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Abstract

We develop a methodology to characterize equilibrium in DSGE models, free of

parametric restrictions on information. First, we define a “primal” economy in which

deviations from full information are captured by wedges in agents’ expectations. Then,

we provide conditions ensuring some information-structure can implement these wedges.

We apply the approach to estimate a business cycle model where firms and households

have dispersed information. The estimated model fits the data, attributing the ma-

jority of fluctuations to a single shock to households’ expectations. The responses are

consistent with an implementation in which households become optimistic about local

productivities and gradually learn about others’ optimism.
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1 Introduction

Many prominent theories in macroeconomics are based on incomplete information. Among

their applications, such theories offer a structural interpretation of cyclical fluctuations, for-

malizing the widespread idea that business cycles are driven by waves of optimism and pes-

simism among consumers and firms (Lorenzoni, 2009; Angeletos and La’O, 2013; Benhabib,

Wang and Wen, 2015). Yet, few of these models have been investigated quantitatively, mainly

because of technical difficulties arising from the introduction of dispersed information in gen-

eral equilibrium frameworks and the challenge of specifying ex-ante plausible information

structures. This paper develops a new approach that avoids these difficulties, and uses it to

explore the quantitative potential of dynamic stochastic general equilibrium (DSGE) models

with incomplete information.

Our approach defines a “primal” economy in which deviations from full information are

summarized by wedges in agents’ equilibrium expectations. We then provide necessary and

sufficient conditions for the existence of an information structure that is consistent with the

expectation errors captured by these wedges. Subject to these implementability conditions,

the set of dynamics that are feasible in the primal economy is the same as the set of dynamics

that are feasible in the incomplete-information economy. Exploiting this equivalence, we

derive a simple information-robust characterization of all equilibria in DSGE models with

incomplete information.

We apply our approach to a dispersed-information version of an otherwise frictionless

business cycle model. Shocks to productivity are the only fundamental source of aggregate

volatility. The model allows households and firms to be imperfectly informed about both local

and aggregate economic conditions. While the incomplete-information version of our economy

is hard to solve, the corresponding primal economy permits a simple aggregate representation.

Specifically, in the aggregate representation, expectation errors by households and firms are

summarized by a “demand wedge” in the aggregate Euler equation and a “labor wedge” that

governs the output gap of the economy. The behavior of these wedges is constrained by the

implementability conditions characterized by our approach.

As a first main result, we show that if one does not impose any restriction on learning

beyond Bayesian rationality, the model can fully account for any joint process in output,

employment and inflation. This, firstly, reinforces the insight of Maćkowiak and Wiederholt

(2015) that a single informational friction can replace the multitude of frictions typically used

in DSGE models to generate empirically plausible responses to productivity and monetary

shocks. Second, going beyond the results established by Maćkowiak and Wiederholt, our

result also demonstrates that one does not even need any fundamental source of business cycle
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fluctuations. Instead, our benchmark result establishes that purely expectational shocks in

the tradition of Lorenzoni (2009), Angeletos and La’O (2013) and Benhabib, Wang and Wen

(2015) can, in principle, perfectly account for business cycle data.

Motivated by our benchmark result, we estimate our model using U.S. business cycle

data on output, employment, inflation, and interest rates to assess the nature of information-

frictions that is required to explain the data. Because our empirical specification includes

more data targets than expectation wedges, the model is no longer able to generate a perfect

fit. Nevertheless, we find that the estimated model does a remarkably good job at matching

business cycle comovements, essentially replicating the vast majority of (auto) covariances

within the confidence region of the data.

Our key findings are as follows. First, essential for the empirical performance of the

model is its ability to generate wedges that are correlated across equations. In particular,

we estimate a strong positive correlation between the demand wedge and the labor wedge

and a negative correlation between the two wedges and productivity shocks. While it is

typically difficult for full-information models with structurally uncorrelated shocks to gener-

ate perturbations that are correlated across equations, the expectation wedges in our model

are naturally correlated. This is both because information can be correlated across house-

holds and firms and because expectation errors by households are likely to affect both their

consumption and labor supply.

Second, decomposing the estimated labor wedge into a firm- and household-side compo-

nent, we show that virtually all of the fluctuations in the labor wedge can be attributed to

household errors. More generally, we cannot reject the null hypothesis that firms make no ex-

pectational errors. This is in line with the theoretical insights of Hellwig and Venkateswaran

(2014), who demonstrate that firms need to observe only a small set of sufficient statistics

in order to make optimal production plans. While our results do not require that firms have

superior information relative to households, they do indicate that firms behave as if they

had full information. In contrast, we can generally reject the hypothesis that households

are aware of aggregate economic conditions for at least one year after their realization. For

inflation and interest rates we do not reject household knowledge after a lag of one year; for

output and productivity growth we do not reject household knowledge after a lag of roughly

two years.

Third, the primary driver of business cycles is a purely expectational shock unrelated

to productivity growth. The effects of this shock are driven jointly by the demand and la-

bor wedge, inducing procyclical fluctuations in output, employment and inflation akin to a

“demand shock”. We demonstrate that the response is consistent with a simple parametric
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information structure, in which households receive news about productivity, generating a

demand wedge as in Lorenzoni (2009). While Lorenzoni (2009) relies on nominal rigidity to

generate real effects from household optimism, our implementation generates a comovement

in the labor wedge by introducing dispersed information across households as in Lucas (1972,

1973) and Woodford (2003). As a result, households only gradually learn about the fluctu-

ations in aggregate demand that are driven by the errors of other households. Accordingly,

they supply labor as if wages were sticky.

Finally, in contrast to the full-information version of our economy in which hours and

inflation do not respond to productivity, the estimated model gives technology a modest but

positive role in driving these variables. This is because households learn about aggregate

productivity innovations only gradually, implying a slow adjustment of output in response

to TFP shocks with a negative output gap and deflation in the interim period. Productivity

shocks account for roughly 30 percent of the business-cycle fluctuations in hours and roughly

40 percent of inflation.1

The methodology developed in this paper is related to the literature on information-

robust predictions by Bergemann and Morris (2013, 2016) and Bergemann, Heumann and

Morris (2014). These papers demonstrate the equivalence between Bayes equilibria in games

with incomplete information and Bayes correlated equilibria. The primal approach devel-

oped in this paper is similar in that it also demonstrates the equivalence between a class of

incomplete-information economies with another class of full-information models. It is more

general, however, as it is not limited to static game environments, but equally applies to

dynamic market economies. Moreover, the primal approach developed in this paper gives

straightforward implementability conditions, and it extends to arbitrary “minimal informa-

tion requirements” that can be imposed by the researcher.

On the applied side, our analysis relates to a recent literature exploring business cycle

models with incomplete information. While the literature is mostly theoretical, there are now

a few studies with a quantitative focus. In particular, Angeletos, Collard and Dellas (2015)

and Huo and Takayama (2015a) explore a version of Angeletos and La’O (2013); Blanchard,

L’Huillier and Lorenzoni (2013) estimate a simplified version of Lorenzoni (2009); Melosi

(2014, 2016) estimates a variant of Woodford (2003); and Maćkowiak and Wiederholt (2015)

calibrate a particular DSGE model with rational inattention. A notable difference with

1The estimated contribution to output fluctuations at business cycle frequencies is 10 percent. The small
contribution of productivity to output is consistent with both recent DSGE estimations and the structural
VAR literature, which rarely finds that productivity shocks explain more than one quarter of output cyclicality
(Shapiro and Watson, 1988; King et al., 1991; Cochrane, 1994; Gali, 1999; Christiano, Eichenbaum and
Vigfusson, 2003; Smets and Wouters, 2007).
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respect to these papers is the flexibility of expectation dynamics considered in this paper. In

particular, our approach does not require us to take an ex-ante stand on which agents are

affected by information-frictions, how information is shared in the cross-section of agents, or

any other parametric properties of the information structure. Instead it allows us to evaluate

the empirical performance across all information structures and let the data decide which

provides the best fit.

At a methodological level, the closest to our approach are Jurado (2016)—who estimates a

model with near-rational belief distortions—and Angeletos, Collard and Dellas (2015)—who

bypass the computational difficulties of incomplete information by relaxing the common prior

assumption. Our approach allows for a similar generality of application, while ensuring that

expectation errors are consistent with rational expectations of all agents. In addition, our

approach is also particularly tractable, since our characterization of incomplete-information

equilibria can be obtained using standard tools developed for full-information economies.

In its ability to reduce the computational burden of solving (and estimating) incomplete

information models, our approach paper also relates to Rondina and Walker (2014), Acharya

(2013) and Huo and Takayama (2015b), who use frequency-domain techniques to obtain ana-

lytical solutions in certain models, and Nimark (2009) who explores the asymptotic accuracy

of a finite-state approximation approach to a class of dispersed information models.

This paper is also related to the business cycle accounting literature in the tradition of

Chari, Kehoe and McGrattan (2007). These papers consider simple economies augmented

by a number of reduced-form wedges to equilibrium conditions. The approach developed in

this paper connects the incomplete-information literature to these frameworks by mapping a

generic DSGE model with incomplete information into a full-information wedge-economy. In

contrast to business cycle accounting exercises, we approach wedges with a single structural

interpretation in mind, reflected by implementability conditions on these wedges that ensure

consistency with an incomplete-information economy. As we argue above, the incomplete-

information interpretation is attractive as it can jointly generate the behavior of all wedges

(including their co-movement patterns) with a simple structural narrative.

The paper is structured as follows. Section 2 sets up the model economy. Section 3

describes the primal approach. Section 4 describes implications of the primal approach for

the aggregate economy. It establishes our benchmark “business cycle accounting” result

and further derives restrictions on aggregate comovement from alternative specifications of

information. Section 5 details our empirical strategy and presents the baseline empirical

results. Section 6 explores a simple information structure that is consistent with our estimated

expectation wedges. Section 7 concludes.
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2 The Model Economy

2.1 Setup

The model is a standard RBC economy without capital, augmented with imperfect informa-

tion. Households and firms are located on a continuum of islands, indexed by i ∈ [0, 1]. On

each island, a representative household interacts with a representative firm in a local labor

market. Firms use the labor provided by households to produce differentiated intermediate

goods, which are aggregated by a competitive final goods sector operating on the mainland.

Households Preferences on island i are given by

E

{
∞∑
τ=0

βτU(Ci,t+τ , Ni,t+τ ) | Ii,t

}
,

where β ∈ (0, 1) is the discount factor, Ni,t is hours worked, Ci,t is final good consumption,

and Ii,t is the set of information available in island i at time t. The utility flow U is given by

U(C,N) = logC − 1

1 + ζ
N1+ζ ,

where ζ ≥ 0 is the inverse of the Frisch elasticity of labor supply. The household’s budget

constraint is

PtCi,t +QtBi,t ≤ Wi,tNi,t +Bi,t−1 +Di,t,

where Pt is the price of the final good, Qt is the nominal price of a riskless one-period bond,

Bi,t are local bond holdings, Wi,t are local wage rates, and Di,t are profits of the local firm.2

Bonds are in zero net supply, so market clearing requires
∫ 1

0
Bi,t di = 0. No other financial

assets can be traded across islands, which implies that households are exposed to idiosyncratic

income risks.

Intermediate-goods producers Each good i is produced by a monopolistically compet-

itive firm with access to a linear production technology,

Yi,t = Ai,tNi,t. (1)

2Following Maćkowiak and Wiederholt (2015), we assume that bond positions adjust to clear the budget
constraint independently of the information available to households.
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Firms choose Ni,t to maximize expected profits, E[Pi,tYi,t −Wi,tNi,t| Ii,t], subject to an in-

verse demand curve specified below. The wage rate Wi,t is determined competitively.3 The

productivity Ai,t consists of an aggregate and an island-specific component,

logAi,t = logAt + ∆ai,t,

where the aggregate component follows a random walk process

logAt = logAt−1 + εt.

