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As a first step in the search of an analytical study of mechanical denaturation of DNA in terms of
the sequence, we study stable, stationary solutions in the discrete, finite, and homogeneous Peyrard-
Bishop DNA model. We find and classify all the stationary solutions of the model, as well as
analytic approximations of them, both in the continuum and in the discrete limits. Our results
explain the structure of the solutions reported by Theodorakopoulos et al. �Phys. Rev. Lett. 93,
258101 �2004�� and provide a way to proceed to the analysis of the generalized version of the
model incorporating the genetic information. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2194468�
NA, the molecule that constitutes the basis of the ge-
etic code, is of utmost importance. In particular, its me-
hanical properties are crucial, as opening the double he-
ix structure of DNA is needed to read the genetic code
nd for replication of the molecule for reproduction. The
omplete separation of the double helix is called replica-
ion, and can be achieved by heating, or mechanically, by
ulling the two strands of the molecule apart. We here
ddress the mathematical description of mechanical de-
aturation in terms of a simple model. We determine and
lassify the solutions of the model equations and study
heir stability properties. We also provide an approxi-
ate but very accurate way to deal analytically with

hose solutions. Beyond mechanical features, our results
re relevant for studies of the thermodynamic properties
f the DNA chain, and may have genomic applications, in
o far as mechanical denaturation experiments that give
nformation about DNA composition can be modeled by
ur model and solutions.

. INTRODUCTION

Nonlinear models supporting coherent excitations appear
n many fields of science since the pioneering discoveries of
ermi, Pasta, and Ulam.1 This work, in the field of physics,
as led many scientist to use nonlinear models in the study of
omplex systems2 in other subjects. Nonlinear models en-
ered into DNA physics with Englander and co-workers3 �see
ef. 4 for a review on nonlinear models of DNA�, in 1980,
hen they modeled the dynamics of DNA with a sine-
ordon equation. Since then, a lot of work has been devoted
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to nonlinear excitations in DNA, both from the dynamics and
the statistical mechanics points of view. Among this body of
work, a particularly successful model is the Peyrard-Bishop
�PB� one,5,6 which will be our starting point in this paper.

One problem of special interest in the framework of
DNA was the thermal denaturation transition, which takes
place at temperatures around 90 °C, when the two strands of
the DNA molecule separate. On the other hand, mechanical
denaturation, which occurs when one of the strands of the
molecule is separated from the other by pulling it in single-
molecule experiments, was achieved in the last few years.7 In
order to model these phenomena, most of the research done
so far refers to homopolymers; i.e., homogeneous DNA mol-
ecules consisting entirely of A-T or C-G base pairs. When
the issue under discussion is genomics, or gene identifica-
tion, which is very much related to the above-mentioned
problems, models of heteropolymers are required: The distri-
bution of A-T and C-G base pairs follows nonuniform, non-
homogeneous sequences obtained from genome analysis.
The heterogeneous PB model is also being used for identify-
ing relevant sites, such as promoters,8,9 in viral sequences,
and also for analyzing the thermal denaturation process.10

The main motivation of this work is the study of the
effects of the sequence heterogeneity on the dynamics of the
mechanical denaturation process. We began that research
program by analyzing the Englander �basically, the sine-
Gordon equation2� model. The results we obtained11,12

showed that the Englander model was much too simple to
reproduce the phenomena observed in experiments, and
therefore we decided to focus on the PB model �see Ref. 13
for an authoritative review about this model�. In that context,
our immediate aim was to obtain a tool in this model similar

the effective potential proposed for the Englander model by

© 2006 American Institute of Physics3-1
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alerno and Kivshar14–16 in order to study the relation be-
ween the dynamics of these excitations and gene identifica-
ion. To that end, it is necessary to obtain stationary states of
he homogeneous model. Those were available for the con-
inuous version of the PB model, but, in fact, DNA is quite a
iscrete system, and the discretization parameter depends on
xperimental measurements used as parameters in the model.
or instance, in the PB model, the dimensionless parameter

hat defines the effective discretization of the system can go
rom R=10.1 �see the next section for a definition of R�, used
n Refs. 13 and 17 to R�75 used in Ref. 18, or even to R
100 in Ref. 19. In all cases, these R values correspond to

ystems that are far from the continuum limit. Therefore, as a
rst step towards our chief goal of understanding sequence
ffects on denaturation, our immediate purpose is to study
table, stationary states in the discrete PB model, with a spe-
ial focus on their dependence on the effective discretization.

