ≡ max{ui(q + q′, T (q) + t′) : q}, (5)

reflecting that the buyer is free to combine any contract (q′, t′) offered by the entrant with a

trade along the tariff T . In particular, uTi (0, 0) represents type i’s utility when she only trades

on the market and not with the entrant, and thus defines the relevant individual-rationality

constraint for type i from the entrant’s viewpoint.6

Because the tariff T is continuous over a compact domain, the maximum in (5) is attained

and uTi (q′, t′) is continuous in (q′, t′).7 Moreover, because the tariff T is convex and the

primitive utility functions ui(q, t) are weakly quasiconcave in (q, t) and strictly decreasing

in t, the indirect utility functions uTi (q′, t′) are weakly quasiconcave in (q′, t′) and strictly

decreasing in t′. As a result, we can define the marginal rates of substitution τTi (q′, t′)

associated to them exactly as we did in Section 2 for the primitive utility functions. Finally,

because the primitive types are ordered according to the strict single-crossing condition, the

modified types are ordered according to the weak single-crossing condition.8

Thus, to apply Theorem 1, there only remains to ensure that Assumption 1 holds for the

marginal rates of substitution τTi (q′, 0). A convenient way to proceed is to require that each

type’s family of primitive indifference curves satisfy a slightly stronger fanning-out condition

than in Assumption 1.

Assumption 2 For all i and t, τi(q, t) is nonincreasing in q.

That is, a higher quantity traded reduces the buyer’s willingness to pay. This assumption

is satisfied by a large variety of preference relations, as we illustrate in Appendix C. In

Appendix A, we establish the following result.

6Clearly, q in (5) should belong to the domain of T . The admissible set for q may also vary continuously
in (q′, t′), as for example when the consumption set of the buyer is bounded. To simplify notation, we do not
explicitly mention such admissibility constraints in the maximization problems considered in this section.

7This follows from Berge’s maximum theorem (Aliprantis and Border (2006, Theorem 17.31)).
8We refer to Attar, Mariotti, and Salanié (2019, Supplementary Appendix, Proof of Lemma 1) for a proof

of the second and third observations.
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Lemma 1 If Assumption 2 holds for τi(q, t), then Assumption 1 holds for τTi (q′, 0).

We can now deduce from Theorem 1 that a tariff T is entry-proof if and only if

For each i, τTi (0, 0) ≤ ci. (6)

To see what this abstract condition entails for the tariff T and the allocation (qi, T (qi))
I
i=1

it implements, recall from (5) that τTi (0, 0) is the supremum of the set of prices p such that

ui(qi, T (qi)) = uTi (0, 0) < max{uTi (q′, pq′) : q′} = max{ui(q + q′, T (q) + pq′) : q, q′}.

Thus, according to (6), we have

For each i, ui(qi, T (qi)) ≥ max{ui(q + q′, T (q) + ciq
′) : q, q′}. (7)

Fixing q0 ≡ 0 and applying (7) to q ∈ [qi−1, qi] and q′ = qi − q yields

For all i and q ∈ [qi−1, qi], T (qi) ≤ T (q) + ci(qi − q). (8)

In particular, at q = qi−1, we have

T (qi) ≤ T (qi−1) + ci(qi − qi−1). (9)

Now, rewriting the expected profit (4) as in (2), and imposing that the allocation (qi, T (qi))
I
i=1

be budget-feasible, we have

∑
i

(∑
j≥i

mj

)
[T (qi)− T (qi−1)− ci(qi − qi−1)] ≥ 0.

The only possibility is thus that the inequalities (9) hold as equalities,

For each i, T (qi) = T (qi−1) + ci(qi − qi−1), (10)

which, in turn, implies, according to (7),

For each i, ui(qi, T (qi)) = max{ui(qi−1 + q′, T (qi−1) + ciq
′) : q′}. (11)

Finally, because T is convex and satisfies both (8) and (10), it must be that T is affine with

slope ci over the interval [qi−1, qi]. The following theorem, a formal proof of which is provided

in the main appendix, summarizes this discussion and states that the necessary conditions

derived above are also sufficient.

Theorem 2 An allocation (qi, T (qi))
I
i=1 is budget-feasible and is implemented by an entry-
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proof convex market tariff T with domain [0, qI ] if and only if they jointly satisfy the following

recursive system:

(i) (q0, T (q0)) ≡ (0, 0).

(ii) For each i, qi − qi−1 ∈ arg max{ui(qi−1 + q′, T (qi−1) + ciq
′) : q′}.

(iii) For each i, if qi−1 < qi, then T is affine with slope ci over the interval [qi−1, qi].

In particular, any such allocation is exactly budget-balanced.

Let us first comment on each item of this result. First, it is natural to focus on tariffs

defined up to the maximum quantity qI—one can build other entry-proofs tariffs by suitably

prolonging T beyond this point, but this is in no way needed. Next, (i) is merely a convention.

Finally, (ii)–(iii) are substantial, and indicate how to recursively build a complete family of

quantities, as well as a tariff that is by construction convex, because the upper-tail conditional

expectation of unit costs is nondecreasing in the buyer’s type.

Existence of an entry-proof convex market tariff obtains as soon as each maximization

problem in (ii) admits a solution. This is ensured for example by the following Inada

condition, which states that demand is finite when the price is positive:

For all i, (q, t), and p > 0, arg max{ui(q + q′, t+ pq′) : q′} <∞. (12)

Therefore, under nonexclusivity, budget-feasibility and entry-proofness are not conflicting

requirements, in contrast with the pervasive nonexistence problems arising under exclusivity

(Rothschild and Stiglitz (1976)). We will return to this point in Section 6.

Uniqueness of an entry-proof convex market tariff also follows if the solution to each

maximization problem in (ii) is unique. This is the case if the buyer’s preferences are strictly

convex. If they are only weakly convex, multiple solutions may appear if the marginal rate

of substitution of some type i equals ci over a whole interval of quantities, but this is clearly

a nongeneric phenomenon.

Theorem 2 thus characterizes an essentially unique allocation. Following Attar, Mariotti,

and Salanié (2014, 2019), we label this allocation, which was originally introduced in different

contexts by Jaynes (1978), Hellwig (1988), and Glosten (1994), the JHG allocation, and we

denote it by (Qi, Ti)
I
i=1. Similarly, the JHG tariff consists of a sequence of layers with unit

prices ci, and features an upward kink at any quantity Qi ∈ (0, QI) such that Qi+1 > Qi

and ci+1 > ci. In the limit-order book interpretation, this sequence of layers corresponds

to a family of limit orders with maximum quantities Qi − Qi−1 and unit prices ci. The
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Figure 2: The JHG allocation and the JHG tariff for I = 3.

JHG allocation is exactly budget-balanced, because any marginal quantity is priced at the

expected cost of serving the types who purchase it. This property can be interpreted as a

marginal version of Akerlof (1970) pricing.

The JHG allocation and the JHG tariff are illustrated in Figure 2, in a case with three

types and strictly convex preferences.

We can also apply Theorem 2 to preferences that are only weakly convex. For example,

consider linear utility functions ui(q, t) ≡ viq − t, subject to a capacity constraint q ∈ [0, 1].

Such preferences generalize those in Akerlof (1970) to a divisible good. Strict single-crossing

here requires that vi be strictly increasing in i. Then each problem in (ii) admits a unique

solution as soon as vi 6= ci for all i, and we have two possibilities:

1. If vi < ci for all i, then, according to (ii), all quantities must be zero. Moreover, by

(iii), the essentially unique entry-proof tariff is only defined at zero, with T (0) = 0,

and the market is inactive.

2. Suppose, alternatively, that vi > ci for some i, and let i∗ be the lowest such i. Then,

according to (ii), i∗ trades up to capacity at unit price ci∗ . By strict single-crossing, so

do types i > i∗, while types i < i∗ do not trade at all. Moreover, by (iii), the unique

entry-proof tariff is linear, with T (q) = ci∗q for all q ∈ [0, 1].

Thus, generically, the JHG allocation features a single layer when the buyer’s preferences

are linear, and corresponds to the Akerlof (1970) competitive-equilibrium allocation that
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maximizes the gains from trade.

5 A Discriminatory Ascending Auction

Our results so far illustrate the power of the entry-proofness requirement, which selects an

essentially unique market tariff and allocation. These elements in turn can be decomposed

into successive layers, each of them priced at the expected cost of serving those types who

trade it. As argued in the Introduction, it is natural to represent the JHG allocation as

implemented via a dynamic process whereby trade first takes place at a low price until

sellers stop serving the demand at this price, after which the price moves up, making sellers

willing to supply additional quantities—and so on, until demand vanishes. We formalize this

intuition by considering a discriminatory auction in which prices are quoted in ascending

order. Each time a new price is quoted, each seller publicly announces the maximum quantity

he stands ready to trade at this price, a process that can be interpreted as the sequential

building of a limit-order book. Once this auctioning phase is completed, the buyer decides

which quantities to purchase from which sellers in a nonexclusive way. This auction departs

from the standard tâtonnement process in that sellers cannot withdraw the quantities they

supplied at lower prices. As a consequence, the auction sequentially discovers a nonlinear

market tariff instead of converging to a single equilibrium price. By construction, this tariff

is convex, reflecting that the best price offers are optimally selected first.

5.1 Timing and Assumptions

We throughout postulate a discrete price grid. This is first for the sake of realism, as

prices quoted on financial markets come in multiples of a minimum tick size. Second, an

ascending auction with a discrete price grid can be modelled as a standard extensive-form

game, allowing us to eschew the conceptual difficulties associated with continuous-time games

(Simon and Stinchcombe (1989)). For a tick size ∆ > 0, we thus fix a price grid {0,∆, 2∆, . . .}
and, to simplify the analysis, we assume that the upper-tail conditional expectations of unit

costs ci all belong to that grid. The game unfolds as follows.

In a first phase, the auctioneer quotes the prices in the grid in ascending order. When a

new price p is quoted, K ≥ 2 sellers simultaneously announce the maximum quantities

sk(p) ≥ 0, k = 1, . . . , K, they stand ready to trade at this price, which are publicly

observable. The auctioneer then moves to the next price p+ ∆, and this process is repeated

until all prices have been quoted.9 Once this first phase is over, we can build a convex market

9We do not need to specify a stopping rule for this phase, because our game is formally well defined
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tariff by aggregating the quantities successively supplied, as follows. Let s(p) ≡
∑

k s
k(p)

be the aggregate supply at price p and S(p) ≡
∑

p′≤p s(p) be the aggregate supply at prices

lower than or equal to p. Then the tariff T is defined recursively by T (0) ≡ 0 and

For each Q ∈ [S(p−∆), S(p)], T (Q) ≡ T (S(p−∆)) + p[Q− S(p−∆)].

In a second phase, the buyer learns her type, and decides which quantities to buy from

which sellers. In the aggregate, she purchases a quantity Q in exchange for a payment T (Q).

Therefore, the price p of the last purchased unit is the left-derivative ∂−T (Q) of T at Q.

The revenue earned by every seller k at any inframarginal price p′ < p is p′sk(p′), as it is in

the buyer’s interest to exhaust supply at any such price. The aggregate revenues earned by

the sellers at price p are p[Q−S(p−∆)]. If Q < S(p), the buyer is indifferent to the manner

she allocates this revenue among the sellers; her equilibrium strategy will specify how she

breaks these ties. Overall, a seller’s expected profit is the expected sum of revenues at all

prices, minus the expected cost of sales.

To simplify the exposition, we assume that every type i has quasilinear, strictly convex,

and differentiable preferences satisfying the Inada condition (12), so that her demand Di(p)

at any price p > 0 is single-valued, finite, and continuous and strictly decreasing in p as long

as it is strictly positive. In particular, Di(p) goes to zero as p goes to ∞. Finally, to avoid

nongeneric cases, we slightly strengthen the strict single-crossing condition by requiring that

Di(p) be strictly increasing in i for each p > 0 as long as it is strictly positive.

We denote by Γ the corresponding extensive-form game with almost-perfect information.

Our equilibrium concept is pure-strategy subgame-perfect Nash equilibrium. The remainder

of this section provides our characterization results.

5.2 A Simple Equilibrium

In our equilibrium construction, the sellers’ supply decisions at any history in the first phase

of Γ only depend on the current price p and on the aggregate quantity Q− supplied at prices

p′ < p. We call (p,Q−) the current state of the game, which starts in state (0, 0). In any state

(p,Q−), every type j has a residual demand [Dj(p) − Q−]+, where [x]+ is the positive part

of x. Under strict single-crossing, any quantity purchased at price p by some type i is also

purchased by types j > i. Thus, in any state (p,Q−) such that ci < p ≤ ci+1, maximizing

aggregate expected profits exactly requires serving the residual demand [Di(p) − Q−]+ of

type i, which we call the profitable residual demand in state (p,Q−). The following theorem,

even with infinitely many prices in the grid. In practice, one may end this phase when the aggregate supply
exceeds the highest possible demand at the current price. See also Footnote 10 for an alternative timing.

