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Abstract

We develop validity tests for application to stated-preference estimates of WTP to reduce mor-
tality risk, i.e., value per statistical life (VSL), and apply these to data obtained by surveying a
representative sample of French adults over the internet. These tests (WTP nearly proportional
to risk reduction, insensitive to small differences in baseline risk, increasing in income, and consis-
tent with budget constraints) are satisfied by a conventional single-regression analysis of our data.
Using latent class analysis (LCA), we identify important differences between respondents in their
consistency with the validity tests and control for much of this heterogeneity. Estimates of VSL
from the latent class that is consistent with the validity tests are smaller than estimates from the
standard analysis. We estimate mean VSL for adults of about 2 million e and for children (based
on parents’ WTP) of about 6 million e
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1 Introduction

The value of reductions in mortality risk, conventionally measured using the value per
statistical life (VSL), accounts for the lion’s share of quantified benefits of many environ-
mental, health, and safety regulations (Hammitt & Robinson 2011).1 The appropriate
VSL to be applied in these analyses has received substantial attention. As markets for
mortality-risk reduction do not exist, researchers have used non-market valuation tech-
niques, including revealed preference (RP) and stated preference (SP) methods. RP
methods infer individuals’ preferences from their behavior in contexts that affect their
mortality risks. RP has most often been used with labor market data, assessing the com-
pensating wage differentials workers receive for occupational fatality risk (Viscusi & Aldy
2003). SP methods are based on respondents’ responses to hypothetical choices. Two
methods dominate the SP literature: contingent valuation methods (CVM, Mitchell and
Carson 1989) and discrete choice experiments (Bateman et al. 2002).2

SP methods have been more controversial than RP; Hausman (2012) entitles his cri-
tique of the CVM, "From dubious to hopeless." Despite criticism, the CVM remains one
of the principal sources for estimating the rate of substitution between wealth and small
changes in health risks. Diamond et al. (1994) ask "Is some number better than no
number?" and argue that if CVM does not accurately elicit preferences, the answer is
no. Beshears et al. (2008) distinguish between revealed preferences that "rationalize an
economic agent’s observed actions" and normative preferences that "represent the agent’s
actual interests." On the assumption that policy evaluation should be informed by nor-
mative preferences, the critical question is under what conditions can SP estimates be in-
terpreted as informative about normative preferences? A partial answer is that estimates
must be consistent with standard models of tradeoffs; e.g., WTP should be sensitive to
scope (larger for a greater benefit).

To assess the validity of SP estimates of willingness to pay (WTP) for small reductions
in mortality risk, we derive validity tests from an expected utility model and use these to
evaluate responses from a contingent valuation survey fielded to a panel representative of
the French adult population. Our validity tests include: (1) WTP should increase with
the magnitude of the risk reduction and (for the small risk reductions in question) should
be nearly proportional to the risk reduction (Corso et al., 2001; Alolayan et al., 2015); (2)
WTP should not vary significantly with small changes in baseline mortality risk; (3) WTP

1A retrospective analysis of the Clean Air Act finds that mortality risks account for 95 percent of the
present value of monetized benefits from 1970 to 1990 (EPA 1997). Hence different values of VSL may
substantially change the set of alternative policies that are judged cost-beneficial.

2VSL is defined as an individual’s marginal rate of substitution between wealth and mortality risk
in a specified period, such as the current year (Hammitt 2000). In the United Kingdom, benefits of
policies to reduce mortality risk are evaluated using the Value of Preventing a Statistical Fatality (VPF),
"conventionally defined as the aggregate willingness to pay by a large, representative sample of individuals
for small reductions in the risk of death which, taken across the group concerned, will reduce the expected
number of fatalities during a forthcoming period by one" (McDonald et al. 2016, p. 138). The VPF
"incorporates the ‘extra’ value placed on relatives and friends, and any further value placed by society on
avoiding the premature death of individuals" and in practice may also include "gross lost output, medical
and ambulance costs" (HM Treasury 2011, p. 62).
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should not decrease with wealth; and (4) WTP should not exceed the respondent’s income.
We examine several alternative estimates of VSL, including a novel "scope-revealing" VSL
that equals zero when responses are completely insensitive to scope.

We explore the effects of heterogeneity among responses using latent class analysis
(LCA). LCA endogenously creates classes composed of relatively homogeneous responses;
each class is a weighted average of respondents and each respondent has a positive prob-
ability of membership in each class. LCA can be interpreted as a smoother method for
weighting respondents than the common approach in which respondents who fail tests of
comprehension, provide protest or extreme responses, or violate other criteria are excluded
(given zero weight) and all other respondents are given equal weights.

Our key finding is that LCA identifies substantial heterogeneity among responses. An-
alyzing our data using a conventional regression approach yields results that satisfy our
validity criteria. However, peeling back the onion with LCA reveals substantial hetero-
geneity in the extent to which the validity criteria are satisfied. Overall, 58 percent of
responses are associated with latent classes that are inconsistent with our criteria. In one
class, including 29 percent of responses, estimated WTP greatly exceeds income, likely
violating respondents’ budget constraints. In another class, accounting for another 29
percent of responses, estimated WTP significantly decreases with baseline risk, violating
the criterion of insensitivity to baseline risk. The remaining class, associated with 42 per-
cent of responses, satisfies our validity criteria. We suggest that estimates of VSL for this
class may be interpreted as valid estimates for the population.

An additional benefit of controlling for heterogeneity using LCA is that the residual
variance around the regression function is substantially reduced. Consistent with much of
the previous literature, we analyze the logarithm of WTP as a function of demographic
and other covariates; retransforming predicted log WTP to predicted WTP in euros can
yield a large difference between the predicted mean and median.3

Our survey instrument is adapted from one administered to a representative internet
panel in the United States by Hammitt and Haninger (2010). We elicit estimates of WTP
to reduce mortality risks to identified individuals: the respondent him or herself, his or
her child, another adult living in the household, and jointly to everyone living in the
household. Hypothetical mortality risks are associated with pesticide residues on food,
and risk reductions are obtained by purchasing an alternative food produced following a
hypothetical, "pesticide security system" warranted by the state. The alternative food is
described as produced using pesticides that are safer to humans than the pesticides used
in producing conventional food (i.e., the alternative food reduces risk to human consumers
but does not present environmental, worker-safety, or other benefits). Risks are described
as a function of baseline risk of illness (with the conventional food type), risk reduction
(with the alternative food type), disease type (cancer, non-cancer), affected organ (brain,
bladder, liver, lymphocytes), latency period (1, 10, 20 years) and symptom description

3The predicted mean is larger than the predicted median by a factor of exp(σ
2

2 ), where σ2 is the residual
variance.
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(provided or not). These characteristics are randomly varied across respondents and the
person at risk (e.g., self, child) using a full factorial design. Estimates are obtained using
a representative French internet panel. A total of 1000 respondents completed the survey.

Respondents value risk reductions to several members of their household ("targets").
The order of the targets is randomly assigned. We find that respondents’ answers to the
valuation questions about the first target exhibit greater scope sensitivity than answers
concerning the second and third targets. This finding is robust across model specifications,
even after controlling for observed and unobserved heterogeneity. As identification relies
on between-respondent variation, it does not reflect a tendency of respondents toward ar-
bitrary coherence, in which responses to valuation questions are motivated by consistency
with responses to previous questions (Ariely et al. 2003, Goldberg & Rosen 2007).

Our analysis provides new estimates of VSL for the French population and describes
how VSL varies with characteristics of the disease and the affected individual. Despite
its importance to policy evaluation, there are few estimates of VSL in France.4 Most of
the French studies violate criteria for economic validity.5 We propose VSL estimates for
France that satisfy validity criteria. Our estimates range from 2 to 6 million e for adults
and 6 to 7 million e for children. Consistent with some recent literature, we find no
evidence that WTP is larger to reduce risk of cancer than other fatal diseases (Hammitt
& Haninger 2010; Chestnut et al. 2012; Cameron & Deshazo 2010).6 LCA proves useful to
understanding heterogeneity among respondents. Our preferred estimates are derived from
one of the latent classes, and hence on an unequal weighting of respondents. This creates
a possibility of bias compared with estimates based on equal weighting of respondents,
but the distribution of demographic characteristics for the weighted sample is similar to
that for the unweighted sample.

The paper is organized as follows: Section II provides theoretical background and
derives predictions about WTP that are used as criteria to evaluate the extent to which
the CV estimates can be interpreted within a standard economic model; it also presents an
alternative, "scope-revealing" measure of VSL. Section III provides details on the survey
design. Section IV describes the econometric models. Section V presents the main results
and Section VI reports robustness checks. Section VII discusses the results and concludes.

4In 2013 the French administration updated its guidelines for project evaluation with the Rapport
Quinet. The VSL it endorsed was extracted from a 2012 OECD meta-analysis, which contained only
four studies eliciting VSL in France (Lindhjem et al. 2012). Three estimate monetary values for a risk
reduction associated with pollution and one with transportation. None value risk reductions for cancer or
other degenerative diseases.

5For example, using the same questionnaire as Alberini et al. (2006), Desaigues et al. (2007) estimated
the value of life expectancy gain due to a reduction of air pollution in France. They report a large
embedding effect (Kahneman et al. 1992); i.e., the ratio of WTP to reduce risk by 5/1000 to WTP to
reduce risk by 1/1000 is 1.6; theory suggests that this ratio should be close to 5. The estimated VSL is
4.1 million e.

6In contrast, there is evidence that WTP to reduce risk of fatal cancer exceeds WTP to reduce risk
of fatal motor-vehicle crashes, perhaps because of longer or more severe morbidity prior to death from
cancer and greater dread of cancer (Sunstein 1997). Van Houtven et al. (2011), Viscusi et al. (2014), and
McDonald et al. (2016) find evidence of a positive cancer premium compared with traffic fatality.
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2 Model

We model consumer WTP to reduce mortality risk using a conventional single-period,
state-dependent expected utility framework (Drèze 1962, Jones-Lee 1974, Weinstein et al.
1980). Let utility depend on wealth (w) and on whether one survives the current period,
uj = uj (w), where j = A,D denote the two states, alive or dead, respectively. The utility
of wealth conditional on death is associated with bequest motives. We adopt the standard
assumptions uA > uD, u′A > u′D ≥ 0, u′′A ≤ 0, u′′D ≤ 0.

Letting π denote the probability of survival, expected utility is given by E (U) =
πuA (w)+(1− π)uD (w). Willingness to pay to reduce the risk by the amount, e, denoted
P (e, w, π), is defined by:7

(π + e)uA (w − P (e, w, π)) + (1− π − e)uD (w − P (e, w, π)) = πuA (w) + (1− π)uD (w) .
(1)

Note that when e = 0 then P (e, w, π) = 0.
The marginal rate of substitution between WTP, P , and risk reduction, e, is:

∂P (e, w, π)
∂e

= uA (w − P (e, w, π))− uD (w − P (e, w, π))
(π + e)u′A (w − P (e, w, π)) + (1− π − e)u′D (w − P (e, w, π))

> 0. (2)

We define the value per statistical life, VSL, as the slope of the WTP function evaluated
at zero risk reduction:

V SL = ∂P (0, w, π)
∂e

≡ ∂P0
∂e

. (3)

Let ηPe , ηPw , and ηP1−π, denote the elasticity of willingness to pay P (e, w, π) with respect
to the risk reduction e, wealth w, and baseline risk, 1-π, respectively. Moreover denote by
ηV SLw the wealth elasticity of VSL. The following results hold:

lim
e→0

ηPe = 1, (4)

ηV SLw = lim
e→0

ηPw > 0, (5)
1− π
π
≥ lim

e→0
ηP1−π = 1− π

π + u
′
A(w)

u
′
A(w)−u′D(w)

− 1
> 0, (6)

P (e, w, π) < w.8 (7)

Hence, for any utility function satisfying our assumptions and sufficiently small risk re-
duction, a small proportional increase of the risk reduction increases WTP by the same

7We assume that both e and π are exogenous to the individual.
8If we assume the utility of bequest uD = 0 we can re-express equation (1) as: P (e, w, π) = w −

u−1
A

(
π
π+euA (w)

)
. Here, it is clear that P (e, w, π) < w.
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proportion, an increase of wealth increases WTP, and a small increase of baseline risk has
virtually no effect on WTP.9 10

Under the standard expected-utility model, equations (4), (5), (6) and (7) provide
powerful, yet simple, testable implications, which are key in assessing whether a contingent
valuation survey is valid.11 Table 1 summarizes the empirical tests to be performed.