The innovation εt is i.i.d. across time with zero mean and constant variance. The island-

specific component ∆ai,t follows a time-invariant, stationary random process that is i.i.d. across

islands and is normalized so that
∫ 1

0
∆ai,t di = 0.

Final-good sector A competitive final-goods sector aggregates intermediate input goods

i ∈ [0, 1], using the technology

Yt =

(∫ 1

0

Zi,tY
θ−1
θ

i,t di

) θ
θ−1

,

where θ > 1 is the elasticity of substitution among goods, Yi,t denotes the input of intermedi-

ate good i at time t, and Zi,t is an island-specific demand shifter following a time-invariant,

stationary process that is i.i.d. across islands and satisfies
∫ 1

0
log(Zi,t) di = 0. Profit maxi-

mization yields the inverse input demands, given by

Pi,t =

(
Yi,t
Yt

)−1/θ

Zi,tPt, (2)

where the aggregate price index Pt is defined by

Pt =

(∫ 1

0

Zθ
i,tP

1−θ
i,t di

) 1
1−θ

.

Monetary policy We close the model by specifying a simple interest rate rule, pinning

down the equilibrium rate of inflation, πt ≡ log(Pt/Pt−1). Specifically, we assume that the

3Formally, firm i is representative of a continuum of firms, j ∈ [0, 1], competing in the local labor market.
Each of these firms produces a separate variety (i, j) that are aggregated to Yi,t by the final goods sector

using the technology Yi,t = (
∫ 1

0
Y

1−1/θ
ij,t dj)θ/(θ−1) where the elasticity of substitution across varieties θ is the

same as in the final good technology specified below.
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central bank sets nominal bond prices such that

it = φπt, (3)

where φ > 1 and it = − log(Qt).
4

Information Our approach is aimed at providing a general characterization of equilibria

that are consistent with a theory of incomplete information where agents use Bayes law to

form expectations. To this aim, we do not take a parametric stand on the signals available

to agents. Instead we allow for all information structures subject to the following three

restrictions.

Assumption 1 (Information bounds). Θi,t ⊆ Ii,t ⊆ I∗t .

Assumption 1 defines a lower and an upper bound on information available in island i at

date t. The upper bound, I∗t , defines the history of all variables that are realized at date t, so

that agents cannot learn more than what is potentially knowable under full information.5 The

lower bound, Θi,t, includes at least the actions of the agents living in island i. Apart from this

basic requirement of rationality, our approach allows Θi,t to be specified arbitrarily, allowing

the researcher to explore a variety of informational assumptions. In our baseline specification,

we pick a conservative lower bound Θi,t, requiring only that firms and households are aware

of the full history of their own actions as well as local productivities:

Θi,t = {Ai,t, Ci,t, Ni,t, Yi,t} ∪Θi,t−1. (4)

Some alternative specifications for Θi,t are discussed in Section 4.2.

Next, we make the usual assumption that all agents perfectly recall past information.

Assumption 2 (Recursiveness). Ii,t−1 ⊆ Ii,t.

Finally, we impose ex-ante symmetry across islands and time to streamline the exposition.

This does not restrict behavior of the aggregate economy.

Assumption 3 (Ex-ante symmetry). The unconditional distribution over (Ii,t, Ai,t, Zi,t) is

identical across all i and t.

4The rule also contains a constant intercept ensuring consistency with the natural rate at the zero-inflation
steady state. The term is omitted since it drops out after we log-linearize the model below.

5Notice that which variables are realized at date t is to some extent definitional. In particular, I∗t could
contain future innovations if they are realized at date t as in the news literature. In our application, we
abstract from this form of news, assuming all innovations to (ai,t, zi,t) realize at date t.
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Comment on prices and market clearing It is worth noting that our minimal as-

sumptions do not impose that agents perfectly learn from prices. Assuming so would be

unnecessary restrictive, and our approach allows us to avoid specifying the details of how

agents learn from prices without compromising market clearing.6 We can do this because

imposing market clearing in the parallel primal economy, which we describe in the next sec-

tion, ensures that agents are sufficiently well informed about prices for them to perform their

market clearing role (see Appendix C for details).

2.2 Equilibrium conditions

We work with a log-linear approximation to the model around the balanced growth path

of the economy with no heterogeneity and full information. Lower-case letters denote log-

deviations of a variable from the stochastic steady state where yi,t = at for all i and πt = 0.

The households’ Euler equation is given by

ci,t = E[ci,t+1 − φπt + πt+1 | Ii,t]. (5)

Combining firms’ demand for labor with households’ supply, local labor market clearing

requires

yi,t = ξ E[xi,t | Ii,t] + ai,t, (6)

where xi,t ≡ yi,t − ci,t + pi,t − pt is the nominal trade-balance on island i, the linearized price

index pt is given by pt =
∫ 1

0
pi,t di, and ξ ≡ 1/(ζ + 1). The linearized demand relation and

budget constraint take the form

pi,t = θ−1(yt − yi,t) + zi,t + pt (7)

and

βbi,t = bi,t−1 + xi,t, (8)

where bi,t ≡ Bi,t/Ei,t[PtYt] is kept in levels rather than logs, since Bi,t can take negative

values. Given a process for fundamentals and information {ai,t, zi,t, Ii,t}, an equilibrium of

6Limiting the ability of agents to learn from prices most importantly limits their ability to learn about the
aggregate state. Lorenzoni (2009) argues that, in practice, learning about aggregates is likely to be impaired
by a large number of shocks, model misspecification, and the presence of structural breaks. One specific
approach to capture these effects within a simple model like ours would be to decentralize markets so that
local prices no longer reflect aggregate states (e.g., Lorenzoni, 2009; Angeletos and La’O, 2013; Chahrour and
Ulbricht, 2017). An alternative interpretation is offered by the rational inattention literature (e.g., Maćkowiak
and Wiederholt, 2015; Vives and Yang, 2017) where information sets do not reflect all the information that
is in principle attainable from prices due to finite processing constraints.
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the model is a set of processes {ci,t, yi,t, bi,t, pi,t} and {yt, πt} that are consistent with (5)–(8),

with Bayesian updating, and with market clearing for goods,

yt =

∫ 1

0

yi,t di =

∫ 1

0

ci,t di,

and bonds.

3 Primal Approach

In this section, we present the methodological innovation in this paper. We begin by defining

a fictitious full-information version of our model in which all expectation errors are treated

as exogenous wedges. This parallel “wedge economy” can be solved using standard full-

information tools. We then derive necessary and sufficient conditions on these wedges such

that they can be supported as expectation errors in an equilibrium of the incomplete in-

formation economy. The set of equilibria in the fictitious wedge-economy satisfying these

conditions is equivalent to the full set of possible equilibria in the incomplete information

economy. Our equivalence result hence provides a tractable method of characterizing the full

set of incomplete-information equilibria, without making any parametric assumptions about

information.

3.1 Primal Representation

Let Et[·] ≡ Et[·|I∗t ] denote the full-information expectations operator. To arrive at the

“primal” analogue of the economy characterized in Section 2.2, we replace all expectation

operators E[·|Ii,t] with Et[·]+τi,t, where {τi,t} are treated as exogenous “expectation” wedges.

Specifically, in our case, we replace equations (5) and (6) with the corresponding primal

equations:7

ci,t = Et[
(
ci,t+1 − τ ci,t+1

)
− φπt + πt+1] + τ ci,t (9)

yi,t = ξ(xi,t + τxi,t) + ai,t. (10)

Here τ ci,t and τxi,t have the interpretation of prediction errors, relative to full-information, re-

garding household i’s consumption target and island i’s terms-of-trade, pi,t−pt, respectively.8

7Here τ ci,t is specified after rewriting (5) in its non-recursive form. With this normalization, τ ci,t defines
the gap relative to the optimal level of consumption that household i would choose if it had full information
at t and all future dates.

8Notice that as yi,t, ci,t ∈ Ωi,t, all uncertainty about xi,t can be attributed to the terms-of-trade, pi,t− pt.
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Note that both wedges are defined relative to the full-information target that obtains given

the behavior of the rest of the economy (i.e., given the expectation errors made on other

islands).

3.2 Implementation Theorem

We now characterize implementability of the expectation wedges. Let T denote a stochastic

process for Tt ≡ {τ ci,t, τxi,t}i∈[0,1] and let E(T ) denote an equilibrium in the primal econ-

omy induced by T .9 We assume E(T ) to have a stationary Gaussian distribution that is

ex-ante symmetric across islands (see below for a discussion of how our results extend to

non-stationary, non-symmetric and non-Gaussian cases). The following theorem states the

implementation result.

Theorem 1. Fix an E(T ). Then there exists an information structure consistent with As-

sumptions (1)–(3) that implements T , and hence E(T ), in the incomplete-information econ-

omy if and only if for all i and t it holds that (i) E[Tt] = 0 and (ii)

E[τ ci,tθ] = 0 for all θ ∈ Θi,t, (11a)

E[τxi,tθ] = 0 for all θ ∈ Θi,t. (11b)

The theorem gives two conditions that are jointly necessary and sufficient for T to be

implemented by some information structure. Condition (i) is a simple rationality require-

ment that agent’s beliefs cannot be perpetually biased. Condition (ii) is an orthogonality

requirement between the expectation wedges and the corresponding lower bounds on in-

formation Θi,t. The necessity of this restriction is the familiar principle that expectation

errors must be orthogonal to all available information. The novel part of our result is the

sufficiency of this condition. For any E(T ) with E[Tt] = 0, we can always construct an

information structure that implements the joint process E(T ) as long as it satisfies (11).

The following example illustrates this in a simple case. The general proof is given in

Appendix A.1.

9There is no need for the equilibrium in the primal economy to be unique. If there are multiple E(T ) for a
given T , our results hold with respect to each of them. Even if the equilibrium E(T ) in the primal economy is
unique given T , the incomplete-information economy may still feature multiplicity as T itself may be driven
by sunspot-realizations as in, e.g., Benhabib, Wang and Wen (2015).
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Example Consider an economy defined by a single equilibrium condition, yt = E[at|It],
where E[at] = 0, and let Θt = {yt−s}s≥0. The primal economy is given by

yt = at + τt. (12)

Let Et = (yt, at, τt) be a stationary Gaussian process satisfying (12). Theorem 1 states that Et
is implementable by some {It}, satisfying yt ∈ It for all t, if and only if (i) E[τt] = 0 and (ii)

E[τtyt−s] = 0 for all s ≥ 0. The necessity of conditions (i) and (ii) is immediate, since optimal

inference requires that expectation errors are orthogonal to variables in the information set

and are unpredictable.

To see why the conditions are also sufficient, suppose that It = {ωt−s}s≥0 where ωt =

at + τt. That is, each period, the agent receives a new signal ωt that has the same joint

distribution over (ωt, Et) as the “equilibrium” belief yt that we wish to implement. Projecting

at onto yt ≡ {yt−s}s≥0, we have

E[at|It] = Cov(at, y
t)[Var(yt)]−1yt. (13)

Notice that

Cov(yt, y
t) =

[
1 0 0 · · ·

]
Var(yt). (14)

Further notice that (12) in combination with condition (ii) gives Cov(at, y
t) = Cov(yt −

τt, y
t) = Cov(yt, y

t). We can thus use (14) to substitute out Cov(at, y
t) in (13) to get

E[at|It] = yt.