In this paper, we aim to find stationary solutions of the
B model and their corresponding stability conditions. These

ssues are addressed in Sec. II. Subsequently, we discuss the
alidity of the continuum limit and the domain wall approxi-
ation in Sec. III, while in the main part of the paper, Sec.

V, we propose analytical approximations for the discrete
ase and compare our results with the ones obtained in Ref.
7. Finally, Sec. V concludes the paper by summarizing our
ain results and their possible implications.

I. DISCRETE SOLUTIONS AND STABILITY

In the following we will use the dimensionless PB
odel, defined by the Hamiltonian

H = �
n=0

N−1 �1

2
Ẏn

2 +
1

2R
�Yn+1 − Yn�2 + V�Yn�� , �1�

here V�Y�= �1−e−Y�2 is the Morse potential, which stands
or the attraction between the two bases of a base pair, and R
s a positive, dimensionless constant that refers to the inten-
ity of the coupling of two consecutive bases. This constant
lays the role of an effective discretization, a=	R, so that
�1 stands for a large discretization and R�1 is the con-

inuous limit.
Static solutions of Hamiltonian �1� must satisfy

H /�Yn=0, which turns out to be the recurrence relation

Yn+1 = 2Yn − Yn−1 + RV��Yn� , �2�

or n=1,2 , . . . ,N. Hence, solutions �2� are uniquely defined
y the initial condition 
Y0 ,Y1�. If we restrict ourselves to
olutions with Y0=0, which we can do without loss of gen-
rality, then each Yn will depend only on the value Y1=y, so
hat Eq. �2� can be rewritten in terms of y, introducing the
otation Yn�y� instead of Yn. From now on, we will discuss
he behavior of the solutions Yn�y� as a function of y.

Equation �2� describes stable and unstable solutions of
amiltonian equation �1�. In order to assess the stability
roperties of the solutions, we need to study the hessian of

he system:

wnloaded 07 Jul 2006 to 193.175.8.208. Redistribution subject to AIP
HN�y� =�
d1�y� − 1 0 . . . 0

− 1 d2�y� − 1 . . . 0

0 − 1 d3�y� . . . 0


 
 
 � 

0 0 0 . . . dN�y�

� , �3�

where dn�y�=2+RV�(Yn�y�). Calling �n�y� the determinant
of the principal minor of order n of the hessian HN�y�, i.e.,

�n�y� = det„Hn�y�… , �4�

a stable solution must satisfy �n�y��0 for all n
=1,2 , . . . ,N. As the hessian is a tridiagonal matrix, there is a
recursive relation between different �n,

�n+1�y� = dn+1�y��n�y� − �n−1�y� , �5�

with �1=d1 and �2=d1d2−1.
Expression �5� above can be rewritten in terms of Yn��y�.

By deriving expression �2� with respect to y, we find

Yn+1� �y� =
dYn+1�y�

dy

= �2 + RV�„Yn�y�…�Yn��y� − Yn−1� �y�

= dn�y�Yn��y� − Yn−1� �y� , �6�

with Y2��y�=�1�y� and Y3��y�=�2�y�. Therefore, it has to be

�n�y� = Yn+1� �y� , �7�

for n=1,2 , . . . ,N, and hence the stability region of solutions
�2� are the points that satisfy Yn��y��0 for all n
=2,3 , . . . ,N+1.

This far, no approximations were needed to obtain these
results, which are still valid for any V�Y�. From now on, we
will focus on the PB model by choosing the Morse potential
as our V�Y�, in order to search for an analytic expression of
the solutions �2�, as well as to find the stability in terms of
the initial condition y.

III. CONTINUUM LIMIT OF THE PEYRARD-BISHOP
MODEL

This limit corresponds to taking R�1, which means that
we can use the approximation Yn�y�→Ycont�x ,y� with x
=n	R in Eq. �2�. By so doing, we obtain the following dif-
ferential equation:

�2Ycont

�x2 =
dV

dYcont
, �8�

which can be easily solved using the initial conditions
Ycont�x0 ,y�=0 and �Ycont�x0 ,y� /�x=y /	R, where x0 stands
for the initial site of the model. This solution is
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Ycont�x,y�

