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Abstract

Given a compact subset X of a normed vector space, we study the pseudo-metric on
Borel probabilities over X given by d∗(u, v) = supf∈D1

|u(f)−v(f)|, where D1 is the set
of functions satisfying: ∀x, y ∈ X,∀a, b ≥ 0, af(x)− bf(y) ≤ ‖ax− by‖. The particular
case where X is a simplex endowed with the L1-norm is particularily interesting: in
this case d∗ can be characterized as the largest distance on the probabilities with finite
support over X which makes all disintegrations non expansive. Moreover we obtain a
Kantorovich-Rubinstein type duality formula for d∗(u, v) involving couples of measures
(α, β) over X ×X such that the first marginal of α is u and the second marginal of β
is v.

In the second part of the paper, we study several kinds of Markov Decision Pro-
cesses, Gambling Houses and 2-player zero-sum Repeated Games. It includes in partic-
ular all partial observation MDPs with finitely many states, and repeated games with
an informed controller and finite sets of states and actions. In each case, the underlying
state space is compact and the transitions can be shown to be non expansive for the
distance d∗ (or in some case for the Kantorovich-Rubinstein distance). This allows us
to prove the existence of, and to characterize via the introduction of appropriate invari-
ant measures, a very strong notion of limit value called the general uniform value. The
decision-maker is able to play well independently of the time horizon, and regarding
evaluations for payoffs we consider not only the Cesàro means when the number of
stages is large, but any evaluation function θ over stages when the total variation, or
impatience, TV (θ) =

∑
t≥1 |θt+1 − θt| is small enough.
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1 Introduction

Given a compact metric space X, we denote by ∆(X) the set of Borel probabil-
ities over X. The Kantorovich-Rubinstein metric over ∆(X) can be defined by
dKR(u, v) = supf∈E1

|u(f) − v(f)|, where E1 is the set of 1-Lipschitz functions,
and has been extensively studied in the literature. We assume here that X lies
in a normed vector space, and consider the pseudo-metric over ∆(X) given by:
d∗(u, v) = supf∈D1

|u(f) − v(f)|, where D1 is the set of 1-Lipschitz functions
satisfying: ∀x, y ∈ X, ∀a, b ≥ 0, af(x) − bf(y) ≤ ‖ax − by‖. We will prove in
Theorem 2.7 a first duality theorem:

d∗(u, v) = infγ∈M3(u,v)

∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ),

whereM3(u, v) contains all finite positive measures on X2 × [0, 1]2 such that for
each f continuous, ∫

X2×[0,1]2
λf(x)dγ(x, y, λ, µ) = u(f)

and ∫
X2×[0,1]2

µf(y)dγ(x, y, λ, µ) = v(f).

We then concentrate on the case where X = ∆(K) is a simplex (K is a finite
set) endowed with the L1-norm, and we denote by ∆f (X) the set of probabilities
with finite support over X. In this case d∗ is a metric metrizing the weak*
topology on ∆(X). For any finite set S, the disintegration mapping ψS, defined
on ∆(K×S) by ψS(π) =

∑
s∈S π(s)δp(s) where for each s, p(s) is the posterior on

K given s, is now 1-Lipschitz from (∆(K × S), ‖.‖1) to (∆f (X), d∗). This seems
a desirable property (not shared by the Kantorovich-Rubinstein metric), since
π contains some information on s, and certainly more information than ψS(π).
Moreover, we will show that d∗ is the largest distance on ∆f (X) having this
property. Finally, we prove in Theorem 2.19 a duality formula for probabilities u
and v with respective finite supports U and V over X:

d∗(u, v) = min
(α,β)∈M4(u,v)

∑
(x,y)∈U×V

‖xα(x, y)− yβ(x, y)‖,

whereM4(u, v) is the set of couples (α, β) of positive measures over U × V such
that the first marginal of α is u and the second marginal of β is v.

In the rest of the paper we use the above results to prove the existence of a
strong notion of limit value in Gambling Houses, Markov Decision Processes and
Repeated Games.

The standard model of Markov Decision Processes (or Controlled Markov
chain) was introduced by Bellman [6] in the 1950s and has been extensively stud-
ied since then. In this model, a decision-maker perfectly observes at the beginning
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of every stage what is the current state, and chooses an action accordingly. The
current state and the selected action determine a stage payoff and the law of the
next state. Regarding long-term values, it is standard to look at the problem
with discounted payoffs (the stream of payoffs is evaluated with a discount fac-
tor, typically small), and at the problem with finitely many stages (the stream
of payoffs is evaluated by the average of the payoffs of the first T stages, with T
large). When the sets of states and actions are both finite, Blackwell [9] proved
the existence of a strategy which is exactly optimal for all discount factors close
to 0, that is when the decision-maker is sufficiently patient. And in particular
the discounted values, when the discount goes to zero, and the T -stage values,
when T goes to infinity, converge to the same limit value.

This model was later generalized to MDPs with Partial Observation (POMDP),
a good reference being Arapostathis et al. [1]. The decision-maker no longer ob-
serves the current state, but at the beginning of each stage he receives a signal
which depends on the previous and current states and his previous action. In or-
der to study such problem a natural approach is to go back to the standard model
of MDPs with full observation on the new state, with new state space the space
of beliefs on the original state (see Astrom, K.J. [3], Sawaragi and Yoshikawa [39]
and Rhenius [35]). For standard optimality criteria such as the T -stage values or
the discounted values, these two problems are equivalent and the question of the
existence of the limit value is the same.

Part of the literature assumes some ergodicity conditions to get existence and
characterization of the limit value. In this setup one typically searches for a
solution of the “Average Cost Optimality Criterion”, or ACOE, in order to find
the limit value of the MDP, for example as in Runggaldier and Stettner [38] or as
in Borkar [10],[12]. An introduction to the ACOE in the framework of MDP and
the reduction of POMDP can be found in Hernández-Lerma [19]. From another
point of view, if we know that the limit value exists, the ACOE may be used
to obtain a characterization of the value. For standard MDPs with finite states
and actions, Denardo and Fox [14] proved that the limit value is the solution of
a linear programming problem deduced from the ACOE. Moreover by standard
linear programming results, it is also the solution of a dual problem described
by Hordjik and Kallenberg [20] (see Remark 3.22). This dual problem focuses on
the maximal payoff that the decision-maker can guarantee on invariant measures.
This approach was extended to different criteria (see Kallenberg [22]) and to a
convex analytic approach by Borkar (for references see Borkar [11] in order to
study problems with a countable state space and a compact action space.

We will avoid here any ergodicity condition, consequently the limit value will
depend on the initial state and we will obtain, for each ε > 0, the existence
of strategies that are ε-optimal in the long run (see example 3.15). We will
also avoid conditions on the actions set and concentrate on the state space, the
transitions and the payoffs. Given an initial POMDP on a finite space K, we will
follow the natural approach and introduce a MDP on X = ∆(K) but instead of
assuming some ergodicity on the control we will use the structure of ∆(K) and
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our new metric on Z = ∆f (∆(K)). We extend and relax the MDP on Z, and
using the metric d∗, we are able to obtain non-expansive affine transitions. So
the transitions become 1-Lipschitz on the totally bounded space Z, and this is a
main point of our approach.

We are able to strengthen the notion of limit value and deal with general
evaluations. Given a probability distribution θ on positive integers, a sequence of
payoffs (gt)t≥1 is evaluated by

∑
t≥1 θtgt. In a MDP or a POMDP, the θ-value is

then defined as the supremum expected payoff that the player can guarantee with
this evaluation. We will consider the case of a “patient” decision-maker, in the
sense that the total variation TV (θ) =

∑
t≥1 |θt+1−θt| will be small, or go to zero.

Most of the literature focuses on the T -stage values, when T goes to +∞, and on
the λ-discounted values, when λ converges to 0. When there is no control (the
set of actions is a singleton), the relation between the two is directly linked to a
Hardy-Littlewood theorem (see Filar and Sznajder, [17]): one of the limit exists
if and only if the other exists, and in case of existence the limits are the same.
Lehrer and Sorin [23] proved that this result extends to the MDP provided we
consider uniform convergence of the value functions. Another approach focuses
on the existence of a strategy which is ε-optimal in any long enough finite game
or for any discount factor small enough. When such a strategy exists for each ε,
the MDP is said to have a uniform value. For MDP with finitely many states
and actions, Blackwell’s result [9] also implies the existence of the uniform value.
In POMDPs, Rosenberg et al. [36] proved the existence of the uniform value
when the sets of states, actions and signals are finite, and Renault [32] removed
the finiteness assumption on signals and actions. In the present paper, we will
consider an extremely strong notion of limit value called the “general uniform
value”, encompassing the limit value as well as the uniform value, not only for
discounted payoffs or average payoffs but for evaluations θ with TV (θ) small (see
for instance Definitions 3.5 and 3.6).

The extension of standard MDPs to 2-player stochastic games is due to Shap-
ley [40] (and was even published before Bellman, [6]): the state variable is now
simultaneously controlled by 2 players having opposite interests. Whenever states
and actions are finite, the existence of the limit value is due to Bewley and
Kohlberg [7]. A few years later, Mertens and Neyman [26] proved in this setup
the existence of the uniform value. Naturally the model of stochastic games also
generalizes to partial information (see Mertens [28]), but the existence of possible
private information for the different players implies a very complex structure on
the auxiliary state space. Following Harsanyi [18], Mertens and Zamir [27] intro-
duced the universal belief space which synthesizes all the information for both
players in a general repeated game: their beliefs about the state, their beliefs
about the beliefs of the other player, etc... So far, the results of the literature al-
ways concern some subclasses of games where we can explicitly write the auxiliary
game in a “small” tractable set. A lot of work has especially been done about
games with one fully informed player and one player with partial information,
and we will only consider such games here. In the simplest model introduced by
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Aumann and Maschler (see reference from 1995), a state is initially chosen and
remains fixed for the rest of the game. Renault [31] extended the analysis to
a general underlying Markov chain on the state space (see also Neyman, [30]).
Renault [33] proved the existence of the uniform value when the informed player
can additionally control the evolution of the state variable (see also Rosenberg et
al. [37]).

In this paper we first consider Gambling Houses defined by Γ = (X,F, r),
where X is the state space, r : X → [0, 1] is the running payoff and F : X ⇒
∆f (X) is the transition multifunction. Given an initial state x0 in X, a decision-
maker, or player, has to choose u1 in F (x0), then x1 is selected according to
u1 and there is a payoff r(x1), etc... We show in Theorem 3.10 that if X is
metric compact, r is continuous and F is non expansive with respect to the
Kantorovich-Rubinstein distance, then the problem has a general uniform value
v∗ characterized by:

∀x ∈ X, v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
u∈F (y)

w(u) and (2) ∀u ∈ R,w(u) ≥ r(u)
}
.

where R is a suitably defined set of invariant measures for the Gambling House
Γ (see Definition 3.9).

We then introduce explicitly actions and study standard MDPs Ψ given by a
set of states X, a non empty set of actions A, a mapping q : X × A → ∆f (X)
and a payoff function g : X × A → [0, 1]. At each stage, the player learns the
current state x and chooses an action a. He then receives the payoff g(x, a),
a new state is drawn accordingly to q(x, a) and the game proceeds to the next
stage. We assume in Theorem 3.20 that X is a compact subset of a simplex
∆(K), and moreover that ∀x ∈ X, ∀y ∈ X, ∀a ∈ A, ∀f ∈ D1,∀α ≥ 0,∀β ≥ 0,
|αf(q(x, a))− βf(q(y, a))| ≤ ‖αx− βy‖1 and |αg(x, a)− βg(y, a)| ≤ ‖αx− βy‖1.
Then we prove that Ψ has a general uniform value v∗ characterized by: for all x
in X,

v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀x′ ∈ X,w(x′) ≥ sup
a∈A

w(q(x′, a)) and (2) ∀(u, y) ∈ RR,w(u) ≥ y
}
.

where RR is a suitably defined set of invariant couples for the MDP Ψ (see Defini-
tion 3.19). This result can in particular be applied when X is finite and provides
an alternative formulation for the limit value in the simplest case (see Remark
3.22). To prove Theorem 3.20, we use the properties of the metric d∗ introduced
in the first part of the paper.

Finally, we are able to apply the above result to any POMDP with finite set
of states (without assumptions on the set of actions), and to any repeated game
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with an informed controller with finitely many states and actions.

Section 2 of this manuscript is dedicated to the study of the (pseudo)-metric
d∗. In section 3, we study long-term values for compact non expansive Gam-
bling Houses and MDPs. Finally section 4 contains the applications to Partial
Observation MDP and repeated games with an informed controller.

2 A distance for belief spaces

2.1 A pseudo-distance for probabilities on a compact sub-
set of a normed vector space

We fix a compact subset X of a real normed vector space V . We denote by
E = C(X) the set of continuous functions from X to the reals, and by E1 the set
of 1-Lipschitz functions in E. We denote by ∆(X) the set of Borel probability
measures on X, and for each x in X we write δx for the Dirac probability measure
on x. It is well known that ∆(X) is a compact set for the weak-* topology, and
this topology can be metrizable by the (Wasserstein) Kantorovich-Rubinstein
distance:

∀u, v ∈ ∆(X), dKR(u, v) = sup
f∈E1

u(f)− v(f).