We conclude that as long as conditions (i) and (ii) hold, there exists a simple information-

structure {It} that implements Tt. Intuitively, observing the equilibrium expectation yt is a

sufficient statistic for forming E[at|It], giving us a simple means of implementing Tt.10

The full proof in the appendix generalizes to dynamic economies involving an arbitrary

number of equations, variables, and information sets. As E(T ) is an equilibrium in the

primal economy, we can use the logic above to implement the beliefs implied by the primal

economy for each information set, being assured that the remaining equilibrium conditions of

the incomplete-information economy continue to hold by construction. The full proof further

10The argument is related to the one given in Bergemann and Morris (2016) who show the equivalence
between Bayes correlated equilibria and static Bayesian games with incomplete information. Our approach
of formulating a primal economy and characterizing implementability in terms of a simple orthogonality
condition is more general, however, as it straightforwardly applies to dynamic market economies and allows
for arbitrary minimal information requirements.
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extends the argument to arbitrary minimal information requirements {Θi,t}.

Remarks Although our notation in presenting Theorem 1 is motivated by our model econ-

omy, the proof of the theorem is generic and can be applied to virtually any rational expec-

tations DSGE model. Nevertheless we make a few assumptions that are worth discussing.

First, we require stationarity of E . On the one hand, this rules out non-stationary pro-

cesses of Tt. On the other hand, this requires the primal economy to be stationary. In many

cases, an appropriate transformation can be used to induce stationarity in the primal econ-

omy, even when the economy is fundamentally non-stationary. E.g., in our case, it suffices

to define the primal economy in terms of the output gap ŷt as in (15)–(16) below, ensuring

stationarity of E as long as T is stationary.11

Second, we require E to be ex-ante symmetric across islands to be consistent with As-

sumption 3. Dropping Assumption 3, the Theorem applies to non-symmetric E without

modification.

Third, while we assume E to be Gaussian, the assumption is not needed when one is only

interested in implementing the auto-covariance structure of Et. In our empirical application,

we make sure that our estimator indeed only uses information regarding the covariance struc-

ture, so that we do not need to make any distributional assumptions regarding T to invoke

our theoretical results.

Fourth, in our case firms and households operate under the same information sets and

share the same lower bounds Θi,t, but this does not need to be the case. An immediate

corollary to Theorem 1 is that whenever two distinct information sets I1 and I2 share the

same lower bound Θ, the set of expectation wedges supported by (I1, I2) is identical to the

one supported under the additional requirement that I1 = I2. In our case this implies that

imposing common knowledge within islands places no additional restrictions on Tt compared

to the case where firms and households operate under possibly distinct information sets but

share the same lower bounds Θi,t.

4 Characterizing the Aggregate Economy

If the researcher is interested in the ability of the incomplete information model to match

aggregate data, as we are in this paper, then the crucial question is to what degree the

orthogonality conditions in Theorem 1 restrict the feasible dynamics of the aggregate econ-

11Our model also features a non-stationary process for island-specific consumption and output, but can be
stationarized in terms of growth rates. See the proof of Theorem 2 for details.
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omy. In this section, we show that in many cases the answer to this question is surprisingly

straightforward to derive using the equivalence from Section 3.

4.1 Aggregation and Equilibrium in the Primal Economy

We begin by providing an explicit characterization of aggregate equilibrium in the primal

economy. Unlike the incomplete-information economy, in which aggregation involves average

expectation operators and hence depends on the cross-sectional distribution of beliefs, the

primal economy permits a simple aggregate representation. Letting τ ct =
∫ 1

0
τ ci,t di and τxt =∫ 1

0
τxi,t di and integrating over (9) and (10), we get

ŷt = ξτxt (15)

ŷt = Et[ŷt+1 − τ ct+1 − φπt + πt+1] + τ ct (16)

where ŷt ≡ yt − at is the output gap relative to potential output under full information.

Equations (15) and (16) define the aggregate dynamics in the primal economy. Common

prediction errors in the Euler equation, captured by τ ct , show up as a standard Euler wedge

(aka “demand shock”). Similarly, it can be shown that common prediction errors regarding

the terms-of-trade, captured by τxt , correspond to the usual definition of the labor wedge.

Note that τ ct and τxt are the sole drivers of the aggregate output gap and inflation. Ac-

cordingly, if all agents had full information (τ ct = τxt = 0), the aggregate economy would be

in its stochastic steady state where output reaches its potential in every period (yt = at) and

inflation is zero.

In general, for any joint process (τ ct , τ
x
t ) a solution can be obtained using standard numer-

ical tools. In our case, a closed form solution is also available. Substituting out ŷt in (16), πt

is characterized by the prediction formula

πt = φ−1Et[dτxt+1 − dτ ct+1 + πt+1]. (17)

Following Hansen and Sargent (1980, 1981), one can obtain an explicit solution for inflation,

given by

πt =
[
1 −1

] (1− L)A(L)− (1− φ−1)A(φ−1)

φL− 1
ut (18)

where A(L)ut ≡ (τxt , τ
c
t )′ is the Wold representation of (τxt , τ

c
t ), and ut are the corresponding

innovations.
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4.2 Implementability of Aggregate Wedges

To characterize feasible dynamics of the aggregate economy, we now explore how the re-

strictions on island-specific expectation errors given by Theorem 1 constrain the fluctuations

of the aggregate wedges τ ct and τxt . The answer depends on what is contained in the lower

bound on information, Θi,t. In the following, we explore several possible specifications for Θi,t,

demonstrating how one can use specific assumptions about minimal information to derive

restrictions on the aggregate economy.

Baseline Specification: Θi,t = {ai,t, ci,t, ni,t, yi,t} ∪Θi,t−1.

With Θi,t given by (4), there are essentially no restrictions on the aggregate wedge process

(τ ct , τ
x
t )—and hence on (ŷ, πt)—if the local shocks (∆ai,t, zi,t) are sufficiently volatile.

Theorem 2. Fix a process (yt, πt, at) where (ŷt, πt) has a finite Wold representation with

E[(ŷt, πt)] = 0. Then there exists a process for the idiosyncratic fundamentals (∆ai,t, zi,t)

such that (yt, πt, at) is an equilibrium of the incomplete information economy.

Theorem 2 provides a strong benchmark result emphasizing the potential of information-

driven theories of the business cycle. Of course, not every combination of information struc-

tures and local shocks consistent with a particular process for (yt, πt, at)—or, equivalently,

(yt, πt, nt)—will be economically plausible. We return to the question of economic plausibility

in our quantitative exploration in Sections 5 and 6.

To build an intuition for the “everything goes” result established in Theorem 2, notice

that (τ ct , τ
x
t ) must be supported by expectation errors that are correlated across islands. The

main insight is that by using correlated errors about local shocks, we can implement arbitrary

processes for the average errors across islands as long as the local shocks are sufficiently

volatile. For instance, consider a variant of the example given in Section 3.2, where yi =

ai + τi and Θi = {yi} for i ∈ [0, 1]. The orthogonality condition in Theorem 1 imposes

two restrictions on the distribution over (yi, ai, τi). First, it implies that Var[ai] = Var[yi] +

Var[τi], constraining the variance of τi to satisfy Var[τi] ≤ Var[ai]. Second, it pins down the

covariation of τi with ai, Cov[ai, τi] = −Var[τi]. Now consider (ȳ, ā, τ̄) =
∫ 1

0
(yi, ai, τi)di. By

varying the correlation of (τi, ai) in the cross-section, one can implement any distribution

over (ȳ, ā, τ̄) that satisfies

Var[τi] ≥
(Cov[τ̄ , ā] + Var[τi])

2

Var[ai]− Var[ā]
+ Var[τ̄ ]

and ȳ = ā + τ̄ . Clearly for any Var[τi] > Var[τ̄ ], the condition is non-binding for some suffi-
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ciently volatile ai.
12 Intuitively, when the idiosyncratic shocks (ai−ā) are sufficiently volatile,

we can support aggregate expectation wedges using correlated errors about the idiosyncratic

variations in the agents’ objectives, regardless of the degree of aggregate uncertainty about

ā.

We now consider several alternative specifications in which the result in Theorem 1 places

tighter bounds on the behavior of the aggregate economy.

Alternative 1: Θi,t = {ai,t, ci,t, ni,t, yi,t, at} ∪Θi,t−1.

The information bound in Alternative 1 contains all the same variables as in our baseline

specification, but adds aggregate productivity as an observable. Following the proof of The-

orem 2, it is straightforward to see that any stationary joint dynamics for the output gap

and inflation, (ŷt, πt), is feasible. The additional orthogonality restriction imposed by adding

aggregate productivity, however, implies that neither expectation error can be correlated

with current or past productivity. Thus, while the model can support large independent

fluctuations in beliefs, the aggregate response to productivity shocks must be exactly that of

the full information economy.

Alternative 2: Θi,t = {ai,t, ci,t, ni,t, yi,t, ŷt} ∪Θi,t−1.

In Alternative 2, agents have access to the baseline minimal information plus a signal

revealing current and past realizations of the output gap, ŷt. E.g., agents may observe

aggregate output yt and either further observe aggregate productivity at or live in an economy

where there are no aggregate productivity shocks. In this case, output always follows its

natural rate, yt = at, regardless of any confusion that agents may have regarding their

local conditions. To see this, note that the orthogonality condition of Theorem 1 implies

Cov[τxi,t, ŷt] = Var[ŷt] = 0. Hence, yt = at.

Alternative 3: Θi,t = {ai,t, ci,t, ni,t, yi,t, st−h̄} ∪Θi,t−1 for st ≡ (yt, πt, it, nt) and h̄ ≥ 1.

In Alternative 3, agents are assumed to observe all aggregate variables with some lag h̄.

While the contemporaneous size of aggregate expectation errors is not bounded, their per-

sistence is, since the additional orthogonality conditions now imply that the autocorrelation

of expectation errors must die out at lags h̄ and greater. This result generalizes a result in

Acharya, Benhabib and Huo (2017), which bounds the persistence of a class of sentiment

12E.g., fix Var[τi] = 2Var[τ̄ ] + Cov[τ̄ , ā]. Then the condition holds for any Var[ai] ≥ Var[ā] + 4(Var[τ̄ ] +
Cov[τ̄ , ā]), which also suffices to satisfy the idiosyncratic variance bound Var[τi] ≤ Var[ai] (the covariance
condition between τi and ai holds by construction).
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shocks. Together, Alternatives 2 and 3 demonstrate that aggregate information is a powerful

constraint on the scope for agents to make correlated errors.

Alternative 4: Θi,t = {ai,t, ci,t, ni,t, yi,t, st} ∪Θi,t−1 for some public signal st = ŷt−1 + ut.

Alternative 4 demonstrates that, with noisy observations of past aggregate outcomes,

the effects of beliefs again can be bounded in interesting ways. In this case, we assume that

agents also observe a noisy indicator regarding the previous period’s output gap. In this case,

we have that Cov[ŷt−1 + ut, ŷt] = 0 implies Cov[ŷt, ŷt−1] = −Cov[ŷt, ut]. Standard estimates

of the output gap are strongly positively autocorrelated, implying that positive noise in

aggregate statistics, if they are internalized by agents, should be contractionary. Without

making any assumption on the process for the signal noise, we can immediately conclude that

it is impossible for the common error in a signal regarding recently past aggregate conditions

to drive a positive output gap today.

Alternative 5: Θi,t = {ai,t, ci,t, ni,t, yi,t, yt} ∪Θi,t−1.

Here yt is known, but not at. A few steps of algebra show that

Var[ŷt]− Cov[ŷt, ŷt−1] = −Cov[ŷt, εt].