=

y	2

R
sinh�	2 +

y2

R
�x − x0� + sinh−1� y

	2R
�� + 2

2 +
y2

R

�9�

or x�x0. This result differs from the domain wall obtained
n the continuum limit in the PB model,13

eY�x� = 1 + e	2�x−x0�, �10�

ainly because the integration has been done with different
oundary conditions. Whereas Eq. �9� was obtained integrat-
ng Eq. �8� for a semi-infinite system starting on x0 with the
nitial conditions stated above, Eq. �10� is valid for an infinite
ystem with Y�x�=0 and Y��x�=0 as x goes to −�. This
ields two different pictures of DNA: The one of Eq. �9�,
escribing a system with a starting point in x0, and with an
pening depending on the value of the derivative
Ycont�x0 ,y� /�x �if this value is zero then Ycont�x0 ,y�=0 and
he DNA chain is closed�; and the one of Eq. �10�, which
escribes an infinite system translationally invariant.

In this respect, we believe that Eq. �10� should not be
sed as an approximation of a finite system because it is not
critical point of the continuum version of Eq. �1� and,

herefore, we cannot speak of stability in this case as long as
e consider DNA as a finite lattice. The case of Eq. �9� is
ifferent because, although still in a semi-infinite system, the
tability of a finite chain can be stated as long as we consider
xed boundary conditions: Indeed, if free boundary condi-

ions are imposed, then the only possible solution for N finite
s Yn=0 for all n=0, . . . ,N, because an additional YN−1=YN

ondition is imposed. Thus, from now on, we will consider

N as obtained from the recurrence relation �2� and then
roze on that value when considering dynamics; i.e., integrat-
ng in time with fixed boundary conditions.

An important feature of the continuum approximation is
hat, in Eq. �9�, Ycont can be written as a function of x and �,
here �=y /	R. This implies a scaling relation between these

wo parameters, a relation that is absent for solutions of the
iscrete limit. This behavior can be seen in Fig. 1, where we
epresent Ycont with respect to x �with x0=0� for two values
f �, compared to the exact result Yn�y� �recall that x=n	R�
or different values of R, and with y=�	R. We clearly ob-
erve that for the largest values of R �R=1 and, mostly, R
10� the scaling relation is not fulfilled, indicating the cross-
ver to the discrete limit regime.

To analyze the stability of these solutions, using the re-
ult of Sec. II, it is enough to study the sign of �Ycont�x ,y� /�y
or all x�0. As the derivative of expression �9� is quite
umbersome, we prefer to show plots of the result for differ-
nt values of x, which we collect in Fig. 2. It can be shown in
eneral that �Ycont�x ,y� /�y�0 for all x�0, and therefore
q. �9� is a stable solution of �2�.

In order to check these results, we used the equations of
otion of the model �1� in order to simulate the dynamics of
nitial data given by �9� with small perturbations, and then

wnloaded 07 Jul 2006 to 193.175.8.208. Redistribution subject to AIP
FIG. 1. Plots of Ycont�x ,y� �obtained from expression �9�� for �=0.1 �a� and
�=1 �b�, where �=y /	R, compared to the exact solutions Yn�y� of the dis-
crete recurrence relation �2� calculated for the same quotient �=y /	R but for
different values of R �and, therefore, different values of y�.
FIG. 2. Plots of �Ycont�x ,y� /�y for �from lower to higher� x=1, x=5, x
=10, x=50, and x=100. All of them are positive for any y�0, so that all

solutions of the form �9� are stable for any y�0.
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onitored the evolution of this curves in time. Fixed bound-
ry conditions at both ends of the simulated interval were
sed, in order to prevent the chain from spontaneously clos-
ng, as explained above. Therefore, in order to verify our
esults we had to restrict the simulations to the sector of
pen-chain solutions by choosing those boundary conditions.
ith that caveat, our simulations fully confirm the predicted

tability of solutions. We stress that such solutions are the
nes that are relevant to the mechanical denaturation prob-
em, where the spontaneous closing of the chain is prevented
y the force exerted on the open end.