We will introduce a pseudo-distance on ∆(X), which is not greater than dKR
and in some cases also metrizes the weak-* topology. We start with several
definitions, which will turn out to be equivalent. Let u and v be in ∆(X).

Definition 2.1.
d1(u, v) = sup

f∈D1

u(f)− v(f),

where D1 = {f ∈ E,∀x, y ∈ X, ∀a, b ≥ 0, af(x)− bf(y) ≤ ‖ax− by‖}.

Note that any linear functional in V ′ with norm 1 induces an element of D1.
If f is in D1 then −f is also in D1, so d1(u, v) = supf∈D1

|u(f)− v(f)| and d1 is
a pseudo-distance on ∆(X). We also have D1 ⊂ E1, so that d1(u, v) ≤ dKR(u, v)
and the supremum in the definition of d1(u, v) is achieved. (x 7→ ‖x‖) belongs to
D1, consequently for x and y in X we have d1(δx, δy) = ‖x− y‖.

Notice that D1 = {f ∈ E,∀x, y ∈ X, ∀a, b ≥ 0, |af(x)− bf(y)| ≤ ‖ax− by‖}.
If f , g are in D1 then sup{f, g} and inf{f, g} also are, and D1 is a convex lattice
with greatest element (x 7→ ‖x‖) and smallest element (x 7→ −‖x‖). If 0 ∈ X,
then all f in D1 satisfy f(0) = 0.

Example 2.2. First consider the particular case where X = [0, 1] endowed with
the usual norm. Then all f in D1 are linear. As a consequence, d1(u, v) = 0 for
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u = 1/2 δ0 + 1/2 δ1 and v = δ1/2. We do not have the separation property and d1

is not a distance in this case1.
Let us modify the example. X now is the set of probability distributions over

2 elements, viewed as X = {(x, 1 − x), x ∈ [0, 1]}. We use the norm ‖.‖1 to
measure the distance between (x, 1−x) and (y, 1−y), so that V = IR2 is endowed
with ‖(x1, x2) − (y1, y2)‖ = |x1 − y1| + |x2 − y2|. Consider f in E such that
f((x, 1 − x)) = x(1 − x) for all x. f now belongs to D1, and d1(u, v) ≥ 1/4 > 0
for u = 1/2 δ0 + 1/2 δ1 and v = δ1/2. One can show that (∆(X), d1) is a compact
metric space in this case (see Proposition 2.16 later), and for applications in this
paper d1 will be a particularly useful distance whenever X is a simplex ∆(K)
endowed with ‖x− y‖ =

∑
k∈K |xk − yk|. �

Furthermore it is clear that the Kantorovich-Rubinstein metric on ∆(X) only
depends on the restriction of the norm ‖.‖ on the set X. Especially if X is
finite and ‖x − x′‖ = 2 for all x 6= x′ ∈ X, then for all u, v ∈ ∆(X) we have
dKR(u, v) = ‖u− v‖1. This is not the case when considering the metric d1. Two
norms on V giving the same metric on X may lead to different pseudo-metrics on
∆(X). We consider in the next example different norms on the Euclidean space
IRK .

Example 2.3. We consider V = IRK, X = {e1, ..., eK} the set of canonical
vectors of V and a norm such that for all k 6= k′, ‖ek − ek′‖ = 2. We know that
d1 is smaller than the Kantorovich-Rubinstein metric, so for all u ∈ ∆(X) and
v ∈ ∆(X), we have d1(u, v) ≤ ‖u− v‖1.

We first consider the particular case of the norm defined by ‖x−y‖ = 21− 1
p‖x−

y‖p where ‖x − y‖p =
(∑K

k=1 |xk − yk|p
)1/p

is the usual Lp-norm on IRK, with

p a fixed positive integer. Given u, v ∈ ∆(X), the function f defined on K by
f(k) = 1 if u(k) ≥ v(k), and by f(k) = −1 if u(k) < v(k), satisfies u(f)−v(f) =∑

k∈K |u(k)− v(k)| = ‖u− v‖1. Moreover for all a ≥ 0, b ≥ 0 and k, k′ ∈ K such
that k 6= k′, we have:

af(k)− bf(k′) ≤ a+ b ≤ 2

21/p
(ap + bp)1/p = ‖aek − bek′‖,

and af(k) − bf(k) ≤ |a − b| ≤ |a − b| 2
21/p . Therefore f is in D1 and d1(u, v) =

‖u− v‖1, independently of p (one can show that similarly, the same result holds
for the case p = +∞, i.e. where ‖x− y‖ = 2‖x− y‖∞).

Nevertheless the inequality d1(u, v) ≤ ‖u−v‖1 may be strict as in the following
example. We consider the case K = 3 and given a vector (x1, x2, x3) ∈ IR3, we
define the norm ‖(x1, x2, x3)‖ = max(|x1|+ |x2|, 2|x3|), which satisfies ‖e1−e2‖ =

1More generally one can show that if there exists x 6= 0 such that the segment [0, x] is
included in X, then all f in D1 are linear on [0, x] and d1(δx/2, 1/2 δ0 + 1/2 δx) = 0, so d1 is
not a distance. In the case X = [−1, 1] with the usual norm, one can show that D1 = {f ∈
E,∃ α, β ≥ 0 s.t.f(x) = αx for x ∈ [−1, 0] and f(x) = βx for x ∈ [0, 1]}.
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‖e2 − e3‖ = ‖e3 − e1‖ = 2. Let f be a function in D1, we have in particular the
following constraints:

∀a, b ≥ 0 af(e3)− bf(e1) ≤ ‖(−b, 0, a)‖ = max(2a, b)
and ∀a ≥ 0 af(e2) ≤ ‖(0, a, 0)‖ = a.

Let u = (0, 1/2, 1/2), v = (1, 0, 0) and f ∈ D1, then

u(f)− v(f) =
1

2
f(e2) +

1

2
f(e3)− f(e1) ≤ 1

2
+ max(2/2, 1) =

3

2
.

We deduce that d1(u, v) ≤ 3
2
< ‖u − v‖1. In fact one can show that d1(u, v) = 3

2

by considering the function defined by f(e1) = 0, f(e2) = 1 and f(e3) = 2. �

We now give other expressions for the pseudo-distance d1.

Definition 2.4.
d2(u, v) = sup

(f,g)∈D2

u(f) + v(g),

where D2 = {(f, g) ∈ E × E,∀x, y ∈ X, ∀a, b ≥ 0, af(x) + bg(y) ≤ ‖ax− by‖}.

Definition 2.5.

d+
2 (u, v) = inf

ε>0
dε2(u, v), where dε2(u, v) = sup

(f,g)∈Dε
2

u(f) + v(g)

and ∀ε > 0, Dε
2 = {(f, g) ∈ E×E,∀x, y ∈ X, ∀a, b ∈ [0, 1], af(x)+bg(y) ≤ ε+‖ax−by‖}.

Definition 2.6.

d3(u, v) = inf
γ∈M3(u,v)

∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ),

where M3(u, v) is the set of finite positive measures on X2 × [0, 1]2 such that for
each f in E:∫

(x,y,λ,µ)∈X2×[0,1]2
λf(x)dγ(x, y, λ, µ) = u(f) and

∫
(x,y,λ,µ)∈X2×[0,1]2

µf(y)dγ(x, y, λ, µ) = v(f).

Theorem 2.7. For all u and v in ∆(X), d1(u, v) = d2(u, v) = d+
2 (u, v) = d3(u, v).
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The proof of Theorem 2.7 is postponed to the next subsection. Recall now
the standard Kantorovich duality formula from optimal transport: for any u, v in
∆(X), let Π(u, v) denote the set of transference plans, or couplings, of u and v,
that is the set of probability distributions over X ×X with first marginal u and
second marginal v. The standard duality formula for dKR reads (see for instance
Villani 2003, p.207):

dKR(u, v) = sup
f∈E1

|u(f)− v(f)| = min
γ∈Π(u,v)

∫
(x,y)∈X×X

‖x− y‖ dγ(x, y)

We will use here in subsection 2.3 the duality result d1 = d3 to prove our main
duality formula (Theorem 2.19 ), in the case where X is a simplex. Compared
to the formula for dKR, our proof requires to handle 2 extra variables λ and µ
corresponding to a and b in the definition of D1 (see Remark 2.11). This have led
to the introduction of the intermediary quantity d+

2 . Also, our duality formula
Theorem 2.19, as well as our characterization via disintegrations in Theorem 2.22,
only applies to probabilities with finite support (see Remark 2.23).

2.2 Proof of Theorem 2.7

The proof is split into several parts.

Proposition 2.8. d1 = d2 = d+
2 .

It is plain that d1 ≤ d2 ≤ d+
2 , so all we have to prove is d+

2 ≤ d1. We start
with a lemma.

Lemma 2.9. Fix ε > 0, and let f in E be such that: ∀x ∈ X, ∀a ∈ [0, 1],
af(x) ≤ ε+ a‖x‖. Define f̂ by:

∀y ∈ X, f̂(y) = inf
a∈[0,1],b∈(0,1],x∈X

1

b
(ε+ ‖ax− by‖ − af(x)) .

Then for each y in X, −‖y‖ ≤ f̂(y) ≤ −f(y) + ε. Moreover f̂ ∈ E1, and:

∀x ∈ X, ∀y ∈ X, ∀a ∈ [0, 1],∀b ∈ [0, 1], af̂(x)− bf̂(y) ≤ aε+ ‖by − ax‖.

Proof of Lemma 2.9: By assumption on f , we have for all y in X, a in [0, 1], b
in (0, 1], x in X: 1

b
(ε+ ‖ax− by‖ − af(x)) ≥ 1

b
(−a‖x‖+ ‖ax− by‖) ≥ −‖y‖. In

the definition of f̂(y), considering a = b = 1 and x = y yields f̂(y) ≤ −f(y) + ε.
Fix x and y in X, a and b in [0, 1]. We have:

af̂(x)− bf̂(y) = a inf
a′,b′,x′

1

b′
(ε+ ‖a′x′ − b′x‖ − a′f(x′))

−b inf
a′′,b′′,x′′

1

b′′
(ε+ ‖a′′x′′ − b′′y‖ − a′′f(x′′)) .
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If a = 0, then the inequality f̂(y) ≥ −‖y‖ leads to −bf̂(y) ≤ b‖y‖. If b = 0,
choose a′ = 0, b′ = 1 and x′ = x to get af̂(x) ≤ aε+ ‖ax‖.

If ab > 0, given η > 0, choose a′′, b′′, x′′ η-optimal in the second infimum. We
can define x′ = x′′, and choose a′ ∈ [0, 1] and b′ ∈ (0, 1] such that a′

b′
= b

a
a′′

b′′
. We

obtain:

af̂(x)− bf̂(y) ≤ bη + (
a

b′
− b

b′′
)ε+ (‖a

′′

b′′
bx′′ − ax‖ − ‖a

′′

b′′
bx′′ − by‖)

≤ bη + (
a

b′
− b

b′′
)ε+ ‖ax− by‖.

If a = b > 0, choose a′ = a′′ and b′ = b′′ to obtain: f̂(x)− f̂(y) ≤ ‖x− y‖ and
therefore f̂ is 1-Lipschitz.

Otherwise, we distinguish two cases. If a
b
b′′ ≤ 1, we define b′ = a

b
b′′ and a′ = a′′

and we get af̂(x) − bf̂(y) ≤ bη + ‖ax − by‖. If a
b
b′′ > 1, we define b′ = 1 and

a′ = a′′b
b′′a
∈ [0, 1] and obtain af̂(x) − bf̂(y) ≤ bη + aε + ‖ax − by‖. Thus for all

η > 0, we have

af̂(x)− bf̂(y) ≤ bη + aε+ ‖ax− by‖,

and therefore af̂(x)− bf̂(y) ≤ aε+ ‖ax− by‖. �

Proof of Proposition 2.8: Fix u and v in ∆(X), and consider ε > 0. For each
(f, g) in Dε

2, we have −f + ε ≥ f̂ ≥ g and (f, f̂) in Dε
2. We also have (f̂ , f) ∈ Dε

2

so iterating the construction, we get (f̂ ,
ˆ̂
f) ∈ Dε

2, and −f̂ + ε ≥ ˆ̂
f ≥ f .

Now, u(f) + v(g) ≤ u(
ˆ̂
f) + v(f̂) ≤ −u(f̂) + ε+ v(f̂). Hence we have obtained:

dε2(u, v) ≤ ε+ sup
f∈Cε(u,v)

−u(f) + v(f),

where Cε(u,v) is the set of functions f in E1 satisfying:

∀x ∈ X, ∀y ∈ X, ∀a ∈ [0, 1],∀b ∈ [0, 1], af(x)−bf(y) ≤ aε+‖ax−by‖ and f(y) ≥ −‖y‖.

For each positive k, one can choose fk in E1 achieving the above supremum for
ε = 1/k. Taking a limit point of (fk)k yields a function f in D1 such that:
−u(f) + v(f) ≥ d+

2 (u, v). The function f ∗ = −f is in D1 and satisfies u(f ∗) −
v(f ∗) ≥ d+

2 (u, v), and the proof of Proposition 2.8 is complete. �

Proposition 2.10. d+
2 ≥ d3.