Since the left hand side of the above equation is always weakly positive, this implies that

Cov[ŷt, εt] < 0. In other words, shocks to aggregate technology should have contractionary

effects on the output gap, and therefore on labor. High autocorrelation of the output gap im-

plies that in practice, Cov[ŷt, εt] should be modest. Both of these implications are consistent

with aggregate US data.

Discussion While the extra restrictions arising from aggregate observations are quite inter-

esting, previous literature has argued that they may be too strong. The rational inattention

literature, in particular, has argued that many sources of information that are in principle

publicly available may not be much used by private agents for the purpose of information

extraction (see, e.g., the discussion in Woodford, 2003). Maćkowiak and Wiederholt (2009)

show that this argument is further strengthened when applied to aggregate information, since

aggregate conditions typically play a relatively small role for individuals in their decision mak-

ing. In that spirit, our quantitative approach below imposes only minimal restrictions on the

information used by agents from the outset and explores ex post what type of information-

based stories are consistent with the expectation wedges that we estimate.
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5 Quantitative Exploration

In this section, we use our theoretical results to quantify how well incomplete information

can account for U.S. business cycle data on output, inflation, hours, and the nominal interest

rate. Because we target more data series than we have expectations wedges, the wedges that

we estimate in this section are over-identified.13 Nevertheless, we find they do an excellent

job matching the comovement in these four series. After assessing its empirical performance,

we explore the properties of the estimated expectation wedges and study their implications

for agents’ learning. Finally, we use wage data to decompose the labor wedge into a portion

attributable to the errors of households and a portion attributable to the errors of firms. We

find that nearly all of the deviations from full information can be attributed to household

expectation errors.

5.1 Econometric Methodology

Building on the equivalence result in Theorem 1, our empirical approach formulates the

information structure directly in terms of a stochastic process for the average expectation

wedges T̄t ≡ (τ ct , τ
x
t ). Practical concerns lead us to adopt a specific parametric specification

for T̄t, but the approach is non-parametric regarding the underlying information structure.

Since we do not have strong priors regarding how agents collect their information (or on

the distributional properties of the noise terms associated with these channels) this seems a

natural starting point for an empirical investigation.

We estimate the model based on the comovements of the data at business cycle frequen-

cies. Accordingly, we augment our baseline specification of Θi,t with the aggregate orthog-

onality conditions resulting from lagged observation of aggregates st = (yt, πt, it, nt), as in

Alternative 3:

E[τ ct st−h̄−j] = 0, ∀j ≥ 0 (19)

E[τxt st−h̄−j] = 0, ∀j ≥ 0. (20)

We set h̄ to 32 quarters. Conditions (19) and (20) ensure that the fit of our economy will

not be driven by longer-run confusion about things that lie outside our estimation horizon

and are therefore not disciplined by the data.

The relevant structural parameters for the aggregate model are ζ and φ. We fix these

13We also work with a lower bound on information that reveals aggregate statistics at long lags, providing
further overidentifying restrictions on the model economy.
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parameters in our estimation procedure as they are only weakly identified given the specifi-

cation of T̄ adopted below. Specifically, we set the inverse Frisch elasticity of labor supply ζ

to 0.25 and the Taylor rule coefficient φ to 2, which is in the range of values typically used

in the business cycle literature.

We assume that T̄t follows a first-order auto-regressive process,

T̄t = ΛT̄t−1 + ωt,

where ωt is i.i.d. across time with zero mean and covariance matrix Ψ. Since agents may not

be immediately aware of aggregate productivity shocks, we allow ωt to be correlated with

the productivity innovations, εt. The joint covariance matrix is denoted Ψ̃ = Var[(ωt, εt)]. In

total, this gives us 10 parameters that are to be estimated, which are collected in the vector

γ ≡ {vec(Λ), vech(Ψ̃)}.
Let Γ denote the set of parameters consistent with the implementability conditions given

in (19)–(20). Following the logic of Theorem 2, any γ ∈ Γ is implementable if the island-

specific shocks are sufficiently volatile (see Appendix A.2 for details). Accordingly, we ignore

for now all orthogonality conditions other than (19)–(20) and provide ex post a process for

the local shocks that ensures that the estimated process for T̄t is indeed implementable.

We estimate the model parameters γ using the generalized method of moments (GMM)

to minimize the distance between the model’s covariance structure and the data, subject to

γ ∈ Γ.14 Let

Ω̃T = vech{Var[(s̃dt , . . . , s̃
d
t−k)]},

denote the empirical auto-covariance matrix of frequency-filtered quarterly US data, s̃dt , on

real per-capita output, inflation, nominal interest rates, and per-capita hours.15 We target

auto-covariances between zero and k = 8 quarters. For the filtering, we use the Baxter

and King (1999) approximate high-pass filter with a truncation horizon of 32 quarters; i.e.,

s̃dt = HP32(sdt ) where sdt are empirical observations of the model variables st = (yt, πt, it, nt).
16

14Given our parametric specification for T̄t, (19)–(20) can not hold exactly unless T̄t = 0 for all t. We
therefore allow for a small numerical deviation, ensuring that the estimated model satisfies all orthogonality
conditions within a tolerance of 2 · 10−6.

15Data range from 1960Q1 to 2012Q4. Real output is given by nominal output divided by the GDP
deflator. Inflation is defined as the log-difference in the GDP deflator. Interest rates are given by the Federal
Funds Effective rate. Hours are given by hours worked in the non-farm sector. Variables are put in per-capita
terms using the non-institutional population over age 16.

16The Baxter and King (1999) filter requires specification of a lag-length τ̄ for the approximation. We set
τ̄ to their recommended value of 12.
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Our estimator is thus given by

γ̂ = argmin
γ∈Γ

(Ω̃T − Ω̃(γ))′W (Ω̃T − Ω̃(γ)), (21)

where Ω̃(γ) is the model analogue to Ω̃T and W is a weighting matrix set to an estimate of[
Var{T 1/2Ω̃T}

]−1
(see Appendix B.2 for details). Following the suggestion of Gorodnichenko

and Ng (2009), our model analogue Ω̃(γ) is computed after applying the same filtering proce-

dure to the model that we have applied to the data. In Appendix B.1, we derive a closed-form

transformation from Ω ≡ vech{Var[(dst, . . . , dst−K)]} to Ω̃ = ΞΩ for a constant matrix Ξ

and K = k + 2τ̄ . Using the transformation, we can equivalently express (21) as

γ̂ = argmin
γ∈Γ

(ΩT − Ω(γ))′W̃ (ΩT − Ω(γ)), (22)

where now the unfiltered model is estimated (in first differences) on unfiltered data and the

filtering is achieved by replacing W with W̃ ≡ Ξ′WΞ. Using (22) in place of (21), estimation

becomes straightforward as the mapping from γ to Ω(γ) is available in closed form.

All confidence intervals and hypothesis tests are based on a bootstrapped distribution,

{γ̂b}Bb=1, with B = 2, 500 replications. As the bootstrap data generating process we use a

VAR(10) estimated on dsdt . In each sample b, we first construct Wb according to the steps

described in Appendix B.2, and then use (22) to estimate γ̂b where the target moments

(Ωb − Ω(γ)) are recentered about their population mean to adjust for overidentification.

5.2 Empirical Results

In this section we explore the properties of the estimated model and assess its ability to

account for business cycle comovements in the data. A full listing of the estimated parameter

values is given in Table 4 in the appendix.

Predicted moments We begin by assessing the empirical performance of the estimated

model. Figure 1 compares the predicted model moments with the targeted data moments.

The dashed black lines show the empirical covariance structure Ω̃T along with 90-percent con-

fidence intervals (depicted by the shaded areas). The solid blue lines show the corresponding

moments for the estimated model. Each row i and column j in the table of plots shows the

covariances between s̃it and s̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the horizontal axis.

The estimated model does a very good job at capturing the auto-covariance structure

of the four time series. In particular, the model captures the positive contemporaneous
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Figure 1: Business cycle comovements in the data and predicted by the estimated model. Note.—Dashed
black lines show the empirical covariance structure Ω̃T together with 90 percent confidence intervals depicted
by the shaded areas. Solid blue lines show the corresponding model moments Ω̃(γ̂). Each row i and column
j in the table shows the covariances between s̃it and s̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the x-axis.

comovement of output, hours, and inflation visible in the data, which is typically difficult for

productivity-driven models to accommodate. The estimated model also does an excellent job

at capturing the autocorrelation structure found in the data, in particular the rising profile

of inflation’s comovement with lagged GDP (second row, first column), as well as the falling

autocorrelations of GDP, inflation, and hours (along the diagonal).

Correlation of wedges Essential for the empirical performance of the model is that the

Euler wedge and the labor wedge are correlated across time and among each other. As re-

ported in Table 1, the contemporaneous correlation between τ ct and τxt is above 99 percent.

While most business cycle models generate shocks that are correlated across time, it is typ-

ically difficult for full-information models with structurally uncorrelated shocks to generate

perturbations that are correlated across equations. By contrast, the incomplete-information

wedges are naturally correlated both because information can be correlated across house-
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Table 1: Correlation structure of estimated expectation wedges

Contemporaneous correlation

Standard

deviation

First-order

autocorr.

with τ ct with τxt with εt

τ ct 0.0534 0.88 1.00 · ·
τxt 0.0318 0.89 0.99 1.00 ·
εt 0.0074 – -0.29 -0.29 1.00

holds and firms and because expectation errors by household are likely to affect both their

consumption and labor supply. Below we decompose the labor wedge into a household and

firm-side component, illustrating that virtually all of the fluctuations in the labor wedge can

be attributed to expectation errors by households. In Section 6, we then illustrate in a par-

ticular simple example how waves of optimism and pessimism among households regarding

the local productivity ai,t coupled with incomplete information regarding other households’

optimism and aggregate TFP can account for the correlation patterns in Table 1.

Identifying shocks The estimated process for T̄t reflects two distinct channels through

which incomplete information affects the dynamics of the economy. First, agents may have

incomplete information regarding aggregate productivity, potentially modifying the econ-

omy’s response to productivity shocks. Second, with incomplete information, agents can also

make correlated errors that introduce an independent source of business cycle fluctuations.

We now decompose the process of the estimated expectation wedges to isolate responses to

productivity innovations and different types of expectational shocks.

Since we assume that productivity is exogenous to T̄t, we can separate out the two roles

of incomplete information by projecting T̄t on current and past productivity shocks εt. We

get

T̄t = P (L)εt + vt, (23)

where P (L)εt ≡ P[T̄t|εt, εt−1, . . . ] denotes the projection. The lag-polynomial P identifies the

average expectation errors in (16) and (15) that are associated with productivity innovations.

The remaining residuals, vt, identify purely expectational business cycle shocks.

Let

vt = B1(L)η1,t +B2(L)η2,t, (24)

where B1(L) and B2(L) are lag-polynomials in nonnegative powers of L, and η1,t and η2,t

are orthogonal white-noise processes. As in the structural VAR literature, B1(L) and B2(L)

cannot be uniquely identified without additional identifying assumptions. To provide an
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Table 2: Unconditional variance decomposition

GDP Inflation Hours

η1,t 0.90 0.27 0.66

η2,t 0.01 0.31 0.01

εt 0.09 0.43 0.33

Note.—Contributions are to unconditional variances in the frequency filtered model.

economically interesting interpretation of our shocks, we identify the first shock η1,t as the

shock that contributes most to the unconditional variance of output which is orthogonal (at

all leads and lags) to technology. The second shock η2,t then captures the remaining (non-

technology-driven) movements in the economy. The identification strategy is closely related

to Uhlig’s (2003; 2004) approach of identifying shocks based on their contribution to some

finite forecast error variance.