Table 1: Validity theoretical tests summary

Characteristics Criterion Name of the test

Risk reduction ηPe ≈ 1 e-test

Baseline risk ηP1−π ≈ 0 π-test

Income ηPw ≥ 0 w-test

Budget w > P (e, w, π) P -test

As we elict WTP for household-level risk reductions, we provide two additional tests
corresponding to our specific context. Each can be regarded as a test of scope sensitivity:
(1) WTP for a risk reduction affecting everyone in a household cannot be less than the
minimum WTP to reduce risk to any individual living in the household; and (2) when
households are composed of a single individual, the differences between WTP to reduce
risk to the household and to the individual alone should be zero.

Suppose a consumer is offered a risk reduction of size, e1. We know that he or she is
willing to pay an amount, P (e1, w, π). Suppose she is offered an alternative risk reduction
of size e2, for which she is willing to pay an amount P (e2, w, π). VSL is typically estimated
as WTP divided by the risk reduction, i.e.,

V SL ≈ V SLe1 ≡
P (e1, w, π)

e1
, (8)

V SL ≈ V SLe2 ≡
P (e2, w, π)

e2
. (9)

By equation (2), if e2 > e1 it must be the case that P (e2, w, π) > P (e1, w, π). Then,
9Derivations of the three functional relationships are in the appendix.

10Under our model, risk reduction is exogenous. Liu et al. (2006) examine a model in which risk
reduction depends on two inputs: the individual’s private expenditure and an external expenditure. In
their model, the sign of the effect of baseline risk on marginal WTP is not determined. If an increase of
the external expenditure does not make the private expenditure more productive, then marginal WTP can
decrease with baseline risk. The signs of the effects of risk reduction and income on marginal WTP are
not affected.

11Hammitt (2000) considers the implications of alternative, non-expected-utility models of decision mak-
ing under uncertainty. He argues that the sole requirement to satisfy near-proportionality is local linearity
in probabilities (Machina 1992). If, for example individuals are willing to pay for a risk reduction only if
the reduction exceeds a threshold that they consider meaningful, near proportionality need not hold.
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by the mean value theorem, there exists a risk reduction ec such that:

∂P (ec, w, π)
∂e

= P (e2, w, π)− P (e1, w, π)
e2 − e1

. (10)

where the risk reduction, ec, is in the interval [e1, e2]. Moreover, letting wec = w −
P (ec, w, π) we obtain:

∂P (ec, w, π)
∂e

= uA (wec)− uD (wec)
(π + ec)u

′
A (wec) + (1− π − ec)u

′
D (w − P (ec, w, π))

> 0.

This can be re-expressed as

∂P (ec, w, π)
∂e

= P (e2, w, π)− P (e1, w, π)
e2 − e1

= ∂P (0, wec , π + ec)
∂e

≡ V SLec , (11)

where V SLec denotes the value per statistical life at wealth wec and baseline survival
π + ec. It follows from (11) that V SLec is also a valid measure of VSL. We describe
V SLec as a "scope-revealing VSL" (SR-VSL). In the CV literature, (8) and (9) (or their
average) are most commonly reported. To our knowledge, (11) has not been previously
described. Equation (11) is equivalent to the incremental willingness to pay derived from a
discrete choice setting where an individual is indifferent between paying for two alternative
risk reductions: a risk reduction e1 at price P (e1, w, π) and a risk reduction e2 at price
P (e2, w, π).

Theoretically, the differences between the three measures of VSL are minimal for small
risk reductions (in the limit as e2 → 0 they are equal). Empirically, a large majority of
contingent valuation studies addressing mortality risk reductions suffer from inadequate
scope sensitivity (WTP is increasing in the risk reduction but less than proportionate).
When a survey yields estimates of WTP that are not proportional to the risk reduction
e, there are several estimates of VSL that can be reported, including V SLe1 , V SLe2 , and
their average. We propose a supplemental measure, V SLec . When WTP is less than
proportionate to the risk reduction, by equations (8), (9) and (11), V SLe1 > V SLe2 >

V SLec . V SLe1 and V SLe2 are direct estimates of VSL, in that each is derived using stated
WTP for that exact risk change; their average is a plausible direct estimate of the VSL
from the study. The SR-VSL, V SLec , tends to zero as scope sensitivity tends to zero.
Hence the difference between V SLec and the average of V SLe1 and V SLe2 is a measure
of how much the results differ from perfect scope sensitivity.

A less-than-proportionate relationship betweenWTP and risk reduction may arise from
the curvature of the utility function for wealth (i.e., the income effect), from respondents’
limited understanding of the good being valued (Hammitt and Graham, 1999), or from
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other factors.12 In designing questions to elicit the marginal valuation of risk reduction,
there is a trade-off between distortions due the curvature of the utility function and to
respondents’ comprehension of the risk reduction. WTP for small risk reductions yield a
more accurate measure of the marginal rate of substitution between wealth and risk in
principal, but as risks become smaller the cognitive difficulty for respondents may increase.
For small risk reductions, the curvature problem is of second order while respondents’
understanding remains a first order issue.

3 Survey design and descriptive statistics

This section describes the survey instrument, administration, and descriptive statistics.

3.1 Structure of the questionnaire and survey administration

The survey was designed to elicit WTP for a reduction in the probability of death, as in
the theoretical model. The source of mortality risk is pesticide residues on food, which
can be reduced by purchasing an alternative food produced using safer but more expensive
pesticides. The survey instrument was virtually identical, save for language, to that used
by Hammitt & Haninger (2010) in the US. The survey was administered to a random
sample of the CSA Online Panel (CSA is a French survey company). Panel members were
recruited by random sampling using email and closely match the French adult population
on age, gender, socio-economic and geographical variables. Respondents were compensated
with points that can be used to purchase items online. Data were gathered in two waves
between July and August 2012, with 1000 surveys completed. Our final sample of adult
respondents includes 192 from single-person households, 296 from households that include
at least one other adult and no child, 130 from households that include no other adult and
at least one child, and 382 from households that include at least one other adult and one
child. The survey instrument was divided into several sections: introduction, verification
of household composition, practice questions, valuation, and general follow-up questions.

In the introduction, respondents were informed about the objective of the survey, the
approximate time it would take to complete, and the number of points awarded for par-
ticipation. Upon agreement to participate, they were asked about the number of children
younger than 18 years and the number of other adults living in their household.

Following a warm-up question about the respondent’s concern for air pollution, risks on
the job, pesticides in food, automobile accidents, and airplane crashes, respondents were
presented with two practice valuation questions with feedback. In the first, respondents
were asked to choose between two types of apples: one type had both a lower probability
of causing illness and a lower price than the other. Respondents who chose the dominant
alternative were told that the type they had selected was both safer and less expensive and

12When non-satiation is violated, scope sensitivity may not be required (Banerjee et al. 2005). Also, re-
sults may not exhibit sufficient sensitivity to scope if WTP is elicited using open-ended valuation questions
and respondents round their responses (Whynes et al. 2005).
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that this was the logical choice. Respondents who chose the dominated alternative were
told that the type they had selected was both less safe and more expensive than the other
and asked if they wished to choose again. In the second practice question (about grapes),
neither alternative was dominant. Respondents were told the type they had chosen was
safer and more expensive, or less safe and less expensive, as appropriate and asked to
confirm that was the choice they preferred.

Following the practice questions, respondents were asked about the age, sex, and cur-
rent health of each of the possible targets of a risk reduction: the respondent him or
herself, a child and another adult living in the household (when a household included mul-
tiple children or other adults, the respondent was asked to choose the one whose birthday
came next). Current health was elicited using a visual analog scale on which 100 corre-
sponds to full health and 0 to a state as bad as death (which we divided by 100 to yield
a value between 0 and 1), and using the EQ-5D health state classification system (Euro-
Qol Group 1990). The EQ-5D is a utility instrument used to estimate the health-related
quality of life (HRQL) associated with an individual’s current health or a hypothetical
health state. It classifies health states using five dimensions (mobility, self-care, usual
activities, pain/discomfort, anxiety/depression), each of which can take any of three levels
(no, moderate, or severe problems). HRQL is an index normalized to a value of one for full
health and zero for health states an individual judges indifferent to dead (negative values
are permitted). HRQL can be estimated from the EQ-5D health-state description using a
scoring rule; as no scoring rule is available for France, we use the scoring rule developed by
Shaw et al. (2005) using preferences for health states elicited from a large representative
sample of the US population.

The valuation section was divided into subsections concerning each of the targets
about which a respondent was questioned: the respondent, a child and another adult
(if present). The order of targets was randomized. For each target, the respondent was
asked to suppose that individual had a specified chance of developing a fatal chronic
disease caused by exposure to pesticides in food. The risk could be reduced by purchasing
an otherwise identical food produced through a hypothetical "Pesticide Safety System"
that used alternative pesticides which are safer to humans (i.e., the alternative is not
organically grown food). The description emphasized that the food types did not differ
in taste, appearance, or nutritional value, to guard against the chance respondents would
infer there were other benefits of purchasing the more expensive food. Respondents were
asked to assume that only the targeted individual would eat the food in question so that
responses can be interpreted as reflecting WTP to reduce risk to a defined individual. As
food is often shared within a household, this assumption is not always realistic and failure
of respondents to accept it could bias our estimates. However, other studies have used
a similar scenario and found apparently reasonable differences in WTP to reduce risk to
different targets (e.g., Hammitt and Haninger (2007, 2010). Following the questions about
individual targets, respondents were asked about WTP to reduce risk to all household
members simultaneously (i.e., assuming everyone would eat the same food). Depending
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on household composition, respondents answered between two and four valuation questions
(risks to self, household, a child and another adult if present). Respondents from a single-
person household were asked valuation questions about two risks to themselves.

The disease, baseline risk, risk reduction, and latency were randomly varied between
valuation questions. The disease was described by the organ affected (bladder, brain, liver
or white blood cells) and whether it was cancer or not. Half the respondents were also
provided with a few paragraphs describing the disease symptoms (see appendix).13 The
latency period between exposure and when symptoms would first appear was described
as 1, 10, or 20 years. After the first symptoms appeared, the morbidity would persist for
two years, followed by death. For each scenario, the respondent was asked to judge the
target’s health while ill using both the visual analog scale and the EQ-5D. By asking the
respondent to evaluate health conditional on having the disease immediately prior to the
valuation question we attempted to focus his or her attention on the characteristics of the
disease risk to be reduced. The baseline risk (3 or 4 per 10,000 per year) and risk reduction
(1 or 2 per 10,000 per year) were illustrated using a visual aid (Corso et al. 2001) in which
areas of the computer screen proportional to these probabilities and to the complementary
probability of no illness were distinctively colored. A sample valuation question is shown
in Figure 1.