Proof: The proof is based on (a corollary of) Hahn-Banach theorem. Define:
H = C(X2 × [0, 1]2) and

L = {ϕ ∈ H,∃f, g ∈ C(X) s.t. ∀x, y ∈ X, ∀λ, µ ∈ [0, 1], ϕ(x, y, λ, µ) = λf(x)+µg(y)}.

H is endowed with the uniform norm and L is a linear subspace of H. Note that
the unique constant mapping in L is 0. Fix u and v in ∆(X), and let r be the
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linear form on L defined by r(ϕ) = u(f)+v(g), where ϕ(x, y, λ, µ) = λf(x)+µg(y)
for all x, y, λ, µ.

Fix now ε > 0, and put:

Uε = {ϕ ∈ H,∀x, y ∈ X, ∀λ, µ ∈ [0, 1], ϕ(x, y, λ, µ) ≤ ‖λx− µy‖+ ε}.

We have:
sup

ϕ∈L∩Uε

r(ϕ) = dε2(u, v).

Uε is a convex subset of H which is radial at 0, in the sense that: ∀ϕ ∈ H, ∃δ > 0
such that tϕ ∈ Uε as soon as |t| ≤ δ. By a corollary of Hahn-Banach theorem
(see theorem 6.2.11 p.202 in Dudley, [16]), r can be extended to a linear form on
H such that:

sup
ϕ∈Uε

r(ϕ) = dε2(u, v).

Given ϕ ∈ H, we have εϕ/‖ϕ‖∞ ∈ Uε, which implies that r(ϕ) ≤ ‖ϕ‖∞dε2(u, v)/ε,
so that r belongs to H ′. And if ϕ ≥ 0, we have tϕ ∈ Uε if t ≤ 0, so that
r(ϕ) ≥ dε2(u, v)/t for all t ≤ 0 and r(ϕ) ≥ 0. By Riesz Theorem, r can be
represented by a positive finite measure γ on X2 × [0, 1]2.

Given f in E, one can consider ϕf ∈ L defined by ϕf (x, y, λ, µ) = λf(x).
r(ϕf ) = γ(ϕf ) gives: u(f) =

∫
(x,y,λ,µ)∈X2×[0,1]2

λf(x)dγ(x, y, λ, µ), and similarly

v(f) =
∫

(x,y,λ,µ)∈X2×[0,1]2
µf(y)dγ(x, y, λ, µ), and we obtain that γ ∈M3(u, v).

Since γ ≥ 0, we have supϕ∈Uε
r(ϕ) = r(ϕ∗) where ϕ∗(x, y, λ, µ) = ‖λx−µy‖+ε.

We get dε2(u, v) =
∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ) + εγ(X2 × [0, 1]2), so

dε2(u, v) ≥
∫
X2×[0,1]2

‖λx−µy‖dγ(x, y, λ, µ) ≥ d3(u, v). �

Remark 2.11. The proof given here uses elements of the proof of the standard
Kantorovich duality formula in Dudley ([16], see Lemma 11.8.5 p.423). However
the arguments need to be more sophisticated here. In particular, there is no need
in the standard duality for the extra variables λ and µ, and the analogs of our sets
H and L are Ĥ = C(X2) and L̂ = {ϕ ∈ Ĥ, ∃f, g ∈ C(X) s.t. ∀x, y ∈ X,ϕ(x, y) =
f(x) + g(y)}. And it is enough to define Û = {ϕ ∈ Ĥ, ∀x, y ∈ X,ϕ(x, y) <
‖ x−y‖}. Û is convex and open, so radial at any of his element, and Û ∩ L̂ is not
empty. In the present setup, if we simply define U = {ϕ ∈ H,∀x, y ∈ X, ∀λ, µ ∈
[0, 1], ϕ(x, y, λ, µ) < ‖λx − µy‖}, we have U ∩ L = ∅, hence a problem. These
considerations have led to the introduction of the sets Uε and the intermediate
distance d+

2 beforehand. �

It is now easy to conclude the proof of Theorem 2.7.

Lemma 2.12. d3 ≥ d2.

11



Proof: Fix (f, g) ∈ D2 and γ ∈M3(u, v).

u(f) + v(g) =

∫
X2×[0,1]2

λf(x)dγ(x, y, λ, µ) +

∫
X2×[0,1]2

µg(y)dγ(x, y, λ, µ)

=

∫
X2×[0,1]2

(λf(x) + µg(y))dγ(x, y, λ, µ)

≤
∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ). �

2.3 The case of probabilities over a simplex

The case where X itself is a probability space is interesting, and we assume
here that X = ∆(K) is a simplex, where K is a non empty finite set. We use
‖p‖ =

∑
k |pk| for every vector p = (pk)k∈K in IRK , and view X as the set of

vectors in IRK
+ with norm 1.

X = {p = (pk)k∈K ∈ IRK
+ ,
∑
k∈K

pk = 1}.

Recall that for u and v in ∆(X), we have d1(u, v) = supf∈D1
|u(f)−v(f)|, where

D1 = {f ∈ E,∀x, y ∈ X, ∀a, b ≥ 0, af(x)− bf(y) ≤ ‖ax− by‖}.
We now introduce an alternative definition of d1 using “non revealing game

functions”. These functions come from the theory of repeated games with incom-
plete information à la Aumann Maschler [5], and the interest for the distance d0

emerged several years ago while doing research on Markov decision processes with
partial observation and repeated games with an informed controller (see Renault
[32] and [33]).

Given a collection of matrices (Gk)k∈K (all of the same finite size I × J)
indexed by K and with values in [−1, 1], we define the “non revealing function”
f in C(X) by:

∀p ∈ X, f(p) = Val

(∑
k∈K

pkGk

)
,

= max
x∈∆(I)

min
y∈∆(J)

∑
i∈I,j∈J

x(i)y(j)

(∑
k∈K

pkGk(i, j)

)
,

= min
y∈∆(J)

max
x∈∆(I)

∑
i∈I,j∈J

x(i)y(j)

(∑
k∈K

pkGk(i, j)

)
.

Here Val denotes the minmax value of a matrix, and f(p) is the minmax value
of the average matrix

∑
k p

kGk. The set of all such non revealing functions f ,
where I, J and (Gk)k∈K vary, is denoted by D0.
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Clearly, all affine functions from X to [−1, 1] belong to D0. Using the Stone-
Weierstrass theorem, one can show that the set of all non revealing functions
is dense in C(X) (see proposition 5.1. chapter VI p.357 in Mertens et al. [29]
and Lemma 2.13 below). However, we only consider here non revealing func-
tions defined by matrices with values in [−1, 1], and D0 is not dense in the set
of continuous functions from X to [−1, 1]. As an example, consider the case
where K = {1, 2} and f in E is piecewise-linear with f(1, 0) = f(0, 1) = 0 and
f(1/2, 1/2) = 1. Notice that if a function g in D0 is such that g(1/2, 1/2) = 1,
then necessarily the values of the two matrix games G1 and G2 are also equal
to 1 since it is the maximum value for all possible payoffs, and necessarily
g(1, 0) = g(0, 1) = 1. Therefore f is not in D0. In fact f is 1-Lipschitz, however
2f(1/2, 1/2) − f(1, 0) = 2 > ‖2(1/2, 1/2) − (1, 0)‖ = 1, so it is not in D1 which
we will see later contains D0 (see Lemma 2.14).

Lemma 2.13. If f , g belong to D0 and λ ∈ [0, 1], then −f , sup{f, g}, inf{f, g}
and λf + (1− λ)g are in D0. The linear span of D0 is dense in C(X).

Proof: The proof can be easily deduced from proposition 5.1. page 357 in
Mertens et al. [29], chapter VI part B. For instance, let f and g in D0 be
respectively defined by the collections of matrices (Gk)k∈K with size I1 × J1 and
(Hk)k∈K with size I2 × J2.

Defining for each k, i1, j1: G′k(i1, j1) = −Gk(j1, i1) yields a family of matrices
(G′k)k with size J1 × I1 inducing −f . So −f ∈ D0.

To get that sup{f, g} belongs to D0, one can assume w.l.o.g. that I1 ∩ I2 =
J1 ∩ J2 = ∅. Set I = I1 ∪ I2 and J = J1 × J2. Define for each k the matrix
game Lk in IRI×J by Lk(i, (j1, j2)) = Gk(i, j1) if i ∈ I1, Lk(i, (j1, j2)) = Hk(i, j2)
if i ∈ I2. Then for each p in X, we have Val(

∑
k p

kLk) = sup{f(p), g(p)}, so that
sup{f, g} ∈ D0. �

Lemma 2.14. The closure of D0 is D1.

Proof: We first show that D0 ⊂ D1. Let I and J be finite sets, and (Gk)k∈K be
a collection of I × J-matrices with values in [−1, 1]. Consider p and q in X and
a and b non negative. Then for all i and j:∣∣∣∣∣∑

k

pkaGk(i, j)−
∑
k

qkbGk(i, j)

∣∣∣∣∣ ≤∑
k

|apk − bqk| = ‖ap− bq‖.

As a consequence,

a Val

(∑
k∈K

pkGk

)
− b Val

(∑
k∈K

qkGk

)
= Val

(∑
k∈K

apkGk

)
− Val

(∑
k∈K

bqkGk

)
≤ ‖ap− bq‖

We now show that the closure of D0 contains D1. Consider f in D1, in
particular we have ‖f‖∞ ≤ 1. Let p and q be distinct elements in X, we define Y
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as the linear span of p and q, and ϕ from Y to IR by : ϕ(λp+µq) = λf(p)+µf(q)
for all reals λ and µ.

If λ ≥ 0 and µ ≥ 0, we have ϕ(λp+µq) ≤ λ+µ = ‖λp+µq‖. If λ ≥ 0 and µ ≤ 0,
we use the definition of D1 to get: ϕ(λp + µq) ≤ ‖λp + µq‖. As a consequence,
ϕ is a linear form with norm at most 1 on Y . By Hahn-Banach theorem, it can
be extended to a linear mapping on IRK with the same norm, and we denote by
g the restriction of this mapping to X. g is affine with g(p) = ϕ(p) = f(p) and
g(q) = ϕ(q) = f(q). Moreover, for each r in X, we have |g(r)| ≤ ‖r‖ = 1. As a
consequence g belongs to D0.

Because D0 is stable under the sup and inf operations, we can use the Stone-
Weierstrass theorem (see for instance lemma A7.2 in Ash [2] p.392) to conclude
that f belongs to the closure of D0. �

Definition 2.15. Given u and v in ∆(X), define:

d0(u, v) = sup
f∈D0

u(f)− v(f).

Proposition 2.16. d0 is a distance on ∆(X) metrizing the weak-* topology.
Moreover d0 = d1 = d2 = d3.

Proof: d0 = d1 = d2 = d3 follows from Lemma 2.14 and Theorem 2.7. Because
the linear span of D0 is dense in C(X), we obtain the separation property and
d0 is a distance on ∆(X). Because D0 ⊂ D1 ⊂ E1, we have d0 = d1 ≤ dKR.
Since (∆(X), dKR) is a compact metric space, the identity map (∆(X), dKR) to
(∆(X), d0) is bicontinuous, and we obtain that (∆(X), d0) is a compact metric
space and d0 and dKR are equivalent. (see for instance proposition 2 page 138
[4]. �

Remarks 2.17.
1) Let LF be the set of linear forms on (IRK , ‖.‖1) with norm at most 1. In

Lemma 2.14, D0 can be replaced by the lattice generated by the restrictions to
∆(K) of the elements of LF .

2) One can show that allowing for infinite sets I, J in the definition of D0

(still assuming that all games
∑

k p
kGk have a value) would not change the value

of d0.

From now on, we just write d∗(u, v) for the distance d0 = d1 = d2 = d3 on
∆(X). Elements of X can be viewed as elements of ∆(X) (using Dirac measures),
and for p, q in X, we have: dKR(δp, δq) = d∗(δp, δq) = ‖p − q‖. We now present
a dual formulation for our distance, in the spirit of Kantorovich duality formula
from optimal transport. We will concentrate on probabilities on X with finite
support, and denote by Z = ∆f (X) the set of such probabilities.
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Definition 2.18. Let u and v be in Z with respective supports U and V . We
define the set M4(u, v) ={

(α, β) ∈ (IR+
U×V )2, s.t. ∀x ∈ U,

∑
y′∈V

α(x, y′) = u(x) and ∀y ∈ V,
∑
x′∈U

β(x′, y) = v(y)

}
.

And we put d4(u, v) = inf
(α,β)∈M4(u,v)

∑
(x,y)∈U×V

‖xα(x, y)−yβ(x, y)‖.

M4(u, v) is the set of couples (α, β) of probability measures on U × V such
that the first marginal of α is u and the second marginal of β is v. Notice
that diagonal elements in M4(u, v) coincide with elements of Π(u, v), i.e. with
probability distributions over X ×X with first marginal u and second marginal
v. The setM4(u, v) is simply a polytope in the Euclidean space (IRU×V )2, so the
infimum in the definition of d4(u, v) is achieved. Recall that D1 = {f ∈ E,∀x, y ∈
X, ∀a, b ≥ 0, af(x) − bf(y) ≤ ‖ax − by‖}. The next theorem is the main result
of this section.

Theorem 2.19. (Duality formula) Let u and v be in Z with respective supports
U and V .

d∗(u, v) = sup
f∈D1

|u(f)− v(f)| = min
(α,β)∈M4(u,v)

∑
(x,y)∈U×V

‖xα(x, y)− yβ(x, y)‖.