18



a formal proof of which is provided in the main appendix, exhibits an equilibrium of Γ in

which sellers equally share this profitable residual demand in any state.

Theorem 3 There exists an equilibrium of Γ in which, in any state (p,Q−),

(i) If p ≤ c1, each seller supplies a zero quantity.

(ii) If c1 < p ≤ cI , each seller supplies an equal share of the profitable residual demand.

(iii) If p > cI , each seller supplies an infinite quantity.

These strategies induce the following equilibrium outcome. As soon as the price reaches

c1 + ∆, the sellers collectively serve the demand D1(c1 + ∆) of type 1, thereby satiating her

demand; this quantity will also be purchased by types i > 1. Then, as soon as the price

reaches c2 + ∆, the sellers collectively serve the residual demand [D2(c2 + ∆)−D1(c1 + ∆)]+

of type 2, thereby satiating her demand; this quantity will also be purchased by types i > 2.

This process is repeated until the price reaches cI + ∆, at which point the sellers flood the

market by supplying an infinite quantity. It is readily checked that the resulting aggregate

equilibrium allocation converges to the JHG allocation when ∆ goes to zero. We will establish

a general version of this result in the next section.

The proof of Theorem 3 relies on three arguments.

First, the game effectively stops when the price cI +∆ is reached. This allows us to apply

the one-shot deviation property when analyzing the sellers’ deviations.

Second, a seller may try to increase his market share 1/K in state (p,Q−) by increasing

his supply. Given his competitors’ equilibrium strategies, however, it is easily seen that all

profitable types at price p, that is, all types i such that p > ci, can choose to ignore this

deviation and carry on trading the same quantity with each seller. Hence, the deviating

seller will only succeed at selling more to nonprofitable types, which lowers his expected

profit at price p. Moreover, because nonprofitable types trade more at this price, their

residual demands at higher prices will also be reduced. Evaluating the overall impact on the

continuation path, we show that such upward deviations cannot be profitable.

Third, a seller may try to reduce his supply in state (p,Q−) by an amount q, so that

some profitable type i is now rationed in this state. Her residual demand at the next price

p+∆ should thus increase, say—for simplicity—by exactly q. The difficulty for the deviating

seller is that the main part of this increase would go to his competitors. Indeed, following

their equilibrium strategies, they would together react by supplying an additional amount

(K−1)q/K at price p+∆, leaving only q/K to him. Instead of selling q at price p, he would
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thus end up selling only q/K at price p + ∆, which is less profitable as ∆ < p and K ≥ 2.

Though this intuition is simple, the proof is more involved as demand is elastic. Hence the

reduction in supply at the current price does not translate into an equivalent increase of the

residual demand at the next price. Evaluating again the overall impact on the continuation

path, we show that such downward deviations cannot be profitable.

Key to this existence result is the sequential nature of the ascending auction: at each

price, each seller can condition his behavior on his competitors’ past supply decisions. The

only constraint is subgame-perfection, but this constraint is mild, as punishments take the

form of profitable increases in supply. By contrast, simultaneous models of nonexclusive

competition under adverse selection generally conclude to the nonexistence of equilibrium

when preferences are strictly convex (Attar, Mariotti, and Salanié (2014, 2019)). Indeed,

in such games, the natural candidate for equilibrium is similar to the one described in

Theorem 3: each seller supplies a share of the profitable residual demand at each price and,

therefore, is indispensable for serving that demand. The difference is that, in a simultaneous

game, a seller can reduce his supply at a given price without triggering a reaction by his

competitors. Indeed, the only available device to block such a deviation consists in the buyer

sending appropriate reports to the nondeviating sellers, translating into different choices in

the menus or tariffs they offer. Such reports, however, have to be sequentially rational from

the buyer’s viewpoint, which considerably restricts the set of available punishments. By

contrast, in our equilibrium construction for the discriminatory ascending auction, the main

thrust of punishments is borne by the sellers themselves, leaving for the buyer only the task

of breaking ties at the expense of the deviating seller.

5.3 Convergence of Equilibrium Allocations

We now show that the JHG allocation uniquely emerges as the limit of equilibrium allocations

when the tick size goes to zero, generalizing an insight of Theorem 3. To establish this result,

we focus on buyers’ equilibrium strategies that satisfy a minimal robustness requirement.

Recall that, in equilibrium, every type i accepts all offers up to some price pi. At this last

price, the sellers’ aggregate supply s(pi) may exceed her residual demand, so that type i can

allocate it in different ways among the sellers. Although she is indifferent between all such

allocations, her choice may matter to the sellers. We say that an equilibrium of Γ is robust

to irrelevant offers if any type i’s allocation of trades at price pi does not depend on offers

made at prices p > pi. Intuitively, we do not allow the buyer to punish a seller for deviating

at a price that is irrelevant to her as she is not willing to trade at this price. The equilibrium
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constructed in Theorem 3 satisfies this refinement.10 The following theorem, a formal proof

of which is provided in the main appendix, encapsulates our convergence result.

Theorem 4 For each n ∈ N, fix any equilibrium robust to irrelevant offers of the ascending

auction Γn with tick size ∆n ≡ ∆/2n. Then the resulting sequence of aggregate equilibrium

allocations converges to the JHG allocation.

This result confirms the prominent role played by the JHG allocation under adverse

selection and nonexclusive competition. Although the proof of Theorem 4 is involved, its

logic follows from a generalized Bertrand argument that we sketch here, before turning to

technical difficulties. To this end, let us hypothetically place ourselves in the limiting case

∆ = 0. Recall that, in any state (p,Q−), type i’s residual demand is [Di(p)−Q−]+. When

the aggregate supply in this state is s, sellers collectively earn

B(p, s,Q−) ≡
∑
i

mi(p− ci) min{[Di(p)−Q−]+, s}.

Now, suppose, by way of contradiction, that there exists a state (p,Q−) reached on the

equilibrium path such that

B∗(p,Q−) ≡ max{B(p, s,Q−) : s ≥ 0} > 0. (13)

Because the highest price at which trade takes place turns out to be bounded along the

sequence of equilibria under consideration, let us, for the sake of the argument, focus on the

highest price p satisfying (13). At even higher prices, B∗ is at most zero. Notice, however,

that aggregate continuation profits beyond p must be nonnegative; otherwise, some seller

would find it profitable to stop making offers, without jeopardizing his profits at lower prices

as the equilibrium is robust to irrelevant offers. Because aggregate continuation profits are

an integral of aggregate expected profits B at all prices p′ > p, each lying by construction

below B∗, one must have B = B∗ = 0 at any such price.

Now, at price p, sellers collectively earn at most B∗(p,Q−) > 0. As a result, each seller

is tempted to appropriate the totality of these aggregate expected profits. The classical

Bertrand undercutting deviation consists in making a well-chosen offer at a price p′ arbitrarily

10 One simple manner to justify this refinement is to consider a slightly different timing for the game, as
follows. At any price p quoted by the auctioneer, the sellers announce their supplies sk(p), and the buyer
immediately reacts by choosing which quantities to purchase from which sellers. The game stops at price
p if the buyer purchases less than the aggregate supply s(p) at this price. Otherwise, the auctioneer goes
to the next price p + ∆—and so on. It is easily seen that in any perfect Bayesian equilibrium of this game,
every type i optimally selects quantities by accepting all offers below some threshold pi. At that threshold
price, the game stops, so that the allocation of trades cannot depend on offers that will never be made.
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close but below p at which the aggregate supply of his competitors is zero; such a price

always exists if ∆ = 0. The deviating seller is then certain to attract in priority the relevant

types, and to secure himself an expected profit at price p′ arbitrarily close to B∗(p,Q−).

Because continuation profits beyond p are zero and profits at lower prices are unaffected,

this deviation is thus profitable, a contradiction. Therefore, we can conclude that B∗ must

at most be zero in every state reached on the equilibrium path, and thus, reasoning as above,

that B = B∗ = 0 in any such state. We show that this property actually characterizes the

JHG allocation and the JHG tariff, which concludes the proof of Theorem 4.

Nevertheless, the technical difficulties in this reasoning should not be discounted. First,

we need to establish a clear convergence result for supply functions and market tariffs when

the tick size goes to zero. To do so, we rely on Helly’s selection theorem. Second, it may well

be that, in the limit, there exists no highest price p such that (13) holds. This requires a

careful limiting argument. Third, with a discrete price grid, the price p′ used for undercutting

has to be either p—but then the deviating seller may not be first on the buyer’s priority

list—or p−∆—but at this price other sellers may also supply positive quantities, once more

making priority difficult to achieve. Fortunately, when the tick size goes to zero, the number

of available prices just below p grows without bounds. This guarantees that the aggregate

supply of nondeviating sellers becomes negligible almost everywhere in a left-neighborhood

of p, which validates the informal argument given above.

6 Discussion

6.1 Nonexclusivity and Discriminatory Pricing

Nonexclusive contracting is a key feature of prominent insurance markets such as annuities,

life insurance, and long-term care, of consumer and firm credit markets, and of most financial

markets. Early work has led researchers to the common conception that nonexclusivity is

best represented by assuming linear pricing. For instance, Pauly (1974) explicitly assumes

that insurance companies post price schedules that are linear in the amount of coverage

purchased, and Chiappori (2000) argues that, under nonexclusivity, consumers can linearize

any nonlinear schedule by trading many small contracts with different insurance companies.

Similarly, in the context of annuities, Sheshinski (2008), Hosseini (2015), and Rothschild

(2015) assume that each annuity contract is traded at the same unit price, equal to the

average longevity of subscribers, weighted by the amount of annuities they purchase. In

a general-equilibrium context, Bisin and Gottardi (1999) argue that a minimal form of
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nonlinear pricing, in the form of a bid-ask spread, ensures the existence of a competitive

equilibrium in an adverse-selection economy with nonexclusive contracting; yet they retain

the assumption that prices are linear on each side of the market.

Our results instead suggest that the intuition that nonexclusive contracting necessarily

leads to linear pricing is fundamentally misleading: when the buyer’s preferences are strictly

convex and there is adverse selection in the weak sense that ci is strictly increasing in

i, the unique entry-proof convex tariff is nonlinear and different types end up trading at

different marginal prices. The only exceptions are when preferences are linear, as in the

example discussed at the end of Section 4, or when values are private, in which case adverse

selection is not an issue. Moreover, as the implementability of the JHG allocation via an

ascending discriminatory auction suggests, nonlinear pricing is consistent with nonexclusivity

in a fully strategic context. Conceptually, the key point is that nonexclusivity does not

entail anonymity: though no seller can monitor the trades a given buyer makes with his

competitors, he can monitor the trades she makes with him. As a result, sellers can restrict

the maximum quantity they trade at any price, as in the discriminatory limit-order book,

and this ability prevents buyers from linearizing the convex tariffs they offer.

6.2 Exclusivity and Single-Crossing

A natural question is whether our approach can be applied to the exclusive-competition case

studied by Rothschild and Stiglitz (1976). As we now argue, the key difference with the

nonexclusive-competition case studied in Section 4 is that, when trades on the market and

with an entrant are mutually exclusive, the buyer’s indirect utility functions no longer satisfy

single-crossing.

To see this point, observe that, if type i selects the contract (qi, T (qi)) along an exclusive

market tariff T , an entrant can always offer a cream-skimming contract (qi − δ, T (qi) − ε),
where α > 0 and ε > 0 are chosen so as to attract type i without attracting types

j > i. Thus the entrant’s ability to target types is drastically enhanced, as she need

not worry about adverse selection; in particular, our approach no longer applies. This

suggests that the pervasive nonexistence problems arising in exclusive-competition models

may not be due to private information or entry-proofness per se, but rather to this violation

of single-crossing—or, to put it more provocatively, to the fact that these models do not

incorporate the full extent of adverse selection.

By contrast, under nonexclusivity, any contract (q′, t′) offered by an entrant that attracts

type i also attracts types j > i if the market tariff T is convex. As shown in Section 4,
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the technical reason is that the indirect utility functions uTi inherit single-crossing from the

primitive utility functions ui. Intuitively, this is because the new contract (q′, t′) globally

impacts the tariff, so that higher quantities q > q′ can now be purchased in exchange for a

lower transfer T (q− q′) + t′, making them more attractive to higher types. One may in fact

argue that this is the basic mechanism through which adverse selection impedes entry: the

introduction of new contracts is deterred by the fear of attracting types who are more costly

to serve. This is why, under nonexclusivity, the relevant measure of cost from an entrant’s

perspective is the upper-tail conditional expectation of unit costs ci, as in Akerlof (1970),

and not the unit cost ci itself.

6.3 Beyond Convexity

In the previous section, we have highlighted the key role single-crossing plays in our analysis.