In each valuation question, the initial risk, risk reduction using the alternative food
type, and additional annual cost of the alternative food type were specified and the re-
spondent asked to choose which food type she or he would select. Values were elicited
using a standard double-bounded binary-choice format (Hanemann et al. 1991). The ini-
tial bid (the incremental cost of the safer food type) varied between e 10 and e 6,000 per
year; the follow-up bid was twice the initial bid for respondents who indicated they would
choose the safer food in the initial question and half the initial bid for other respondents.

Respondents were asked a series of questions about their degree of confidence in their
responses, whether they thought the risks faced by targets were consistent with those
stated in the survey, and whether they interpreted the scenario in which risk to all house-
hold members was reduced as implying that all household members would (or would not)
develop the disease. The survey ended with additional questions concerning food prefer-
ences, purchase patterns and demographics (income and education).

3.2 Data

Tables 2 and 3 provide descriptive statistics on the sample of households that completed
the survey. Sample means and standard deviations are reported for the entire sample and
for each subsample of respondents who answered questions about risk to a child or to
another adult living in the respondent’s household. The average age of a respondent is
43 years; half of respondents are female and half have at least a bachelors degree. The
children are 9 years old on average, and the other adults average 42 years old. The net

13Six physicians from a range of specialties reviewed and helped refine the descriptions.
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(A) Introduction to a valuation question

Next,	we	would	like	to	ask	how	much	it	would	be	worth	to	you	to	reduce	your	chance	of	
developing	[disease	name]	by	being	exposed	to	pes=cides	in	food.	Suppose	it	would	be	
possible	 to	 reduce	 this	 chance	 if	 the	 food	producer	were	 to	 follow	a	 stringent	 safety	
program	 that	 is	 established	 and	 monitored	 by	 the	 United	 States	 Government.	 This	
program	is	called	“Pes=cide	Safety	System”	and	includes	the	use	of	pes=cides	that	are	
safer	to	humans	than	conven=onal	pes=cides.	While	the	food	produced	by	the	Pes=cide	
Safety	System	is	safer	to	humans	than	conven=onal	food,	the	Pes=cide	Safety	System	is	
not	an	organic	farming	prac=ce,	nor	does	it	affect	the	environment	any	differently	than	
conven=onal	farming.	
		
[Next	Screen]	
		
Because	 it	 requires	more	 expensive	 pes=cides,	 a	 producer	 that	 follows	 the	 Pes=cide	
Safety	 System	 would	 need	 to	 charge	 a	 higher	 price.	 Some	 producers	 will	 adopt	 the	
Pes=cide	 Safety	 System,	 and	others	will	 not.	 You	would	 be	 able	 to	 tell	 easily,	 from	a	
label	 or	 s=cker,	 whether	 the	 food	 you	 are	 thinking	 of	 buying	 was	 produced	 by	
conven=onal	farming	or	by	the	Pes=cide	Safety	System.	Whenever	you	go	to	the	store,	
you	would	be	able	 to	 choose	whether	 to	buy	 the	 same	 food	you	buy	now,	or	 to	buy	
food	 produced	 by	 the	 Pes=cide	 Safety	 System	 at	 a	 somewhat	 higher	 price.	 Food	
produced	 by	 the	 Pes=cide	 Safety	 System	 does	 not	 differ	 in	 taste,	 appearance,	 or	
nutri=onal	value.	

(B) Valuation question without symptom description

Notes: Text and numbers in brackets are randomly assigned. Next
screen in brackets refers to displaying the text situated below in a
separate screen.

Figure 1: Typical valuation question.
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monthly income of the average household is 2910 e (in 2012 e).14

The share of respondents that chose the dominant alternative in the practice question
is 80%. About 66% of the respondents were somewhat or very confident in their answers to
the valuation questions and approximately 67% thought that the actual risks faced by the
targets were about the same as the risks presented in the scenarios. After being presented
with the household scenario, only 10% of respondents thought that if one member of
the household developed the disease, all the other members would also. Most of the
respondents (80%) reported that they purchase the food for the household all or most
of the time. Purchase of bio-labeled (i.e., "organic") food is less frequent with about
60% purchasing it occasionally, rarely, or never. Respondents typically prepare their own
meals and are somewhat concerned about pesticides in foods. Finally, respondents spent
a median of 18 minutes completing the survey.

Current health, as measured with a visual analogue scale and EQ-5D, is similar for self
and other adults and higher for children. HRQL elicited using EQ-5D is consistent with the
measurement elicited with the visual analogue measure. Anticipated health conditional
on developing one of the stated illnesses is about 40% lower using both measures. The
fraction of answers reporting a higher HRQL in the sick state than in the healthy state is
16% for VAS and 2.5% for EQ-5D. Respondents who were presented with the supplemental
disease descriptions judged the disease as more severe, with smaller HRQL if ill.

4 Empirical implementation

We analyze respondents’ WTP using both standard and LCA models, as described in the
following subsections. In both cases, the dependent variable is the natural logarithm of
WTP, which is interval-censored because it is elicited using double-bounded dichotomous-
choice questions (Hanemann et al. 1994).

4.1 Standard analysis

Assume that each of N respondents answer valuation questions concerning different risks
or targets on T choice occasions. Define the WTP, P (e, w, π), of respondent i on choice
occasion t for a risk reduction e as:

log(Pit (e, wi, π)) = β1 log(RRit) + β2 log(BLRit) + β3 log(INCi) + zitβ4 + ξ + εit, (12)

where RRit, BLRit and INCi correspond to risk reduction, baseline risk, and income,
respectively; zit contains other individual characteristics including target dummies (child,
other adult, and household); and ξ is a constant. All remaining heterogeneity is captured

14About 16 percent of households failed to report their income. A probit analysis suggests that household
composition is the only significant predictor of income being missing (single-person households were less
likely to report income). Missing values were imputed as the average conditional on the type of household.
Estimates of the relationship between household income and WTP (described below) are not significantly
affected by imputing the overall mean or deleting observations with missing income.
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Table 2: Summary statistics, Panel A

Pooled Self Child O. Adult
Age of person at risk 37.22 42.91 9.07 41.64

(17.47) (13.14) (5.09) (13.89)
Female 0.51 0.52 0.47 0.51

(0.50) (0.50) (0.50) (0.50)
Education 0.78 0.78 0.80 0.78

(0.41) (0.41) (0.40) (0.42)
Household income (e/month) 2980 2909 2839 3299

(1708) (1716) (1570) (1752)
Did not fail training 0.82 0.82 0.81 0.81

(0.38) (0.38) (0.38) (0.38)
Respondent somewhat confident 0.66 0.66 0.64 0.68

(0.47) (0.48) (0.48) (0.47)
Hypothetical and actual risk are similar 0.65 0.67 0.62 0.66

(0.48) (0.47) (0.49) (0.47)
If a member gets sick, all get sick? 0.10 0.10 0.14 0.11

(0.32) (0.32) (0.34) (0.31)
Frequency purchase food for household 0.86 0.86 0.89 0.81

(0.35) (0.34) (0.31) (0.39)
Frequency purchase BIO 0.63 0.64 0.62 0.61

(0.48) (0.48) (0.49) (0.49)
Frequency preparing meals 0.78 0.78 0.82 0.76

(0.41) (0.41) (0.38) (0.43)
Pesticides in food 0.60 0.60 0.59 0.61

(0.49) (0.49) (0.49) (0.49)
Log-time spent filling survey (seconds) 7.29 7.25 7.34 7.34

(1.32) (1.29) (1.38) (1.36)

N 3,190 1,000 512 678

Notes: Female is a dummy variable taking the value 1 when female, 0 otherwise. Education
is a categorical variable taking values of 0 when no high school degree, 1 when high school
degree, college degree or higher. Wage corresponds to household net income in 2012 e.
Did not fail training takes value 1 when the respondent did not fail during the training,
0 otherwise. Confidence in answering valuation question is a self reported variable taking
values 1 (very confident), 2 (somewhat confident) 3 (not at all confident); the value reported
in the table correspond to share of respondents answering value 2. Hypothetical and actual
risk similarity question is a self reported value taking a value 1 (the chance is higher), 2
(about the same) and 3 (the chance is lower); the variable used in the paper corresponds to
the share of respondents answering value 2. If a member gets sick, all get sick? corresponds
to the answer of a follow-up question after the household risk scenario, it takes value 1 when
the answer is no and 0 otherwise. Frequency of purchase of food for household question is
a self reported value taking a value 1 (very often), 2 (nearly all the time), 3 (half of the
time) 4 (Occasionally) and 5 (Rarely or never); the variable used in the paper corresponds
to the share of respondents answering values 1 and 2. Frequency of purchase of Bio labeled
food is a self reported value taking the same values as the purchase for household food;
the variable used in the paper corresponds to the share of respondents answering values 4
and 5. Frequency of preparing own meals is a self reported value taking the same values as
the purchase for household food; the variable used in the paper corresponds to the share of
respondents answering values 1 and 2. Pesticides in food is a self reported variable taking
values from 1 (low) to 5 (high); the variable used in the paper corresponds to the share of
respondents answering values 4 and 5.
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Table 3: Summary statistics, Panel B

Adult health Description
Average Yes No P -value

Current health (EQ-5D) 0.87 0.87 0.87 0.463
Health in illness (EQ-5D) 0.50 0.45 0.55 0.01<
Loss in health (EQ-5D) 0.37 0.42 0.32 0.01<
Current health (VAS) 0.78 0.78 0.78 0.563
Health in illness (VAS) 0.49 0.47 0.51 0.036
Loss in health (VAS) 0.29 0.30 0.27 0.108
Child health Description

Average Yes No P -value

Current health (EQ-5D) 0.95 0.96 0.95 0.429
Health in illness (EQ-5D) 0.48 0.43 0.52 0.01<
Loss in health (EQ-5D) 0.48 0.52 0.43 0.01<
Current health (VAS) 0.91 0.91 0.91 0.731
Health in illness (VAS) 0.49 0.45 0.52 0.01<
Loss in health (VAS) 0.42 0.45 0.38 0.01<
Other adult health Description

Average Yes No P -value

Current health (EQ-5D) 0.88 0.88 0.87 0.239
Health in illness (EQ-5D) 0.51 0.48 0.54 0.01<
Loss in health (EQ-5D) 0.37 0.40 0.33 0.01<
Current health (VAS) 0.79 0.80 0.79 0.570
Health in illness (VAS) 0.53 0.51 0.55 0.043
Loss in health (VAS) 0.26 0.29 0.23 0.033

Notes: Current health state is a self-reported measure of current health ranging from 0 to
100, respectively. Disease health state is a self-reported measure of health when sick with the
disease described in the survey ranging from 0 to 100. EQ-5D score for illness is computed
using standard weights. Loss in health when (not) described corresponds to the average
loss in health conditional on (not) describing the symptoms. P-value tests each variables’
difference between description of the disease and no description of the disease.
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by the idiosyncratic shocks εit, which are assumed to be independently drawn from a
normal distribution.

The coefficients of the models are estimated using maximum likelihood estimation
(Alberini 1995) and the standard errors are calculated using a Wald test (Train 2009).
We allow for correlation between errors within a respondent across choice occasions, but
assume independence between respondents.

From the regression (12), we can predict the logarithm of respondent i’s WTP on choice
occasion t, log(P̂ ), by setting the right-hand-side variables to their respondent- and choice-
occasion-appropriate values and εit = 0. To estimate VSL, we must retransform log(P̂ ) to
euros then divide by the risk reduction. Many CV studies estimate P as exp(log(P̂ )), which
is the predicted median over the error term. Alternatively, one may estimate the predicted
mean over the error term by exp(log(P̂ ) + σ̂2

2 ), where σ̂2 is the estimated variance of εit.
These alternatives yield two estimates of VSL,

V SLmean = 1
e

exp
(

log(P̂ ) + σ̂2

2

)
; V SLmed = 1

e
exp

(
log(P̂ )

)
; V SLmean

V SLmed
= exp

(
σ̂2

2

)
.