The proof is postponed to the next subsection. We conclude this part by a
simple but universal property of the distance d∗.

Definition 2.20. Given a finite set S, we define the disintegration, or posterior
mapping, ψS from ∆(K × S) to ∆(X) by:

ψS(π) =
∑
s∈S

π(s)δp(s)

where for each s, π(s) =
∑

k π(k, s) and p(s) = (pk(s))k∈K ∈ X is the posterior

on K given s (defined arbitrarily if π(s) = 0) : for each k in K, pk(s) = π(k,s)
π(s)

.

ψS(π) is a probability with finite support over X. Intuitively, think of a joint
variable (k, s) being selected according to π, and an agent just observes s. His
knowledge on K is then represented by p(s). And ψS(π) represents the ex-ante
information that the agent will know about the variable k.

∆(K × S) is endowed as usual with the ‖.‖1 norm. One can show that ψS is
continuous whenever X is endowed with the weak-* topology. Intuitively, ψS(π)
has less information than π, because the agent does not care about s itself but
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just on the information about k given by s. So one may hope that the mapping
ψS is 1-Lipschitz (non expansive) for a well chosen distance on ∆(X). It is not a
priori obvious to see whether the Kantorovich-Rubinstein distance dKR has this
property, the following example shows that it is not the case.

Example 2.21. Consider the case where K = {a, b, c} and S = {α, β}. We
denote by π and π′ the following laws on ∆(K × S):

S S

K

1
4

0
0 1

2
1
4

0

 and

1
4

0
0 1

2

0 1
4

.

π π′

Their disintegrations are respectively ψS(π) = 1
2

(1/2, 0, 1/2) + 1
2

(0, 1, 0) and
ψS(π′) = 1

4
(1, 0, 0) + 3

4
(0, 2/3, 1/3) . We define the test function f : ∆(K) →

[−1, 1] by:

f(0, 1, 0) =
1

3
, f (1/2, 0, 1/2) = −1

3
, f(1, 0, 0) =

2

3
, f (0, 2/3, 1/3) = 1.

f can be extended to a 1-Lispchitz function on the simplex ∆(K) by the Mc
Shane-Whitney extension theorem (Mc Shane, [25]), or directly by f(pa, pb, pc) =
max{1 − pa − |pb − 2/3| − |pc − 1/3|,−1/3 + |pa − pc|}). We have ‖π − π′‖ = 1

2

and dKR(ψS(π), ψS(π′)) ≥ ψS(π′)(f) − ψS(π)(f) = 11
12
− 0 > 1

2
. So the posterior

mapping ψS is not 1-Lipschitz from (∆(K × S), ‖.‖1) to (∆(X), dKR).

The next theorem shows that our distance d∗ has the fundamental property
to make all disintegrations ψS non expansive, and is the largest distance to do so.

Theorem 2.22. For each finite set S, the mapping ψS is 1-Lipschitz from (∆(K×
S), ‖.‖1) to (∆f (X), d∗). Moreover, d∗ is the largest distance on Z having this
property:

∀u, u′ ∈ Z, d∗(u, u′) = min{‖π − π′‖1, s.t. ∃S finite, ψS(π) = u, ψS(π′) = u′}.

The proof is simple after having obtained the duality formula.
Proof: First fix S and π, π′ in ∆(K × S). Write u = ψS(π), u′ = ψS(π′). For
any f in D1, we have:

u(f)− u′(f) =
∑
s∈S

(π(s)f(p(s))− π′(s)f(p′(s))

≤
∑
s∈S

‖π(s)p(s)− π′(s)p′(s)‖

≤
∑
s∈S

‖(π(k, s))k − (π′(k, s))k‖

≤
∑
s∈S

∑
k∈K

|π(k, s)− π′(k, s)| = ‖π − π′‖1.
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So d∗(u, u
′) ≤ ‖π − π′‖1, and ψS is 1-Lipschitz.

Let now u and v be in Z with respective supports U and V . Using the duality
formula of Theorem 2.19, one can find (α, β) ∈M4(u, v) such that

d∗(u, v) =
∑

(x,y)∈U×V

‖α(x, y)x− β(x, y)y‖.

Define S = U × V and π, π′ ∈ ∆(K × S) by π(k, (x, y)) = x(k)α(x, y) and
π′(k, (x, y)) = y(k)β(x, y). By definition of M4(u, v), π and π′ are probabilities
and

‖π − π′‖1,K×S =
∑

k∈K,(x,y)∈U×V

|x(k)α(x, y)− y(k)β(x, y)|

=
∑

(x,y)∈U×V

‖α(x, y)x− β(x, y)y‖.�

Finally notice that considering infinite sets S dramatically changes the picture,
as shown by the following simple example (communicated by Filippo Santambro-
gio).

Remark 2.23. Fix K = {a, b} and S = [0, 1], and define for each π in ∆(K×S),
the image ψS(π) in ∆(X) by: ψS(π)(f) =

∫
k,s
f(p(s))dπ(k, s) for all f in C(X)

(here again, X = ∆(K) and p(s) is the posterior on K given S). ∆(K × S) and
∆(X) are endowed with weak-* topologies.

Consider the uniform probability π over K × S, then ψS(π) = δ 1
2
a+ 1

2
b is the

Dirac measure on 1
2
a + 1

2
b. We approximate π by considering finer and finer

grids of the unit interval. For each positive integer n, partition [0, 1) into An =
∪n−1
k=0 [ 2k

2n
, 2k+1

2n
) and Bn = ∪n−1

k=0 [2k+1
2n

, 2k+2
2n

). And we can define πn by first choosing
s in S according to the Lebesgue measure, then set k = a if s ∈ An and set
k = b if s ∈ Bn. Knowing s perfectly determines k here, and ψS(πn) = 1

2
δa + 1

2
δb.

However πn converges to π, so ψS is not even continuous.

2.4 Proof of the duality formula

Let u and v be in ∆(X), and denote by U and V the respective supports of u
and v. We write S = X2× [0, 1]2, and we start with a lemma, where no finiteness
assumption on U or V is needed. Recall thatM3(u, v) is the set of finite positive
measures on S satisfying for each f in E:∫

(x,y,λ,µ)∈S
λf(x)dγ(x, y, λ, µ) = u(f), and

∫
(x,y,λ,µ)∈S

µf(y)dγ(x, y, λ, µ) = v(f).

Lemma 2.24. For each γ ∈M3(u, v), we have:∫
S

‖λx− µy‖dγ(x, y, λ, µ) = 2 +

∫
U×V×[0,1]2

(‖λx− µy‖ − λ− µ) dγ(x, y, λ, µ).
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Proof: Write A(γ) =
∫
S
‖λx−µy‖dγ(x, y, λ, µ). Using the definition ofM3(u, v),

we can obtain that 1 =
∫
S
λ1x∈Udγ =

∫
S
µ1y∈V dγ. This implies:

∫
S
λ1x/∈Udγ =∫

S
µ1y/∈V dγ = 0, so that λ1x/∈U = µ1y/∈V = 0 γ. a.s. We can write:

A(γ) =

∫
S

1x∈U,y∈V ‖λx− µy‖dγ(x, y, λ, µ) +

∫
S

1x∈U,y/∈V ‖λx− µy‖dγ(x, y, λ, µ)

+

∫
S

1x/∈U,y∈V ‖λx− µy‖dγ(x, y, λ, µ) +

∫
S

1x/∈U,y/∈V ‖λx− µy‖dγ(x, y, λ, µ)

=

∫
S

1x∈U,y∈V ‖λx−µy‖dγ(x, y, λ, µ)+

∫
S

1x∈U,y/∈V λdγ(x, y, λ, µ)+

∫
S

1x/∈U,y∈V µdγ(x, y, λ, µ)+0.

We now use 1 =
∫
S

1x∈U,y∈V λdγ +
∫
S

1x∈U,y/∈V λdγ and 1 =
∫
S

1x∈U,y∈V µdγ +∫
S

1x/∈U,y∈V µdγ to obtain:

A(γ) = 2+

∫
S

1x∈U,y∈V ‖λx−µy‖dγ(x, y, λ, µ)−
∫
S

1x∈U,y∈V λdγ−
∫
S

1x∈U,y∈V µdγ.

�

We assume in the sequel that U and V are finite, and define d5(u, v) as follows:

Definition 2.25. Define

M5(u, v) =
{

(α, β) = (α(x, y), β(x, y))(x,y)∈U×V ∈ IR+
U×V × IR+

U×V , s.t.

∀x ∈ U,
∑
y′∈V

α(x, y′) ≤ u(x) and ∀y ∈ V,
∑
x′∈U

β(x′, y) ≤ v(y)
}
.

And d5(u, v) = inf
(α,β)∈M5(u,v)

2 +
∑

(x,y)∈U×V

(
‖xα(x, y)− yβ(x, y)‖ − α(x, y)− β(x, y)

) .

M5(u, v) is a polytope in the Euclidean space (IRU×V )2, so the infimum in
the definition of d5(u, v) is achieved.

Lemma 2.26. d3(u, v) ≥ d5(u, v).

Proof: Let γ be in M3(u, v). Fix for a while (x, y) in U × V , and assume that
γ(x, y) > 0. We define γ(.|x, y) the conditional probability on [0, 1]2 given (x, y)
by: for all ϕ ∈ C([0, 1]2),∫

[0,1]2
ϕ(λ, µ)dγ(λ, µ|x, y) =

1

γ(x, y)

∫
(x′,y′,λ,µ)∈S

1x′=x,y′=yϕ(λ, µ)dγ(x′, y′, λ, µ).

So that

γ(x, y)

∫
[0,1]2

(‖λx−µy‖−λ−µ)dγ(λ, µ|x, y) =

∫
(λ,µ)∈[0,1]2

(‖λx−µy‖−λ−µ)dγ(x, y, λ, µ).

18



Define P (x, y) =
∫

(λ,µ)∈[0,1]2
λdγ(λ, µ|x, y) and Q(x, y) =

∫
(λ,µ)∈[0,1]2

µdγ(λ, µ|x, y).

The mapping Ψ : (λ, µ) 7→ ‖λx− µy‖− λ− µ is convex so by Jensen’s inequality
we get:∫

(λ,µ)∈[0,1]2
(‖λx−µy‖−λ−µ)dγ(λ, µ|x, y) ≥ ‖xP (x, y)−yQ(x, y)‖−P (x, y)−Q(x, y).

Now, by Lemma 2.24,

A(γ) = 2 +
∑

x∈U,y∈V

∫
(λ,µ)∈[0,1]2

(‖λx− µy‖ − λ− µ) dγ(x, y, λ, µ)

= 2 +
∑

x∈U,y∈V,γ(x,y)>0

∫
(λ,µ)∈[0,1]2

(‖λx− µy‖ − λ− µ) dγ(x, y, λ, µ)

≥ 2 +
∑

x∈U,y∈V,γ(x,y)>0

γ(x, y) (‖xP (x, y)− yQ(x, y)‖ − P (x, y)−Q(x, y)) .

For (x, y) in U × V , define α(x, y) = γ(x, y)P (x, y) ≥ 0 and β(x, y) =
γ(x, y)Q(x, y) ≥ 0 (with α(x, y) = β(x, y) = 0 if γ(x, y) = 0). We get:

A(γ) ≥ 2 +
∑

x∈U,y∈V

(‖xα(x, y)− yβ(x, y)‖ − α(x, y)− β(x, y)) .

And we have, for each x in U :∑
y∈V

α(x, y) =
∑

y∈V,γ(x,y)>0

∫
(λ,µ)∈[0,1]2

λdγ(x, y, λ, µ)

≤
∫

(y,λ,µ)∈X×[0,1]2
λdγ(x, y, λ, µ) = u(x).

where the last equality comes from the definition ofM3(u, v). Similarly, for each
y in V we can show that

∑
x∈U β(x, y) ≤ v(y), and Lemma 2.26 is proved. �

Lemma 2.27. d5(u, v) ≥ d4(u, v).

Proof: Consider (α∗, β∗) achieving the minimum in the definition of d5(u, v).
Assume that there exists x∗ such that

∑
y∈V α(x∗, y) < u(x∗). For any x in X and

z in IRK
+ , it is easy to see that the mapping l : (α 7→ ‖xα−z‖−α) is nonincreasing

from IR+ to IR (as the sum of the mappings lk : (α 7→ |αxk − zk| − αxk), each
lk being non increasing in α). As a consequence, one can choose any y∗ in V
and increase α(x∗, y∗) in order to saturate the constraint without increasing the
objective. So we can assume without loss of generality that

∑
y∈V α(x∗, y) = u(x∗)

for all x∗ and similarly
∑

x∈U β(x, y∗) = v(y∗) for all y∗.
Consequently,

d5(u, v) = 2 +
∑

(x,y)∈U×V

(‖xα∗(x, y)− yβ∗(x, y)‖ − α∗(x, y)− β∗(x, y))

=
∑

(x,y)∈U×V

‖xα∗(x, y)− yβ∗(x, y)‖ ≥ d4(u, v). �
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Lemma 2.28. d4(u, v) ≥ d2(u, v).