This property itself resulted from the combination of two assumptions: that types be ordered

according to the strict single-crossing condition, and that the market tariff be convex. We

now examine to which extent this second assumption can be relaxed.

To do so, we propose a more direct characterization of the budget-feasible allocations

(qi, T (qi))
I
i=1 that are implemented by an arbitrary entry-proof market tariff T . Because

types are ordered according to the strict single-crossing condition, the optimal quantities qi

remain nondecreasing in i. A careful reading of the proof of Theorem 2 then reveals that,

supposing (7) to hold, we can conclude that (qi, T (qi))
I
i=1 must be the JHG allocation; indeed,

from (7) on, the convexity of T is not required to derive the desired equalities (10)–(11).

Thus, what is needed is to directly establish (7) in a parsimonious way.

The most intuitive path is to proceed by contradiction, as follows. Suppose that (7) does

not hold for some i, and consider a solution (q, q′) to the maximization problem in (7). Then

an entrant can offer the contract (q′, t′) with t′ ≡ ciq
′+ ε for some small ε > 0. Let J be the

set of types that are attracted by this contract; by construction, J contains type i. To reach

a contradiction, we must find conditions ensuring that the contract (q′, t′) is profitable. We

explore two avenues in turn.

A Condition on the Distribution of Costs The first avenue is as follows. The worst

case for the entrant is when J maximizes the expected cost E[cj |j ∈ J ] under the constraint

i ∈ J . If the distribution of costs is such that the worst case occurs when the contract (q′, t′)

attracts all types j ≥ i, then entry is profitable as t′ > ciq
′. This implies the following result.

Lemma 2 If ci ≤ ci ≤ ci+1 for all i, then the only budget-feasible allocation implemented by
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an entry-proof market tariff is the JHG allocation.

The assumption of Lemma 2 is twofold: the first inequalities are equivalent to (1), while

the second inequalities ensure that the worst case occurs when all types j ≥ i are attracted.

In the two-type case, both inequalities hold as soon as c1 ≤ c2. This shows that the convexity

requirement is not needed in this simple case.11

Corollary 2 In the two-type case, the only budget-feasible allocation implemented by an

entry-proof market tariff is the JHG allocation.

By contrast, the assumption of Lemma 2 becomes quite restrictive when the number of

types grows large: indeed, in the limit, the corresponding set of cost distributions reduces

to the private-value case in which ci does not depend on i.

A Condition on the Market Tariff The second avenue is as follows. Once the contract

(q′, t′) is offered, every type j purchases an aggregate quantity Q′j and, as types are ordered

according to the strict single-crossing condition, the quantities Q′j are nondecreasing in j.

Now, consider two types in J , say, to fix ideas, types 1 and 3. Then Q′1 ≥ q′, Q′3 ≥ q′, and

T (Q′1) > T (Q′1 − q′) + t′ and T (Q′3) > T (Q′3 − q′) + t′. (14)

At this point, let us assume that T (q)− T (q − q′) is quasiconcave in q ≥ q′. Then, because

the intermediate type 2 purchases an aggregate quantity Q′2 ∈ [Q′1, Q
′
3], (14) implies

T (Q′2) > T (Q′2 − q′) + t′,

and thus type 2 is also attracted by the contract (q′, t′). This shows that J is connected.

Under (1), the worst connected set is {j : j ≥ i}, with expected cost ci, and we once more

obtain that entry is profitable as t′ > ciq
′. There only remains to find a condition on T

ensuring that T (q) − T (q − q′) is quasiconcave in q ≥ q′ for all q′. The following result

provides such a condition, which allows for tariffs exhibiting quantity discounts.

Corollary 3 The only budget-feasible allocation implemented by an entry-proof market tariff

that is first convex and then concave is the JHG allocation.

Thus entry-proofness per se selects a convex tariff in a large class of admissible tariffs.

Overall, we used the convexity of the market tariff only to ensure that adverse selection

is sufficiently severe. The results in this section show that we can significantly relax this

11This result also appears in Attar, Mariotti and Salanié (2020), with a different proof.
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assumption without threatening the special status of the JHG allocation. To go further, one

would have to envision tariffs such that an entrant can attract a nonconnected set of types

with an associated expected cost exceeding the upper-tail conditional expectation of unit

costs, so that entry would be deterred even though (7) does not hold. In light of the above,

this seems implausible, but we must acknowledge that the general problem remains open.

7 Concluding Remarks

In this paper, we have provided a unified perspective on entry-proofness under adverse

selection, which is relevant both for inactive markets and for active markets in which buyers

cannot be prevented from making additional trades with an entrant. These two scenarios

turn out to be intimately linked: indeed, the second one reduces to the first one when

buyers’ utilities are modified to incorporate their optimal trades along the market tariff.

Our existence and uniqueness results suggest that entry-proofness is a simple and powerful

way to characterize the competitive outcomes of nonexclusive markets.

The JHG allocation and the JHG tariff that implements it emerge as the extension of

Akerlof (1970) pricing to a rich class of preferences. The JHG allocation can be decomposed

into successive layers, each of them priced at the expected cost of serving those types who

trade it. This particular structure has motivated the design of a discriminatory ascending

auction. In contrast with the simultaneous competitive-screening games so far studied in

the literature, which generally conclude to the nonexistence of equilibrium, this sequential

auction essentially uniquely implements the JHG allocation. Beyond making a theoretical

point, this result offers a useful complement to studies that advocate a transformation of

continuous markets into batch auctions, so as to avoid inefficiencies linked to high-frequency

trading (Budish, Cramton, and Shin (2015)).

Although an empirical illustration is beyond the scope of this paper, our results suggest

new avenues for empirical work. In the context of insurance, nonexclusive markets have

been so far investigated through the lens of exclusive-competition models, exploiting the

observation that, under adverse selection, there should be a positive correlation between

the coverage purchased by a consumer and her risk (Chiappori and Salanié (2000)).12 An

alternative approach in line with our analysis would be to exploit price and cost data to

compare the price of successive layers of insurance to their average cost, as measured by the

empirical loss frequency of the consumers who trade them. This approach would extend the

12See, for instance, Cawley and Philipson’s (1999) on life insurance, Finkelstein and Poterba (2004) on
annuities, and Finkelstein and McGarry (2006) on long-term care.
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one proposed by Einav, Finkelstein, and Cullen (2010) to richer environments where firms

offer insurance tariffs and consumers can combine different levels of coverage from different

firms, and the one proposed by Hendren (2013) in the case of inactive markets. Estimates

of upper-tail conditional expectations of unit costs should be a key variable for future tests

of adverse selection in nonexclusive insurance markets.

Finally, it is fair to acknowledge a limitation of our analysis. Following a time-honored

tradition initiated by Akerlof (1970), Pauly (1974), and Rothschild and Stiglitz (1976), we

have assumed that the buyers’ private information is one-dimensional and that their types

are ordered according to a single-crossing condition. These restrictions stand in contrast

with the important role of multi-dimensional private information documented in the recent

empirical literature.13 There are in comparison few theoretical analyses of this question, and

they have so far focused on exclusive-contracting environments.14 An important challenge for

future research is thus to understand the impact of multi-dimensional private information

on the functioning of nonexclusive markets. Our hope is that the general methodology

developed in this paper will prove useful to this end.
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in Insurance: Some Testable Implications,” RAND Journal of Economics, 37(4), 783–798.

[21] Einav, L., A. Finkelstein, and M.R. Cullen (2010): “Estimating Welfare in Insurance

Markets Using Variation in Prices,” Quarterly Journal of Economics, 125(2), 877–921.

[22] Einav, L., A. Finkelstein, and P. Schrimpf (2010): “Optimal Mandates and the Welfare

Cost of Asymmetric Information: Evidence from the UK Annuity Market,” Economet-

rica, 78(3), 1031–1092.

[23] Fang, H., M.P. Keane, and D. Silverman (2008): “Sources of Advantageous Selection:

Evidence from the Medigap Insurance Market,” Journal of Political Economy, 116(2),

303–350.

[24] Finkelstein, A., and K. McGarry (2006): “Multiple Dimensions of Private Information:

Evidence from the Long-Term Care Insurance Market,” American Economic Review,

96(4), 938–958.

[25] Finkelstein, A., and J. Poterba (2004): “Adverse ‘Selection in Insurance Markets:

Policyholder Evidence from the UK Annuity Market,” Journal of Political Economy,

112(1), 183–208.

[26] Glosten, L.R. (1989): “Insider Trading, Liquidity, and the Role of the Monopolist

Specialist,” Journal of Business, 62(2), 211–235.

[27] Glosten, L.R. (1994): “Is the Electronic Open Limit Order Book Inevitable?” Journal

of Finance, 49(4), 1127–1161.

[28] Guerrieri, V., and R. Shimer (2018): “Markets with Multidimensional Private

Information,” American Economic Journal: Microeconomics, 10(2), 250–274.

[29] Hellwig, M.F. (1988): “A Note on the Specification of Interfirm Communication in

Insurance Markets with Adverse Selection,” Journal of Economic Theory, 46(1), 154–163.

[30] Hemenway, D. (1990): “Propitious Selection”, Quarterly Journal of Economics, 105(4),

1063–1069.

[31] Hendren, N. (2013): “Private Information and Insurance Rejections,” Econometrica,

81(5), 1713–1762.

29



[32] Hosseini, R. (2015): “Adverse Selection in the Annuity Market and the Role for Social

Security,” Journal of Political Economy, 123(4), 941–984.

[33] Jaynes, G.D. (1978): “Equilibria in Monopolistically Competitive Insurance Markets,”

Journal of Economic Theory, 19(2), 394–422.
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Appendix

Proof of Theorem 1. The proof consists of three steps.

Step 1 We first formulate the entrant’s problem. According to the revelation and taxation

principles, there is no loss of generality in letting the entrant offer a menu of contracts

{(q1, t1), . . . , (qI , tI)} that is incentive-compatible:

For all i and j, ui(qi, ti) ≥ ui(qj, tj),

and individually rational:

For each i, ui(qi, ti) ≥ ui(0, 0).

We claim that, for any such menu, the buyer has a best response with quantities that are

nondecreasing in her type. Indeed, if i optimally trades (qi, ti) and j > i optimally trades

(qj, tj), then it must be that ui(qi, ti) ≥ ui(qj, tj) and uj(qj, tj) ≥ uj(qi, ti). Now, suppose

that qi > qj. Because i < j, applying weak single-crossing to the first inequality yields

uj(qi, ti) ≥ uj(qj, tj), which, along with the second inequality, implies uj(qi, ti) = uj(qj, tj).

So type j could optimally trade (qi, ti) as well.15 The same reasoning applies to any such

pair (i, j) for which quantities are strictly decreasing, which proves the claim.

Because we want entry to be profitable no matter the buyer’s best response, we are thus

allowed to add the monotonicity constraint that quantities qi be nondecreasing in i to the

entrant’s profit-maximization problem. We can also relax this problem by focusing on the

downward local constraints, that is, the downward local incentive-compatibility constraints

of types i > 1 and the individual-rationality constraint of type i = 1. The entrant’s expected

profit is thus bounded above by

max

{∑
i

mi(ti − ciqi) : qi is nondecreasing in i and ui(qi, ti) ≥ ui(qi−1, ti−1) for all i

}
,

where (q0, t0) ≡ (0, 0). We call P this relaxed problem.

Step 2 We now prove that we can focus in P on menus with nonnegative transfers. Indeed,

15Assuming strict single-crossing would enable us to reach a contradiction at this point, so that any best
response of the buyer would feature nondecreasing quantities.
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suppose that a menu {(q1, t1), . . . , (qI , tI)} satisfies all the constraints in P , and is such that

at least one type makes a strictly negative payment. Let i be the lowest such type. Then

we can build a new menu by assigning (qi−1, ti−1) to both types i− 1 and i. We claim that

this new menu satisfies all the constraints in P . First, because the original menu displays

nondecreasing quantities, so does the new menu. Second, the downward local constraint for

type i is now an identity. Third, the downward local constraint for type i + 1, if such type

exists, now writes as ui+1(qi+1, ti+1) ≥ ui+1(qi−1, ti−1), which follows from observing that the

initial menu satisfies ui+1(qi+1, ti+1) ≥ ui+1(qi, ti), qi ≥ qi−1, and ui(qi, ti) ≥ ui(qi−1, ti−1),

and from applying weak single-crossing to the last inequality. This proves the claim. The

resulting variation in expected profit is, up to multiplication by mi,

(ti−1 − ciqi−1)− (ti − ciqi) = ti−1 − ti + ci(qi − qi−1),

which is strictly positive as ti−1 ≥ 0 > ti by construction and qi ≥ qi−1. It follows that the

initial menu cannot be solution to P . The entrant’s expected profit is thus bounded above

by the value of the problem P+ obtained by adding to P the constraints ti ≥ 0 for all i.