The two values differ by a factor of exp(σ2

2 ), which can be an order of magnitude or
more when there is substantial variation around the estimated regression equation. If
the error term captures only independent and identically distributed random error, this
specification is appropriate. However, to the extent that the regression fails to account
for systematic variation across respondents or choice occasions, it overstates the error
in predicting the logarithm of WTP and biases the predicted mean WTP upward. For
example, if some of the heterogeneity arises from unobserved respondent characteristics,
including perhaps differences in comprehension of the survey questions or the effort they
devote to answering the questions, predicted mean WTP is biased upward.

Duan (1983) notes that if the error in eqn. (12) is not distributed normally, an estimate
of the mean of P that assumes normality, and hence of V SLmean, will not be consistent.
He proposed a smearing estimate of the expected response on the untransformed scale
using the empirical distribution of the error. With interval-censored data, the empirical
distribution of the error is poorly estimated; hence we do not attempt to apply the smearing
estimator in this context.

4.2 Latent Class Analysis

Unobserved individual heterogeneity abounds in contingent valuation studies: individuals
differ in their cognitive resources and may differ in their attention to different aspects of
the survey questions (Cameron & DeShazo 2013). LCA is a valuable method to assess
unobserved heterogeneity (Train 2009). In a recent paper, Hess et al. (2011) suggest latent
class models are able to uncover richer patterns of heterogeneity than continuously mixed
models. We assume that the underlying coefficients in the WTP function follow a discrete
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distribution, which LCA estimates non-parametrically. Hence, LCA enables us to group
together respondents that have similar preference structures.

Consider a respondent i who belongs to class s where s = 1, . . . , C and C is the number
of classes. Respondent’s i WTP on choice occasion t for a risk reduction e is:

log(Pit (e, wi, π)) = β1slog(RRit)+β2slog(BLRit)+β3slog(INCi)+zitβ4s+ξs+εist, (13)

where ξs corresponds to a constant unobservable class s fixed effect and εist rationalizes
all remaining choice-to-choice individual variation. Notice that all coefficients in equation
(13) are class-specific.

Let bit0 represent the initial log-bid for individual i at choice t, bitU the follow-up log-bid
if the individual opts in favour of the risk reduction and bitL otherwise. Moreover, let x1it =
{log(RRit), log(BLRit), log(INCit), zit} and xit = {x1it, x2it} represent a matrix of size
N×(K1 +K2) of individual characteristics. The matrix is divided between characteristics
that explain WTP, x1it, and characteristics that explain the probabilities of membership
in each class, x2it, which may or may not overlap.

We assume εist is distributed normally. Hence, the conditional probability that WTP
of individual i belongs to a particular interval is given by:

Qit (θs, x1it, yit) =



Φ
(
bitL−x1itβs

σs

)
if yit = 0

Φ
(
bit0−x1itβs

σs

)
− Φ

(
bitL−x1itβs

σs

)
if yit = 1

Φ
(
bitU−x1itβs

σs

)
− Φ

(
bit0−x1itβs

σs

)
if yit = 2

1− Φ
(
bitU−x1itβs

σs

)
if yit = 3

, (14)

where Φ is the standard normal cumulative distribution function and θs = (βs, σs) are
the mean and residual error parameters of the normal distribution for the class s. The
choice indicator yit represents responses to the initial and follow-up binary-choice questions
of "No-No", "No-Yes", "Yes-No", and "Yes-Yes", respectively. Since θs is unknown, the
sequence of observed choices must be evaluated over all possible values. We assume that
the density of the parameters is described by a discrete distribution. It follows that the
log-likelihood function is:

LL (Θ) =
N∑
i=1

log
(

C∑
s=1

πis (x2it, αs)
T∏
t=1

Qit (θs, x1it, yit)
)
, (15)

where Θ = (θ1, . . . , θC ;α1, . . . , αC) comprises all model coefficients, πis (x2it, αs) corre-
spond to the prior probabilities of individual i belonging to class s, and αs corresponds to
the association of demographics x2it with class membership s. To better understand, the
log-likelihood can be re-expressed as follows:

LL (Θ) =
N∑
i=1

log (Lsi ) ,
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where,

Lsi = πis (x2it, αs)
T∏
t=1

Qit (θs, x1it, yit) .

The main identifying assumption is that respondents’ unobserved shocks are independent
between respondents (Train 2009). In principle this function can be maximized through
full information maximum likelihood, but in general it is easier to do with an Expectation
Maximization algorithm (Dempster et al. 1977). The problem, which is solved with EM,
is that class membership is missing and has to be estimated. Notice that if we knew the
number of classes, and to which class each agent belongs, we would have to estimate C
conventional likelihoods.15

5 Results

5.1 Standard analysis

In Table 4 we report estimates of equation (12). Model (1) is estimated using the responses
to all valuation questions and examines the effects of risk reduction, baseline risk, and
income on WTP. Of these, only the coefficient on risk reduction is significantly different
from zero. It is also significantly different from 1, violating our e-test. Individuals are
willing to pay 1.35 (= exp (0.436 log (2))) times more for a risk reduction of 2 in 10,000 than
a risk reduction of 1 in 10,000. The estimated coefficient on baseline risk is not significantly
different from zero, consistent with our π-test. The coefficient on income is not significantly
positive, but because it is not significantly negative it satisfies our w-test. Respondents
living in a household with more than one member are willing to pay 1.5 (= exp(0.406))
times more for a risk reduction to all members of the household (including themselves)
than to themselves alone. Respondents living alone report consistent willingness to pay
between the two risk reduction questions. Finally, respondents are willing to pay on
average 2.6 (= exp(0.974)) times more to avoid a risk to their child than to themselves
and 2.0 (= exp(0.686)) times more to avoid a risk to another adult in their household.

Model (2) in Table 4 is estimated using only answers to the first valuation question
presented to each respondent, plus the last question which concerned reducing risk to all
household members jointly (or to the respondent alone in a single-person household). The
coefficient on risk reduction is significantly different from zero and not from one, satisfying
our e-test. Respondents are willing to pay 1.6 (= exp(0.69 log(2))) times more for a risk
reduction of 2 in 10,000 than for a risk reduction of 1 in 10,000. The larger coefficient on
risk reduction as compared with model (1) might be attributed to respondents’ fatigue or
lack of motivation in responding to second and third valuation questions.16

15A detailed explanation of how the EM-algorithm is implemented can be found in the appendix.
16Of the 11.5% of respondents who were presented with the same initial bids and risk reductions for

two valuation questions (concerning different diseases or targets), almost 70% gave the same response to
the initial bid. These responses are potentially explained as examples of arbitrary coherence (Ariely et
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As with model (1), both the π-test and the w-test are satisfied. A respondent living
in a household with more than one member is willing to pay 1.9 (= exp(0.652)) times
more to reduce a risk to all members than to reduce a risk to him or herself. Respondents
living in a single-person household answered the two WTP questions consistently (the
difference between the first and second questions is not significantly different from zero).
Finally, respondents are willing to pay 2.6 (= exp(0.96)) and 2.5 (= exp(0.918)) times
more to reduce risk to a child and to another adult than to themselves, respectively. For
comparison, Hammitt and Haninger (2010) found smaller differences in WTP to reduce
risk to a child or to another adult, compared with risk to self. They estimated ratios of
1.8 and 1.15, respectively; their estimate for another adult is not statistically significantly
different from one.

Models (3) and (4) include the same variables and observations as models (1) and
(2), respectively. In addition, they include disease characteristics. Coefficients relevant to
our validity criteria are not affected by adding these variables. None of the coefficients
of the disease characteristic variables are significantly different from zero. This implies
that WTP is not sensitive to whether the disease is cancer or not, whether the latency
period is 1, 10, or 20 years, and whether it affects the brain, liver, white blood cells, or
bladder. Similarly, Hammitt and Haninger (2010) found no significant effects of disease
type, affected organ, or latency. Note that standard theory does not require that WTP
decrease with latency (Hammitt and Liu 2004).

Table 5 reports the median VSL for models (1) and (2), for each target individual
and disease. These values are predicted medians over the error term; they are for the
sample-mean respondent. The interpretation of expressions (8), (9), and (11) as measures
of the marginal rate of substitution of wealth for risk depends on two assumptions: first,
that the risk change is close to zero; second, that there is perfect scope sensitivity (WTP is
proportional to risk reduction). In the case of (11), the risk reduction is small enough as it
is the difference e2 - e1. Under perfect scope sensitivity, SR-VSL computed from equation
(11) is equal to the values from expressions (8) and (9); if WTP is less than proportional
to the risk reduction, SR-VSL is smaller than the conventional estimates, revealing the
lack of scope sensitivity in elicited WTP.

It is clear from table 5 that the conventional VSL calculated using expression (8) or
(9) (but for the mean risk reduction, 1.5/10,000) and SR-VSL do not coincide. For the
respondent him or herself, VSL is approximately 4 to 5 million e, while the SR-VSL is
approximately 2 to 3 million e. For a child, the VSL is about 10 to 13 million e while
SR-VSL is around 6 to 7 million e.

Table 5 also reports VSL estimates for the respondent when different organs are af-
fected, latency and cancer status are changed, and whether a symptom description is given
or not. We do not find a statistically significant difference between VSL for the different
disease scenarios. Also, we cannot reject the hypothesis that SR-VSL from model 1 is

al. 2003), but the log risk reduction coefficient is unchanged when we exclude these respondents from the
sample.
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Table 4: Willingness to pay results: Standard analysis

Model (1) Model (2) Model (3) Model (4)

Log-risk reduction 0.436** 0.690** 0.434** 0.695**
(0.220) (0.285) (0.219) (0.284)

Log-baseline risk 0.185 0.195 0.181 0.198
(0.515) (0.670) (0.514) (0.669)

Log-income -0.0006 0.0362 0.0006 0.0250
(0.238) (0.242) (0.239) (0.243)

Child is at risk 0.974*** 0.960** 0.669*** 0.918***
(0.167) (0.380) (0.141) (0.288)

Adult is at risk 0.686*** 0.918*** 0.962*** 0.970**
(0.139) (0.287) (0.167) (0.380)

Household is at risk 0.406*** 0.652*** 0.379*** 0.649***
(0.123) (0.202) (0.128) (0.207)

Self is at risk (2d question) -0.197 0.0625 -0.228 0.0678
(0.284) (0.273) (0.285) (0.276)

Brain 0.0555 0.121
(0.149) (0.234)

Liver -0.127 -0.131
(0.148) (0.239)

White Blood Cells 0.0628 0.314
(0.148) (0.241)

Latency is 10 years 0.0324 -0.0691
(0.177) (0.234)

Latency is 20 years 0.0252 -0.106
(0.183) (0.234)

Cancer 0.195 0.166
(0.143) (0.192)

Symptom description -0.0577 -0.133
(0.231) (0.240)

Constant 11.95** 13.73** 11.84** 13.81**
(5.051) (6.186) (5.047) (6.177)

Sigma 3.396*** 3.495*** 3.395*** 3.488***
(0.147) (0.158) (0.145) (0.158)

Observations 3,190 2,000 3,190 2,000

Notes: Dependent variable is an interval censored log-WTP, measured using a double-bounded
elicitation method. Follow up bids are double or halved, if the respondents agree, or disagree,
to pay the initial bid. Respondents answers to WTP for each risk reduction in the study are
pooled. Respondents idiosyncratic shocks are allowed to be correlated between questions. The
log-risk reduction variable takes the value of log(1/10,000) if the respondents are faced with
1/10,000 with a risk reduction and takes the value of log(2/10,000) if the respondents are faced
with a 2/10,000 risk reduction. The log baseline risk variable takes a value of log(4/10,000) if the
baseline risk is 4/10,000 and log(3/10,000 ) otherwise. The order of the person to which the risk
reduction was addressed is random. Model (2) and (4) report results over the subset of answers
to the first valuation question, and questions on household level risk including second questions
to single person households. The household WTP question is always asked last. Standard errors
clustered at the respondent level are in parenthesis.
* significant at 10%; ** significant at 5%; *** significant at 1%
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equal to SR-VSL from model 2.