Proof: Fix (f, g) ∈ D2 and (α, β) ∈M4(u, v).

u(f) + v(g) =
∑
x∈U

f(x)u(x) +
∑
y∈Y

g(y)v(y)

=
∑

(x,y)∈U×V

f(x)α(x, y) + g(y)β(x, y)

≤
∑

(x,y)∈U×V

‖α(x, y)x− β(x, y)y‖ ≤ d4(u, v). �

We have shown that d3(u, v) ≥ d5(u, v) ≥ d4(u, v) ≥ d2(u, v) = d3(u, v) =
d1(u, v). This ends the proof of Theorem 2.19.

3 Long-term values for compact non expansive

Markov Decision Processes

In this section we consider Markov Decision Processes, or Controlled Markov
Chains, with bounded payoffs and transitions with finite support. We will con-
sider two closely related models of MDP and prove in each case the existence and
a characterization for a general notion of long-term value.

1) The first model deals with MDP without any explicit action set (hence,
payoffs only depend on the current state), such MDP will be called gambling
houses using the terminology of gambling theory (see Maitra and Sudderth [24]).
We will assume in this setup that the set of states X is metric compact and that
the transitions are non expansive with respect to the distance dKR on ∆(X).
Since we only use the distance dKR here, the theorem for the first model, namely
Theorem 3.10, does not use the distance for belief spaces studied in section 2.

2) The second model is the standard model of Markov Decision Processes with
states, actions, transitions and payoffs, and we will assume that the state space
X is a compact subset of a simplex ∆(K). We will need for this second case an
assumption of non expansiveness for the transitions which is closely related to
the distance d∗ introduced in section 2, see Theorem 3.20 later. The applications
in sections 4.1 and 4.2 will be based on this second model.

3.1 Long-term values for Gambling Houses

In this section we consider Markov Decision Processes of the following form. There
is a non empty set of states X, a transition given by a multi-valued mapping
F : X ⇒ ∆f (X) with non empty values, and a payoff (or reward) function
r : X → [0, 1]. The interpretation is that given an initial state x0 in X, a
decision-maker (or player) has to choose a probability with finite support u1 in
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F (x0), then x1 is selected according to u1 and there is a payoff r(x1). Then the
player has to choose u2 in F (x1), x2 is selected according to u1 and the player
receives the payoff r(x2), etc... Note that there is no explicit action set here, and
that the transitions take values in ∆f (X) and hence have finite support.

We say that Γ = (X,F, r) is a Gambling House. We assimilate the elements in
X with their Dirac measures in ∆(X), and in case the values of F only consist of
Dirac measures on X, we view F as a correspondence from X to X and say that
Γ is a deterministic Gambling House (or a Dynamic Programming problem). In
general we write Z = ∆f (X), and an element in Z is written u =

∑
x∈X u(x)δx.

The set of stages is IN∗ = {1, ..., t, ....}, and a probability distribution over stages
is called an evaluation. Given an evaluation θ = (θt)t≥1 and an initial stage x0 in
X, the θ-problem Γθ(x0) is the optimization problem defined by a decision-maker
starting from x0 and maximizing the expectation of

∑
t≥1 θtr(xt).

Formally, we first linearly extend r and F to ∆f (X) by defining for each
u =

∑
x∈X u(x)δx in Z, the payoff r(u) =

∑
x∈X r(x)u(x) and the transition

F (u) = {
∑

x∈X u(x)f(x), s.t. f : X → Z and f(x) ∈ F (x) ∀x ∈ X}.

Definition 3.1. The mixed extension of F is the correspondence from Z to itself
which associates to every u =

∑
x∈X u(x)δx in ∆f (X) the image:

F̂ (u) =

{∑
x∈X

u(x)f(x), s.t. f : X → Z and f(x) ∈ convF (x) ∀x ∈ X

}
.

The graph of F̂ is the convex hull of the graph of F . Moreover F̂ is an affine
correspondence, as shown by the lemma below.

Lemma 3.2. ∀u, u′ ∈ Z, ∀α ∈ [0, 1], F̂ (αu+ (1−α)u′) = αF̂ (u) + (1−α)F̂ (u′).

Proof: The⊂ part is clear. To see the reverse inclusion, let v = α
∑

x∈X u(x)f(x)+

(1−α)
∑

x∈X u
′(x)f ′(x) be in αF̂ (u) + (1−α)F̂ (u′), with transparent notations.

Define

g(x) =
αu(x)f(x) + (1− α)u′(x)f ′(x)

αu(x) + (1− α)u′(x)
,

for each x such that the denominator is positive. Then g(x) ∈ convF (x), and

v =
∑
x∈X

(αu(x) + (1− α)u′(x)) g(x) ∈ F̂ (αu+ (1− α)u′).

Definition 3.3. A pure play, or deterministic play, at x0 is a sequence σ =
(u1, ..., ut, ...) ∈ Z∞ such that u1 ∈ F (x0) and ut+1 ∈ F (ut) for each t ≥ 1.
A play, or mixed play, at x0 is a sequence σ = (u1, ..., ut, ...) ∈ Z∞ such that
u1 ∈ convF (x0) and ut+1 ∈ F̂ (ut) for each t ≥ 1. We denote by Σ(x0) the set of
mixed plays at x0.
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A pure play is a particular case of a mixed play. Mixed plays corresponds to
situations where the decision-maker can select, at every stage t and state xt−1,
randomly the law ut of the new state. A mixed play at x0 naturally induces a prob-
ability distribution over the set (X ×∆f (X))∞ of sequences (x0, u0, x1, u1, ...),
where X and Z are endowed with the discrete σ-algebra and (X ×∆f (X))∞ is
endowed with the product σ-algebra.

Definition 3.4. Given an evaluation θ, the θ-payoff of a play σ = (u1, ..., ut, ...)
is defined as: γθ(σ) =

∑
t≥1 θtr(ut), and the θ-value at x0 is:

vθ(x0) = sup
σ∈Σ(x0)

γθ(σ).

It is easy to see that the supremum in the definition of vθ can be taken over
the set of pure plays at x0. We have the following recursive formula. For each
evaluation θ = (θt)t≥1 such that θ1 < 1, we denote by θ+ the “shifted” evaluation(
θt+1

1−θ1

)
t≥1

. We extend linearly vθ to Z, so that the recursive formula reads:

∀θ ∈ ∆(IN∗),∀x ∈ X, vθ(x) = sup
u∈convF (x)

(θ1r(u) + (1− θ1)vθ+(u)) .

And by linearity the supremum can be taken over F (x). It is also easy to see
that for all evaluations θ and initial states x, we have the inequality:

|vθ(x)− sup
u∈F (x)

vθ(u)| ≤ θ1 +
∑
t≥2

|θt − θt−1|. (1)

In this paper, we are interested in the limit behavior when the decision-maker
is very patient. Given an evaluation θ, we define the total variation of θ by:

TV (θ) =
∑
t≥1

|θt+1 − θt|.

The decision-maker is considered as patient whenever TV (θ) is small, so TV (θ)
may be seen as the impatience of θ (see Renault [34] and Sorin [41] p. 105). When
θ = (θt)t≥1 is non increasing, then TV (θ) is just θ1. A classic example is when
θ = 1

n

∑n
t=1 δt, the value vθ is just denoted vn and the evaluation corresponds to

the average payoff from stage 1 to stage n. In this case TV (θ) = 1/n −−−→
n→∞

0.

We also have TV (θ) = 1/n if θ =
∑m+n

t=m
1
n
δt for some non-negative m. Another

example is the case of discounted payoffs, when θ = (λ(1− λ)t−1)t≥1 for some
discount factor λ ∈ (0, 1], in this case the value vθ is denoted vλ and TV (θ) =
λ −−→

λ→0
0.

Definition 3.5. The Gambling House Γ = (X,F, r) has a general limit value v∗

if (vθ) uniformly converges to v∗ when TV (θ) goes to zero, i.e.:

∀ε > 0, ∃α > 0,∀θ, ( TV (θ) ≤ α =⇒ (∀x ∈ X, |vθ(x)− v∗(x)| ≤ ε) ) .
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The existence of the general limit value implies in particular that (vn)n and (vλ)λ
converge to the same limit when n goes to +∞ and λ goes to 0. This is coherent
with the result of Lehrer and Sorin [23], which states that the uniform conver-
gence of (vn)n and (vλ)λ are equivalent. A recent characterization of the uniform
convergence of a sequence of value functions (vθk)k, when TV (θk) −−−→

k→∞
0, can

be found in Renault [34], and it is shown that all such sequences have a unique
possible limit point given by v∗ = infθ∈∆(IN∗) supm≥0 vm,θ, where vm,θ is the value
corresponding to the evaluation with weight 0 for the first m stages and with
weight θt−m for stages t > m.

In the definition of the general limit value, we require all value functions to
be close to v∗ when the patience is high, but the plays used may depend on the
precise expression of θ. In the following definition, we require the same play to
be simultaneously optimal for all θ patient enough.

Definition 3.6. The Gambling House Γ = (X,F, r) has a general uniform value
if it has a general limit value v∗ and moreover for each ε > 0 one can find α > 0
and for each initial state x a mixed play σ(x) at x satisfying:

∀θ, ( TV (θ) ≤ α =⇒ (∀x ∈ X, γθ(σ(x)) ≥ v∗(x)− ε) ) .

The literature in repeated games has mainly focused on the evaluations θ =∑n
t=1

1
n
δt and θ = (λ(1− λ)t−1)t≥1. The standard (Cesàro)-uniform value can

be defined by restricting the evaluations to be Cesàro means: for each ε > 0
one can find n0 and for each initial state x a mixed play σ(x) at x satisfying:
∀n ≥ n0,∀x ∈ X, γn(σ(x)) ≥ v∗(x) − ε. Recently, Renault [32] considered de-
terministic Gambling Houses and characterized the uniform convergence of the
value functions (vn)n. The existence of the standard Cesàro-uniform value is
proved under some assumptions, including the case where the set of states X is
metric precompact, the transitions are non expansive and the payoff function is
uniformly continuous. As a corollary, the existence of the uniform value is shown
in Partial Observation Markov Decision Processes with finite set of states (after
each stage the decision-maker just observes a stochastic signal more or less cor-
related to the new state).

We now present our main theorem for Gambling Houses. Equation (1) implies
that the general limit value v∗ necessarily has to satisfy some rigidity property.
The function v∗ (or more precisely its linear extension to Z) can only be an
“excessive function” in the terminology of potential theory [13] and gambling
houses (Dubins and Savage [15], Maitra and Sudderth [24]).

Definition 3.7. An affine function w defined on Z (or ∆(X)) is said to be
excessive if for all x in X, w(x) ≥ supu∈F (x) w(u).

Example 3.8. Let us consider the splitting transition given by a finite set K,
X = ∆(K) and for each x in X, F (x) = {u ∈ ∆(X),

∑
p∈X u(p) p = x} is the
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set of probabilities on X centered at x. Then the function w from Z or ∆(X)
to IR is excessive if and only if the restriction of w to X is concave. Moreover
given u, u′ ∈ ∆(X), u′ ∈ F̂ (u) if and only if u′ is the sweeping of u as defined by
Choquet [13]: for all continuous concave functions f from X to IR, u′(f) ≤ u(f).

Assume now that X is a compact metric space and that r is continuous.
r is naturally extended to an affine continuous function on ∆(X) by r(u) =∫
p∈X r(p)du(p) for all Borel probabilities on X. In the following definition, we

consider the closure of the graph of F̂ within the (compact) set ∆(X ×X).

Definition 3.9. An element u in ∆(X) is said to be an invariant measure of
the Gambling House Γ = (X,F, r) if (u, u) ∈ cl(Graph F̂ ). The set of invariant
measures of Γ is denoted by R, so that:

R = {u ∈ ∆(X), (u, u) ∈ cl(Graph F̂ )}.

R is a convex compact subset of ∆(X). Even when Γ is deterministic, we still need
to work in the space ∆(X) of probabilities over X to define invariant measures.
Intuitively, we have replaced the time averages by the space averages. Recall that
for u and u′ in ∆(X), the Kantorovich-Rubinstein distance between u and u′ is
denoted by dKR(u, u′) = supf∈E1

|u(f)− u′(f)|.

Theorem 3.10. Consider a Gambling House Γ = (X,F, r) such that X is a
compact metric space, r is continuous and F is non expansive with respect to the
Kantorovich-Rubinstein distance:

∀x ∈ X, ∀x′ ∈ X, ∀u ∈ F (x),∃u′ ∈ F (x′) s.t. dKR(u, u′) ≤ d(x, x′).

Then the Gambling House Γ has a general uniform value v∗ characterized by:

∀x ∈ X, v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
u∈F (y)

w(u) and (2) ∀u ∈ R,w(u) ≥ r(u)
}
.

That is, v∗ is the smallest continuous affine function on X which is 1) excessive
and 2) above the running payoff r on invariant measures.