Step 3 Fix a menu {(q1, t1), . . . , (qI , tI)} that satisfies all the constraints in P+ and, for

any type i, consider the trade (qi−1, ti−1). For i = 1, we clearly have ui(qi−1, ti−1) ≥ ui(0, 0)

as (q0, t0) = (0, 0). For i > 1, we know that type i − 1 weakly prefers (qi−1, ti−1) to (0, 0).

By weak single-crossing, so does type i. Thus, in any case, we have ui(qi−1, ti−1) ≥ ui(0, 0).

Because ti−1 ≥ 0, this shows that the indifference curve of type i going through (qi−1, ti−1)

must cross the q-axis at some point (qi, 0), with qi ∈ [0, qi−1]. The argument in the text then

shows that
∑

imi(ti − ciqi) ≤ 0. Hence the result. �

Proof of Corollary 1. According to Footnote 15, strict single-crossing implies that any best

response of the buyer features nondecreasing quantities. Suppose, by way of contradiction,

that the entrant trades, so that qi > qi−1 for some type i. Because any such type’s preferences

are strictly convex and ui(qi, ti) ≥ ui(qi−1, ti−1), the inequalities (3) now imply

ti − ti−1 − ci(qi − qi−1) < 0.

Thus the expected profit (2) is strictly negative, a contradiction. Hence the result. �

Proof of Theorem 2. The necessity part is shown in the text. Assume now that (i)–(iii)

hold. From (iii), T is defined over [0, qI ], and it is convex because ci is nondecreasing in i.

The proof consists of two steps.

Step 1 We first check that T implements the quantities qi, in the sense that, for each i,

32



qi maximizes ui(q, T (q)) with respect to q. This is easily shown by induction. First, from

(ii), type 1 optimally chooses q1 when facing the tariff T1(q) = c1q. Because T1 ≤ T and

T1(q1) = T (q1), it follows that q1 is indeed an optimal choice for type 1 when facing T . Next,

suppose that type i− 1 optimally chooses qi−1 when facing T . By weak single-crossing, for

type i we can then focus on quantities q ≥ qi−1. From (ii), type i optimally chooses qi when

facing the tariff Ti that coincides with T for quantities q ≤ qi−1 and has slope ci beyond qi−1.

Because Ti ≤ T and Ti(qi) = T (qi), it follows that qi is indeed an optimal choice of type i

when facing T . This concludes the induction step.

Step 2 To conclude the proof, we only need to check that (6) holds for the tariff T defined

by (i)–(iii). For each i, τTi (0, 0) is the supremum of the prices p such that

ui(qi, T (qi)) < max{ui(q + q′, T (q) + pq′) : q, q′} ≡ UT
i (p). (15)

Let us compute UT
i (ci). Because ∂−T (q) ≤ ci for q < qi−1 and ∂−T (q) ≥ ci for q > qi−1,

there exists for p = ci a solution to the maximization problem in (15) such that q = qi−1. It

then follows from (ii) that UT
i (ci) = ui(qi, T (qi)). Thus (15) does not hold for p = ci, which

implies τTi (0, 0) ≤ ci as UT
i (p) is nondecreasing in p. Hence the result. �

Proof of Theorem 3. We throughout set min ∅ ≡ ∞ and
∑

j<0 =
∑

j>I ≡ 0. The proof

consists of two steps.

Step 1 We first compute each seller’s continuation profit in state (p,Q−), which is the

sum of all the expected profits he earns at prices p′ ≥ p by trading with every type i such

that Di(p) > Q−. In any of her best responses, any such type purchases Q− at prices p′ < p.

Case 1: p > cI According to (iii), for any value of Q−, each seller supplies an infinite

quantity in state (p,Q−). The best response we select for every type i is to equally split her

residual demand in state (p,Q−) between the sellers. Because each type can purchase her

demand at price p, she makes no purchases at prices p′ > p. Thus each seller’s continuation

profit in state (p,Q−) is ∑
i

mi(p− ci)
[Di(p)−Q−]+

K
. (16)

Case 2: ci < p ≤ ci+1 According to (ii), for any value of Q−, each seller supplies an equal

share of type i’s residual demand in state (p,Q−). The best response we select for every type

j < i is to equally split her residual demand in state (p,Q−) between the sellers. Next, by

strict single-crossing, every type j ≥ i purchases [Di(p)−Q−]+/K from each seller at price p.
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Finally, each seller earns a continuation profit, which is the sum of all his expected profits at

prices p′ > p. Because type i can purchase her demand at price p, she makes no purchases at

prices p′ > p. To characterize the types who make purchases in excess of max{Di(p), Q
−},

we rank the demands Dj ≡ Dj(cj + ∆) according to the following recursive definition.

Definition 1 Let r(1) ≡ 1 and, for each ι, let r(ι+ 1) ≡ min{j : j > r(ι) and Dj > Dr(ι)}.
Let ι ≡ max{ι : r(ι) <∞} and D∞ ≡ ∞.

Now, let ιi(p,Q
−) ≡ min{ι : r(ι) > i and Dr(ι) > max{Di(p), Q

−}}. According to (ii),

cr(ιi(p,Q−)) + ∆ is the first price at which a quantity in excess of max{Di(p), Q
−} is supplied,

and r(ιi(p,Q
−)) is the first type willing to purchase some of it. By strict single-crossing,

every type j ≥ r(ιi(p,Q
−)) purchases (Dr(ιi(p,Q−)) − max{Di(p), Q

−})/K from each seller

at price cr(ιi(p,Q−)) + ∆, so that the expected margin on these trades is ∆. Next, every

type j ≥ r(ιi(p,Q
−) + 1) purchases (Dr(ιi(p,Q−)+1) −Dr(ιi(p,Q−)))/K from each seller at price

cr(ιi(p,Q−)+1) + ∆—and so on. Thus each seller’s continuation profit in state (p,Q−) is

∑
j<i

mj(p− cj)
[Dj(p)−Q−]+

K

+

(∑
j≥i

mj

)
(p− ci)

[Di(p)−Q−]+

K

+

 ∑
j≥r(ιi(p,Q−))

mj

∆
Dr(ιi(p,Q−)) −max{Di(p), Q

−}
K

+
ι∑

ι=ιi(p,Q−)+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
. (17)

Case 3: p ≤ c1 Let ι0(Q−) ≡ min{ι : Dr(ι) > Q−}. According to (i)–(ii), cr(ι0(Q−)) + ∆

is the first price at which a quantity in excess of Q− is supplied, and r(ι0(Q−)) is the first

type willing to purchase some of it. Thus each seller’s continuation profit in state (p,Q−) is ∑
j≥r(ι0(Q−))

mj

∆
Dr(ι0(Q−)) −Q−

K
+

ι∑
ι=ι0(Q−)+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
.

Step 2 We now check that no seller can strictly increase his continuation profit by

deviating from the candidate-equilibrium strategy. As the buyer’s decisions to purchase

from each seller at prices p′ < p do not depend on the offers he makes at prices p′ ≥ p, this

implies that no deviation is profitable.
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Case 1: p > cI According to (iii), for any value of Q−, each seller supplies an infinite

quantity in state (p,Q−). If a seller deviates to a finite q, then the best response we select

for every type i is to purchase min{q, [Di(p) − Q−]+/K} from him at price p. Because

p > cI ≥ ci for all i, (16) implies that the deviating seller cannot thereby strictly increase

his continuation profit. Thus no seller has an incentive to deviate, and the game ends in

state (p+ ∆,∞). In particular, whatever the sellers’ decisions at prices p′ ≤ cI , the highest

price at which trade can take place is cI + ∆. This allows us to apply the one-shot deviation

property at prices p′ ≤ cI .

Case 2: ci < p ≤ ci+1 According to (ii), for any value of Q−, each seller supplies an equal

share of type i’s residual demand in state (p,Q−). If a seller deviates to a quantity q, the

aggregate supply at prices p′ ≤ p becomes

S(p,Q−, q) ≡ Q− +
K − 1

K
[Di(p)−Q−]+ + q. (18)

We consider two types of deviations in turn.

Downward Deviations If Di(p) > Q−, a seller can deviate to q < [Di(p) − Q−]/K.

We compute his continuation profit from doing so by using the one-shot deviation property.

First, the best response we select for every type j < i is to purchase min{q, [Dj(p)−Q−]+/K}
from him at price p. Next, type i is rationed at price p because the aggregate supply at

prices p′ ≤ p is S(p,Q−, q) < Di(p) by (18). Hence, by strict single-crossing, every type

j ≥ i purchases q from the deviating seller at price p. Finally, the deviating seller earns

a continuation profit, which is the sum of all his expected profits at prices p′ > p and can

be computed as in (17), with p replaced by p + ∆ and Q− replaced by S(p,Q−, q). Thus

each seller’s continuation profit from deviating to q < [Di(p)−Q−]/K in state (p,Q−) and

returning to equilibrium play afterwards is∑
j<i

mj

[
(p− cj) min

{
q,

[Dj(p)−Q−]+

K

}
+ (p+ ∆− cj)

[Dj(p+ ∆)− S(p,Q−, q)]+

K

]

+

(∑
j≥i

mj

)
(p− ci)q

+

(∑
j≥i

mj

)
(p+ ∆− ci)

[Di(p+ ∆)− S(p,Q−, q)]+

K

+

 ∑
j≥r(ιi(p+∆,S(p,Q−,q)))

mj

∆
Dr(ιi(p+∆,S(p,Q−,q))) −max{Di(p+ ∆), S(p,Q−, q)}

K
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+
ι∑

ι=ιi(p+∆,S(p,Q−,q))+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
. (19)

To compare this to (17), we use the definition (18) of S(p,Q−, q). As Dj(p+∆) > S(p,Q−, q)

implies Dj(p) > Q−, we first obtain that the coefficient of q in each term of the first sum in

(19), when different from zero, is at least

(p− cj)
(

1− 1

K

)
− ∆

K
≥
(

1− 2

K

)
∆ ≥ 0

because p ≥ ci + ∆ ≥ cj + ∆ for j < i, and K ≥ 2. Similarly, by distinguishing whether

Di(p+ ∆) is higher or lower than S(p,Q−, q), we obtain that the coefficient of q in the next

three terms in (19) is at least(∑
j≥i

mj

)[
(p− ci)

(
1− 1

K

)
− ∆

K

]
≥

(∑
j≥i

mj

)(
1− 2

K

)
∆ ≥ 0

because p ≥ ci + ∆ and K ≥ 2. Hence choosing q′ ∈ (q, [Di(p)−Q−]/K] instead of q never

decreases the deviating seller’s continuation profit as long as ιi(p+ ∆, S(p,Q−, q′)) remains

constant. Eventually, however, this index may jump up, in which case the last sum in (19)

jumps down. When q′ is close to but below the value at which such a jump occurs, then

max{Di(p+ ∆), S(p,Q−, q′)} = S(p,Q−, q′) becomes close to Dr(ιi(p+∆,S(p,Q−,q′))), and hence

the third and fourth terms in (19) vanish while the second term in (19) becomes close to(∑
j≥i

mj

)
(p− ci)

{
Dr(ιi(p+∆,S(p,Q−,q′))) −Q− −

K − 1

K
[Di(p)−Q−]

}
.

As the first sum in (19) is at most equal to the first sum in (17), this reasoning shows that

all we need to prove is that π ≥ π(ι̂) for all ι̂ = ιi(p+∆, S(p,Q−, q)), . . . , ιi(p,Q
−)−1, where

π ≡

(∑
j≥i

mj

)
(p− ci)

Di(p)−Q−

K

+

 ∑
j≥r(ιi(p,Q−))

mj

∆
Dr(ιi(p,Q−)) −Di(p)

K
+

ι∑
ι=ιi(p,Q−)+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K

and, for any such ι̂,

π(ι̂) ≡

(∑
j≥i

mj

)
(p− ci)

{
Dr(ι̂) −Q− −

K − 1

K
[Di(p)−Q−]

}

+
ι∑

ι=ι̂+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
.

36



For each ι̂ = ιi(p+ ∆, S(p,Q−, q)) + 1, . . . , ιi(p,Q
−)− 1, we have

π(ι̂)− π(ι̂− 1) =

(∑
j≥i

mj

)
(p− ci)−

∑
j≥r(ι̂)

mj

∆

K

(Dr(ι̂) −Dr(ι̂−1)),

which is strictly positive because r(ι̂) > i, p ≥ ci + ∆, K ≥ 2, and Dr(ι̂) > Dr(ι̂−1). Hence, to

conclude, we only need to check that π ≥ π(ιi(p,Q
−)− 1). We have

π − π(ιi(p,Q
−)− 1) =

(∑
j≥i

mj

)
(p− ci)−

 ∑
j≥r(ιi(p,Q−))

mj

∆

K

[Di(p)−Dr(ιi(p,Q−)−1)],

which is nonnegative because r(ιi(p,Q
−)) > i, p ≥ ci + ∆, K ≥ 2, and Di(p) ≥ Dr(ιi(p,Q−)−1)

by definition of ιi(p,Q
−). This concludes the proof that no deviation to q < [Di(p)−Q−]/K

can increase a seller’s continuation profit in state (p,Q−).