Table 5: Median value per statistical life

Model (1) Model (2)
VSL SR-VSL VSL SR-VSL

VSL for self 4.92 2.24 3.77 2.74
(0.62) (0.30) (0.70) (0.54)

VSL for child 13.02 5.93 9.86 7.16
(2.36) (3.83) (3.26) (9.95)

VSL for another adult 12.57 4.44 9.45 6.86
(2.19) (1.68) (2.03) (4.29)

VSL for per HH member 2.53 1.15 2.48 1.80
(1.10) (0.90) (1.11) (1.50)

VSL for self (2de question) 4.04 1.84 4.02 2.92
(1.20) (0.90) (1.21) (1.39)

VSL for self when:

Brain is affected 5.28 2.39 3.93 2.87
(0.86) (0.52) (0.97) (0.94)

Bladder is affected 5.00 2.26 3.48 2.55
(0.80) (0.45) (0.83) (0.70)

Liver is affected 4.40 1.99 3.05 2.23
(0.65) (0.31) (0.72) (0.52)

White blood cells are affected 5.32 2.41 4.76 3.48
(0.80) (0.47) (1.08) (1.20)

Disease latency is 1 year 4.89 2.21 4.00 2.93
(0.81) (0.46) (0.94) (0.89)

Disease latency is 10 years 5.05 2.29 3.73 2.73
(0.81) (0.46) (0.85) (0.74)

Disease latency is 20 years 5.01 2.27 3.60 2.63
(0.83) (0.48) (0.83) (0.70)

Disease is not cancer 4.52 2.05 3.47 2.54
(0.64) (0.31) (0.71) (0.53)

Disease is cancer 5.49 2.49 4.09 3.00
(0.82) (0.49) (0.89) (0.82)

Symptom description provided 4.84 2.19 3.53 2.58
(0.86) (0.51) (0.80) (0.65)

Symptom description not provided 5.13 2.32 4.03 2.95
(0.85) (0.51) (0.88) (0.81)

Notes: Values are in millions of e. log-WTP is calculated using the specification from each
model. Median VSL is estimated for the mean individual in the following way: first, we take
the exponential log-WTP for the mean individual at the average risk reduction 1.5/10000 risk
reduction; second, we divide by the average risk reduction (1.5/10,000). Median SR-VSL is
estimated for the mean individual in the following way: first, we take the exponential log-WTP
for the mean individual when presented with a 2/10000 risk reduction and a 1/10000, separately;
second, take the difference between the exponential log-WTP when risk reduction is equal to
2/10000 and the exponential log-WTP when risk reduction is equal to 1/10000; third, divide
the result from the second step by the difference between high and low risk reduction. Standard
errors are in parenthesis (delta method).

5.2 Latent class analysis

Latent class analysis (LCA) provides a method to better understand the heterogeneity
among respondents. LCA endogenously creates groups of homogeneous classes of respon-
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dents, where each has a positive, respondent-specific probability of membership in each
class. We use the term "class X members" to describe the weighted contribution of inputs
from all respondents with weights equal to the posterior probabilities of membership in
class X.

We perform a LCA for C = 2, . . . , 5 classes. The preferred model, given the Bayesian
Information Criterion, is the model with C = 3 classes. The first, second and third
classes have average posterior membership probabilities of 29%, 42% and 29%, respectively.
In Table 6 we report estimated coefficients for the 3-class model as well as posterior
probability estimates. Class membership is estimated using responses to all valuation
questions but we estimate WTP for only the first target and the household (as for model
(4) in the standard analysis).

First, consider the posterior coefficients (Table 6, last column). These can be compared
directly with the estimated coefficients of the standard model (Table 4, model (4)), which
has the same covariates (Train 2009). The posterior coefficients are constructed as the sum
of the coefficients estimated for each class, weighted by the class’s posterior probability.
The posterior coefficient on log-risk reduction is statistically different from zero and not
from one, which satisfies our e-test. The relationship between baseline risk and WTP is
negative but not significant, which is consistent with our π-test. Elasticity of WTP with
respect to income is positive but not significantly different from zero, satisfying our w-test.
Estimates of the remaining coefficients are not significantly different from the estimates
from model (4) in Table 4. Noisy estimates of posterior coefficients are to be expected
(Train 2009).

Next consider the coefficients for the class-specific regression. Estimates for class 2
satisfy our primary validity tests; in contrast, estimates for classes 1 and 3 violate one or
more of these tests. For class 2, the estimated coefficient on log risk reduction, 0.74, is
significantly different from zero and not from one, which is consistent with proportionality
and satisfies our e-test. The coefficients on baseline risk and income are both positive but
not significantly different from zero, satisfying our π-test and w-test, respectively. Median
(mean) WTP (median = 31 e, mean = 261 e) does not exceed the average Class 2 income,
(2878 e).

Class 2 estimates show that the value of reducing risk to a child is 2.7 times (exp (1.02)),
and to another adult is about 2.1 times (exp (0.754)), larger than the value of reducing risk
to the respondent him or herself. However, WTP to reduce a risk to the entire household
is not statistically significantly different than WTP to reduce risk to the respondent alone,
violating our test that WTP to reduce risk to the household exceeds WTP to reduce risk
to a single member. For respondents in single-person households, there is no significant
difference in WTP between the first and second valuation questions, consistent with our
criterion.

Finally, WTP is sensitive to information about the disease. WTP is significantly
smaller when the symptom description is provided and when the latency period is 20
years, but not when the latency is 10 years (compared with one year). The implied
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discount rate for the 20 year latency is 2.7% per year. Other disease characteristics are
not statistically significant, except WTP is smaller when the affected organ is the liver.

For class 1, the coefficient on risk reduction is not significantly different from zero
but is different from one, violating our e-test. The coefficient on baseline risk is signif-
icantly negative, violating our π-test. In contrast, the significantly positive estimated
income elasticity of 0.48 satisfies our w-test. Unlike class 2, WTP to reduce risk to all
household members is significantly larger than to reduce risk to oneself (a factor of 1.4
(= exp(0.339))). However, WTP elicited in the parallel second valuation question for re-
spondents in single-person households is similar (a factor 1.5 (= exp(0.378))), which raises
the question whether the greater WTP for the household reflects scope sensitivity or a
question-order effect. WTP to reduce risk to a child is 1.5 times more (= exp(0.377)) and
to reduce risk to another adult is 1.7 times more (= exp(0.522)) than for oneself. Except
for the coefficient on the symptom description, other coefficients on disease attributes are
not statistically different from zero. Respondents who received a description of the disease
were willing to pay slightly less, a factor of 0.85 (= exp(−0.166)), than respondents who
did not receive the description.17 Predicted median and mean WTP (median = 1096 e,
mean = 1943 e) do not exceed the average Class 1 income, (3100 e).

In contrast to class 1, estimates for class 3 are sensitive to risk reduction. The coefficient
on log risk reduction is significantly different from zero and not from one, which satisfies our
e-test. WTP is insignificantly correlated with baseline risk satisfying our π-test. Finally,
the estimated income elasticity, 1.30, is significantly positive, which satisfies our w-test.
Class 3 results also show that respondents not living alone are willing to pay about 5.0 (=
exp(1.61)) times more for a risk reduction addressed to the household than to themselves.
However, as for class 1, the WTP for the second risk reduction by respondents living
alone is even larger; in this case almost 7.5 times (= exp(2.016)). There is no significant
incremental WTP to reduce risk to a child or other adult rather than to the respondent,
and the other coefficients are also not statistically different from zero. Finally, predicted
WTP vastly exceeds income; the predicted WTP for a mortality risk reduction of 1/10,000
is more than 200 000 e.

The LCA analysis suggests that, although the posterior estimates are coherent, there is
great underlying heterogeneity.18 Models of WTP for two of the three latent classes are not
consistent with a standard model of preferences; only the model for Class 2, representing
42 percent of responses, is consistent with theoretical predictions. It is not surprising to
find noisy answers in a self-administered internet survey. What is novel is that we are able
to sort respondents by their probability of providing answers consistent with the standard
model of WTP.

17The fact that WTP decreases with information about the morbidity of the disease is consistent with
theory. In the appendix we provide an extension of our theoretical model allowing utility to depend on a
continuous measure of health. We show that under reasonable assumptions a negative relationship between
WTP and increased morbidity on the fatal-disease state is to be expected (Finkelstein et al. 2013).

18Andersson et al. (2016) employ LCA in analyzing responses to a discrete choice experiment valuing
mortality and illness risks. They also find heterogeneity in preferences, with one of their two classes more
sensitive than the other to the magnitude of the risk reduction.
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Table 6: Latent Class regression

Class (1) Class (2) Class (3) Posterior

Log-risk reduction 0.128 0.738** 1.559** 0.80***
(0.129) (0.287) (0.738) (0.339)

Log-baseline risk -0.599* 0.918 -2.639 -0.55
(0.326) (0.676) (1.848) (0.744)

Log-income 0.477*** 0.301 1.306*** 0.64
(0.0925) (0.218) (0.461) (0.514)

Child is at risk 0.377** 1.021*** 0.886 0.80***
(0.184) (0.361) (1.059) (0.424)

Adult is at risk 0.522*** 0.754*** 0.202 0.53***
(0.143) (0.280) (0.784) (0.221)

Household is at risk 0.339*** -0.248 1.611** 0.46
(0.121) (0.239) (0.705) (0.391)

Self is at risk (2de question) 0.378** 0.387 2.016** 0.86
(0.165) (0.299) (0.842) (1.467)

Brain 0.0234 -0.133 0.960 0.23
(0.128) (0.268) (0.731) (0.323)

Liver -0.143 -0.464* 0.390 -0.12
(0.129) (0.277) (0.742) (0.458)

White Blood Cells -0.00783 0.326 0.783 0.36
(0.131) (0.256) (0.729) (0.589)

Latency is 10 years 0.0297 0.117 0.401 0.17
(0.112) (0.214) (0.646) (0.305)

Latency is 20 years 0.107 -0.527** 0.0478 -0.18
(0.110) (0.228) (0.628) (0.327)

Cancer 0.00208 -0.116 0.336 0.05
(0.0959) (0.187) (0.504) (0.268)

Symptom description -0.166* -0.485** -0.174 -0.30
(0.0989) (0.192) (0.500) (0.388)

Constant -0.284 15.69*** -5.253 4.98
(2.849) (6.010) (16.72) (8.921)

Sigma 1.12*** 2.06*** 4.07*** 2.37***
(0.041) (0.114) (0.562) (0.504)

Size of the class 0.29 0.42 0.29

Notes: Dependent variable is WTP, measured using a double-bounded elicitation method. Follow up bids are
double or halved, if the respondents agree, or disagree, to pay the initial bid. Respondents answers to WTP
for each risk reduction in the study are pooled. Respondents idiosyncratic shocks are allowed to be correlated
between questions. The log-risk reduction variable is takes the value of log(1/10,000) if the respondents are
faced with 1/10,000 with a risk reduction and takes the value of log(2/10,000) if the respondents are faced with
a 2/10,000 risk reduction. The log baseline risk variable takes a value of log(4/10,000) if the baseline risk is
4/10,000 and log(3/10,000 ) otherwise. Posterior standard errors are computed using parametric bootstraps
(100 reps). Standard errors clustered at the respondent level are in parenthesis.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 7 reports estimates of the marginal effects of demographic characteristics on the
probability of membership in each class. The coefficients are estimated jointly with the
coefficients in Table 6. The dependent variable is the posterior individual probability of
belonging to a class; that is, the probability of belonging to a class conditional on the
respondents’ answers to the valuation questions. We include as covariates respondent de-
mographics such as education, income, age and type of household. We include a measure
of respondents’ probability comprehension, defined as correctly selecting the dominant
alternative on the first training question (Alberini et al. 2001). We also use time spent
completing the survey as a possible proxy for cognitive effort (Nielsen et al. 2011, Ru-
binstein 2013). De-briefing questions such as whether respondents felt confident when
answering the valuation questions, whether they expressed high concern about pesticides
in food, whether they thought that if one household member became sick all would, and
whether they judged their actual risks to be similar to the stated hypothetical risks are in-
cluded. Finally, information about respondents’ food-purchase and consumption patterns
is also included.