Table 2 shows the contributions of the three shocks to the unconditional variances of the

high-pass filtered model variables. While productivity contributes substantially to fluctua-

tions in inflation and hours, the majority of the fluctuations in output, inflation and hours are

accounted for by the expectational shocks η1,t and η2,t. Specifically, the first expectational

shock is the dominant driver of output and employment fluctuations, whereas the second

expectational shock plays a moderate role in explaining inflation.

Impulse responses to productivity shock The solid lines in Figure 2 represent the

responses of the estimated model to a one-standard-deviation innovation in productivity.

Shaded bands capture the 90% confidence regions from the bootstrapped distribution of

responses.

The random walk assumption we have placed on productivity implies that, under full

information, output would immediately jump to the new potential output level (depicted

by the black-dotted line). As unanticipated permanent changes in potential output have no

effect on the output gap, there would be no responses in inflation, hours, or the interest rate

under full information.

With incomplete information, the responses are quite different. Output hardly moves on

impact and then only slowly adjusts to its new potential level over roughly four years. The

negative output gap over the period of transition is reflective of the negative labor wedge, τxt ,

over the same period. The negative effect of the shock on inflation follows from equation (17)

and the qualitatively similar, but larger, fall in the Euler wedge, τ ct . Overall, the picture shows

a delayed response to the productivity shock, with a short run fall in labor and a negative

output gap. This pattern is consistent with the VAR-based evidence by Basu, Fernald and
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Figure 2: Impulse responses to a productivity shock. Note.—Responses are for a one-standard-deviation
shock to εt and are depicted in percentage deviations from the steady state. Dotted black lines depict
the full-information benchmark. Shaded bands capture the 90% confidence regions from the bootstrapped
distribution of responses.

Kimball (2006).

Impulse responses to expectational shocks Figure 3 shows impulse response functions

to a one-standard-deviation shock in η1,t (the shock contributing most to observed output

fluctuations).

The shock is propagated by a sharp and persistent surge in both expectation wedges,

with the fluctuation in the household’s intertemporal condition once again exceeding that

of the labor wedge. The resulting increase in household demand leads to a joint increase in

output, inflation, interest rates, and employment. In terms of output, the shock implies a

peak response of approximately 1 percent and has a half-live of roughly two years. Overall,

the shock delivers dynamic responses that resemble a prototypical demand shock.

We now turn to the second expectational shock η2,t. Figure 4 gives the impulse responses.

At the point estimate, the shock has a substantial impact effect on inflation. But the es-

timated responses are transitory and statistically insignificant. Indeed, in our bootstrap

simulations, the shock η2,t is often estimated to have zero variance, resulting in a statistically

insignificant variance across draws.
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Figure 3: Impulse responses to an expectational shock in η1,t. Note.—Responses are for a one-standard-
deviation shock to η1,t and are depicted in percentage deviations from the steady state. Dotted black
lines depict the full-information benchmark. Shaded bands capture the 90% confidence regions from the
bootstrapped distribution of responses.

Testing for information Figure 5 reports the cross-correlation coefficients of the expec-

tation wedges vis-à-vis current and past output growth, inflation, the Federal funds rate and

productivity growth. The shaded regions correspond to 90 percent confidence intervals. Since

expectation errors must be orthogonal to variables in the corresponding information set, sig-

nificantly non-zero correlations between a wedge and a particular variable indicate that the

variable could not have been in the information set of agents at the time they made their

choices. Conversely, since the orthogonality requirements of Theorem 1 are also sufficient, a

statistically insignificant correlation indicates that our estimates are consistent with agents

knowing the corresponding statistic.

Our test suggests that private sector agents are generally unaware of aggregate conditions

within a 1-year horizon. In particular, if our estimated wedges are driven by information,

then we can clearly reject that agents are aware of contemporaneous inflation, interest rates,

or productivity. Regarding past information, we can reject orthogonality for inflation and

interest rates up to four quarters, while for productivity we can reject orthogonality for up

to five quarters. Meanwhile, the case for output is somewhat less clear, as orthogonality is

less clearly rejected over the same period.
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Figure 4: Impulse responses to an expectational shock in η2,t. Note.—Responses are for a one-standard-
deviation shock to η2,t and are depicted in percentage deviations from the steady state. Dotted black
lines depict the full-information benchmark. Shaded bands capture the 90% confidence regions from the
bootstrapped distribution of responses.

Decomposing the labor wedge While the intertemporal wedge is unambiguously driven

by the choices of the household, the labor wedge is potentially influenced by both household

and firm choices. We now decompose the labor wedge into a household and firm-side error.

Specifically, from the households’ and firms’ labor supply and demand choices, the two

components of the labor wedge are defined by

τx,ht =

∫ 1

0

E[pt|Ii,t] di− pt (25)

τx,ft =

∫ 1

0

E[pi,t|Ii,t] di− pt, (26)

where the combined labor wedge is given by

τxt = τx,ft − τx,ht . (27)

That is, the household-side of the labor wedge is driven by expectation errors vis-à-vis the

import price, while the firm-side component is driven by errors vis-à-vis the export price.

Let ŵt = wt − pt − at be the stationarized average of local equilibrium wages, where wt =
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Figure 5: Correlation between expectation-wedges and aggregate statistics. Note.—The plot shows the
(auto) correlation coefficients of the estimated expectation-wedges vis-à-vis output growth, inflation, the fed
funds rate and productivity growth. The order of the autocorrelation is on the x-axis. Shaded areas depict
90 percent confidence intervals.

∫ 1

0
wi,t di. Then the individual optimality conditions imply that the average household/firm

errors regarding the marginal benefits of supplying/demanding an additional hour of work

satisfy

τx,ht = ŵt − τxt (28)

τx,ft = ŵt. (29)

With data on the average wage faced by agents in the economy, it is thus possible to decom-

pose the labor wedge into a portion attributable to household errors and portion attributable

to firm errors.17 To do this, we fix our baseline estimates for the combined wedges and then

augment our original system with equations (28) and (29). We then estimate a subsidiary

process

τx,ft = D1T̄t−1 +D2(η1,t, η2,t, εt)
′

17Although our interpretation is different, this exercise resembles that of Karabarbounis (2014). He finds
qualitatively similar results.
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where τx,ft is governed by a 1× 2 vector D1 of weights on the aggregate expectation wedges

and a 1× 3 vector D2 capturing the impact of the three innovations in the economy on the

firm-side labor wedge, which from (27) in turn pins down the household-side labor wedge.

These five additional parameters are then estimated to match the empirical covariances,

Cov[w̃dt , (w̃
d
t−s, s̃

d
t−s)], where w̃dt denotes Baxter and King (1999)-filtered real compensation-

per-hour in the non-farm business sector.18

The results of this exercise are described in Figure 6, which now plots the correlation

of the household- and firm-side components of τxt with various aggregate statistics. Only

in the case of the household contribution to the wedge, τx,ht , can we ever reject the null of

orthogonality with respect to any of the aggregate statistics shown. In other words, for the

purpose of accounting for aggregate data we cannot reject that firms have full information:

An information-based theory of the business cycle must be driven by a lack of information

on the part of households rather than of firms.19 These results are in line with forecast-based

18The estimation follows the same GMM-procedure as our baseline estimation outlined in Section 5.1.
19Further supporting this conclusion, we cannot reject that the estimated coefficients D1 and D2 defining

the process for τx,ft are zero. Similarly, the ratio of Var[τx,ht ]/Var[τx,ft ] is roughly 25:1.
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Table 3: Standard deviations of island-specific shocks

Noise process ∆τ ci,t ∆τxi,t ∆ai,t zi,t

Standard deviation .0267 .0190 .0350 .0551

evidence which finds that households appear to be less informed than other agents in the

economy (e.g., Carroll, 2003). The fit of the economy with and without firm-side wedge

compared to the data is documented by Figures 9 and 10 in Appendix F.

Notice, however, that our results neither imply that firms have full information, nor that

firms’ information sets are necessarily distinct from the ones of households. For instance,

consider the case where pi,t ∈ Ii,t. Then from (26) we clearly have that τx,ft = 0 for all

t, approximately consistent with the evidence presented above. Yet, firms neither have su-

perior knowledge compared to household nor do they need to know the aggregate state of

the economy. Intuitively, knowledge of (ai,t, wi,t, pi,t) suffices for firms to behave optimally,

inducing them to behave as if they would have perfect information (see also Hellwig and

Venkateswaran, 2014).

Minimal volatilities Finally, we return to the question of what volatility for the idiosyn-

cratic noise terms, {∆ai,t, zi,t}, is required to implement the processes for aggregate expec-

tation errors described above. In practice, many different processes for these shocks are able

to support the estimated belief processes. For our implementation, we treat the local shocks

as MA(32) processes that can be arbitrarily correlated with both each other and the island-

specific component of the expectation wedges (see Appendix D for details). We then search

numerically for a feasible implementation of estimated belief processes that minimizes the

sum of unconditional variances of these shocks. Table 3 reports the corresponding standard

deviations for these shocks. While local conditions must exhibit substantial volatility, the

order of magnitude of these volatilities is on par with aggregate conditions in the economy.

These values fall well within the plausible range for the volatility of local conditions, which

are often calibrated or estimated to be much larger.

6 A Simple Model of Information

In this section, we explore whether our estimated impulse responses can be implemented by

a fully parametric—and simple—information structure. From Theorem 2, an exact imple-

mentation exists, given by the signals constructed in the proof to Theorem 1. In general,

however, there are many other possible implementation strategies. Here we explore a simple
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story of consumer confidence coupled with imperfect awareness regarding the errors or others

that gives rise to dynamics similar to the ones estimated in Section 5. Specifically, our model

builds on Lorenzoni (2009) in order to generate temporary fluctuations in aggregate demand

from consumer confidence. Rather than using exogenous price rigidity to translate those

fluctuations into real terms, we depart from Lorenzoni (2009) and combine the model with

elements from Lucas (1972, 1973) and Woodford (2003) to generate real output fluctuations

by making agents imperfectly aware of the aggregate component of consumer sentiment. This

gives rise to a “real Keynesian” theory of the business cycle. We show how the model is able

to generate the correlation structure of the expectation wedges discussed above.

A full implementation of the model would require a complicated numerical solution. In

the interest of transparency, we limit ourselves here to a stylized illustration of our ideas that

can be characterized in closed-form, and focus on implementing a single impulse response

at a time. Because the response to the second expectational shock has been found to be

insignificant in Section 5.2, we focus on implementing the economy’s response to productivity

and expectational shocks of the first type.

6.1 Setup

The model is given by the one in Section 2. Local productivities are given by

ai,t = ā0 + µi,0 + εi,t,

where ā0 is aggregate productivity, µi,0 is a fully-persistent island-specific factor, and εi,t is a

transient island-specific factor. The productivity components ā0, µi,0 and εi,t as well as the

local demand shocks, zi,t, are independently normally distributed white noise processes with

variances κ−1
ā , κ−1

µ , κ−1
ε and κ−1

z . Information is given by

Ii,t = {Θi,t, pi,t, s
µ
i,0, s

ā
i,t, I∗t−h̄} ∪ Ii,t−1

where

sµi,0 = µi,0 + η0

sāi,t = ā0 + ψi,t,

and η0 and ψi,t are normally distributed white noise processes with variances κ−1
η and κ−1

ψ .