Upward Deviations A seller can deviate to q > [Di(p) − Q−]+/K. We compute his

continuation profit from doing so by using the one-shot deviation property. First, the best

response we select for every type j ≤ i is to purchase [Dj(p)−Q−]+/K from him at price p.

Next, the best response we select for every type j > i is to purchase

min

{
q, [Dj(p)−Q−]+ − K − 1

K
[Di(p)−Q−]+

}
≥ 1

K
[Di(p)−Q−]+ (20)

from him at price p, reflecting that any such type can first purchase [Di(p)−Q−]+/K from

each of the nondeviating sellers and then purchase any additional quantity she is willing to

purchase at price p from the deviating seller, within the limit q. Finally, the deviating seller

earns a continuation profit, which can be computed as in the case of downward deviations.

Thus each seller’s continuation profit from deviating to q > [Di(p)−Q−]+/K in state (p,Q−)

and returning to equilibrium play afterwards is∑
j<i

mj(p− cj)
[Dj(p)−Q−]+

K

+
∑
j≥i

mj(p− cj) min

{
q, [Dj(p)−Q−]+ − K − 1

K
[Di(p)−Q−]+

}

+

 ∑
j≥r(ιi(p,S(p,Q−,q)))

mj

∆
Dr(ιi(p,S(p,Q−,q))) − S(p,Q−, q)

K

+
ι∑

ι=ιi(p,S(p,Q−,q))+1

∑
j≥r(ι)

mj

∆
Dr(ι) −Dr(ι−1)

K
. (21)

The first sum in (21) is the same as in (17). Next, using a summation by parts and (20), we
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obtain that the second sum in (21) is of the form

∑
j≥i

(∑
k≥j

mk

)
(p− cj)(qj − qj−1)

for nondecreasing quantities (qj)
I
j=i−1 such that qi−1 ≡ 0 and qi ≡ [Di(p)−Q−]+/K. Because

p ≤ cj for all j > i, this sum is at most equal to its first term corresponding to j = i,

which itself is equal to the second term in (17). Finally, S(p,Q−, q) > max{Di(p), Q
−} and

ιi(p, S(p,Q−, q)) ≥ ιi(p,Q
−) imply that the last two terms of (21) are at most equal to the

last two terms of (17). This concludes the proof that no deviation to q > [Di(p)−Q−]+/K

can increase a seller’s continuation profit in state (p,Q−).

Case 3: p ≤ c1 According to (i), for any value of Q−, each seller supplies a zero quantity

at price p. Thus no downward deviation is feasible. The proof that no upward deviation can

increase a seller’s continuation profit in state (p,Q−) is similar to that provided in Case 2

and is thus omitted. Hence the result. �

Proof of Theorem 4. Every type i’s preferences can be represented by Ui(q)− t for some

strictly concave utility function Ui that is differentiable over R++. The Inada condition (12),

which is here equivalent to limq→∞ U
′
i(q) ≤ 0, ensures that Di(p) < ∞ except perhaps for

p = 0. We will often use the property that, when facing a convex market tariff, each type

optimally purchases the totality of the sellers’ supply until her demand is satisfied at some

price or, equivalently, until the price exceeds her willingness-to-pay. Therefore, if type i

trades at price p, then she overall purchases at most Di(p); if she at least purchases q > 0,

then she is not willing to trade at prices p > U ′i(q).

We first dispose of the case where the JHG allocation (Qi, Ti)
I
i=1 is degenerate, that is,

QI = 0. Then, by Theorem 2, Condition EP is satisfied. As the buyer’s preferences are

strictly convex and types are ordered according to the strict single-crossing condition, it

follows from Corollary 1 that there is market breakdown. Thus no trade takes place in any

equilibrium of any game Γn, and each equilibrium implements the degenerate JHG allocation.

Hence the result.

From now on, we assume that the JHG allocation is nondegenerate, that is, QI > 0.

By Theorem 2, this amounts to assuming that there exists some i such that U ′i(0) > ci or,

equivalently, Di(ci) > 0.

Our first task is to show that we can put uniform bounds on equilibrium prices and

quantities. The proof of the following lemma—and of all the intermediary results used in

the proof of Theorem 4—is provided in Appendix A.
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Lemma 3 There exist a finite price p and finite quantities Q > Q > 0 such that, for n high

enough, in any equilibrium of Γn type I is not willing to trade at prices strictly higher than

p and purchases an aggregate quantity in [Q,Q].

Thanks to this result, we can in what follows consider that the auction ends when price

p is reached, that supply functions are defined over [0, p] and bounded above by Q, and that

tariffs are defined over [0, Q]. This makes no difference for the quantities chosen by the buyer

on the equilibrium path, and the profitability of the deviation we shall soon consider does

not depend on the values of these functions at higher arguments. Hence, for n high enough

and for any equilibrium of Γn, there exists a finite highest price pi,n at which type i trades on

the equilibrium path; we set pi,n ≡ U ′i(0) if type i does not trade. By strict single-crossing,

p1,n ≤ p2,n ≤ . . . ≤ pI,n < p. Let Qi,n be the aggregate quantity purchased by type i on the

equilibrium path. By strict single-crossing again, Q1,n ≤ Q2,n ≤ . . . ≤ QI,n ≤ Q.

From now on, we fix a sequence of equilibria of (Γn)n∈N that are robust to irrelevant

offers. For each n, the following objects are defined on the equilibrium path:

• skn(p), seller k’s supply at price p;

• sn(p) ≡
∑

k s
k
n(p), the aggregate supply at price p;

• s−kn (p) ≡ sn(p)− skn(p), the aggregate supply of sellers other than k at price p;

• Sn(p) ≡
∑

p′≤p sn(p′), the aggregate supply at prices lower than or equal to p;

• πkn(p), seller k’s expected profit at price p;

• γkn(p) ≡
∑

p′≥p π
k
n(p′), seller k’s continuation profit at price p.

In any equilibrium of Γn that is robust to irrelevant offers, each seller anticipates that

deviating at prices p′ ≥ p will not affect the buyer’s decisions at prices p′ < p. We can

thus focus on continuation profits as in the proof of Theorem 3. This, in particular, implies

that γkn(p) ≥ 0 for all k and p; otherwise, seller k could strictly increase his expected profit

by withdrawing his offers at prices p′ ≥ p.

To formulate our convergence result, we extend the supply functions (Sn)n∈N to the whole

of [0, p] by letting

For all n and p, Sn(p) ≡ Sn(∆nbp/∆nc),

where bp/∆nc is the integer part of p/∆n. By construction, for each n, the function Sn is

nondecreasing and right-continuous; moreover, for each p ∈ [0, p] and for n high enough,
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Sn(p) ∈ [0, Q]. Therefore, by Helly’s selection theorem (Billingsley (1995, Theorem 25.9)),

there exists a nondecreasing right-continuous function S∞ and a subsequence of (Sn)n∈N that

converges pointwise to S∞ over [0, p] at the continuity points of S∞. In what follows, and

with no loss of generality, we take this subsequence to be the original sequence (Sn)n∈N. The

marginal tariffs associated to Sn and S∞ are their generalized inverses

For each q ∈ [0, Q], tn(Q) ≡ inf {p : Q ≤ Sn(p)} and t∞(Q) ≡ inf {p : Q ≤ S∞(p)},

with inf ∅ ≡ p; they are nondecreasing and left-continuous. It follows from the proof of

Skorokhod’s representation theorem (Billingsley (1995, Theorem 25.6)) that the sequence

(tn)n∈N converges pointwise to t∞ at the continuity points of t∞, that is, everywhere over

[0, Q] except at countably many points. Letting Tn and T∞ be the convex tariffs obtained

by integrating the marginal tariffs tn and t∞, we then have

sup
Q∈[0,Q]

|Tn(Q)− T∞(Q)| = sup
Q∈[0,Q]

∣∣∣∣∫ Q

0

[tn(q)− t∞(q)] dq

∣∣∣∣ ≤ ∫ Q

0

|tn(q)− t∞(q)| dq,

which converges to zero by the bounded convergence theorem as the functions (tn)n∈N are

uniformly bounded by p and converge pointwise to t∞ except at countably many points.

Thus the sequence (Tn)n∈N converges uniformly to T∞. This implies that the graph of

T∞ is the closed limit of the graph of Tn as n goes to ∞ (Aliprantis and Border (2006,

Definition 3.80)). As a result, and because every type i has strictly convex preferences,

we can conclude from Berge’s maximum theorem (Aliprantis and Border (2006, Theorem

17.31)) that Qi,∞ ≡ limn→∞Qi,n is well defined and is the unique optimal choice of type i

against the limit tariff T∞. By Lemma 3, we have QI,∞ ≥ Q > 0.

With these preliminaries at hand, we turn to our main argument. As limn→∞Qi,n = Qi,∞

and the sequence (Tn)n∈N converges uniformly to T∞, limn→∞ Tn(Qi,n) = T∞(Qi,∞). Our

goal is to show that (Qi,∞, T∞(Qi,∞))Ii=1 is the JHG allocation. We will rely on the following

characterization of the JHG allocation, which is of independent interest.

Lemma 4 The allocation implemented by a convex tariff T is the JHG allocation if and

only if it is budget-feasible and

For all p and s, B(p, s) ≡
∑
i

mi(p− ci) min{[Di(p)− S(p−)]+, s} ≤ 0, (22)

where S is the supply function associated to T and S(p−) ≡ limp′↑p S(p′).

We denote by Bn and B∞ the functions B in (22) obtained for S = Sn and S = S∞,

respectively. A key observation is that the functions πkn, Bn, and sn are related as follows:

For each p,
∑
k

πkn(p) = Bn(p, sn(p)). (23)
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The allocation (Qi,∞, T∞(Qi,∞))Ii=1 is budget-balanced as it is the limit of the equilibrium

allocations. Thus, by Lemma 4, to prove that it coincides with the JHG allocation, we only

need to show that (22) holds for B∞. Thus suppose, by way of contradiction, that there

exists some p such that B∗∞(p) ≡ max{B∞(p, s) : s ≥ 0} > 0, and let p̂∞ the supremum of

such p. Our next result gathers useful properties related to this threshold.

Lemma 5 The following holds:

(i) p̂∞ ≤ p.

(ii) B∗∞(p) > 0 if and only if there exists some i such that p > ci and Di(p) > S∞(p−).

(iii) The highest i satisfying the property in (ii) is equal to a constant ι̂∞ for all p in an

open left-neighborhood V of p̂∞ and

For each p ∈ V , Dι̂∞(p)− S∞(p−) ∈ arg max{B∞(p, s) : s ≥ 0}. (24)

Using Lemma 5 along with the definition of B∞ and the left-continuity of the mapping

p 7→ S∞(p−), we can select p0 arbitrarily close to p̂∞ such that: (1) B∗∞(p0) > 0; (2) p0 ∈ V ;

(3) p0 is a continuity point of S∞; (4) p0 is a multiple of ∆n for n high enough. Any seller k

can then deviate in Γn when price p0 is quoted by supplying

ŝkn ≡ [Dι̂∞(p0)− Sn(p−0 )− s−kn (p0)]+

at price p0 and nothing afterwards. Because p0 ∈ V , we have Dι̂∞(p0) > S∞(p−0 ). Moreover,

because p0 is a continuity point of S∞, we have S∞(p−0 ) = S∞(p0) = limn→∞ Sn(p0). Finally,

for each n, Sn(p0) ≥ Sn(p−0 ) + s−kn (p0) by definition. Thus, for n high enough, ŝkn is strictly

positive, and this deviation is nontrivial.