Notice that:
1) when Γ = (X,F, r) is deterministic, the hypotheses are satisfied as soon as
X is metric compact for some metric d, r is continuous and F is non expansive
for d.
2) when X is finite, one can use the distance d(x, x′) = 2 for all x 6= x′ in X, so
that for u and u′ in ∆(X), dKR(u, u′) = ‖u − u′‖1 =

∑
x∈X |u(x) − u′(x)|, and

the hypotheses are automatically satisfied. We will prove later a more general
result for a model of MDP with finite state space, allowing for explicit actions
influencing transitions and payoffs (see Corollary 3.21).
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Remark 3.11. The formula also holds when there is no decision-maker, i.e.
when F is single-valued, and there are some similarities with the Von Neumann’s
ergodic theorem [42]. Let Z be a Hilbert space and Q be a linear isometry on Z,
this theorem states that for all z ∈ Z, the sequence zn = 1

n

∑n
t=1Q

t(z) converges
to the projection z∗ of z on the set R of fixed points of Q. Using the linearity
and the non expansiveness leads to a characterization by the set of fixed points.
In particular, having in mind linear payoff functions of the form (z 7→< l, z >),
we have that the projection z∗ of z on R is characterized by:

∀l ∈ Z,< l, z∗ >=< l∗, z >= inf{< l′, z >, l′ ∈ R and < l′, r >≥< l, r > ∀r ∈ R}.

Example 3.12. We consider here a basic periodic sequence of 0 and 1. Let
X = {0, 1} and for all x ∈ X, F (x) = {1 − x} and r(x) = x. There is a
unique invariant measure u = 1/2δ0 + 1/2δ1, and the general uniform value exists
and satisifes v∗(x) = 1

2
for all states x. Notice that considering evaluations

θ = (θt)t such that θt is small for each t without requiring TV (θ) small, would
not necessarily lead to v∗. Consider for instance θn =

∑n
t=1

1
n
δ2t for each n, we

have vθn(x) = x for all x in X.

Example 3.13. The state space is the unit circle, let X = {x ∈ C, |x| = 1}
and F (eiα) = ei(α+1) for all real α. If we denote by µ the uniform distribution
(Haar probability measure) on the circle, the mapping F is µ-ergodic and µ is
F -invariant. By Birkhoff’s theorem [8], we know that the time average converges
to the space average µ-almost surely. Here µ is the unique invariant measure,
and we obtain that the general uniform value is the constant:

∀x ∈ X, v∗(x) =
1

2π

∫ 2π

0

r(eiα)dα.

Notice that we obtain the convergence of the value vθ(x) to v∗(x) for all x in X,
and not only for µ-almost all x in X.

Example 3.14. Let Γ = (X,F, r) be a MDP satisfying the hypotheses of The-
orem 3.10, and such that for all x ∈ X, δx ∈ F (x). Therefore the set R is equal
to ∆(X). In the terminology of Gambling Theory (see Maitra Sudderth, [24], Γ
is called a leavable gambling house since at each stage the player can stay at the
current state. The limit value v∗ is here characterized by:

v∗ = inf{v : X → [0, 1] continuous, v is excessive and v ≥ r}.

In the above formula, v excessive means: ∀x ∈ X, v(x) ≥ supu∈F (x) IEu(v). This
is a variant of the Fundamental Theorem of Gambling Theory (see section 3.1 in
Maitra Sudderth [24]).

Example 3.15. The following deterministic Gambling House, which is an ex-
tension of example 1.4.4. in Sorin [41] and of example 5.2 of Renault [32],
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shows that the assumptions of Theorem 3.10 allow for many speeds of conver-
gence to the limit value v∗. Here l > 1 is a fixed parameter, X is the simplex
{x = (pa, pb, pc) ∈ IR3

+, p
a+pb+pc = 1} and the initial state is x0 = (1, 0, 0). The

payoff is r(pa, pb, pc) = pb − pc, and the transition is defined by: F (pa, pb, pc) =
{((1− α− αl)pa, pb + αpa, pc + αlpa), α ∈ [0, 1/2]}.

The probabilistic interpretation is the following: there are 3 points a, b and
c, and the initial point is a. The payoff is 0 at a, it is +1 at b, and -1 at c. At
point a, the decision-maker has to choose α ∈ [0, 1/2] : then b is reached with
probability α, c is reached with probability αl, and the play stays in a with the
remaining probability 1−α−αl. When b (resp. c) is reached, the play stays at b
(resp. c) forever. So the decision-maker starting at point a wants to reach b and
to avoid c. By playing at each stage α > 0 small enough, he can get as close to b
as he wants.

Back to our deterministic setup, we use norm ‖.‖1 and obtain that X is
compact, F is non expansive and r is continuous, so that Theorem 3.10 applies,
and the limit value is given by v∗(pa, pb, pc) = pa + pb. Notice that even though
the data are very smooth, there is no 0-optimal strategy here, in the sense that
there is no mixed play σ at a such that limTV (θ)→0γθ(σ) = 1, any good strategy
requires to take a positive risk.

If we denote by xλ the value vλ(x0), we have for all λ ∈ (0, 1]: xλ = φλ(xλ),
where for all x ∈ IR,

φλ(x) = max
α∈[0,1/2]

(1− λ)(1− α− αl)x+ α.

Since xλ ∈ (0, 1), the first order condition gives (1 − λ)(−1 − lαl−1)xλ + 1 = 0
and we can obtain:

xλ =
1

(1− λ)

(
l

(
λ

(1− λ)(l − 1)

) l−1
l

+ 1

)−1

.

Finally we compute an equivalent of xλ − 1 as λ goes to 0, and we obtain:

1− vλ(x0) ∼ Cλ
l−1

l with C =
l

(l − 1)
(l−1)

l

.

3.2 Long-term values for standard MDPs

A standard Markov Decision Problem Ψ is given by a non empty set of states
X, a non empty set of actions A, a mapping q : X × A → ∆f (X) and a payoff
function g : X × A → [0, 1]. At each stage, the player learns the current state x
and chooses an action a. He then receives the payoff g(x, a), a new state is drawn
accordingly to q(x, a) and the game proceeds to the next stage.
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Definition 3.16. A pure, or deterministic, strategy is a sequence of mappings
σ = (σt)t≥1 where σt : (X × A)t−1 → A for each t. A strategy (or behavioral
strategy) is a sequence of mappings σ = (σt)t≥1 where σt : (X × A)t−1 → ∆f (A)
for each t. We denote by Σ the set of strategies.

(X × A)0 is a singleton, so σ1 is viewed as an element of ∆f (A) representing
the lottery on actions played at the first stage (or simply if σ is pure, the action in
A played at the first stage). A pure strategy is a particular case of strategy. An
initial state x1 in X and a strategy σ naturally induce a probability distribution
with finite support over the set of finite histories (X × A)n for all n, which can
be uniquely extended to a probability over the set (X ×A)∞ of infinite histories.

Definition 3.17. Given an evaluation θ and an initial state x1 in X, the θ-payoff
of a strategy σ at x1 is defined as γθ(x1, σ) = IEx1,σ

(∑
t≥1 θtg(xt, at)

)
, and the

θ-value at x1 is:
vθ(x1) = sup

σ∈Σ
γθ(x1, σ).

As for gambling houses, it is easy to see that the supremum can be taken over
the smaller set of pure strategies, and one can derive a recursive formula linking
the value functions. General limit and uniform values are defined as in subsection
3.1.

Definition 3.18. Let Ψ = (X,A, q, g) be a standard MDP.
Ψ has a general limit value v∗ if (vθ) uniformly converges to v∗ when TV (θ)

goes to zero, i.e. for each ε > 0 one can find α > 0 such that:

∀θ, ( TV (θ) ≤ α =⇒ (∀x ∈ X, |vθ(x)− v∗(x)| ≤ ε) ) .

Ψ has a general uniform value if it has a general limit value v∗, and if for
each ε > 0 one can find α > 0 and a behavior strategy σ(x) for each initial state
x satisfying:

∀θ, (TV (θ) ≤ α =⇒ (∀x ∈ X, γθ(x, σ(x)) ≥ v∗(x)− ε) ) .

We now present a notion of invariance for the MDP Ψ. The next definition will
be similar to Definition 3.9, however one needs to be slightly more sophisticated
here to incorporate the payoff component. Assume now that X is a compact
metric space, and define for each (u, y) in ∆f (X)× [0, 1],

F̂ (u, y) =

{(∑
x∈X

u(x)q(x, a(x)),
∑
x∈X

u(x)g(x, a(x))

)
, where a : X → ∆f (A)

}
.

where q(x, .) and g(x, .) have been linearly extended for all x. We have defined a
correspondence F̂ from ∆f (X)× [0, 1] to itself. It is easy to see that F̂ always is
an affine correspondence (see Lemma 3.27 later). In the following definition we
consider the closure of the graph of F̂ within the compact set (∆(X)× [0, 1])2,
with the weak topology.
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Definition 3.19. An element (u, y) in ∆(X) × [0, 1] is said to be an invariant
couple for the MDP Ψ if ((u, y), (u, y)) ∈ cl(Graph(F̂ )). The set of invariant
couples of Ψ is denoted by RR.

Our main result for standard MDPs is the following theorem, where X is
assumed to be a compact subset of a simplex ∆(K), with K a finite set. Recall
that D1 = {f ∈ C(∆(K)),∀x, y ∈ ∆(K),∀a, b ≥ 0, af(x)− bf(y) ≤ ‖ax− by‖1},
and any f in D1 is linearly extended to ∆(∆(K)).

Theorem 3.20. Let Ψ = (X,A, q, g) be a standard MDP where X is a compact
subset of a simplex ∆(K), and such that:

∀x ∈ X, ∀y ∈ X, ∀a ∈ A,∀f ∈ D1,∀α ≥ 0,∀β ≥ 0,

|αf(q(x, a))− βf(q(y, a))| ≤ ‖αx− βy‖1 and |αg(x, a)− βg(y, a)| ≤ ‖αx− βy‖1.

Then Ψ has a general uniform value v∗ characterized by: for all x in X,

v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀x′ ∈ X,w(x′) ≥ sup
a∈A

w(q(x′, a)) and (2) ∀(u, y) ∈ RR,w(u) ≥ y
}
.

The proof of Theorem 3.20 will be in section 3.4. An immediate corollary is
when the state space is finite.

Corollary 3.21. Consider a standard MDP (K,A, q, g) with a finite set of states
K. Then it has a general uniform value v∗, and for each state k:

v∗(k) = inf
{
w(k), w : ∆(K)→ [0, 1] affine s.t.

(1) ∀k′ ∈ K,w(k′) ≥ sup
a∈A

w(q(k′, a)) and (2)∀(p, y) ∈ RR,w(p) ≥ y
}
.

with RR = {(p, y) ∈ ∆(K) × [0, 1], ((p, y), (p, y)) ∈ cl(conv(Graph(F )))} and
F (k, y) = {(q(k, a), g(k, a)), a ∈ A}.

Proof of Corollary 3.21: K is viewed as a subset of the simplex ∆(K), endowed
with the L1-norm. Fix k, k′ in K, a in A, α ≥ 0 and β ≥ 0. We have

‖αk − βk′‖ =

{
|α− β| if k = k′,

α + β otherwise.

First,

|αg(k, a)− βg(k′, a)| ≤

{
|α− β|g(k, a) if k = k′

α + β otherwise
,

so in all cases |αg(k, a) − βg(k′, a)| ≤ ‖αk − βk′‖. Secondly, consider f ∈ D1.
f takes values in [−1, 1], so similarly we have: |αf(q(k, a)) − βf(q(k′, a))| ≤
‖αk − βk′‖. So we can apply Theorem 3.20, and the graph of F̂ is the convex
hull of the graph of F . �

28



Remark 3.22. When both sets of states and actions are finite, we are in the
simple setting of Blackwell [9]. In this case our characterization leads to a dual
formulation of a result of Denardo and Fox [14]. We say that a couple (w, h) ∈
IRK × IRK is superharmonic, in the sense of Hordjik and Kallenberg [20], if

∀k ∈ K, ∀a ∈ A, w(k) + h(k) ≥ g(k, a) +
∑
k′∈K

q(k, a)(k′)h(k′). (2)

Denardo and Fox [14] showed that the value v∗ is the smallest (pointwise) exces-
sive function that can be completed by a function h such that (v∗, h) is superhar-
monic.

The existence of a function h such that (w, h) is superharmonic is equivalent
to condition (2) of Corollary 3.21. Given a function w, solving equation (2) is a
linear programming problem with K × A inequalities. By Farkas’ lemma, it has
a solution if and only if the following linear programming problem (Dw), with
unknown π ∈ IRK×A, has no solution:

∀(k, a) ∈ K × A π(k, a) ≥ 0
∀k ∈ K

∑
a′∈A π(k, a′) =

∑
k′∈K,a′∈A π(k′, a′)q(k′, a′)(k)∑

k′∈,a′∈A π(k′, a′)g(k′, a′) >
∑

k′∈K,a′∈A π(k′, a′)w(k′).

Fix w a function on K. We prove that (Dw) has a solution if and only if condition
(2) of Corollary 3.21 is not satisfied. Therefore both conditions are equivalent.

Let π be a solution of (Dw). We can assume without loss of generality that∑
k,a π(k, a) = 1. We denote by p the marginal of π on K and put for all k ∈ K,

σ(k) =
(
π(k,a′)
p(k)

)
a′∈A
∈ ∆(A) if p(k) > 0, and define arbitrarily σ(k) if p(k) = 0.

Denote by σ the strategy which plays σ(k) if the state is k for each k. The payoff
obtained by playing σ from distribution p is y =

∑
k′∈,a′∈A π(k′, a′)g(k′, a′). The

second line of equations of (Dw) implies that p is invariant by σ, so (p, y) ∈ RR
and the last equation implies that y > w(p). The function w does not satisfy
condition (2) of Corollary 3.21.