Full-information is revealed with a lag of h̄ = 32 quarters. Notice that pi,t ∈ Ii,t. So in

line with our discussion in Section 5.2, both expectation wedges are driven exclusively by
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household errors. In addition to pi,t, agents receive two exogenous signals. First, sµi,0 reveals

the local productivity trend µi,0 with some noise η0. As η0 is correlated across islands, it

induces aggregate optimism regarding the local productivity, generating aggregate fluctua-

tions similar to the estimated response to η1,t. Second, together with ai,t (contained in Θi,t),

sāi,t governs the speed at which agents learn about the aggregate productivity component ā0.

Due to the one-shot nature of our model, uncertainty about µi,0 and ā0 will be largest at date

0 and will die out as t→∞, generating single impulse-response paths to the realizations of

η0 and ā0 at date 0.

For our numerical exercise, we parametrize the model as follows. From Section 5.1, we

have ζ = 0.25 and φ = 2. Next we set β = 0.99 and θ = 21 (implying markups of 5 percent

as in Huang, Zheng and Phaneuf, 2004). In line with the estimated standard deviation for

at, we set κā = 0.0074−2. Similarly, we ensure that the response to η0 has the right scale by

setting κη = 0.01−2. The idiosyncratic productivity processes is parametrized by κµ = 0.02−2

and κε = 0.05−2. Idiosyncratic demand shocks are given by κz = 0.0025−2. Finally, the signal

about aggregate productivity has a precision of κ−2
ψ = 0.0060.

6.2 Response to consumer sentiment shocks

Characterization For simplicity, suppose κ−1
ā = 0, so that the only source of aggregate

fluctuations is the noise term η0 that materializes at date 0. A positive realization of η0

implies a positive signal about the persistent component of the local productivities, which

translates into increased demand by the local consumer. Because η0 is (perfectly) correlated

across all islands, this translates into an increase in aggregate demand. In particular, solving

the island-economy, it can be shown that the consumers’ Euler equation aggregates to

ŷt = φµĒt[µi,0] + Ēt[ŷt+1 − φr(φπt − πt+1)] + φr(Ēt[ā0]− ā0) (30)

where φµ = β(1−θ−1) and φr = 1. Whether an increase in aggregate demand due to the first

term on the right-hand side translates into real output fluctuations depends on the response

of labor markets. Specifically, integrating over (6) with pi,t ∈ Ii,t, we have

ŷt = ξ(pt − Ēt[pt]). (31)

Note that if households and firms were to be perfectly aware of the consumer confidence shock

η0, then Ēt[pt] = pt and ŷt = 0. As in a standard real business cycle model, the economy

would never deviate from the natural level of output, and fluctuations in demand would be
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offset by price changes.

To solve for the equilibrium of this economy, conjecture a law of motion(
ŷt

πt

)
=

(
Λy
t

Λπ
t

)
η0.

Integrating over sµi,0, we have that

Ēt[µi,0] = η0 − Ēt[η0].

It hence follows that all expectations in (30) and (31) can be cast in terms of Ēt[η0]. Using

the Kalman filter to process the information in Ii,t and integrating over islands, we have

Ēt[η0] =
κ̄t−1Ēt−1[η0] + λ2

tκz + κε
κ̄t

κ̄t = κ̄t−1 + λ2κz + κε,

where the filter is initialized at Ē−1[η0] = κµ/κ̄−1 and κ̄−1 = κη + κµ, and where λt =

θ−1Λy
t +
∑t

s=0 Λπ
s . Noting that ŷs = πs = 0 for all s ≥ h̄, the model can be solved by guessing

and verifying a process (Λy
t ,Λ

π
t ).

Baseline response The impulse response to a one-standard deviation shock to η0 is shown

in Figure 7. An increase in consumer confidence driven by optimism regarding the local

productivity process (depicted in the third panel) raises aggregate demand by consumers.

Initially firms and households are unable to distinguish the increase in aggregate demand

from island-specific demand shocks. Accordingly, they underpredict the presence of the

aggregate demand shock (depicted in the fourth panel) so that wages and prices only adjust

slowly and the demand shock translates into real output fluctuations.

Qualitatively, the model is able to generate the positive comovement in ŷt and πt estimated

in Section 5.2, but the size of output fluctuations is much too small relative to inflation. To

see why this is the case, note that from (31), we have that

Λy
0 = ξΛπ

0

(
1− Ē0[η0]

η0

)
.

Given our choice of Ii,t, the degree of awareness regarding the confidence shock, Ēt[η0]/η0, is
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Figure 7: Impulse responses to an expectational shock in η0 in the parametric model. Dashed lines corre-
spond to the baseline setting with additively separable preferences. Solid green lines correspond to the case
with GHH preferences and roundabout production. Shaded areas depict 90 percent confidence intervals to
the response to η1,t of the estimated model.

bounded between 0 and 1. Hence, it follows that

Λy
0 ≤ ξΛπ

0 ,

bounding the impact response of output relative to inflation by a factor of ξ ≤ 1.

Before exploring how the bound on the impact response of output can be relaxed within

our setup, we make two observations about the nature of the bound. First, the bound emerges

because we assume pi,t ∈ Ii,t, which, from equation (26), shuts down any firm-side fluctuations

in the labor wedge. If firms were unaware of the (inverse) demand at the time of production,

then systematic confusion about zi,t could support fluctuations in Ēi,t[pi,t] − pt, uncoupling

the labor wedge from pt. Here we do not go this route since the results in Section 5.2 suggest

that firm-side fluctuations in the labor wedge do not play a major role in accounting for the

estimated impulse responses.

Second, an alternative way to increase the response of the output gap relative to inflation

would be to introduce exogenous price rigidity. Propagation via sticky prices is essential for

the expectation shocks of Lorenzoni (2009) and Blanchard, L’Huillier and Lorenzoni (2013)

to have real effects. In a previous draft of this paper (Chahrour and Ulbricht, 2017), we show

how including nominal frictions helps generating sizeable output fluctuations in a narrative

similar to the one explored here.

GHH and roundabout production Rather than assume sticky prices, we explore two

minor changes to preferences and production technology that taken together relax the bound

significantly. First, we tame the wealth effect on labor supply by considering a version of
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Greenwood, Hercowitz and Huffman (1988) (GHH) preferences, given by

U(Ci,t, Ni,t, Ai,t) = log

(
Ci,t −

1

1 + ζ
Ai,tN

1+ζ
i,t

)
,

where the dependency on Ai,t ensures consistency with a balanced-growth path. Second,

we introduce a round-about production structure as in Basu (1995) and Huang, Zheng and

Phaneuf (2004) where

Yi,t = Mα
i,t(Ai,tNi,t)

1−α.

Material inputs Mi,t are in terms of the final consumption good, so that market clearing

requires
∫ 1

0
(Mi,t + Ci,t)di = Yt. We set the share of material inputs to α = 0.7, which is in

the range of values considered plausible by Huang, Zheng and Phaneuf (2004).

Given the modifications, equations (30) and (31) continue to hold subject to adjustments

in the definitions of φµ, φr and ξ. Most relevantly, we now have ξ = (ζ(1 − α))−1(1 +

αζ), evaluating to approximately 15.7 under our parametrization.20 (See Appendix E for

expressions of the remaining parameters and a full derivation).

The responses to the modified economy are depicted by the solid lines in Figure 7. All

the responses closely fall into the confidence region of our estimate. The path is driven by

substantial optimism regarding average local productivities (depicted in the third panel).

As time passes, islands gradually learn about the origin of their confidence—i.e., the average

expectation regarding η0 converges toward η0 as seen in the last panel—and, correspondingly,

average beliefs about local conditions converges back to zero.

6.3 Response to aggregate productivity shocks

We now turn to the implementation of the response to an aggregate productivity shock. For

simplicity, we again focus on a single impulse response in the case where productivity is the

only source of aggregate fluctuations (κ−1
η = 0). To implement the estimated response, it

suffices to slow down learning with respect to the realization of ā0 sufficiently. The envi-

ronment adopted in this section naturally achieves this goal. Using similar steps as for the

response to η0, we can solve the model again by guessing and verifying a response path that

is consistent with (30) and (31). Figure 8 shows the solution under our standard preferences

and the GHH/roundabout structure. Again, the roundabout structure falls into confidence

20Similarly, the primal economy of the modified model spans exactly the same dynamics as the original
economy for T̄ GHH

t = M T̄t given a 2×2 matrix M . Clearly the transformation to T̄t preserves the parametric
shape, so there is no need to re-estimate the model. In particular, all estimated impulse response functions
and confidence bands will be exactly the same as in our baseline estimation in Section 5.2.
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response to at of the estimated model.

region of our estimate.

On impact, agents are on average aware of about 60% of the aggregate productivity

realization, leading to less adjustment in output than optimal under full information. As

agents gradually learn about the realized productivity, output converges to its new potential

and deflation ceases.

7 Concluding Remarks

We have established the equivalence between a primal economy characterized by a set of

reduced-form wedges and the class of economies driven by incomplete information. Apply-

ing our result, we show how to estimate a macroeconomic model with incomplete informa-

tion without parametric assumptions on information structures. Our approach is, at once,

straightforward to use and can be easily adapted to myriad contexts. We use the approach to

explore a dispersed-information version of a simple RBC economy. Our exploration suggests

that standard macroeconomic time series could in principle be fully explained by information.

The most important ingredient in accounting for the data is incomplete information on the

part of households. By contrast the data does not call for significant departures from full

information behavior on the side of firms.
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A Mathematical Appendix

A.1 Proof of Theorem 1

Consider any expectation wedge τ ∈ T . Let (â, I∗) denote the corresponding expectation

target and full-information set contained in E , so that

y ≡ E[â|I∗] + τ (32)

defines the equilibrium “belief” implied by the primal economy. Also let Θ be the corre-

sponding lower bound on I in the incomplete information economy. We want to show that

conditions (i) and (ii) are jointly necessary and sufficient for the construction of some I ∈ Θ

such that

E[â|I] = y. (33)

Necessity The necessity is immediate, since optimal inference requires that expectation er-

rors are orthogonal to variables in the information set and are unpredictable. E.g., combining

(32) and (33), implementation requires

τ = E[â|I]− E[â|I∗]. (34)

Computing the unconditional expectation over (34) yields E[τ ] = 0. Similarly, postmultiply-

ing (34) by Θ′ gives E[τΘ′] = E[âΘ′|I] − E[âΘ′|I∗] as Θ′ ⊆ I ⊆ I∗. Again computing the

unconditional expectation, we have E[τΘ′] = 0.

Sufficiency We demonstrate sufficiency by construction. Let I = Θ. Notice that in

dynamic settings, Assumption 2 holds as long as Θ is recursive, ensuring consistency with

the dynamic nature of agents’ beliefs.

Let Θ̃ ≡ Θ \ {y} and let a ≡ E[â|I∗]. From the law of iterated expectations, we have

E[â|I] = E[a|I] as I ⊆ I∗. Projecting a onto (y, Θ̃) we thus have21

E[â|I] =
[
Σay ΣaΘ̃

] [Σyy ΣyΘ̃

Σ′
yΘ̃

ΣΘ̃Θ̃

]−1 [
y

Θ̃

]
,

where we use Σab as shorthand for Cov[a, b′]. Combining (32) with condition (ii) of the

21When the vector Θ contains co-linear variables, the proof follows after replacing Σ−1
ΘΘ with the generalized

inverse Σ†ΘΘ and using the standard properties of the projection matrix, ΣΘΘΣ†ΘΘ.
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Theorem yields

Cov(a, y′) = Cov(y − τ, y′) = Cov(y, y′)

Cov(a, Θ̃′) = Cov(y − τ, Θ̃′) = Cov(y, Θ̃′).