Demographic characteristics are associated with class membership. Respondents with
at least a high school education have a higher probability of membership in class 1. Higher
income is associated with a higher probability of membership in class 2 and a lower prob-
ability for class 3. Age is positively associated with membership in classes 1 and 3 and
negatively with class 2. Single-person households also have lower probability of class 2
membership.

Time spent completing the survey is associated with a higher probability of membership
in class 1 and (less strongly) class 2, and a lower probability of membership in class 3.
Respondents who answered the first training question correctly have a higher chance of
belonging to class 1. Respondents believing the risk of illness is perfectly correlated among
household members are less likely to belong to class 2 and more likely to belong to class
3. Respondents who considered the hypothetical risks to be similar to actual risks, and
those who rarely purchase bio (organic) food were more likely to belong to class 2 and less
likely to belong to class 3.

The heterogeneity in estimated WTP is summarized in Figure 3. The horizontal axis
is logarithmic. The estimated density of log WTP from the LCA (bold line) reflects much
greater heterogeneity than that of the standard model (fine line). The density for the
LCA reveals three peaks corresponding to the three classes (from left to right, the peaks
correspond to class 2, class 1, and class 3).

Table 8 presents the mean VSL and SR-VSL from class 1 and 2 estimates. Estimates
for class 3 are implausibly large, so we do not report them. Estimates are for the sample-
mean respondent, but these estimates are means over the error distribution, not medians
as in Table 5. Because the LCA controls for much of the heterogeneity that is hidden
in the error term of the standard model, the estimated residual variance and hence the
difference between predicted mean and median is much smaller for the LCA than the
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Table 7: Marginal effects of demographics on Class-membership

Class 1 Class 2 Class 3

Log-income 0.028 0.063*** -0.088***
(0.019) (0.024) (0.022)

Education 0.1142** 0.01 -0.124**
(0.054) (0.059) (0.056)

Couples 0.05 -0.0365 -0.0135
(0.035) (0.038) (0.036)

Monoparental 0.031 -0.0612*** 0.030
(0.036) (0.029) (0.039)

Family 0.0323 -0.1636*** 0.131**
(0.062) (0.035) (0.071)

Log-time spent filling survey 0.029*** 0.0162* -0.0454***
(0.006) (0.0095) (0.010)

Age respondent 0.0015** -0.0035*** 0.0021***
(0.0007) (0.0004) (0.0007)

Did not fail training 0.1297*** -0.0226 -0.107
(0.052) (0.062) (0.058)

Respondent somewhat confident 0.0331 -0.026 -0.007
(0.021) (0.024) (0.022)

Pesticides in food -0.0147 -0.1196*** 0.134**
(0.044) (0.041) (0.064)

If a member gets sick, all get sick? 0.0738 -0.2463*** 0.1785***
(0.091) (0.073) (0.076)

Considering hypothetical and actual risk are similar 0.0151 0.0875*** -0.102**
(0.035) (0.033) (0.046)

Frequency purchase food for household -0.036 -0.0213 0.057
(0.032) (0.041) (0.042)

Frequency purchase BIO -0.0092 0.1795*** -0.1703***
(0.058) (0.042) (0.069)

Frequency preparing meals -0.0685** 0.0384 0.03
(0.031) (0.034) (0.031)

Repeated bids and risk reduction -0.003 0.0143 -0.0113
(0.0275) (0.035) (0.034)

Notes: The horizontal sum over the three columns is equal to zero. This is due to the constraints that the
probabilities must sum one. The estimates can be found in the appendix. Standard errors clustered at the
respondent level are in parenthesis.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Figure 3: Log-WTP, Gaussian Mixture versus a normal distribution

standard model.19

Class 2 estimates of VSL for the respondent him or herself are approximately 2 million
e. Estimates for a child and for another adult are about 6 million e. These predicted
mean values are smaller than the predicted median values from the standard model and
are comparable to the median SR-VSLs from the standard model (Table 5). The smaller
mean estimates for class 2 than median estimates from the standard model may be due,
in part, to the fact that the standard model does not downweight contributions from class
3, which satisfy most of the validity tests but have implausibly high WTP. Table 8 reports
VSL and SR-VSL values when different organs are affected, and latency and disease type
are changed. The only large effect is that VSL is significantly smaller when disease latency
is 20 years, as compared with 1 or 10 years.

6 Robustness Checks

We report in Table 10 single-bounded estimates for the standard model (Cameron &
Quiggin 1994). As compared with the double-bounded results presented in Table 4, we
find less sensitivity to risk reduction. Qualitative results on sensitivity to baseline risk
and to income do not change; the estimated incremental WTP to reduce risk to a child
or other adult is smaller than for the double-bounded estimates and insignificant for the
child. Estimated WTP to reduce risk to all household members jointly is significantly
smaller than to reduce risk to the respondent alone, possibly reflecting an embedding
effect at the household level (Kahneman et al. 1992). The single-bounded results yield a
statistically larger WTP to reduce risk of cancer than of another disease, consistent with
some previous literature (Van Houtven et al. 2011; Viscusi et al. 2014).

19The ratio of predicted mean to predicted median VSL in the standard model (2) is 450 (=
exp((3.4952)/2) but is only 8.3 (= exp((2.062)/2) for class 2 of the LCA. The large ratio of predicted
mean to median for the standard model is consistent with many previous CV studies that report only
the predicted median (for the mean respondent). For example, Hammitt & Haninger (2010) report the
predicted median; their predicted mean is about 350 times larger. Hanhemann et al. (1991) advise using
median VSL.
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We also conducted a LCA with single-bounded estimates. The preferred model, given
the Bayesian Information Criterion, has C = 2 classes. The first and second class average
membership probabilities are 46% and 54%, respectively. As the preferred number of
classes differs between the single- and double-bounded estimates, it is difficult to compare
the results directly. For the single-bounded results, presented in Table 11, WTP is sensitive
to risk reduction in both classes, but the coefficient on log risk reduction is significantly
different from both zero and one in both classes, violating our e-test. Class 1 has a negative
and significant coefficient for baseline risk, violating our π-test, while Class 2 has a positive
and insignificant coefficient, satisfying the π-test. The estimated coefficient on income is
significantly positive for Class 2 and insignificantly positive for Class 1, satisfying our
w-test. Neither class satisfies all three tests, but Class 2 satisfies two of three.

7 Conclusion

This study employs contingent valuation to elicit preferences for mortality risk reduction.
We explore response heterogeneity among individuals to assess the robustness of current
best-practice procedures in CVM. In particular, we explore the implications of allowing
for response heterogeneity on standard validity tests, i.e., scope sensitivity, baseline risk,
income, and budgetary tests. We construct a theoretical model, derive several validity tests
for CV estimates of the value of small changes in mortality risks, and apply these tests to
data collected from an internet panel representative of the French adult population.

Respondents were asked to value risk reductions to themselves and to other members
of their households. The order of targets was randomly assigned. We find that scope
sensitivity improves when we analyze only responses to the first valuation questions pre-
sented to respondents, suggesting that the consistency with validity criteria we find is not
an artifact of arbitrary coherence (Ariely et al. 2003, Goldberg & Rosen 2007, Andersson
et al. 2016).

A conventional analysis of our data, using a single regression model, satisfies the valid-
ity tests. However, our latent class analysis reveals substantial heterogeneity of responses
that is concealed in the standard analysis. In LCA, each class represents an unequally
weighted composite of the full sample of respondents and hence estimates of VSL ob-
tained for one class are estimates based on an unequal weighting of responses from all
respondents.

We find much heterogeneity in our survey responses, as illustrated by Figure 4. Each
sub-figure represents the kernel density function of individual estimated posterior coeffi-
cients, and each displays multiple peaks, corresponding to the different classes. Clearly
such heterogeneity, if ignored, could lead to invalid conclusions.

One of the classes identified by LCA (class 3), satisfies our primary validity tests (scope
sensitivity, income sensitivity, and baseline risk insensitivity) but yields an infeasibly large
predicted WTP, vastly exceeding respondent income. A possible explanation is that these
responses are consistent with a contribution model, in which "responses are better de-
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Table 8: Mean value per statistical life - Latent Class Analysis

Class 1 Class 2
VSL SR-VSL VSL SR-VSL

VSL for self 17.4 5.09 2.38 1.88
(1.99) (1.91) (0.48) (0.27)

VSL for child 28.95 8.47 6.39 5.05
(5.68) (13.77) (2.31) (5.38)

VSL for another adult 35.58 10.41 5.80 4.58
(4.16) (8.31) (1.43) (2.24)

VSL for per HH member 11.63 3.40 0.61 0.49
(3.07) (5.05) (0.46) (0.23)

VSL for self (2de question) 28.95 8.47 2.59 2.05
(4.44) (8.77) (0.76) (0.61)

VSL for self when:

Brain is affected 17.87 4.75 1.87 1.32
(2.81) (3.22) (0.51) (0.25)

Bladder is affected 19.07 5.07 2.00 1.4
(2.92) (3.48) (0.52) (0.27)

Liver is affected 14.57 3.87 1.37 0.96
(2.09) (1.81) (0.38) (0.14)

White blood cells are affected 18.99 5.05 3.10 2.18
(2.64) (2.92) (0.70) (0.49)

Disease latency is 1 year 16.4 4.36 2.28 1.61
(2.33) (2.26) (0.55) (0.30)

Disease latency is 10 years 16.49 4.38 2.49 1.75
(2.14) (1.96) (0.60) (0.36)

Disease latency is 20 years 19.85 5.27 1.41 0.99
(2.77) (3.22) (0.34) (0.11)

Disease is not cancer 17.86 4.75 2.07 1.46
(2.28) (2.23) (0.43) (0.20)

Disease is cancer 17.26 4.59 1.94 1.37
(2.16) (2.01) (0.45) (0.21)

Symptom description provided 16.81 4.47 1.55 1.09
(2.21) (2.09) (0.37) (0.14)

Symptom description not provided 25.15 4.88 3.11 1.82
(3.45) (2.20) (0.75) (0.29)

Notes: Values are in millions of e. WTP is calculated using the specification from each model. Mean VSL is
estimated for the mean individual in the following way: first, we take the exponential log-WTP for the mean
individual at the average risk reduction 1.5/10000 risk reduction and we add the variance over two; second, we
divide by the average risk reduction (1.5/10,000). Mean SR-VSL is estimated for the mean individual in the
following way: first, we take the exponential log-WTP for the mean individual when presented with a 2/10000
risk reduction and a 1/10000, separately, while adding the variance over 2 for each; second, take the difference
between the exponential log-WTP when risk reduction is equal to 2/10000 and the exponential log-WTP when
risk reduction is equal to 1/10000; third, divide the result from the second step by the difference between high
and low risk reduction. Standard errors are in parenthesis (delta method)
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Table 9: Demographics conditional on Class membership