V. DISCRETE LIMIT OF THE PEYRARD-BISHOP
ODEL

. Solutions

The discrete limit of the PB model corresponds to letting
�1, and can be obtained following a few steps. Using a

elescopic summation of Yn+1−Yn, and noting the initial con-
itions Y0=0 and Y1=y, Eq. �2� can be rewritten as

n+1�y� = �n + 1�y + R�
k=1

n

�n + 1 − k�V�„Yk�y�… . �11�

e now define

fk�y� � V�„Yk�y�… = 2e−Yk�y��1 − e−Yk�y�� = f1„Yk�y�… . �12�

hese functions are plotted for different values of R in the
iscrete limit in Fig. 3. As can be seen, these fk are strongly
ocalized, their overlapping depending on R. In fact, in the
iscrete limit we are working on, which implies low overlap-
ing of the curves, we can write

fk�y� � fk
�1��y� � f1�bky� , �13�

here bn is calculated as follows. Let f1�y�=2e−y�1−e−y�,
nd y1=log 2 the position of the maxima of f1. The expres-
ion of f2�y� obtained from �12� can then be approximated by

f1�y��2y for y�y1, finding b2=2R+2. Repeating the pro-
ess for fn+1 in terms of fn , fn−1 , . . . , f1, we find the linear
ecurrence relation bn+1= �2R+2�bn−bn−1, valid for y�yn,
hich can be easily solved from b1=1, b2=2R+2 to find

bn =
1

2	R�R + 2�

�R + 1 + 	R�R + 2��n

− �R + 1 − 	R�R + 2��n� . �14�

ith these values of bn we can now compare the exact fn and
he approximate fn

�1� for different values of n and R. Figure 4
hows the validity of the approximation �see caption for
ore details�.

This result allows us to obtain an analytic, approximate
xpression of the solutions for different y in the discrete
imit. Substituting it in Eq. �11�, we find that

Yn+1
�1� �y� = �n + 1�y + R�

k=1

n

�n + 1 − k�fk
�1��y� . �15�

s a good approximation of the exact solution Yn�y� for large
alues of R. Figure 5 confirms the accuracy of this approxi-

ation: for R�100, the approximation is very accurate,

wnloaded 07 Jul 2006 to 193.175.8.208. Redistribution subject to AIP
whereas the smaller R the worse the approximation. For
smaller values of R, the approximation can be improved by
resorting to the next function, f2�y�, instead of f1�y�, as a
substitute for the rest of the fk�y�, by defining

fk�y� � fk
�2��y� � f2�y

bk

b2
� �16�

for k=3,4. . ., and approximating Yn�y� by

Yn+1
�2� �y� = �n + 1�y + nRf1�y� + R�

k=2

n

�n + 1 − k�fk
�2��y� . �17�

In this case, the approximation is even better than for
Yn

�1��y�, and even for R=10 the results are very close to the
exact ones �see Fig. 6 for details�.

The errors of these approximations depend on the values
of R and n. For instance, Yn

�1��y� is exact for n=1 and n=2,
for any value of R, whereas Yn

�2��y� is exact up to n=3 for
any R. For low values of n, the main difference between the
exact fn�y� �which can be easily obtained numerically� and
fn

�1� is located around the secondary heap of fn�y�, with a
maximum error Emax

�1� �0.06 for R=10 and Emax
�1� �0.006 for

R=100. For the second-order approximation based on fn
�2�,

the maximum error corresponds to the third heap with
�2� −3 �2� −5

FIG. 3. Functions fn�y� for R=10 �a� and R=100 �b�, for different values
of n.
Emax�2.7	10 for R=10 and Emax�3.2	10 for R
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100; at the same time, another discrepant region, much less
o than the main one, appears around the position of the next
eap. The same calculation can be done for higher orders of
he approximating function fn

�k��y�, and it can be seen that the
eduction of the error using k+1 instead of k is at least of one
rder of magnitude. There is a computational limit near the
recision of the machine, which does not allow us to check
he validity of this assumption further than a certain k and n,
epending of the value of R, but, as far as we know, it is
easonable to expect that the same behavior will take place
or higher values of k and n. Therefore, we conjecture that
igher orders of functions fk�y� can be used as approxima-
ions of fn�y�, as fn�y�� fn

�k��y�, with

fn
�k��y� = fk�y

b�n�
b�k�

� �18�

or n�k, in order to obtain better approximations Yn
�k��y� of

IG. 4. Approximation fn
�1��y� �see Eq. �13�� vs exact fn�y�, for R=10 �a�

nd R=100 �b� and different values of n. Exact solutions are drawn with
hick lines �solid or dashed as indicated�, whereas the corresponding ap-
roximations are drawn in thin, solid lines. The vertical axis is in logarith-
ic scale to enlarge the differences between each pair of curves. It is clearly

hown that the approximation is better for higher values of R �notice the
ifferent range of the vertical axis in both plots�. The plots also show the
ain difference between fn and fn−1, which is the growing of a new, much

maller heap for higher values of y. In this way, f1 would show just one
eap, f2 would show a secondary heap, f3 three, and so on.
he exact solution Yn�y�, and that the error of an approxima-

wnloaded 07 Jul 2006 to 193.175.8.208. Redistribution subject to AIP
tion of order k, En
�k��y�=Yn�y�−Yn