How do the different types react to this deviation, and what is the impact on seller k’s

continuation profit at price p0? Observe first that trading with any type i ≤ ι̂∞ at price p0

is always profitable as ci ≤ cι̂∞ < p0. Thus, from seller k’s perspective, any such type will

at worst first exhaust his competitors’ supply s−kn (p0) at price p0 before purchasing anything

from him. That is, her residual demand for the quantity ŝkn supplied by seller k at price p0

is [Di(p0) − Sn(p−0 ) − s−kn (p0)]+. In particular, type ι̂∞ has a unique best response at price

p0 that involves purchasing ŝkn from seller k. By strict single-crossing, this a fortiori holds

for types i > ι̂∞. Therefore, we can conclude that every seller k’s continuation profit γkn(p0)

at price p0 is at least An(s−kn (p0)), where

For each s, An(s) ≡
∑
i

mi(p0 − ci)[min{Di(p0), Dι̂∞(p0)} − Sn(p−0 )− s]+.
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We now aggregate these profits. Because An(s) is convex in s, we have

∑
k

An(s−kn (p0)) ≥ KAn

(
1

K

∑
k

s−kn (p0)

)
= KAn

(
K − 1

K
sn(p0)

)
by Jensen’s inequality. As p0 is a continuity point of S∞, limn→∞ Sn(p−0 ) = S∞(p0) = S∞(p−0 )

and limn→∞ sn(p0) = 0. Thus

lim
n→∞

An

(
K − 1

K
sn(p0)

)
=
∑
i

mi(p0 − ci)[min{Di(p0), Dι̂∞(p0)} − S∞(p−0 )]+

=
∑
i

mi(p0 − ci) min{[Di(p0)− S∞(p−0 )]+, Dι̂∞(p0)− S∞(p−0 )}

= B∞(p0, Dι̂∞(p0)− S∞(p−0 ))

= B∗∞(p0),

where the fourth equality follows from (24). Hence the aggregate equilibrium continuation

profits at p0 satisfy

lim inf
n→∞

∑
k

γkn(p0) ≥ KB∗∞(p0) > 0. (25)

Our goal in the remainder of the proof consists in deriving an upper bound on aggregate

continuation profits that contradicts (25) for an appropriate choice of p0.

To this end, we first provide an alternative expression for those profits. For each n,

summing over the multiples p ≥ p0 of ∆n and taking advantage of Lemma 3 and (23) yields∑
k

γkn(p0) =
∑
p≥p0

∑
k

πkn(p)

=
∑

p≥p≥p0

Bn(p, sn(p))

=
∑

p≥p≥p0

∑
i

mi(p− ci) min{[Di(p)− Sn(p−)]+, Sn(p)− Sn(p−)} (26)

=
∑

p≥p≥p0

∑
i

mi(p− ci)[min{Di(p), Sn(p)} − Sn(p−)]+

=
∑
i

∫
[p0,p]

mi(p− ci)σi,n(dp),

where σi,n is the measure with finite support defined by

For all p ∈ [0, p], σi,n({p}) = [min{Di(p), Sn(p)} − Sn(p−)]+. (27)

This is a Borel measure over [0, p] of at most mass Q. As is customary, let us endow the space

of such measures with the weak∗ topology generated by all continuous real-valued functions.

The following lemma then characterizes the weak∗ limit of the sequence (σi,n)n∈N.
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Lemma 6 Let pi,∞ ≡ inf {p ∈ [0, p] : S∞(p) ≥ Di(p)}. Then the unique measure σi,∞ over

the Borel sets of [0, p] such that

For each p ∈ [0, p], σi,∞([0, p]) = min{S∞(p), Di(pi,∞)} (28)

is the weak∗ limit of the sequence (σi,n)n∈N.

Because p0 is a continuity point of S∞ and hence not an atom of σi,∞ for all i, it follows

from (26) and Lemma 6 that

lim
n→∞

∑
k

γkn(p0) =
∑
i

∫
[p0,p]

mi(p− ci)σi,∞(dp).

The idea is now to cut this integral into two pieces. The following lemma reflects the intuitive

idea that there are no profits to be earned at prices p > p̂∞ as B∗∞(p) = 0 for any such p.

Lemma 7 If p1 > p̂∞, then∑
i

∫
(p1,p]

mi(p− ci)σi,∞(dp) ≤ 0.

Fix some p1 > p̂∞. Lemma 7 together with (25) implies

KB∗∞(p0) ≤
∑
i

∫
[p0,p1]

mi(p− ci)σi,∞(dp)

≤
∑
i

mi(p1 − ci)σi,∞([p0, p1])

=
∑
i

mi(p1 − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p1)− S∞(p0)},

where the equality follows from (28) along with the continuity of S∞ at p0. Because p1 > p̂∞

is arbitrary and S∞ is right-continuous, it follows that∑
i

mi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p̂∞)− S∞(p0)} ≥ KB∗∞(p0),

where p0 can be arbitrarily close to p̂∞. We now prove that this inequality leads to a

contradiction, which completes the proof of Theorem 4. Observe that, because B∞(p, s) is

left-continuous in p, we have limp0↑p̂∞ B
∗
∞(p0) = B∗∞(p̂∞). We distinguish two cases.

Case 1 Suppose first that B∗∞(p̂∞) > 0. Letting p0 converge to p̂∞ from below, we have∑
i

mi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p̂−∞)]+, S∞(p̂∞)− S∞(p̂−∞)} ≥ KB∗∞(p̂∞). (29)
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If pi,∞ = p̂∞, then it is obvious that each minimum in the left-hand side equals

min{[Di(p̂∞)− S∞(p̂−∞)]+, S∞(p̂∞)− S∞(p̂−∞)}.

The same equality actually holds in all other cases. Indeed, if pi,∞ < p̂∞, then S∞(p̂−∞) ≥
S∞(pi,∞) ≥ Di(pi,∞) > Di(p̂∞), and both minima are equal to zero, while, if pi,∞ > p̂∞,

then Di(p̂∞) > Di(pi,∞) ≥ S∞(p−i,∞) ≥ S∞(p̂∞) ≥ S∞(p̂−∞), and both minima are equal to

S∞(p̂∞)− S∞(p̂−∞). It follows that the left-hand side of (29) equals∑
i

mi(p̂∞ − ci) min{[Di(p̂∞)− S∞(p̂−∞)]+, S∞(p̂∞)− S∞(p̂−∞)}

= B∞(p̂∞, S∞(p̂∞)− S∞(p̂−∞))

≤ B∗∞(p̂∞),

which contradicts (29) as K ≥ 2. This case is thus impossible.

Case 2 Suppose next that B∗∞(p̂∞) = 0. Then, proceeding as in Lemma 5, we obtain

Dι̂∞(p̂∞) = S∞(p̂−∞). We have, for p0 arbitrarily close to p̂∞,

R(p0) ≡
∑

imi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p̂∞)− S∞(p0)}∑
imi(p0 − ci) min{[Di(p0)− S∞(p0)]+, Dι̂∞(p0)− S∞(p0)}

≥ K, (30)

using (24) along with the continuity of S∞ at p0. It follows from Dι̂∞(p̂∞) = S∞(p̂−∞) that

pι̂∞,∞ = p̂∞ and pi,∞ < p̂∞ for all i < ι̂∞. Hence, for any such i, Di(p0) ≤ Di(pi,∞) < S∞(p0)

for p0 close enough to p̂∞. Thus, for any such p0, the denominator of R(p0) is equal to(∑
i≥ι̂∞

mi

)
(p0 − cι̂∞)[Dι̂∞(p0)− S∞(p0)], (31)

while the numerator of R(p0) is equal to∑
i≥ι̂∞

mi(p̂∞ − ci) min{[Di(pi,∞)− S∞(p0)]+, S∞(p̂∞)− S∞(p0)}.

Because ci ≥ p̂∞ for all i > ι̂∞ by definition of ι̂∞ andDι̂∞(p̂∞) = Dι̂∞(pι̂∞,∞) ≤ S∞(pι̂∞,∞) =

S∞(p̂∞), the numerator of R(p0) is bounded above by(∑
i≥ι̂∞

mi

)
(p̂∞ − cι̂∞)[Dι̂∞(p̂∞)− S∞(p0)]. (32)

Combining (30)–(32), we obtain

(p̂∞ − cι̂∞)[Dι̂∞(p̂∞)− S∞(p0)]

(p0 − cι̂∞)[Dι̂∞(p0)− S∞(p0)]
≥ R(p0) ≥ K,

a contradiction as K ≥ 2 and p0 can be arbitrarily close to p̂∞. Hence the result. �
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Supplementary Material (For Online Publication)

Appendix A: Proofs of Technical Results

Proof of Lemma 1. For the sake of clarity, the index i is hereafter omitted. The proof

consists of three steps.

Step 1 We begin by analyzing the statement p < τT (q′, t′). By definition, τT (q′, t′) is the

supremum of the set of prices p such that

max{u(q + q′, T (q) + t′) : q} = uT (q′, t′)

< max{uT (q′ + q′′, t′ + pq′′) : q′′}

= max{u(q + q′ + q′′, T (q) + t′ + pq′′) : q, q′′}

= max{u(q + q′, T �Tp(q) + t′) : q},

where Tp is the linear tariff with slope p and T �Tp(q) ≡ min{T (q′)+p(q− q′) : q′ ∈ [0, q]} is

the infimal convolution of T and Tp (Rockafellar (1970, Theorem 5.4)). Thus the statement

p < τT (q′, t′) is equivalent to

max{u(q + q′, T (q) + t′) : q} < max{u(q + q′, T �Tp(q) + t′) : q}. (A.1)

Notice that T �Tp ≤ T , and that both tariffs coincide up to some quantity qp, beyond

which the inequality is strict. Two cases can arise. Either the maximization problem on the

right-hand side of (A.1) admits one solution at most equal to qp. Then (A.1) is an equality.

Or all the solutions to this problem are strictly higher than qp. Then (A.1) cannot be an

equality because, if it were, then there would exist a solution to the maximization problem

on the left-hand side of (A.1) at most equal to qp, and thus this solution would also be

a solution to the maximization problem on the right-hand side of (A.1), a contradiction;

therefore, (A.1) must hold because in any case T �Tp ≤ T . Overall, we have shown that

the statement p < τT (q′, t′) is equivalent to the statement that all the solutions to the

maximization problem on the right-hand side of (A.1) are strictly higher than qp.

Step 2 Next, fix t′ and, for any quantities q′0 and q′1 such that q′0 < q′1, define the following

quasiconcave functions:

v0(q, t) ≡ u(q + q′0, t+ t′) and v1(q, t) ≡ u(q + q′1, t+ t′).

Assumption 2 expresses that the indifference curves for v0 are everywhere steeper than the

indifference curves for v1. Therefore, if two buyers with utilities v0 and v1 face the same
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tariff t = T (q), then the lowest optimal quantity choice for the buyer with utility v0 is at

least as large as the lowest optimal quantity choice for the buyer with utility v1.

Step 3 Now, suppose that p < τT (q′1, t
′). From Step 1, we first obtain that all the

solutions to the maximization problem on the right-hand side of (A.1) (with q′ replaced by

q′1) are strictly higher than qp. From Step 2, we next obtain that all the solutions to the

maximization problem on the right-hand side of (A.1) (with q′ replaced by q′0) are strictly

higher than qp. From Step 1 again, we finally obtain p < τT (q′0, t
′). Because p is arbitrary,

this shows that τT (q′1, t
′) ≤ τT (q′0, t

′) for all t′ and q′0 < q′1, and, therefore, that the property

expressed by Assumption 2 is inherited by τT (q′, t′) from τ(q, t); a fortiori, Assumption 1

holds for τT (q′, 0). The result follows. �

Proof of Lemma 3. By assumption, there exists a type i such that Di(ci) > 0. Thus, as

Di is continuous, there exists n0 such that Di(ci + ∆n0) > 0; define p ≡ ci + ∆n0 . Because

ci belongs to the price grid with tick size ∆ and the price grids for tick sizes ∆n = ∆/2n are

nested, p belongs to the price grid with tick size ∆n for all n ≥ n0.

Fix some n ≥ n0, and an equilibrium of Γn. Suppose first that the aggregate quantity Q

purchased by type I in equilibrium satisfies Q < Di(p). Then Q < DI(p) by single-crossing.

As type I overall purchases Q, the aggregate supply at prices lower than or equal to p must

be such that S(p) ≤ Q. In equilibrium, aggregate revenues are constrained by individual

rationality, because no type would accept to pay more than UI(Q) − UI(0). By ignoring

costs, we obtain that aggregate expected profits are at most UI(Q)− UI(0).

Now, any seller can deviate when price p > c1 is quoted by supplying Di(p)−Q > 0 at

price p and nothing afterwards. The aggregate supply at prices p′ < p is unchanged, and is

at most S(p) ≤ Q. Thus, as revenues are nonnegative, the deviating seller’s expected profit

at prices p′ < p is at worst −cIQ. Second, trading with any type j < i at price p is always

profitable as cj ≤ ci < p. Thus, from the deviating seller’s perspective, these types will at

worst choose not to trade with him at price p. Third, the aggregate supply at prices p′ ≤ p

following the deviation is at most S(p) +Di(p)−Q ≤ Di(p). Thus type i has a unique best

response at price p that involves purchasing Di(p) − Q from the deviating seller. By strict

single-crossing, this a fortiori holds for types j > i. Finally, the deviating seller earns zero

profits at prices p′ > p. In equilibrium, this deviation cannot be profitable, so that a fortiori

−cIQ+

(∑
j≥i

mj

)
(p− ci)[Di(p)−Q] ≤ UI(Q)− UI(0).

Because Di(p) > 0 and p > ci, this inequality is violated at Q = 0. This shows that the
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aggregate quantity Q purchased by type I is bounded away from zero in all equilibria in

which Q < Di(p). As Q ≥ Di(p) > 0 in all other equilibria, it follows that there exists

Q > 0 such that type I purchases at least Q in any equilibrium. In particular, because

Di(ci) > 0 by assumption, we can select Q < Di(ci); and we can select Q independently of

the equilibrium of Γn, and independently of n ≥ n0.