Class 1 Class 2 Class 3 All sample

Age of person at risk 43.22 41.71 44.41 42.92
(14.08) (13.11) (12.18) (13.15)

Female 0.49 0.51 0.56 0.52
(0.50) (0.50) (0.50) (0.50)

Education 0.85 0.80 0.69 0.78
(0.36) (0.40) (0.46) (0.41)

Wage 3100 2880 2782 2908
(1780) (1645) (1750) (1716)

Health current (VAS) 78.15 79.58 77.49 78.58
(15.25) (15.48) (17.82) (16.17)

Health illness (VAS) 44.37 49.5 52.97 49.18
(27.02) (27.62) (28.71) (27.95)

Health current (EQ-5D) 0.86 0.87 0.87 0.87
(0.12) (0.13) (0.18) (0.14)

Health illness (EQ-5D) 0.44 0.52 0.51 0.50
(0.34) (0.33) (0.37) (0.35)

N 265 435 300 1000

Notes: Respondents are attributed to the class where the individual conditional
mem- bership probability is highest. The means are taken over the number of
respondents attributed to each class. Where female is equal to one is women,
education is equal to 1 if the respondent has at least a college degree.

scribed as expressions of attitudes than as indications of economic value, contrary to the
assumptions of the contingent valuation method" (Kahneman et al., 1992). Respondents
who express a high degree of concern about pesticides in food have a higher probability of
class 3 membership (Table 7). High concern might lead to over-reactions (Patt & Zeck-
hauser 2000) in the form of high WTP estimates, and not necessarily to scope insensitivity
(Sunstein & Zeckhauser 2010).

As class 2 responses are consistent with theoretical validity tests, should one adopt
estimates using results for this class? Sunstein (2013) argues that regulators should use
preferences that are informed and rational and that "when a behavioural market failure
is involved, appropriate adjustments should be made to WTP, and the VSL that emerges
from WTP should be corrected accordingly." From a welfare point of view, Adler (2012)
argues that preferences, which are fully informed and fully rational, should be the ones
taken into account. One may ask if class 2 is representative of the French population. As
shown in Table 9, there are no large differences in the distribution of demographic charac-
teristics between the weighted sample that constitutes class 2 and the unweighted sample
of respondents. Of course, this partial analysis is based on only observable characteristics.
Hence, if one accepts the need to use only estimates of preferences that are arguably con-
sistent with the standard economic model, one might use the class 2 estimates for VSL:
about 2 million e for adults (own risk) and 6 million e for children.

While a finding that WTP is much smaller than proportional to risk reduction is com-
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mon in CV (Hammitt & Graham 1999, Carson 2012), VSL is computed and interpreted
using an expected utility model, which predicts near-proportionality of WTP to risk re-
duction. Moreover, CV studies using the double-bounded binary choice method usually
report median and not mean VSL, presumably because estimated mean VSL is implausi-
bly large (Hammitt & Haninger 2010). Moreover, median estimates of VSL are robust to
outlier valuation responses, like those represented by class 3. We find that allowing for a
more flexible distribution function (a mixture of normal distribution) using LCA controls
for substantial heterogeneity and allows for credible mean VSL estimates. Moreover, our
proposed supplementary VSL measure, SR-VSL, provides estimates under the standard
analysis that are close to those found using LCA.

Our finding that WTP to reduce risk to a child or other adult in the household is
larger than to reduce risk to oneself is consistent with other literature. Factors that have
been identified as contributing to a divergence in WTP include age (Chanel et al. 2014,
Aldy et al. 2008), risk perception (Hammitt & Haninger 2010), and the perspective or
context of valuation (e.g., societal or individual, altruism). Empirical studies suggest
that perspective and altruism substantially influence WTP (Dickie & Ulery 2001). While
the differences between values for children and adults are not problematic for benefit-cost
analysis, the difference between VSL for another adult and for oneself is. Bergstrom (2006)
suggests that when performing a benefit-cost analysis the sum of private valuations should
be compared with the costs. This implies we should use WTP from private risk reductions
(to self) to compute VSL.

While recognition of heterogeneity has proven important in other areas of economics,
relatively little attention has been paid to it in the CVM literature.20 Recognizing hetero-
geneity of responses in CVM suggests the average probability for one of our respondents
to satisfy our theoretical criteria is less than half. More research is needed to evaluate the
implications of accounting for heterogeneity in CVM.

20For example, in industrial organization introducing heterogeneity is essential when analysing consumer
demands, since it allows the researcher to circumvent the independence of irrelevant alternatives assumption
(IIA) implicitly introduced by the logit setting.
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Robustness Checks Tables

Table 10: Willingness to pay results: Probit analysis

(1) (2) (3) (4)

Log-risk reduction 0.107 0.178** 0.107 0.181**
(0.0688) (0.0873) (0.0687) (0.0872)

Log-baseline risk 0.0818 0.0760 0.0852 0.0770
(0.162) (0.205) (0.162) (0.205)

Log-income -0.0108 0.00496 -0.00852 0.00377
(0.0721) (0.0734) (0.0723) (0.0736)

Child is at risk 0.233*** 0.195 0.230*** 0.205*
(0.0556) (0.123) (0.0557) (0.123)

Adult is at risk 0.174*** 0.245*** 0.171*** 0.247***
(0.0469) (0.0915) (0.0476) (0.0925)

Household is at risk -0.185** -0.168* -0.195** -0.171*
(0.0916) (0.0871) (0.0921) (0.0885)

Self is at risk (2de question) 0.0252 0.0291 0.0173 0.0264
(0.0424) (0.0648) (0.0435) (0.0667)

Brain 0.00825 0.0169
(0.0498) (0.0732)

Liver -0.0193 -0.0164
(0.0488) (0.0738)

White Blood Cells 0.00395 0.0683
(0.0498) (0.0756)

Latency is 10 years 0.00114 -0.000906
(0.0569) (0.0724)

Latency is 20 years -0.00148 -0.0510
(0.0576) (0.0725)

Cancer 0.0906** 0.104*
(0.0445) (0.0592)

Symptom description 0.00710 -0.00402
(0.0705) (0.0725)

Constant 3.203** 3.544* 3.161** 3.542*
(1.576) (1.892) (1.577) (1.893)

Initial bid -0.222*** -0.207*** -0.221*** -0.207***
(0.0189) (0.0199) (0.0189) (0.0199)

Observations 3,190 2,000 3,190 2,000

Notes: Dependent variable is a log-WTP, measured using a single-bounded elicitation method.
Respondents answers to WTP for each risk reduction in the study are pooled. Respondents
idiosyncratic shocks are allowed to be correlated between questions. The log-risk reduction
variable takes the value of log(1/10,000) if the respondents are faced with 1/10,000 with a risk
reduction and takes the value of log(2/10,000) if the respondents are faced with a 2/10,000 risk
reduction. The log baseline risk variable takes a value of log(4/10,000) if the baseline risk is
4/10,000 and log(3/10,000 ) otherwise. The order of the person to which the risk reduction was
addressed is random. Model (2) and (4) report results over the subset of answers to the first
valuation question, and questions on household level risk including second questions to single
person households. The household WTP question is always asked last. Standard errors clustered
at the respondent level are in parenthesis.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 11: Latent Class regression: Probit

Class 1 Class 2
Initial bid -0.395*** -0.420***

(0.0427) (0.0294)
Log-risk reduction 0.297** 0.256*

(0.143) (0.143)
Log-baseline risk -0.629* 0.470

(0.350) (0.332)
Log-income 0.0199 0.174*

(0.0907) (0.0983)
Child is at risk -0.0564 0.439**

(0.224) (0.196)
Adult is at risk -0.0835 0.658***

(0.165) (0.135)
Household is at risk -0.222* 0.0377

(0.135) (0.122)
Self is at risk (2de question) -0.187 -0.389**

(0.168) (0.186)
Symptom description 0.0190 -0.169*

(0.0961) (0.0942)
Brain 0.182 -0.0767

(0.133) (0.131)
Liver -0.112 -0.0376

(0.136) (0.129)
White Blood Cells 0.254* 0.0121

(0.147) (0.135)
Latency is 10 years 0.0995 0.0412

(0.123) (0.109)
Latency is 20 years -0.0204 -0.242**

(0.128) (0.114)
Cancer 0.204** 0.0992

(0.100) (0.0934)
Constant 1.560 6.349**

(3.111) (3.075)

Size of the class 0.46 0.54

Notes: Dependent variable is a log-WTP, measured using a single-bounded elicitation method. Respondents
answers to WTP for each risk reduction in the study are pooled. Respondents idiosyncratic shocks are allowed
to be correlated between questions. The log-risk reduction variable is takes the value of log(1/10,000) if the
respondents are faced with 1/10,000 with a risk reduction and takes the value of log(2/10,000) if the respondents
are faced with a 2/10,000 risk reduction. The log baseline risk variable takes a value of log(4/10,000) if the
baseline risk is 4/10,000 and log(3/10,000 ) otherwise. Posterior standard errors are computed using parametric
bootstraps (100 reps). Standard errors clustered at the respondent level are in parenthesis.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Appendix

Elasticity of willingness to pay with respect to risk reduction.

By differentiating P with respect to e. It follows that:

∂P

∂e
= uA (we)− uD (we)

(π + e)u′A (we) + (1− π − e)u′D (w − P (e, w, π))
> 0.

Note that when e→ 0 we have ∂P
∂e ≡ V SL, and P = 0. If we multiply by e and divide by

P we have:

ηPe = uA (we)− uD (we)
(π + e)u′A (we) + (1− π − e)u′D (w − P (e, w, π))

e

P (e, w, π) .

Here ηPe denotes the elasticity of substitution between the risk reduction, e, and willingness
to pay, P . As we are interest in cases when e→ 0, applying l’Hôpital’s rule yields:

lim
e→0

ηPe = lim
e→0

−e∂P∂e
(
u
′
A (we)− u

′
D (we)

)
+ uA (we)− uD (we)

∂P
∂e EU ′(we) + P

[
u
′
A (we)− u

′
D (we)− ∂P

∂e EU ′′(we)
] ,

and given that P (0, w, π) = 0, we find,

lim
e→0

ηPe = uA (w)− uD (we)
EU ′(w)uA(w)−uD(w)

EU ′(w)

= 1.

The relationship between willingness to pay, P , and risk reduction e, when e→ 0 is that
of proportionality.

Elasticity of baseline risk on willingness to pay.

Next, we investigate the functional relationship between baseline mortality probability
and willingness to pay. Thus, we differentiate with respect to 1− π and obtain:

∂P

∂(1− π) = uA (we)− uD (we)− uA (w)− uD (w)
(π + e)u′A (we) + (1− π − e)u′D (w − P (e, w, π))

> 0.

Then, multiplying by 1− π and dividing by P (e, w, π) yields:

ηP1−π = uA (we)− uD (we)− uA (w)− uD (w)
(π + e)u′A (we) + (1− π − e)u′D (w − P (e, w, π))

1− π
P

.
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Here, ηP1−π denotes the elasticity of substitution between baseline probability of death and
willingness to pay. As we are interest in cases when e→ 0, as we did previously, applying
l’Hôpital’s rule yields:

lim
e→0

ηP1−π = lim
e→0

−∂P
∂e

(
u
′
A (we)− u

′
D (we)

)
(1− π)

∂P
∂e EU ′(we) + P

[
u
′
A (we)− u

′
D (we)− ∂P

∂e EU ′′(we)
] .