Conversally if condition (2) of Corollary 3.21 is not satisfied, there exists
(p, y) ∈ RR such that y > w(p). By compacity of the set of probabilities over
K and the set of payoffs, there exists a strategy σ ∈ ∆(A)K , such that p is
invariant under σ and y is the payoff obtained by playing σ from distribution p.
The probability π defined by

∀k ∈ K, ∀a ∈ A, π(k, a) = p(k)σ(k, a).

is then a solution of (Dw).
Note that Denardo and Fox also use duality theory but they study directly the

minimization problem with unknown w and h and deduce a dual maximization
problem.
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3.3 Proof of Theorem 3.10

In this section we consider a compact metric space (X, d), and we use the Kantorovich-
Rubinstein distance d = dKR on ∆(X). We write Z = ∆f (X), Z = ∆(X). We
start with a lemma.

Lemma 3.23. Let F : X ⇒ ∆f (X) be non expansive for dKR. Then the mixed
extension of F is 1-Lipschitz from ∆f (X) to ∆f (X) for dKR.

Proof of Lemma 3.23. We first show that the mapping (p 7→ convF (p)) is non
expansive from X to Z. Indeed, consider p and p′ in X, and u =

∑
i∈I αiui, with

I finite, αi ≥ 0, ui ∈ F (p) for each i, and
∑

i∈I αi = 1. By assumption for each
i one can find u′i in F (p′) such that dKR(ui, u

′
i) ≤ d(p, p′). Define u′ =

∑
i∈I αiu

′
i

in convF (p′). We have:

dKR(u, u′) = sup
f∈E1

(∑
i

αiui(f)−
∑
i

αiu
′
i(f)

)
,

= sup
f∈E1

∑
i∈I

αi(ui(f)− u′i(f)),

≤
∑
i∈I

αi dKR(ui, u
′
i),

≤ d(p, p′).

We now prove that F̂ is 1-Lipschitz from Z to Z. Let u1, u2 be in Z and
v1 =

∑
p∈X u1(p)f1(p), where f1(p) ∈ convF (p) for each p. By the Kantorovich

duality formula, there exists a coupling γ = (γ(p, q))(p,q)∈X×X in ∆f (X×X) with
first marginal u1 and second marginal u2 satisfying:

dKR(u1, u2) =
∑

(p,q)∈X×X

γ(p, q)d(p, q).

For each p, q in X by the first part of this proof there exists fp(q) ∈ convF (q)
such that dKR(fp(q), f1(p)) ≤ d(p, q). We define:

f2(q) =
∑
p∈X

γ(p, q)

u2(q)
fp(q) ∈ convF (q), and v2 =

∑
q∈X

u2(q)f2(q) ∈ F̂ (u2).

We now conclude.

dKR(v1, v2) = dKR

(∑
p∈X

u1(p)f1(p),
∑
q∈X

u2(q)f2(q)

)

= dKR

(∑
p,q

γ(p, q)f1(p),
∑
q,p

γ(p, q)fp(q)

)
≤

∑
p,q

γ(p, q)dKR(f1(p), fp(q))

≤
∑
p,q

γ(p, q)d(p, q) = dKR(u1, u2).
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The mixed extension of F is 1-lipschitz. �

We now consider a Gambling House Γ = (X,F, r) and assume the hypotheses
of Theorem 3.10 are satisfied. We will work2 with the deterministic Gambling
House Γ̂ = (∆f (X), F̂ , r). Recall that r is extended to an affine and continuous

mapping on ∆(X) whereas F̂ is an affine non expansive correspondence from Z
to Z.

For p in X, the pure plays in Γ̂ at the initial state δp coincide with the mixed
plays in Γ at the initial state p. As a consequence, the θ-value for Γ at p coincides
with the θ-value for Γ̂ at δp, which is written vθ(p) = vθ(δp). Because F̂ and r are

affine on Z, the θ-value for Γ̂, as a function defined on Z, is the affine extension
of the original vθ defined on X. So we have a unique value function vθ which is
defined on Z and is affine. Because F̂ is 1-Lipschitz and r is uniformly continuous,
all the value functions vθ have the same modulus of continuity as r, so (vθ)θ is an
equicontinuous family of mappings from Z to [0, 1]. Consequently, we extend vθ
to an affine mapping on Z with the same modulous of continuity, and the family
(vθ)θ now is an equicontinuous3 family of mappings from Z to [0, 1].

We define R and v∗ as in the statements of Theorem 3.10, so that for all x in
X,

v∗(x) = inf
{
w(x), w : Z → [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
u∈F (y)

w(u) and (2)∀u ∈ R,w(u) ≥ r(u)
}
.

We start with a lemma based on the non-expansiveness of F̂ .

Lemma 3.24. 1) Given (u, u′) in cl(Graph(F̂ )), v in Z and ε > 0, there exists
v′ ∈ F̂ (v) such that d(u′, v′) ≤ d(u, v) + ε.

2) Given a sequence (zt)t≥0 of elements of Z such that (zt, zt+1) ∈ cl(Graph(F̂ ))
for all t ≥ 1, and given ε > 0, one can find a sequence (z′t)t≥0 of elements of Z
such that (z′t)t≥1 is a play at z′0, and d(zt, z

′
t) ≤ ε for each t ≥ 0.

Proof of Lemma 3.24: 1) For all ε > 0 there exists (z, z′) ∈ Graph(F̂ ) such
that d(z, u) ≤ ε and d(z′, u′) ≤ ε. Because F̂ is non expansive, one can find v′ in
F̂ (v) such that d(z′, v′) ≤ d(z, v). Consequently, d(v′, u′) ≤ d(v′, z′) + d(z′, u′) ≤
d(z, v) + ε ≤ d(u, v) + 2ε.

2) It is first easy to construct (z′0, z
′
1) in the graph of F̂ such that d(z′0, z0) ≤ ε

and d(z′1, z1) ≤ ε. (z1, z2) ∈ cl(Graph(F̂ )) so by 1) one can find (z′2) in F̂ (z′1)

2A variant of the proof would be to consider the Gambling House on ∆(X) where the
transition correspondence is defined so that its graph is the closure of the graph of F̂ . Part 1)
of Lemma 3.24 shows this correspondence is also non expansive.

3Z being precompact, this is enough to obtain the existence of a general limit value, see
Renault [34]. Here we will moreover obtain a characterization of this value and the existence
of the general uniform value.
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such that d(z2, z
′
2) ≤ d(z1, z

′
1) + ε2 ≤ ε+ ε2. Iterating, we construct a play (z′t)t≥1

at z′0 such that d(zt, z
′
t) ≤ ε+ ε2 + ...+ εt for each t.

Proposition 3.25. Γ has a general limit value given by v∗.

Proof of Proposition 3.25: By Ascoli’s theorem, it is enough to show that
any limit point of (vθ)θ (for the uniform convergence) coincides with v∗. We thus
assume that (vθk)k uniformly converges to v on Z when k goes to∞, for a family
of evaluations satisfying: ∑

t≥1

|θkt+1 − θkt | −→k→∞ 0.

And we need to show that v = v∗.

A) We first show that v ≥ v∗.
It is plain that v can be extended to an affine function on Z and has the

modulus of continuity of r. Because
∑

t≥1 |θkt+1 − θkt | −→k→∞ 0, we have by
Equation (1) of section 3.1 that: ∀y ∈ X, v(y) = supu∈F (y) v(u).

Let now u be in R. By Lemma 3.24 for each ε one can find u0 in Z and a play
(u1, u2, ..., ut, ...) such that ut ∈ F̂ (ut−1) and d(u, ut) ≤ ε for all t ≥ 0. Because r
is uniformly continuous, we get v(u) ≥ r(u).

By definition of v∗ as an infimum, we obtain: v∗ ≤ v.

B) We show that v∗ ≥ v. Let w be a continous affine mapping from Z to
[0, 1] satisfying (1) and (2) of the definition of v∗. It is enough to show that
w(p) ≥ v(p) for each p in X. Fix p in X and ε > 0.

For each k, let σk = (uk1, ..., u
k
t , ...) ∈ Z∞ be a play at δp for Γ̂ which is almost

optimal for the θk-value, in the sense that
∑

t≥1 θ
k
t r(u

k
t ) ≥ vθk(p)− ε. Define:

u(k) =
∞∑
t=1

θkt u
k
t ∈ Z, and u′(k) =

∞∑
t=1

θkt u
k
t+1 ∈ Z.

u(k) and u′(k) are well-defined limits of normal convergent series in the Banach
space C(X)′. Because F̂ is affine, its graph is a convex set and (u(k), u′(k)) ∈
cl(Graph(F̂ )) for each k.

Moreover, we have d(u(k), u′(k)) ≤ diam(X)(θk1 +
∑∞

t=2 |θkt − θkt−1|), where
diam(X) is the diameter of X. Consequently,

∑
t≥1 |θkt+1 − θkt | −→k→∞ 0 implies

d(u(k), u′(k)) −→k→∞ 0. Considering a limit point of the sequence (u(k), u′(k))k,
we obtain some u in R. By assumption on w, w(u) ≥ r(u). Moreover, for each k
we have r(u(k)) =

∑
t≥1 θ

k
t r(u

k
t ) ≥ vθk(p)− ε, so r(u) ≥ v(p)− ε.

Because w is excessive, we obtain that for each k the sequence (w(ukt ))t is non
increasing, so w(u(k)) =

∑
t≥1 θ

k
tw(ukt ) ≤ w(p). So we obtain:

w(p) ≥ w(u) ≥ r(u) ≥ v(p)− ε.

This is true for all ε, so w ≥ v. �
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Proposition 3.26. Γ has a general uniform value.

Proof of Proposition 3.26: First we can extend the notion of mixed play to
Z. A mixed play at u0 ∈ Z, is a sequence σ = (u1, ..., ut, ...) ∈ Z∞ such that
ut+1 ∈ F̂ (ut) for each t ≥ 0, and we denote by Σ(u0) the set of mixed plays
at u0. Given t, T in IN , n ∈ IN∗ and u0 ∈ Z, we define for each mixed play
σ = (ut)t≥1 ∈ Σ(u0) the auxiliary payoff:

γt,n(σ) =
1

n

t+n∑
l=t+1

r(ul), and βT,n(σ) = inf
t∈{0,...,T}

γt,n(σ).

And we also define the auxiliary value function: for all u in Z,

hT,n(u0) = sup
σ∈Σ(u0)

βT,n(σ).

Clearly, βT,n(σ) ≤ γ0,n(σ) and hT,n(u0) ≤ vn(u0). We can write:

hT,n(u0) = sup
σ∈Σ(u0)

inf
θ∈∆({0,...,T})

1

n

T∑
t=0

θt

t+n∑
l=t+1

r(ul)

= sup
σ∈Σ(u0)

inf
θ∈∆({0,...,T})

T+n∑
l=1

βl(θ, n)r(ul).

where for each l in 1, ..., T + n,

βl(θ, n) =
1

n

Min{T,l−1}∑
t=Max{0,l−n}

θt.

By construction, F̂ is affine, so Σ(u0) is a convex subset of Z∞. ∆({0, ..., T}) is
convex compact and the payoff

∑T+n
l=1 βl(θ, n)r(ul) is affine both in θ and in σ.

We can apply a standard minmax theorem to get:

hT,n(u0) = inf
θ∈∆({0,...,T})

sup
σ∈Σ(u0)

T+n∑
l=1

βl(θ, n)r(ul).

We write θt = 0 for t > T and for each l ≥ 0: βl(n, θ) = 1
n
(θ0 + ... + θl−1)

if l ≤ n, βl(θ, n) = 1
n
(θl−n + ... + θl−1) if n + 1 ≤ l ≤ n+ T , βl(n, θ) = 0

if l > n + T . The evaluation β(θ, n) is a particular probability on stages and
hT,n(u0) = infθ∈∆({0,...,T}) vβ(θ,n)(u0). It is easy to bound the total variation of
β(θ, n):

∑
l≥0

|βl+1(θ, n)− βl(θ, n)| =
n−1∑
l=0

θl
n

+
∑
l≥n

1

n
|θl − θl−n| ≤

3

n
−→n→∞ 0.
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The impatience of β(θ, n) goes to zero as n goes to infinity, uniformly in θ. So
we can use the previous Proposition 3.25 to get:

∀ε > 0,∃n0,∀n ≥ n0,∀θ ∈ ∆(IN),∀u0 ∈ Z, |vβ(θ,n)(u0)− v∗(u0)| ≤ ε.

This implies that h∞,n(u0) :=def infθ∈∆(IN) vβ(θ,n)(u0) = infT≥0 hT,n(u0) converges
to v∗(u0) when n→∞, and the convergence is uniform over Z. Consequently, if
we fix ε > 0 there exists n0 such that for all u0 in Z, for all T ≥ 0, there exists
a play σT = (uTt )t≥1 in Σ(u0) such that the average payoff is good on every in-
terval of n0 stages starting before T+1: for all t = 0, ..., T , γt,n0(σ

T ) ≥ v∗(u0)−ε.