Finally, because type I purchases at least Q, she is not willing to trade at prices p > p ≡
U ′I(Q). Moreover, as expected profits are nonnegative in equilibrium, she must purchase her

aggregate quantity Q at a price at least equal to c1. This implies that she purchases at most

Q ≡ DI(c1), which is finite and strictly higher than Q. The result follows. �

Proof of Lemma 4. Suppose first that (22) holds and that the tariff T implements a

budget-feasible allocation (qi, T (qi))
I
i=1. Then, for all i and p, p > ci implies Di(p) ≤ S(p−);

otherwise, B(p, s) would be strictly positive for s small enough, a contradiction. Thus no

type i is willing to trade at prices p > ci along T ; that is, for each i, U ′i(qi) ≤ ci and

T (qi) − T (qi−1) ≤ ci(qi − qi−1). By a now standard argument, budget-feasibility implies

that these last inequalities hold as equalities. If qi−1 = qi, then we obtain U ′i(qi−1) ≤ ci,

and (ii) in Theorem 2 holds. If qi−1 < qi, then, because ∂−T (qi) ≤ U ′i(qi) ≤ ci and T is

convex with T (qi)− T (qi−1) = ci(qi− qi−1), it must be that T is affine with slope ci over the

interval [qi−1, qi], as required by (iii) in Theorem 2; hence ∂−T (qi) = U ′i(qi) = ci, and (ii) in

Theorem 2 again holds. Thus (qi, T (qi))
I
i=1 is the JHG allocation, and T is, up to inessential

modifications beyond qI , the JHG tariff. Conversely, consider the JHG tariff T and the JHG

allocation (Qi, Ti)
I
i=1 it implements, which is budget-balanced by construction. From (ii) in

Theorem 2, U ′i(Qi) ≤ ci and Qi ≤ S(ci) for all i. Consider any price p. If p ≤ c1, then (22)

clearly holds. If p > ci for some i, then p > U ′i(Qi) and hence Di(p) ≤ Qi ≤ S(ci) ≤ S(p−),

so that (22) again holds. The result follows. �

Proof of Lemma 5. We prove each statement in turn.

(i) By Lemma 3, we have DI(p) ≤ Sn(p−) for all p > p and n large enough. Taking

limits, this implies that DI(p) ≤ S∞(p−) at any continuity point p > p of S∞, so that

Di(p) ≤ DI(p) ≤ S∞(p−) for all i and p > p by continuity and single-crossing. Therefore,

B∗∞(p) = 0 for all p > p by definition of B∞, and hence p̂∞ ≤ p by definition of p̂∞.

(ii) Summing by parts the expression (22) for B∞(p, s) yields

∑
i

(∑
j≥i

mj

)
(p− ci)(min{[Di(p)− S∞(p−)]+, s} −min{[Di−1(p)− S∞(p−)]+, s}),

which is at most zero if p > ci implies Di(p) ≤ S∞(p−) for all i.
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(iii) The set I∞ ≡ {i : p̂∞ > ci and Di(p̂∞) ≥ S∞(p̂−∞)} must be nonempty; otherwise,

for all i and p < p̂∞ close enough to p̂∞, p > ci would imply Di(p) < S∞(p−), contradicting

(ii) and the definition of p̂∞. Define ι̂∞ ≡ max I∞. Then cι̂∞ < p̂∞ ≤ cι̂∞+1 and Dι̂∞(p̂∞) ≥
S∞(p̂−∞), so that, for each p < p̂∞ close enough to p̂∞, cι̂∞ < p ≤ cι̂∞+1 and Dι̂∞(p) > S∞(p−).

Hence, for any such p, ι̂∞ is the highest i satisfying the property in (ii). This holds for p in

an open left-neighborhood of p̂∞, because, if this holds for some p, then cι̂∞ < p′ < p ≤ cι̂∞+1

and Dι̂∞(p′)− S∞(p′−) > Dι̂∞(p)− S∞(p−) > 0 for all p′ close enough to p. Finally, (24) is

a direct consequence of (22) and of the definition of ι̂∞. The result follows. �

Proof of Lemma 6. Observe first that, by Lemma 3, DI(p) ≤ Sn(p) for all p > p and n large

enough. As in the proof of Lemma 5(i), this implies that Di(p) ≤ Sn(p) and Di(p) ≤ S∞(p)

for all i by continuity and single-crossing. Thus pi,∞ is well defined. That condition (28)

determines a unique measure over the Borel sets of [0, p] is standard (Billingsley (1995,

Theorem 12.4)). We must show that (σi,n([0, p]))n∈N converges to σi,∞([0, p]) at any continuity

point p of p 7→ σi,∞([0, p]). By (28), the set of such points is included in the set of continuity

points of S∞. Moreover, using the definition (27) of σi,n, we can check that

For each p ∈ [0, p], σi,n([0, p]) = min{Sn(p), Di(pi,n)},

where, according to our preliminary observation, pi,n ≡ inf {p ∈ [0, p] : Sn(p) ≥ Di(p)}
is well defined for n large enough. As Di is continuous and limn→∞ Sn(p) = S∞(p) at

any continuity point of S∞, we thus only need to prove that limn→∞ pi,n = pi,∞. Hence

consider a subsequence of (pi,n)n∈N whose elements all satisfy pi,n < pi,∞, and suppose, by

way of contradiction, that it does not converge to pi,∞. Thus there exists ε > 0 and a

subsubsequence whose elements all satisfy pi,n < pi,∞ − ε. Using the definition of pi,n and

pi,∞ and the monotonicity of supply and demand functions, we then obtain that for each

p ∈ (pi,∞ − ε, pi,∞), we have Sn(p) ≥ Di(p) > S∞(p) for any such n, a contradiction as

limn→∞ Sn(p) = S∞(p) if p is a continuity point of S∞. A symmetric argument applies to a

subsequence of (pi,n)n∈N whose elements all satisfy pi,n > pi,∞. The result follows. �

Proof of Lemma 7. Because pj,∞ is nondecreasing in j, we can partition the integration

interval into (i) successive intervals (pj−1,∞, pj,∞), on which σi,∞ puts a mass if and only if

i ≥ j by (28), and (ii) possible mass points at each bound, once more using (28) to compute

the mass. To avoid double-counting in (ii), we let A be the set of pj,∞, and for p ∈ A we let

j(p) be the lowest type such that pj,∞ = p. We obtain∑
i

∫
(p1,p]

mi(p− ci)σi,∞(dp)
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=
∑
j

∫
(max {pj−1,∞,p1},max{pj,∞,p1})

[∑
i≥j

mi(p− ci)

]
dS∞(p)

+
∑

p∈A,p>p1

∑
j≥j(p)

mj(p− cj)[min{Dj(p), S∞(p)} − S∞(p−)]+,

with
∫
∅ ≡ 0. For each integral on the right-hand side, when p < pj,∞ we have Dj(p) >

S∞(p) ≥ S∞(p−); but p > p1 > p̂∞ implies B∗∞(p) = 0, so that Dj(p) > S∞(p−) implies

p ≤ cj by Lemma 5(ii). Each of these integrals is thus at most zero. For the second term on

the right-hand side, fix p ∈ A, p > p1. Then we have p = pj(p),∞, and for j < j(p) we have

p > pj,∞ by definition of j(p). Therefore, σj,∞ puts no mass on p if j < j(p), so that we can

extend the sum
∑

j≥j(p) to all types. Hence this sum is equal to∑
j

mj(p− cj) min{[Dj(p)− S∞(p−)]+, [S∞(p)− S∞(p−)]+} = B∞(p, S∞(p)− S∞(p−)),

which is at most zero as p1 > p̂∞. The result follows. �

Appendix B: Arbitrary Distributions

In this appendix, we extend Theorem 1 to arbitrary distributions of types with bounded

support I over the real line. Denote by i the buyer’s type, and by m the corresponding

distribution; m may be continuous, discrete, or mixed. It will sometimes be convenient to

think of any point in I0 ≡ [min I,max I] as a type, even if it does not belong to I. We

impose the same conditions on the utility functions ui and on the upper-tail conditional

expectations of unit costs cmi ≡ Em [cj |j ≥ i] as in Section 2, and we moreover assume that

ui(q, t) is jointly continuous in (i, q, t) and that ci is continuous in i.

The proof that Condition EP is necessary for entry-proofness is exactly the same as in

Section 3. There only remains to show that Condition EP is sufficient for entry-proofness.

According to the taxation principle, there is no loss of generality in letting the entrant offer

a tariff specifying a transfer T (q) to be paid as a function of the quantity q demanded by

the buyer, with T (0) ≡ 0. We assume that the domain of T is a compact set containing

0 and that T is bounded from below and lower semicontinuous. These minimal regularity

conditions ensure that any type i’s maximization problem

max{ui(q, T (q)) : q ≥ 0} (B.1)

has a solution. The following result then holds.

Lemma B.1 There exists for each i a solution qi to (B.1) such that
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(i) The mapping i 7→ qi is nondecreasing.

(ii) The mapping i 7→ T (qi)− ciqi is bounded from below and lower semicontinuous.

Proof. As in Step 1 of the proof of Theorem 1, the weak single-crossing condition ensures

that we can select the buyer’s best response in such a way that the mapping i 7→ qi is

nondecreasing. This implies (i). As for (ii), observe first that, because T has a compact

domain and is bounded from below, the mapping i 7→ T (qi) − ciqi is bounded from below

no matter the buyer’s best response. To show that the buyer’s best response can be chosen

in such a way that this mapping is lower semicontinuous, it is useful to fix a best response

i 7→ qi and some type i0 ∈ I0, and then to distinguish two cases.

Case 1 Suppose first that i 7→ qi is continuous at i0. Then, as T is lower semicontinuous

and ci is continuous in i, we have lim infi→i0 T (qi)− ciqi ≥ T (qi0)− ci0qi0 .

Case 2 Suppose next that i 7→ qi is discontinuous and left-continuous at i0. (The other

types of jump discontinuities can be treated in a similar way.) Because the domain of T

is a compact set, it must include q+
i0
≡ limi↓i0 qi; moreover, T must be right-continuous

at q+
i0

; otherwise, some type i > i0 would be strictly better off purchasing q+
i0

instead

of qi, a contradiction. Now, type i0 must be indifferent between the trades (qi0 , T (qi0))

and (q+
i0
, T (q+

i0
)). Indeed, we clearly have ui0(qi0 , T (qi0)) ≥ ui0(q

+
i0
, T (q+

i0
)) and, if we had

ui0(qi0 , T (qi0)) > ui0(q
+
i0
, T (q+

i0
)), then, by continuity of ui in i, some type i > i0 would be

strictly better off purchasing qi0 instead of qi, a contradiction. We can thus select the trade

of type i0 so that lim infi→i0 T (qi)− ciqi ≥ T (qi0)− ci0qi0 . The result follows. �

The next step of the analysis consists in checking that any distribution that satisfies

Condition EP can be weakly approximated by a sequence of discrete distributions that

satisfy Condition EP. Specifically, the following result holds.

Lemma B.2 If m satisfies Condition EP, then there exists a sequence (mn)n∈N of discrete

distributions that weakly converges to m and such that

For all n and i, cmn
i ≥ cmi .

Proof. The proof is a simple adaptation of Hendren (2013, Supplementary Material, Lemma

A.7), using the fact that ci is continuous in i and that, as cmi is nondecreasing in i, cmax I ≥ ci

for all i. Hendren’s (2013) proof establishes that the sequence of cumulative distribution

functions associated to the sequence (mn)n∈N can be chosen so as to uniformly converge to

the cumulative distribution function associated to m. The result follows. �
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We are now ready to complete the proof of Theorem 1 for arbitrary distributions. Let

m be a distribution that satisfies Condition EP. Fix a tariff T as above and, for each i, a

solution qi to (B.1) such that properties (i)–(ii) in Lemma B.1 hold. Lemma B.2 implies that

there exists a sequence of discrete distributions (mn)n∈N that weakly converges to m and

such that each mn satisfies Condition EP. Taking advantage of the fact that the mapping

i 7→ qi is nondecreasing, we can apply the version of Theorem 1 for discrete distributions

provided in the main text to obtain

For each n,

∫
[T (qi)− ciqi] mn(di) ≤ 0.

Because the mapping i 7→ T (qi)− ciqi is bounded from below and lowersemicontinuous, the

weak convergence of the sequence (mn)n∈N to m then yields∫
[T (qi)− ciqi] m(di) ≤ lim inf

n→∞

∫
[T (qi)− ciqi] mn(di) ≤ 0

according to a corollary of the portmanteau theorem (Aliprantis and Border (2006, Theorem

15.5)). Hence, if the distribution m satisfies Condition EP, no tariff can guarantee the

entrant a strictly positive expected profit, which is the desired result.