Given that P (0, w, π) = 0, we find that:

1− π
π
≥ lim

e→0
ηP1−π = 1− π

π + u
′
A(w)

u
′
A(w)−u′D(w)

− 1
> 0.

Provided that the probability of survival is close to 1, the elasticity of substitution between
the baseline risk of death and willingness to pay is positive but close to 0.

Elasticity of income on willingness to pay.

We investigate the relationship between wealth and willingness to pay. Differentiating P
with respect to w yields

∂P

∂w
= 1− πu

′
A (w) + (1− π)u′D (w)

(π + e)u′A (we) + (1− π − e)u′D (we)
.

Then, multiplying by w and dividing by P (e, w, π) yields:

ηPw = EU ′(we)− EU ′(w)
EU ′(we)

w

P
.

Here, ηPw denotes the elasticity of substitution between wealth and willingness to pay. As
we are interested in cases when e→ 0 applying l’Hôpital’s rule yields:

lim
e→0

ηPw = lim
e→0

w
u′A(we)− u′D(we)− EU ′′(we)∂P∂e

∂P
∂e U ′(we) + P

[
∂P
∂e EU ′′(we) + u′A(we)− u′D(we)

] .
which in turns yields,

lim
e→0

ηPw = w
u′A − u′D
uA − uD

− wEU
′′(w)

EU ′(w) > 0.

Additionally, consider the following expression of VSL:

V SL = uA (w)− uD (w)
(π)u′A (w) + (1− π)u′D (w)

> 0. (16)
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The income elasticity of VSL can be calculated by differentiating equation (16) with
respect to w, dividing the result by V SL/w, and substituting the right-hand side of the
equation for VSL. The income elasticity ηV SLw can be express, after some simplifications
as:

ηV SLw = w
u′A − u′D
uA − uD

− wEU
′′(w)

EU ′(w) ,

This implies that lime→0 η
P
w = ηV SLw .
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Willingness to pay for mortality risk reduction and health

As reported in table 3, describing the disease has a negative impact on the reported health
state when ill. In this subsection we explore how willingness to pay for a mortality risk
reduction varies with health.

As before, we assume a one period state dependent expected utility framework. Let an
individual derive utility u(w, hj) from wealth, w and health hj , where j = A,D denote the
two possible states, alive or dead, respectively. The utility of wealth conditional on death
is associated with bequest motives. We denote first (second) derivatives with respect to
wealth by the subscript 1 (11) and those with respect to health by the subscript 2 (22). We
adopt the standard assumptions u(w, hA) > u(w, hD) and u1(w, hj) > 0, u2(w, hj) > 0,
u11(w, hj) ≤ 0, u22(w, hj) ≤ 0 for j = {A,D}. Without loss of generality, we will measure
health quality on a unit scale so that hA = 1, hD = 1− z, where z < 1.

Letting π denote the probability of survival, expected utility is given by E (U) =
πu (w, 1) + (1− π)u (w, hD). Willingness to pay to reduce the risk by the amount, e,
denoted Pz = P (e, w, π, z), is defined by:

(π + e)u (w − Pz, 1) + (1− π − e)u (w − Pz, hD) = πu (w, 1) + (1− π)u (w, hD) . (17)

Taking the derivative with respect to z in equation (17) yields,

∂P (e, w, π, z)
∂z

= (1− π)u2 (w, hD)− (1− π − e)u2 (w − Pz, hD)
(π + e)u1 (w − Pz, 1) + (1− π − e)u1 (w − Pz, hD) . (18)

The sign of equation (18) depends on the effect of wealth on the marginal utility of health
(i.e., u12). If we observe WTP for mortality risk decreases with increased morbidity in
the death health state, we infer that the marginal utility of health increases with lower
wealth, we refer to it as positive state dependence (Finkelstein et al. 2013). Positive state
dependence is a sufficient but not necessary condition for the sign of equation (18) to be
negative. The following relationship need to holds:

u2 (w − Pz, hD)
u2 (w, hD) >

1− π
1− π − e. (19)

Whereas if we observe WTP for mortality risk reduction rise with increased morbidity in
the death health state, we infer a negative state dependence and the sign of equation (19)
is reversed.
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Symptom Descriptions

There are symptom descriptions for each organ, which are identical for cancer and other
disease. Respondents were randomly allocated between receiving a description (for all
valuation questions) or not. The symptom descriptions follow.

Brain Cancer/Degenerative Neurological Disease

Description: Initially, the symptoms will be mild, but they will gradually get worse
over time. [You/He/She] will have headaches that last for an hour or two at a time
but the pain will be relieved with over-the-counter medicines like aspirin. At times,
[your/his/her] speech will become slurred and [you/he/she] will be difficult to understand.
[You/He/She] will also have difficulty with [your/his/her] arms and legs. They will feel
weak and [you/he/she] will need to sit down and take a rest from what [you are/he is/she
is] doing. Over time, these symptoms will get worse and may persist for most of the day.
For example, [you/he/she] may wake up with severe headaches that last all day, have dif-
ficulty swallowing, and may vomit when eating or drinking. Eventually, [you/he/she] will
become so weak that [you/he/she] will be confined to bed or a wheel chair most of the time.
[You/He/She] will not have control over [your/his/her] normal bodily functions and will
not be able to go to the bathroom or shower by [yourself/himself/herself]. [You/He/She]
may start to have seizures that will cause [you/him/her] to lose consciousness and make
[your/his/her] body shake uncontrollably. Once the seizures become difficult to control,
[you/he/she] will die within a few months.

Bladder Cancer/Bladder Disease

Description: Initially, the symptoms will be mild, but they will gradually get worse
over time. [You/He/She] will have blood in your urine that appears red or brown. The
blood may be present some days but not others, and may disappear for weeks at a time.
Sometimes blood clots will form that will cause pain or obstruction to the flow of urine.
[You/He/She] will have pain when trying to urinate. [You/He/She] and will feel that
[your/his/her] bladder has not completely emptied and that [you need/he needs/she needs]
to urinate frequently, even when [you are/he is/she is] unable to do so. Over time, these
symptoms will get worse and may persist for most of the day. Eventually, [you/he/she]
will lose a significant amount of [your/his/her] muscle mass and will become so weak that
[you/he/she] will be confined to bed or a wheel chair most of the time. [You/He/She]
will not have control over [your/his/her] normal bodily functions and will not be able
to go to the bathroom or shower by [yourself/himself/herself]. After reaching this point,
[you/he/she] will die within a few months.
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Liver Cancer/Liver Failure

Description: Initially, [you/he/she] may feel normal and go about [your/his/her] daily
activities with little difficulty, but at some point [your/his/her] skin will turn yellow and
[you/he/she] will experience discomfort in [your/his/her] upper belly that may last for
hours at a time. [You/He/She] may experience bleeding, bruising, and swelling from fluid
in the belly and legs. Eventually, [you/he/she] will have a poor appetite and feel tired
much of the time. Over time, these symptoms will get worse and may persist for most of
the day. [You/He/She] will become so weak that [you/he/she] will be confined to bed or
a wheel chair most of the time. [You/He/She] will not have control over [your/his/her]
normal bodily functions and will not be able to go to the bathroom or shower by [your-
self/himself/herself]. [You/He/She] will eventually have periods of time when [you/he/she]
will be confused and unable to think clearly because toxins normally cleared by the liver
will build up in [your/his/her] body. [You/He/She] may experience insomnia and daytime
drowsiness, confusion, inability to recognize people and places, and finally, coma. Once
this occurs, [you/he/she] will die within a few months.

Lymphoma /White Blood Cell Disorder

Description: Initially, the symptoms will be mild, but at some point [you/he/she] will
feel very weak and sick with high fevers, severe sweats, and shaking chills. [You/He/She]
will wake up with the sheets drenched. [You/He/She] may have pain in [your/his/her]
abdomen that lasts for hours at a time. [You/He/She] will have repeated infections and
will need to go to the hospital for intravenous medication. Over time, these symptoms
will get worse and eventually [you/he/she] will become so weak that [you/he/she] will be
confined to bed or a wheel chair most of the time. [You/He/She] will not have control
over [your/his/her] normal bodily functions and will not be able to go to the bathroom or
shower by [yourself/himself/herself]. At some point, medication will not be able to fight the
infections [you get/he gets/she gets]. [You/He/She] may pass in and out of consciousness,
experience shortness of breath, and finally, coma. Once this occurs, [you/he/she] will die
within a few months.
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EM-algorithm

The EM-algorithm is iterative. EM exploits the fact that, although the class membership
does not depend on the choices made, the choices provide information about the class
membership. Suppose that an agent is vegetarian, but we do not know. Observing her
food choices consecutively would lead us to infer, with a high degree of certainty, that
she is a vegetarian. The key part of EM algorithms is updating the belief of an individ-
ual membership in a class s, which is done through Bayes theorem. Let his (xit|yit) be
individual i’s posterior probability of belonging to class s. It is computed as follows:

his (xit|yit) = Lsi∑C
c=1 L

c
i

. (20)

Note that Lis corresponds to individual i’s contribution to the overall likelihood, which is
given by the sequence of answers,

∏T
t=1Qit (θs, x1it, yit), conditional on being a class s type

of individual, weighted by the probability of being a member of class s, πis (x2it, αs). Given
the evidence (her observed choices), we update our beliefs on individual i’s membership
by weighting her contribution to the likelihood on each of the distinct classes C. If the
contribution to a class, say s1, is higher than the others, then it would be reflected in our
higher posterior beliefs, his1 (xit|yit).

From an empirical point of view, estimating (15) is computationally complex. An
alternative log-likelihood, E (θ), can be maximized to yield the same parameters (Train
2008). It is defined as follows:

E (Θ) =
N∑
i=1

C∑
c=1

his (xit|yit) log (Lci ) .

Note that log (Lci ) can be sub-divided into two parts:

log (Lci ) = log
(

T∏
t=1

Qit (θs, x1it, yit)
)

+ log (πis (x2it, αs)) .

The log-likelihood is then given by:

E (Θ) =
N∑
i=1

C∑
c=1

his (xit|yit) log
(

T∏
t=1

Qit (θs, x1it, yit)
)

+
N∑
i=1

C∑
c=1

his (xit|yit) log (πis (x2it, αs)) ,

(21)

where the first term in the RHS of equation (21) will be named LLθ and the second term
will be LLα. Moreover, since

∑C
c=1 πic (x2it, αc) = 1 we will assume that:
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πis (x2it, αs) = exp (αsx2it)∑C
c=1 exp (αcx2it)

, (22)

and we impose the following identification restriction, αC = 0, so that the coefficients from
each class are interpreted with respect to class C.

As noted earlier, the model has to be estimated in an iterative fashion. We build the
algorithm in Matlab. The algorithm is as follows:

1. Form the contribution to the likelihood Lsi for each class s = 1, . . . , C.

2. Form the individual-specific posterior probabilities of class membership hris(xit|yit),
where r denotes the rth iteration.

3. Maximize each class-specific WTP regression LLθ to obtain the updated sets of θr+1
s

with s = 1, . . . , C. Each regression uses as weights the posterior probabilities of class
membership computed in step 2.

4. Maximize jointly the prior probability logit functions LLα to obtain the updated sets
of αr+1

s with s = 1, . . . , C − 1. Each prior is weighted by the posterior probabilities
of class membership computed in step 2.

5. Repeat step 1 to 4 until convergence.

Although it is simple, the EM algorithm is quite slow to converge (Train 2009) and
it can converge to a local maximum. We used several starting points and set the change
in the log-likelihood function LL (Θ) to be smaller than 1e−10 to ensure convergence to a
global maximum. 21

21Note that there are more sophisticated variants of the EM algorithm (simulated annealing, stochastic
EM), which tend to be more robust to being trapped in local optima.
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