Noting that [
Σyy ΣyΘ̃

]
=
[
I 0

] [Σyy ΣyΘ̃

Σ′
yΘ̃

ΣΘ̃Θ̃

]
,

we therefore get

E[â|I] =
[
I 0

] [y
Θ̃

]
= y.

As the proof applies to any τ ∈ T , we conclude that as long as conditions (i) and (ii) holds,

we can replicate T by including an exogenous signal a+ τ into each information set that has

the same distributional properties as the primal “belief” y. Moreover, because E(T ) is an

equilibrium in the primal economy, all equilibrium conditions in the incomplete-information

economy hold by construction, concluding the proof of the theorem.

A.2 Proof of Theorem 2

Fix a lower bound Θi,t = {ci,t, yi,t, ai,t} ∪ Θi,t−1.22 As Θi,t is non-stationary, we work with

the informationally equivalent signals Si,t = (dci,t, dyi,t, dai,t)
′. By Theorem 1, Tt can be

implemented if E[(τxi,t, τ
c
i,t)] = 0 and

Cov[(τxi,t, τ
c
i,t),Si,t−s] = 0 ∀s ≥ 0. (35)

Let St and ∆Si,t define the aggregate and idiosyncratic components of Si,t so that

Si,t =

dyt

dyt

εt


︸ ︷︷ ︸
St

+

∆dci,t

∆dyi,t

∆dai,t


︸ ︷︷ ︸

∆Si,t

,

22Here we can drop ni,t as it contains no additional information beyond observing ai,t and yi,t. Orthogo-
nality with respect to (ai,t, yi,t) automatically implies orthogonality with respect to ni,t.
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and define Γs ≡ −Cov[(τ ct , τ
x
t ),St−s]. We can then rewrite (35) as

Cov[(∆τ ci,t,∆τ
x
i,t),∆Si,t−s] = Γs ∀s ≥ 0. (36)

Note that the aggregate wedges (τ ct , τ
x
t ) can be obtained from (ŷt, πt) and are zero-mean

under the requirements of the theorem. To prove the theorem, it thus suffices to show that

for any aggregate process characterized by {Γs}, we can find a process (∆τ ci,t,∆τ
x
i,t,∆ai,t, zi,t)

such that (36) holds. Note that by construction (∆τ ci,t,∆τ
x
i,t,∆ai,t, zi,t) does not affect the

aggregate dynamics of the economy, so that it is indeed consistent with any aggregate process

that one wishes to implement.

We begin by solving for the equilibrium dynamics of the “∆-economy”, giving us

(d∆ci,t, d∆yi,t) as a function of (∆τ ci,t,∆τ
x
i,t,∆ai,t, zi,t). With the solution at hand, we then

derive an explicit expression for (36) and show how for any {Γs} we can construct a valid

process (∆τ ci,t,∆τ
x
i,t,∆ai,t, zi,t) that satisfies the orthogonality requirements.

Characterizing the ∆-economy Suppose that the aggregate economy is in equilibrium.23

The equilibrium dynamics of the (fictitious) “∆-economy” are characterized by the following

equations:

∆ci,t = Et[∆ci,t+1 −∆τ ci,t+1] + ∆τ ci,t

∆yi,t = ξ(xi,t + ∆τxi,t) + ∆ai,t

βbi,t = bi,t−1 + xi,t

xi,t = ∆yi,t −∆ci,t + ∆pi,t

∆pi,t = −θ−1∆yi,t + zi,t.

The system can be rewritten as

Et[d∆yi,t+1] = δEt[ξ−1d∆ai,t+1 + dzi,t+1 + d∆dτxi,t+1 − d∆τ ci,t+1] (37)

βbi,t = bi,t−1 + ξ−1(∆yi,t −∆ai,t)−∆τxi,t (38)

where δ ≡ (θ−1 + ξ−1 − 1)−1, and consumption is determined by

∆ci,t = −δ−1∆yi,t + zi,t + ∆τxi,t + ξ−1∆ai,t. (39)

Fix some process (∆τ ci,t,∆τ
x
i,t,∆ai,t, zi,t)

′ = A(L)υi,t, where A(L) is a square-summable

23I.e., ŷt = nt = ξτxt and πt is given by (18).
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matrix-polynomial in non-negative powers of the lag operator L and the vector υi,t are white

noise shocks. Conjecture

∆yi,t = ξ(β − 1)bi,t−1 + Φ(L)υi,t. (40)

Substituting (40) in (38), it must be that

Φ(L)υi,t = ξβdbi,t + ξ∆τxi,t + ∆ai,t. (41)

Using (40) to eliminate ∆dyi,t+1 in (37), we have

(β − 1)ξdbi,t +
[
(L−1 − 1)Φ(L)

]
+
υi,t =

[
−δ δ δξ−1 δ

] [
(L−1 − 1)A(L)

]
+
υi,t (42)

where [·]+ sends the negative powers of L to zero. Further using (42) to eliminate dbi,t in

(41) and applying the z-transform, we obtain the following functional equation

(1− β−1z)Φ(z) =[
−δ δ δξ−1 δ

]
[(1− z)A(z)− A0] + Φ0 + (1− β−1)

[
0 ξ 1 0

]
A(z)z. (43)

Evaluating (43) at z = β, pins down Φ0 and Φ(z), from which we obtain the following

equilibrium process for d∆yi,t ≡ dy(L)υi,t and d∆ci,t ≡ dc(L)υi,t:

dy(z) =
[
−δ δ δξ−1 δ

]
(1− z)A(z) +

[
δ ξ − δ 1− δξ−1 −δ

]
[(1− β)A(β)] (44)

and

dci,t =
[
1 0 0 0

]
(1− z)A(z) +

[
−1 1− δ−1ξ ξ−1 − δ−1 1

]
[(1− β)A(β)] . (45)

Implementation step Using (44) and (45), (36) can be rewritten as

Γs = Cov

(∆τ ci,t

∆τxi,t

)
,

 1 0 0 0

−δ δ δξ−1 δ

0 0 1 0

 (1− L)A(L)ξi,t−s

+

+ Cov

(∆τ ci,t

∆τxi,t

)
,

−1 1− δ−1ξ ξ−1 − δ−1 1

δ ξ − δ 1− δξ−1 −δ
0 0 0 0

 (1− β)A(β)ξi,t−s

 ∀s ≥ 0. (46)
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Post-multiplying both sides by

M ≡

1 1 0

0 δ−1 0

0 −ξ−1 1


and applying the z-transform, (46) is equivalent to the following functional equation

Γ̃(z) =

[
1 0 0 0

0 1 0 0

]
[
A(z)(1− z−1)A(z−1)′

]
+

1 0 0 0

0 1 0 1

0 0 1 0


′

+

+ A(z)(1− β)A(β)′

−1 1− δ−1ξ ξ−1 − δ−1 1

0 0 0 0

0 0 0 0


′ (47)

where Γ̃(z) ≡ Z{ΓsM}s≥0 is the (one-sided) z-transform of {ΓsM} . Write

A(L) =

Aτ (L)

Aa(L)

Az(L)


where Aτ (z) is a lag-polynomial of size 2 × n, Aa(z) and Az(z) are each lag-polynomials of

size 1× n, and n is an arbitrary number of innovations. Then (47) can be further rewritten

as

Γ̃1(z) + Ω(z) =
{

(1− z−1)Aτ (z)Aτ (z
−1)′
}

+
+ Ψ(z) + Aτ (z)Aτ (β)′Λ (48)

and

Γ̃2(z) =
{

(1− z−1)Aτ (z)Aa(z
−1)′
}

+
, (49)

where Γ̃1 and Γ̃2 correspond to the first two and third column of Γ̃, respectively, and where

Ψ(z) ≡
{
Aτ (z)

[
(1− β)Az(β)′ (1− z−1)Az(z

−1)′
]}

+

and

Ω(z) ≡ −(1− β)(ξ−1 − δ−1)
[
Aτ (z)Aa(β)′ 0

]
and

Λ ≡

[
−(1− β) 0

(1− β)(1− δ−1ξ) 0

]
.
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Fix N as the largest non-zero power of z in Γ̃. Consider the following parametric structure

for Aτ , Aa, and Az: Aτ (z)

Aa(z)

Az(z)

 =

λτ (z) I

λa(z) (1− z)−1λa,0

0 λz,0 + λz,1z


with

λτ (z) =
[
λτ,1 + ρz · · · λτ,N + ρNzN

]
and

λa(z) =
[
(1− z)−1λa,1 · · · (1− z)−1λa,N

]
,

and where {λa,j, λz,j} are of size 1× 2 and {λτ,j} are of size 2× 2.

Condition (49) then simplifies to

Γ̃2(z) = λτ (z)λ′a + λ′a,0.

So for any λτ , it suffices to set

λa,s = ρ−sΓ̃′2,s ∀s ≥ 1, and

λa,0 = Γ̃′2,0 −
N∑
j=1

λ′τ,jλa,j

in order to satisfy orthogonality with respect to ai,t.

Regarding condition (48), we have that

Π(z) ≡ Γ̃1(z) + Ω(z)− Λ− I =
{

(1− z−1)ττ (z)ττ (z
−1)′
}

+
+ Ψ0 + λτ (z)λτ (β)′Λ

where

Ω(z) = −Γ̃2(z)
[
(ξ−1 − δ−1) 0

]
and

Ψ0 ≡ Ψ(z) =
[
(1− β) (λz,0 + βλz,1) λz,0

]
.

Notice that (i) the left-hand side, Π(z), is exogenously determined by the aggregate economy

that we are trying to implement, and (ii) we have Ψ0 as a degree of freedom to induce an
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arbitrary unconditional covariance on the right-hand side. Writing out the right-hand side

in the time-domain, we have

Π0 = Ψ0 − ρλ′τ,1 +
ρ2

1− ρ2
+

N∑
j=1

λτ,jλ
′
τ,j(I + Λ) +

N∑
j=1

ρjβjλτ,jΛ (50)

Πs = ρsλ′τ,s(I + Λ)− ρs+1λ′τ,s+1 + ρ2sβsΛ. (51)

Initialized at λN+1 = 0, (51) can be solved recursively backwards for a sequence {λτ,s} that

ensures orthogonality with respect to (ci,t−s, yi,t−s)s≥1. Finally, orthogonality with respect to

(ci,t, yi,t) is achieved by setting Ψ0 to satisfy (50), completing the proof.

B Details of the Econometric Methodology

B.1 Applying the Frequency-filter

Let

J =
(

Ω̃T − Ω̃(γ)
)′
W
(

Ω̃T − Ω̃(γ)
)

(52)

denote the penalty function in terms of BK-filtered moments, where the filter is applied

to both the data and the model. In this appendix, we demonstrate how the penalty

can be expressed in terms of the variance over unfiltered first-differenced moments, Ω ≡
vech

{
Var

(
dstt−K

)}
, where d is the first-difference operator, and K ≡ k+2τ̄ with τ̄ denoting

the approximation horizon of the BK-filter.24 Specifically, for any positive-semidefinite W

we show that J in (52) is equivalent to

J = (ΩT − Ω(γ))′ W̃ (ΩT − Ω(γ)) , (53)

with W̃ = Ξ′WΞ replacing W (a closed-form expression for Ξ is given below).

The Baxter and King (1999) filtered version of st takes the form

s̃t =
τ̄∑

j=−τ̄

ajst−j

where s̃t is stationary by construction. For the high-pass filter used in this paper, the weights

24The first-difference filter is applied to the unfiltered variables to ensure stationarity for variables that
have a unit root. Our transformation includes an adjustment term that corrects for the fact that the filtered
moments in Ω̃ are about levels rather than first-differences.
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{aj} are given by

aj = ãj − θ, θ =
1

2τ̄ + 1

τ̄∑
j=−τ̄

ãj

with

ã0 = 1− ω̄/π, α̃j 6=0 = − sin(jω̄)/(jπ), ω̄ = 2π/32.