�k��y�, can be estimated as
the difference

En
�k��y� � Yn

�k+1��y� − Yn
�k��y� + O„En

�k+1��y�… , �19�

with En
�k+1��y��En

�k��y�.

B. Stability

The approximations defined in �15� and �17�, as well as
the ones mentioned in the above section, allow us to calcu-
late very accurately the solution Yn�y� for any value of n and
y. This is important because in the exact, numerical calcula-
tion of Eqs. �2� and �11� there are problems for values of y
close to zero, due to the numerical precision of the computer
�see also the discussion below�. Therefore, for analyzing the
stability in the discrete limit, we proceed to use the approxi-
mations Yn

�k��y� previously discussed. By these means, we
can work with systems of much larger size than the ones that
could be studied solving numerically the original recurrence
relations. For comparison, in the study of stability we will
show results for systems of small size, where the derivative
Yn��y� can be calculated without approximations for each n
without high errors of the precision of the computer. In Fig.
7 we show the dependence of �Y �y� /� log �y� on function

FIG. 5. Approximation Yn
�1��y� �see Eq. �15�� vs exact Yn�y�, for R=10 �a�

and R=100 �b�, for different values of n. Exact solutions are drawn with
thick lines, whereas the corresponding approximations are drawn in thin,
solid lines.
n 10
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f the initial condition y, in logarithmic scale, for different
alues of the size of the system, N. We chose
Yn�y� /� log10�y� instead of Yn��y� in order to obtain a
mooth curve: The direct plot of Yn��y� would make it very
ifficult to observe the intervals with Yn��y��0. As the sign
f both derivatives is the same for all y�0, we have resorted
o the logarithmic one. With this change, a modulated “sinu-
oidal” structure reveals itself in Fig. 7 for each n, with
n−1� maxima and minima around Yn��y�=0. From that fig-
re, it is apparent that a new interval of instability for lower
alues of y appears in systems of size n as compared to
ystems of size n−1. In addition to this, Fig. 7 also suggests
hat the set of unstable points of a system of size n contains
he set of unstable points of a system of size n−1. A plausi-
ility argument for this statement goes as follows: Let us
ook at points that satisfy Yn��y0�=0, in the extremes of an
nterval of unstable points. Then, if Yn−1� �y0��0, it must be

n+1� �y0�
0 �see Eq. �6��, and therefore the interval of un-
table points for a system of size n will be larger than for a
ystem of size n−1. This condition is satisfied by all the new
nstable intervals that appear for each Yn�y�, starting on

IG. 6. Approximation Yn
�2��y� �see Eq. �17�� vs exact Yn�y�, for R=10 �a�

nd R=100 �b�, for different values of n. Exact solutions are drawn with
hick lines, whereas the corresponding approximations are drawn in thin,
olid lines.
2�y�, and therefore, by induction, it can be applied to all

wnloaded 07 Jul 2006 to 193.175.8.208. Redistribution subject to AIP
systems. Therefore, all stable points of a system of size n are
those that satisfy Yn+1� �y��0.

As an independent check of the validity of the results
shown in this section, we compared our results with the ones
recently reported in Ref. 17. By studying the discrete, sta-
tionary problem with fixed boundary conditions, they found
eight stable and seven unstable solutions of a system of size
N=28. The specific boundary conditions they used were Y0

=0 and YN=80 for R=10.1. The exact YN�y� and the approxi-
mate solution YN

�2��y� of that system are in Fig. 8. The plot
now makes clear the precision problem we mentioned above,
namely, when we tried to calculate the exact, numerical so-
lution for low values of y. On the other hand, the approxi-
mate solution YN

�2��y� was calculated without any problem in
a wide range of y. It is also shown that YN

�2��y� gives the same
number of both stable and unstable solutions as in Ref. 17
�see explanation in caption�, which implies that the structure
of peaks of YN�y� gives a good explanation of the number
and structure of solutions. We think that this method can be
applied for larger systems with the way to estimate errors