Appendix C: Examples

The following examples for the buyer’s preferences illustrate the range of possible applications

of our model.

Quasilinear Utility We may first suppose, as in the models of trade on financial markets

studied by Glosten (1989, 1994), Biais, Martimort, and Rochet (2000), Mailath and Nöldeke

(2008), and Back and Baruch (2013), that every type i’s preferences are quasilinear,

ui(q, t) ≡ Ui(q)− t,

for some concave utility function Ui. The weak single-crossing condition is satisfied if ∂+Ui(q)

is nondecreasing in i for all q, and the concavity of Ui ensures that Assumption 1 holds.

We now consider variations on the standard Rothschild and Stiglitz (1976) insurance

economy, in which the buyer has initial wealth w0 and faces the risk of a loss l.

Expected Utility Given a loss probability ci, every type i’s preferences over coverage-

premium pairs (q, t) have an expected-utility representation

ui(q, t) ≡ ciu(w0 − l + q − t) + (1− ci)u(w0 − t),
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for some strictly increasing and strictly concave von Neumann–Morgenstern utility function

u. The weak single-crossing condition is satisfied if ci is nondecreasing in i, and the strict

concavity of u ensures that Assumption 1 holds.

Rank-Dependent Expected Utility (Quiggin (1982)) Given a loss probability ci,

every type i’s preferences over coverage-premium pairs (q, t) have a rank-dependent expected-

utility representation

ui(q, t) ≡ [w(1)− w(1− ci)]u(w0 − l + q − t) + w(1− ci)u(w0 − t),

for some strictly increasing and strictly concave von Neumann–Morgenstern utility function u

and some strictly increasing weighting function w such that w(0) ≡ 0 and w(1) ≡ 1. Because

w is strictly increasing, the weak single-crossing condition is satisfied if ci is nondecreasing

in i, and the strict concavity of u ensures that Assumption 1 holds.

Robust Control (Hansen and Sargent (2007)) Every type i now recognizes that the

true probability distribution over outcomes c̃i ≡ (c̃i, 1− c̃i) is uncertain and may differ from

ci ≡ (ci, 1− ci), and her preferences over coverage-premium pairs (q, t) have a robust-control

representation

ui(q, t) ≡ min{c̃iu(w0 − l + q − t) + (1− c̃i)u(w0 − t) + αe(c̃i, ci) : c̃i},

for some strictly increasing and strictly concave von Neumann–Morgenstern utility function

u, where e(c̃i, ci) is the relative entropy function that penalizes distortions from ci,

e(c̃i, ci) ≡ c̃i log2

(
c̃i
ci

)
+ (1− c̃i) log2

(
1− c̃i
1− ci

)
.

As ui is a minimum of concave functions, it is itself concave. For each (q, t), let us denote by

c̃i(q, t) = (c̃i(q, t), 1− c̃i(q, t)) the unique solution to the minimization problem that defines

ui(q, t). Taking first-order conditions yields

1− c̃i(q, t)
c̃i(q, t)

=
1− ci
ci

2u(w0−l+q−t)−u(w0−t).

Thus, for each (q, t), c̃i(q, t) and ci are comonotonic in i, and c̃i(q, t) is strictly decreasing in

q for all t. Assuming that u is differentiable, the marginal rate of substitution of ui is

τi(q, t) =

[
1 +

1− c̃i(q, t)
c̃i(q, t)

u′(w0 − t)
u′(w0 − l + q − t)

]−1

.

Hence, because c̃i(q, t) and ci are comonotonic in i, the weak single-crossing condition is

satisfied if ci is nondecreasing in i. Finally, together with the strict concavity of u, the fact

that c̃i(q, 0) is strictly decreasing in q ensures that Assumption 1 holds.
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Smooth Ambiguity Aversion (Klibanoff, Marinacci, and Mukerji (2005)) Every

type i now believes that his true loss probability c has continuous density fi over [0, 1],

and her preferences over coverage-premium pairs (q, t) have a smooth-ambiguity-aversion

representation

ui(q, t) ≡
∫
φ(cu(w0 − l + q − t) + (1− c)u(w0 − t))fi(c) dc,

for some strictly increasing and strictly concave von Neumann–Morgenstern utility function

u and some strictly increasing and strictly concave function φ capturing ambiguity aversion

regarding c. As u and φ are concave, so is ui. Assuming that u and φ are differentiable with

bounded derivatives, the marginal rate of substitution of ui is

τi(q, t) =

[
1 +

u′(w0 − t)
u′(w0 − l + q − t)

×
∫
φ′(cu(w0 − l + q − t) + (1− c)u(w0 − t))(1− c)fi(c) dc∫
φ′(cu(w0 − l + q − t) + (1− c)u(w0 − t))cfi(c) dc

]−1

.

We claim that, if the densities fi are nondecreasing in the monotone-likelihood-ratio order,

then the weak single-crossing condition is satisfied. To see this, observe that∫
φ′(cu(w0 − l + q − t) + (1− c)u(w0 − t))(1− c)fi(c) dc∫
φ′(cu(w0 − l + q − t) + (1− c)u(w0 − t))cfi(c) dc

=
1∫

c dGi(c)
− 1,

where Gi is a distribution with density

gi(c) ≡
φ′(cu(w0 − l + q − t) + (1− c)u(w0 − t))fi(c)∫
φ′(cu(w0 − l + q − t) + (1− c)u(w0 − t))fi(c) dc

.

In particular, if the densities fi are nondecreasing in the monotone-likelihood ratio order,

so are the densities gi. This implies that the ratio 1/
∫
c dGi(c) is nonincreasing in i, which

proves the claim given the expression for τi(q, t). Finally, there remains to determine when

Assumption 1 holds. Letting t ≡ 0 and proceeding as above yields∫
φ′(cu(w0 − l + q) + (1− c)u(w0))(1− c)fi(c) dc∫
φ′(cu(w0 − l + q) + (1− c)u(w0))cfi(c) dc

=
1∫

c dGi(c |q)
− 1,

where, for each q, Gi(· |q) is a distribution with density

gi(c |q) ≡
φ′(cu(w0 − l + q) + (1− c)u(w0))fi(c)∫
φ′(cu(w0 − l + q) + (1− c)u(w0))fi(c) dc

.

It follows that

gi(c |0)

gi(c |q)
∝ φ′(cu(w0 − l) + (1− c)u(w0))

φ′(cu(w0 − l + q) + (1− c)u(w0))
,
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up to multiplicative constants. In particular,

∂

∂c

[
gi(c |0)

gi(c |q)

]
∝ − φ′′(cu(w0 − l) + (1− c)u(w0))

φ′(cu(w0 − l) + (1− c)u(w0))
[u(w0)− u(w0 − l)]

+
φ′′(cu(w0 − l + q) + (1− c)u(w0))

φ′(cu(w0 − l + q) + (1− c)u(w0))
[u(w0)− u(w0 − l + q)],

which is strictly positive for q > 0 if the function φ features nonincreasing concavity in the

sense that −φ′′/φ′ is nonincreasing. Under these circumstances, gi(c |0) dominates gi(c |q) in

the monotone-likelihood-ratio order and, as a result,
∫
c dGi(c |q) <

∫
c dGi(c |0). Combining

this with the straightforward observation that u′(w0− l+ q) < u′(w0− l) by strict concavity

of u, we obtain, using the above expression for τi(q, t), that τi(q, 0) < τi(0, 0) for all q > 0,

so that Assumption 1 holds.

It is easy to check that the slightly stronger Assumption 2 used in Section 4 holds in

the above examples. We can also modify these examples to allow for multiple loss levels

by focusing on coinsurance contracts requiring that a share q of the loss be covered for a

premium t. For instance, in the expected-utility model, every type i now faces the risk of

a loss l distributed according to a continuous density fi over [0, 1], and her preferences are

represented by

ui(q, t) ≡
∫
u(w0 − (1− q)l − t)fi(l) dl.

The weak single-crossing condition is satisfied if the densities fi are nondecreasing in the

monotone-likelihood ratio order (Attar, Mariotti, and Salanié (2019, Appendix B)). Finally,

many other families of preferences, involving, for instance, first-order risk aversion (Segal

and Spivak (1990)), also fit within our general framework.

Appendix D: Counterexamples

The following example justifies the claim made in Section 3 that, when Assumption 1 does

not hold, entry with a menu of contracts can be profitable even though Condition EP is

satisfied.

Example 1 Consider a two-type economy in which each type has preferences represented

by ui(q, t) ≡ (q + 1)(θiq − t), where θ2 > θ1 > 0. These preferences are convex, with

τi(q, t) = θi

(
1 +

q

q + 1

)
− t

q + 1
, (D.1)

so that the strict single-crossing condition is satisfied. However, by (D.1), τi(q, 0) is strictly

increasing in q, so that Assumption 1 does not hold. Now, fix quantities q2 > q1 > 0 and,
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for some small η > 0, consider an entrant offering a menu {(q1, t1), (q2, t2)} such that

t1 ≡ θ1q1 − η,

so that type 1 earns a small rent compared to u1(0, 0) = 0, and

t2 ≡ θ2q2 −
q1 + 1

q2 + 1
(θ2q1 − t1)− η,

so that type 2 has a slight preference for (q2, t2) over (q1, t1). Hence each type has a unique

best response, and the entrant’s expected profit is m1(t1− c1q1) +m2(t2− c2q2). To compute

this expected profit, set up costs so that c1 ≡ θ1 + ε and c2 ≡ θ2 + ε for some small ε > 0.

Notice that, by (D.1) again, Condition EP is satisfied. As in (2), the entrant’s expected

profit can be rewritten as t1 − c1q1 +m2[t2 − t1 − c2(q2 − q1)]; this in turn simplifies into

m2(c2 − c1)(q2 − q1)
q1

q2 + 1
− ε(m1q1 +m2q2)− η

(
1 +m2

q1 + 1

q2 + 1

)
,

which is strictly positive for arbitrary quantities q2 > q1 > 0 whenever ε and η are small

enough. This proves the claim. Notice that the entrant makes a profit when trading with

type 1 and a loss when trading with type 2; but he also incurs an expected loss on the

quantity layer q1, which he more than recoups on the quantity layer q2 − q1.

For the study of market breakdown in Section 3.2, the first difficulty is that there may

exist menus of contracts for which the buyer has multiple best responses, some of which may

be more favorable to the entrant than others. This difficulty can be overcome by requiring

that types be ordered according to the strict single-crossing condition. This assumption is

tight. Indeed, the following example shows that, when types are only ordered according to

the weak single-crossing condition, zero-expected-profit entry can take place even though

Condition EP is satisfied.

Example 2 Consider a two-type economy in which both types have the same preferences

represented by u(q, t) ≡ q − q2 − t, but different costs such that c1 < 1 < c1 < c2; thus

Condition EP is strictly satisfied. Both types are indifferent between not trading and trading

the quantity 1− c1 at unit price c1. An entrant offering the contract (1− c1, c1(1− c1)) earns

zero expected profit if type 1 accepts, and type 2 chooses not to trade with him.

Even under strict single-crossing, it is still possible that the expected profit be exactly

zero on any layer qi − qi−1. A simple and natural way to rule out this knife-edged situation

is to assume that the buyer’s preferences are strictly convex. Indeed, under this additional

assumption, the inequalities (3) directly imply that the expected profit from any quantity
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layer qi − qi−1 is strictly negative whenever qi−1 < qi. Again, this assumption is tight.

Indeed, the following example shows that, when the buyer’s preferences are only weakly

convex, zero-expected-profit entry can take place even though types are ordered according

to the strict single-crossing condition and Condition EP is satisfied.

Example 3 Consider, in line with Samuelson (1984), Myerson (1985), and Attar, Mariotti,

and Salanié (2011), an economy in which a divisible good is traded, subject to a capacity

constraint q ∈ [0, 1]. Every type i has linear preferences represented by ui(q, t) ≡ ciq −
t, where ci is strictly increasing in i. Under this highly nongeneric assumption, strict

single-crossing is satisfied and Condition EP is satisfied with equality for each type. Suppose

now that the entrant offers a menu of contracts {(q1, t1), . . . , (qI , tI)} with strictly positive

quantities qi that are nondecreasing in i and transfers ti such that ti − ti−1 = ci(qi − qi−1).

Any such allocation yields zero expected profit for the entrant and features strict gains from

trade for types i > 1. The intuition is that Condition EP rules out gains from trade for any

type i on the quantity layer qi − qi−1 but not necessarily, for i > 1, on the inframarginal

quantity layers qj − qj−1, j < i. Hence, whereas strictly profitable entry is ruled out by

Theorem 1, zero-expected-profit entry is possible, in many different ways, if every type i

accepts to trade (qi, ti), even though she could as well choose to trade (qi−1, ti−1).
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