To construct the filter-matrix Ξ, rewrite s̃t in terms of growth rates to get

s̃t =
τ̄∑

j=−τ̄

∞∑
l=0

ajdst−j−l.

Noting that
∑τ̄

j=−τ̄ aj = 0, we can simplify to get

s̃t = Bdst+τ̄t−τ̄−j

where

B = [b−τ̄ , . . . , bτ̄ ]⊗ In, (54)

n = 4 is the number of variables in s̃t, and bs =
∑s

j=−τ̄ αj.

Letting Lj define the backshift matrix

Lj =
[
0n(2τ̄+1),nj, In(2τ̄+1), 0n(2τ̄+1),n(k−j)

]
, (55)

we then have that

Σ̃j ≡ Cov(s̃, s̃t−j) = BL0ΣKL′jB
′,

or, equivalently,

vec(Σ̃j) = (BLj ⊗BL0) vec(ΣK).

To complete the construction of Ξ, define selector-matrices P0 and P1 such that

vech(Σ̃k) = P0


vec(Σ̃0)

...

vec(Σ̃k)


and

vec(ΣK) = P1vech(ΣK).
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Stacking up vec(Σ̃j), we then get

Ω̃ = ΞΩ

where

Ξ = P0


BL0 ⊗BL0

...

BLk ⊗BL0

P1 (56)

with B and Lj as in (54) and (55). Substitution in (52) yields (53).

B.2 Estimation of the optimal weighting matrix

Our estimation of

S ≡ Var
{
T 1/2

(
Ω̃T − Ω̃(γ0)

)}
= Var

{
T 1/2Ω̃T

}
is based on a bootstrap identical to the one described in the main text (with 5000 replications).

Let S̃ = Var{T 1/2Ω̃b} where the variance is across bootstrap samples with Ω̃b = ΞΩb being

the target moments in a given sample b ∈ {1, . . . , 5000}. It is well-known that estimations of

covariances of covariance structures are prone to small-sample bias due to the estimation of

fourth moments, which tend to correlate with the targeted covariance structure (e.g., Abowd

and Card 1989 and Altonji and Segal, 1996). In addition, we find that S̃ is near singular.

We follow Christiano, Trabandt and Walentin (2010) and dampen the off-diagonal elements

of S̃ relative to the diagonal to improve the small-sample efficiency of S̃. Specifically, let

S̃i,j denote the (i, j)-th block of S̃ corresponding to the cross-sample covariance between

Cov{dst, dst−i} and Cov{dst, dst−j}. We replace S̃ by S̃(ν1,ν2) where each block S̃
(ν1,ν2)
i,j in

S̃(ν1,ν2) is given by ςi,j(ν1)(M(ν2) ◦ S̃i,j) with

ςi,j =

(
1− |i− j|

k + 1

)ν1
, ν1 ≥ 0

and

M(ν2) = 1− ν2 + ν2In2 , 0 ≤ ν2 ≤ 1,

where ◦ is the element-wise (Hadamard) product and n = 4 is the number of elements in

st. Intuitively, ν2 is a dampening factor applied to the off-diagonal elements within each S̃i,j

block and ν1 is a dampening applied to the covariance between different auto-covariance-

blocks that is increasing in |i − j|. For ν1 = ν2 = 0, the resulting matrix S̃(ν1,ν2) equals S̃.

For ν1 →∞, S̃(ν1,ν2) becomes a block-diagonal version of S̃, so that the GMM criterion does
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not depend on the cross-block co-variation Cov {Cov [s̃t, s̃t−i] ,Cov [s̃t, s̃t−j]} for i 6= j. For

ν2 = 1, each block S̃
(ν1,ν2)
i,j becomes diagonal, so that the GMM criterion does not depend

on the cross-variable co-variation Var
{

Cov
[
s̃

(m)
t , s̃

(n)
t−i

]}
for any m 6= n.25 In either case,

the criterion continues to make full use of all targeted moments Ω̃T . To have a consistent

estimator of S, we need that ν1 → 0 and ν2 → 0 as T → ∞, but do not restrict the small

sample behavior of ν1 and ν2. Our choice of ν1 and ν2 is aimed at maximizing the small sample

efficiency of S̃(ν1,ν2). Specifically, we set ν1 and ν2 to minimize the RMSE in a simulation

experiment where we generate time series of the length of our original data sample, treating

the bootstrap DGP described in the main text as the truth. The efficient estimator is given

by ν1 = 5 and ν2 = 0.5, which also suffices to make S̃(ν1,ν2) well-conditioned. Collecting, we

have W = [S̃(ν1,ν2)]−1 and W̃ = Ξ′[S̃(ν1,ν2)]−1Ξ.

C Market Clearing in the Primal Economy

Imposing market clearing in the primal economy, the consumer Euler equation reads

Et[rt + dτ ct+1] = Et[dŷt+1] = ξEt[dτxt+1]. (57)

For markets to clear, the real interest rate rt = φπt−Etπt+1 has to adjust so that consumers’

demand—taking into account households’ errors in their consumption decisions τ ct —matches

the output gap as determined by τxt . Clearly, for any stationary process for τ ct and τxt , there

exists a process for rt so that (57) holds. Intuitively, by fixing τ ct first, the real interest rate

endogenously adjusts so that the real interest rate as perceived by consumers, rt + dτ ct+1,

clears the markets. This is fundamentally different to a parametric structure in which the

expectation error is determined endogenously and there may not be any solution to (57). For

instance, suppose consumers are perfectly informed about local conditions and the only source

of uncertainty is the real interest rate. In that case, we can interpret Ēt[rt] = rt + Et[dτ ct+1].

With a parametric information structure, we would need to ensure that Ēt[rt] is sufficiently

responsive to τxt , which may, e.g., fail if consumers have virtually no information regarding

rt. By contrast, the primal approach endogenously pins down Ēt[rt] as the market-clearing

object. Fixing τ ct merely determines how rt has to adjust so that rt + Et[dτt+1] clears the

market: If consumers make larger errors, then interest rates can adjust by more to ensure an

effective degree of awareness that suffices to clear the market.

25Here s̃
(m)
t denotes the m-th element of s̃t.

44



D Computing the Volatility-Minimizing Local Shocks

From the proof of Theorem 2, we have that the aggregate process for T̄t is implementable if

(47) holds. For any parametric process for the island-specific shocks, (∆τ ci,t,∆τ
x
i,t,∆ai,t, zi,t),

we can thus simply search numerically over the process that minimizes Var[ai,t] + Var[zi,t]

subject to (47).

Specifically, with our MA(32) parametrization we have
∆τ ci,t

∆τxi,t

∆ai,t

zi,t

 =
32∑
j=0

Aj︸︷︷︸
4×4

υi,t−s. (58)

Substituting (58) into (47), the implementability constraint becomes

Γ̃s =

[
1 0 0 0

0 1 0 0

]Gs

1 0 0 0

0 1 0 1

0 0 1 0


′

+Hs

−1 1− δ−1ξ ξ−1 − δ−1 1

0 0 0 0

0 0 0 0


′ ,

s ∈ {0, 1, . . . , 32}

where

Gs =
32−s∑
j=0

(Aj+s − Aj+s+1)A′j

Hs = (1− β)As ×

(
32∑
j=0

βjA′j

)
δ = (θ−1 + ξ−1 − 1)−1

and

Γ̃s ≡ −Cov

(τ ct
τxt

)
,

dyt−s

dyt−s

εt−s


×

1 1 0

0 δ−1 0

0 −ξ−1 1


is given by the aggregate estimate.
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E Characterization of the Economy with GHH-

Preferences and Roundabout Production

In this appendix, we derive the equations characterizing the economy with GHH preferences

and roundabout production. In analogue to (5) and (6), the local Euler equation and labor

market clearing condition are given by

yi,t = ξEi,t[pi,t − pt] + ai,t (59)

and

λci,t + (1− λ)
(
ξ−1(yi,t − ai,t) + yi,t

)
=

Ei,t[λci,t+1 + (1− λ)
(
ξ−1(yi,t+1 − ai,t+1) + yi,t+1

)
− (φπt − πt+1)] (60)

where

ξ ≡ 1 + ζα

(1− α)ζ
λ ≡

(
1− 1

1 + ζ
· 1− α
µ− α

)−1

.

Optimal material demands are given by

mi,t = Ei,t[pi,t − pt] + yi,t = ξ−1(yi,t − ai,t) + yi,t. (61)

Following steps similar to the first step in the proof to Theorem 2, we have that—conditional

on ai,t—the response of E[ci,t+1] and E[yi,t+1] to E[µi,t+1] are given by

E[∆yi,t+1] =
θ

θ + ξ
E[µi,t+1] (62)

E[∆ci,t+1] =
θ − 1

θ + ξ

{
1− λ−1(1− β)

}
E[µi,t+1]. (63)

Aggregating over (59) and (60), we have

ŷt = ξĒ[pi,t − pt]
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and

λct + (1− λ)
(
(ξ−1 + 1)ŷt + at

)
=

Ēt[λ∆ci,t+1 + (1− λ)
(
ξ−1(∆yi,t+1 − µi,t+1) + ∆yi,t+1

)
]

+ Ēt[λct+1 + (1− λ)
(
(ξ−1 + 1)ŷt+1 + at+1

)
− (φπt − πt+1)].

The aggregate resource constraint is ytY = ctC + mtM or, substituting for steady state

shares,

yt = (1− αµ−1)ct + αµ−1mt.

Combining with optimal material demands (61), we have

ct = yt − ξ−1 αµ−1

1− αµ−1
ŷt. (64)

Substituting (62)–(64) into (60), we get after some algebra,

ŷt = φµĒt[µi,0] + Ēt[ŷt+1 − φr(φπt − πt+1)] + φr(Ēt[ā0]− ā0)

where

φµ = β
θ − 1

θ + ξ
φr

φr =

[
1 + ξ−1

(
1− λ

1− αµ−1

)]−1

.

F Additional tables and figures

Table 4: Parameters of the estimated VAR(1) process for the expectation wedges

Coefficient matrix Λ on lagged states Coefficient matrix R, where Ψ̃ = RR′


0.289 1.010

(−0.914, 0.918) (−0.243, 2.500)
−0.281 1.347

(−1.222, 0.263) (0.354, 2.500)




1.891 − −1.546
(0.976, 2.140) (−1.977,−0.545)

1.220 0.141 −0.907
(0.868, 1.402) (0.000, 0.369) (−1.291,−0.279)

− − 0.743
(0.332, 0.922)


Note.—Numbers in parenthesis are 90% confidence intervals.
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Figure 9: Business cycle comovements in the wage-augmented data and predicted by the estimated model
with both firm- and household-side errors. Note.—Dashed black lines show the empirical covariance structure
Ω̃T together with 90 percent confidence intervals depicted by the shaded areas. Solid blue lines show the
corresponding model moments Ω̃(γ̂). Each row i and column j in the table shows the covariances between
s̃it and s̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the x-axis.
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Figure 10: Business cycle comovements in the wage-augmented data and predicted by the estimated model
with only household-side errors. Note.—Dashed black lines show the empirical covariance structure Ω̃T
together with 90 percent confidence intervals depicted by the shaded areas. Solid blue lines show the corre-
sponding model moments Ω̃(γ̂). Each row i and column j in the table shows the covariances between s̃it and
s̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the x-axis.
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