FIG. 7. Derivative of Yn�y� with respect to log10�y� for different values of n
and for R=10 �a� and R=100 �b�, with logarithmic x axis. The stability
region of a system of size N is the intersection of all the points that satisfy
�Y /�y�0 for n=1,2 , . . . ,N+1. From the figures, we find that the stability
region corresponds to the points that satisfy the condition for n=N+1, as the
stability region of a system of size N seems to be embedded in the stability
region of a system of size N−1 �see text for an explanation�.
that we explained in this section.
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. CONCLUSIONS

In this paper, we have reported a study of the stationary
olutions of the PB model, obtaining exact and analytical
pproximations of the continuum and the discrete limit. We
ave been able to obtain all the stationary solutions and to
lassify them according to their stability by considering the
tationary equation as an initial value problem. We have also
ound that, in the discrete limit, the exact solutions can be
pproximated to the desired degree of accuracy by using the
unctions fk�y� as explained above. We have compared our
esults obtained in the discrete limit with Ref. 17, finding
ery good agreement with the number of stable and unstable
olutions of a PB system with fixed boundary conditions,
hus giving an explanation of the multiple solutions of the
roblem and the stability. In fact, our results show that every
olution of the initial value problem, which is unique for
very choice of y, corresponds to exactly one of the problem
ith fixed boundary conditions,17 which does not have a
nique solution. This is the reason the picture we are provid-
ng here is much more comprehensive, allowing us to under-
tand fully the space of solutions of the problem. On the
ther hand, the method explained in this paper to obtain
table solutions of a system of size N and opening L allows
o work with larger systems, as solutions and their stability
re calculated by evaluating a function, instead of numeri-
ally �as in Ref. 17, with N=28�. We also believe that this
tudy may be extended to the more accurate description of
NA given by the Peyrard-Bishop-Dauxois model,6 where

he coupling between two consecutive bases of the DNA
olecule has an anharmonic term that affects the general

ehavior of the openings.8,18

As stated in Sec. I, this stems from previous studies in
11,12

IG. 8. Stable �circles� and unstable �squares� solutions given by approxi-
ation YN

�2� for a system with N=28 sites, Y0=0 and YN=80. The solutions
re the intersections of Y28�y� �dot-dashed line� with the line Y28=80 �hori-
ontal line�. Due to computer precision, approximation Y28

�2��y� �solid thick
ine� is used instead. In order to establish the stability, it is necessary to
tudy the sign of Y29� �solid thin line� on each solution. Once again,
Y29�y� /d log10�y� is plotted for clarity, and it is shifted upwards 80 units to
ake easier the study of the sign and, therefore, the stability of solutions.
table solutions �circles� are the ones with positive value of Y29� , whereas
nstable solutions �squares� have negative Y29� . Our approximation gives
ight stable and seven unstable solutions, exactly as in Ref. 17.
he sine-Gordon �Englander� model of DNA, where the

wnloaded 07 Jul 2006 to 193.175.8.208. Redistribution subject to AIP
relation between the dynamics of soliton-like excitations and
the inhomogeneity of the DNA sequence was studied. In fact,
what we are reporting here is only the first step towards the
study of an effective potential that may explain the dynamics
of these stationary, stable solutions in presence of heteroge-
neities in the sequence and an external force. In this regard, it
is important to realize that these heterogeneities change the
Hamiltonian �1�, introducing two new site-dependent param-
eters that would affect the shape of the Morse potential V�Yn�
by changing the width and the depth on each site between
two possible configurations. Therefore, the mapping we have
considered in this work is not valid any longer. However,
much as we have done in previous work about the sine-
Gordon model,11,12 we would proceed as follows: Once an
analytical expression of the stationary solutions of the homo-
geneous model is found, as we have just done, we will use it
as an Ansatz in a collective coordinate technique to find an
effective potential description of the dynamics. The final aim
of such a program is to find out whether this approach allows
to identify important sites from the genomic viewpoint along
any given sequence. While work along these lines is in
progress, we believe that the richness of the structure of the
stationary solutions we have found and their stability is of
interest in itself and can motivate further research in these
and related models. Finally, we believe our solutions can be
exploited to analyze the statistical mechanics of the PB
model along the lines of Refs. 17 and 19, in particular be-
cause of the advantage of having an approximate, analytical
expression.
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