We fix u0 in Z and consider, for each T , the play σT = (uTt )t≥1 in Σ(u) as
above. By a diagonal argument we can construct for each t ≥ 1 a limit point zt in
Z of the sequence (uTt )T≥0 such that for all t we have (zt, zt+1) ∈ cl(Graph(F̂ )),
with z0 = u0. For each m ≥ 0, we have 1

n0

∑m+1+n0

t=m+1 r(uTt ) ≥ v∗(u0) − ε for T

large enough, so at the limit we get: 1
n0

∑m+1+n0

t=m+1 r(zt) ≥ v∗(u0)− ε.
r being uniformly continuous, there exists α such that |r(z)−r(z′)| ≤ ε as soon

as d(z, z′) ≤ α. By Lemma 3.24, one can find a mixed play σ′ = (z′1, ...., z
′
t, ...)

at Σ(z0) such that for each t, d(zt, z
′
t) ≤ α. We obtain that for each m ≥ 0,

1
n0

∑m+1+n0

t=m+1 r(z′t) ≥ v∗(u)− 2ε.
Consequently we have proved: ∀ε > 0, there exists n0 such that for all ini-

tial state p in X, there exists a mixed play σ′ = (z′t)t at p such that: ∀m ≥ 0,
1
n0

∑m+1+n0

t=m+1 r(z′t) ≥ v∗(p)− 2ε.

Let θ ∈ ∆(IN∗) be an evaluation, it is now easy to conclude. First if v∗(p)−
2ε < 0, then any play is 2ε-optimal. Otherwise, for each j ≥ 1, denote by θj the
maximum of θ on the block Bj = {(j−1)n0 +1, ..., jn0}. For all t ∈ Bj, we have:

θj ≥ θt ≥ θj −
∑

t′∈{(j−1)n0+1,...jn0−1}

|θt′+1 − θt′|.

As a consequence, for all j we have:

jn0∑
t=(j−1)n0+1

θtr(z
′
t) ≥ θj

jn0∑
t=(j−1)n0+1

r(z′t) − n0

∑
t′∈{(j−1)n0+1,...,jn0−1}

|θt′+1 − θt′ |

≥
jn0∑

t=(j−1)n0+1

θt(v
∗(p)− 2ε) − n0

∑
t′∈{(j−1)n0+1,...,jn0−1}

|θt′+1 − θt′|

and by summing over j, we get: γθ(x0, σ
′) ≥ v∗(p)− 2ε− n0TV (θ) ≥ v∗(p)− 3ε

as soon as TV (θ) is small enough. �
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3.4 Proof of Theorem 3.20

Assume that X is a compact subset of a simplex ∆(K), and let Ψ = (X,A, q, g) be
a standard MDP such that: ∀x ∈ X, ∀y ∈ X, ∀a ∈ A,∀f ∈ D1,∀α ≥ 0, ∀β ≥ 0,

|αf(q(x, a))− βf(q(y, a))| ≤ ‖αx− βy‖1 and |αg(x, a)− βg(y, a)| ≤ ‖αx− βy‖1.

We write Z = ∆f (X)× [0, 1], and Z = ∆(X)× [0, 1]. We will use the metric d∗ =
d0 = d1 = d2 = d3 on ∆(∆(K)) introduced in section 2.3 and its restriction to
∆(X), so that Z is a compact metric space. For all (u, y), (u′, y′) ∈ ∆f (X)×[0, 1],
we put d((u, y), (u′, y′)) = max(d∗(u, u

′), |y − y′|) so that (Z, d) is a precompact
metric space. Recall we have defined the correspondence F̂ from Z to itself such
that for all (u, y) in Z,

F̂ (u, y) = {(Q(u, σ), G(u, σ)) s.t. σ : X → ∆f (A)} ,

with the notationsQ(u, σ) =
∑

x∈X u(x)q(x, σ(x)) andG(u, σ) =
∑

x∈X u(x)g(x, σ(x)).
And we simply define the payoff function r from Z to [0, 1] by r(u, y) = y for all
(u, y) in Z. We start with a crucial lemma, which shows the importance of the
duality formula of Theorem 2.19.

Lemma 3.27. F̂ is an affine and non expansive correspondence from Z to itself.

Proof of Lemma 3.27. We first show that: ∀u, u′ ∈ ∆f (X), ∀α ∈ [0, 1],

∀y, y′ ∈ [0, 1], F̂ (αu + (1 − α)u′, αy + (1 − α)y′) = αF̂ (u, y) + (1 − α)F̂ (u′, y′).
First the transition does not depend on the second coordinate so we can forget
it for the rest of the proof. The ⊂ part is clear. To see the reverse inclusion,
consider σ : X → ∆f (A), σ′ : X → ∆f (A) and v = α

∑
x∈X u(x)q(x, σ(x)) + (1−

α)
∑

x∈X u
′(x)q(x, σ′(x)) in αF̂ (u) + (1− α)F̂ (u′). Define

σ∗(x) =
αu(x)σ(x) + (1− α)u′(x)σ′(x)

αu(x) + (1− α)u′(x)
,

for each x such that the denominator is positive. Then v =
∑

x∈X(αu + (1 −
α)u′(x))q(x, σ∗(x)), and F̂ is affine.

We now prove that F̂ is non expansive. Let z = (u, y) and z′ = (u′, y′)
be in Z. We have d((u, y), (u′, y′)) ≥ d∗(u, u

′) and denote by U and U ′ the
respective supports of u and u′. By the duality formula of Theorem 2.19, there
exists α = (α(p, p′))(p,p′)∈U×U ′ and β = (β(p, p′))(p,p′)∈U×U ′ with non-negative
coordinates satisfying:

∑
p′∈U ′ α(p, p′) = u(p) for all p ∈ U ,

∑
p∈U β(p, p′) = u′(p′)

for all p′ ∈ U ′, and

d∗(u, u
′) =

∑
(p,p′)∈U×U ′

‖p α(p, p′)− p′ β(p, p′)‖1.
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Consider now v = Q(u, σ) =
∑

p∈U u(p)q(p, σ(p)) for some σ : X → ∆f (A).
We define for all p′ in U ′:

σ′(p′) =
∑
p∈U

β(p, p′)

u′(p′)
σ(p),

and v′ = Q(u′, σ′) =
∑

p′∈U ′ u
′(p′)q(p′, σ′(p′)). Then v′ ∈ F̂ (u′, y′), and for each

test function ϕ in D1 we have:

|ϕ(v)− ϕ(v′)| = |
∑
p,p′

α(p, p′)ϕ(q(p, σ(p)))− β(p, p′)ϕ(q(p′, σ(p)))|

= |
∑
p,p′,a

α(p, p′)σ(p)(a)ϕ(q(p, a))− β(p, p′)σ(p)(a)ϕ(q(p′, a))|

≤
∑
p,p′

‖α(p, p′)p− β(p, p′)p′‖1 = d∗(u, u
′),

and therefore d∗(v, v
′) ≤ d∗(u, u

′). In addition we have a similar result on the
payoff,

|G(u, σ)−G(u′, σ′)| = |
∑
p,p′

α(p, p′)g(p, σ(p))− β(p, p′)g(p′, σ(p))|

≤
∑
p,p′

‖α(p, p′)p− β(p, p′)p′‖1

≤ d∗(u, u
′).

Thus we have d((Q(u, σ), R(u, σ)), (Q(u′, σ′), R(u′, σ′))) ≤ d∗(u, u
′) ≤ d(z, z′). �

Recall that the set of invariant couples of the MDP Ψ is:

RR = {(u, y) ∈ Z, ((u, y), (u, y)) ∈ cl(Graph(F̂ ))},

and the function v∗ : X −→ IR is defined by:

v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
a∈A

w(q(y, a)) and (2) ∀(u, y) ∈ RR,w(u) ≥ y
}
.

We now consider the deterministic Gambling House Γ̂ = (Z, F̂ , r). Z is pre-
compact metric, F̂ is affine non expansive and r is obviously affine and uniformly
continuous. Given an evaluation θ, the θ-value of Γ̂ at z0 = (u, y) is denoted by
v̂θ(u, y) = v̂θ(u) and does not depend on y. The recursive formula of section 3.1
yields:

∀(u, y) ∈ Z, v̂θ(u) = sup
(u′,y′)∈F̂ (u)

θ1y
′ + (1− θ1)v̂θ+(u′)

= sup
σ∈X→∆f (A)

(θ1G(u, σ) + (1− θ1)v̂θ+(Q(u, σ))) .
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Because F̂ and r are affine, v̂θ is affine in u and the supremum in the above
expression can be taken over functions from X to A. Because F̂ is non expansive
and r is 1-Lipschitz, each v̂θ is 1-Lipschitz.

We denote by vθ the θ-value of the MDP Ψ and linearly extend it to ∆f (X).
It turns out that the recursive formula satisfied by vθ is similar to the above
recursive formula for v̂θ, so that vθ(u) = v̂θ(u, y) for all u in ∆f (X) and y in [0, 1].

As a consequence, the existence of the general limit value in both problems Γ̂ and
Ψ is equivalent. Moreover, a deterministic play in Γ̂ induces a strategy in Ψ, so
that the existence of the general uniform value in Γ̂ will imply the existence of
the general uniform value in Ψ (note that deterministic and mixed plays in Γ̂ are
equivalent since F̂ has convex values).

It is thus sufficient to show that Γ̂ has a general uniform value given by v∗,
and we can mimic the end of the proof of Theorem 3.10. Lemma 3.24 applies
word for word. Finally, one can proceed almost exactly as in Propositions 3.25
and 3.26 to show that Γ̂, hence Ψ, has a general uniform value given by v∗.

4 Applications to partial observation and games

4.1 POMDP with finitely many states

We now consider a more general model of MDP with actions where after each
stage, the decision-maker does not perfectly observe the state. A MDP with
partial observation, or POMDP, Γ = (K,A, S, q, g) includes a finite set of states
K, a non empty set of actions A and a non empty set of signals S. The transition
q now goes from K × A to ∆f (S ×K) and the payoff function g still goes from
K×A to [0, 1]. Given an initial probability p1 on K, the POMDP Γ(p1) is played
as follows. An initial state k1 in K is selected according to p1 and is not told to
the decision-maker. At every stage t ≥ 1, the decision-maker selects an action
at ∈ A. If the current state is kt, he has a (unobserved) payoff g(kt, at) and a
pair (st, kt+1) is drawn according to q(kt, at). Then the player learns st, and the
play proceeds to stage t + 1 with new state kt+1. A behavioral strategy is now
a sequence (σt)t≥1 of applications with for each t, σt : (A × S)t−1 → ∆f (A). As
usual, an initial probability on K and a behavior strategy σ induce a probability
distribution over (K × A × S)∞ and we can define the θ-values and the notions
of general limit and uniform values accordingly.

Theorem 4.1. A POMDP with finitely many states has a general uniform value,
i.e. there exists v∗ : ∆(K) → IR with the following property: for each ε > 0 one
can find α > 0 and for each initial probability p a behavior strategy σ(p) such that
for each evaluation θ with TV (θ) ≤ α,

∀p ∈ ∆(K), |vθ(p)− v∗(p)| ≤ ε and γθ(σ(p)) ≥ v∗(p)− ε.

Proof: It is natural to introduce an auxiliary MDP with state variable the belief
of the decision-maker on the state in K. We define Ψ the standard MDP on
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X = ∆(K) with the same set of actions A and the following payoff and transition
functions:

• r : X × A −→ [0, 1] s.t. r(p, a) =
∑

k∈K p(k)g(k, a) for all p, a,

• q̂ : X × A→ ∆f (X) such that

q̂(p, a) =
∑
s∈S

(∑
k

pkq(k, a)(s)

)
δq̂(p,a,s),

where q̂(p, a, s) ∈ ∆(K) is the belief on the new state after playing a
at p and observing the signal s:

∀k′ ∈ K, q̂(p, a, s)(k′) =
q(p, a)(k′, s)

q(p, a)(s)
=

∑
k p

kq(k, a)(k′, s)∑
k p

kq(k, a)(s)
.

The POMDP Γ(p1) and the standard MDP Ψ(p1) have the same value for all
θ-evaluations. And for each strategy σ in Ψ(p1), the player can guarantee the
same payoff in the original game Γ(p1) by mimicking the strategy σ. So if we
prove that Ψ has a general uniform value it will imply that the POMDP Γ has a
general uniform value.

To conclude the proof, we will simply apply Theorem 3.20 to the MDP Ψ.
We need to check the assumptions on the payoff and on the transition.

Consider any p, p′ in X, a ∈ A, α ≥ 0 and β ≥ 0. We have:

|αr(p, a)− βr(p′, a)| =

∣∣∣∣∣∑
k

(αp(k)− βp′(k))g(k, a)

∣∣∣∣∣ ≤ ‖αp− βp′‖.
Moreover for any f ∈ D1, we have:

|αq̂(p, a)(f)− βq̂(p′, a)(f)| =

∣∣∣∣∣∑
s∈S

(αq(p, a)(s)f(q̂(p, a, s))− βq(p′, a)(s)f(q̂(p′, a, s)))

∣∣∣∣∣
≤
∑
s

‖αq(p, a)(., s)− βq(p′, a)(., s)‖

≤
∑
s,k,k′

|αp(k′)q(k′, a)(k, s)− βp′(k′)q(k′, a)(k, s)|

≤
∑
s,k,k′

q(k′, a)(k, s)|αp(k′)− βp′(k′)| = ‖αp− βp′‖.

where the first inequality comes from the definition of D1.
By Theorem 3.20, the MDP Ψ has a general uniform value and we deduce

that the POMDP Γ has a general uniform value. �

Example 4.2. Let Γ = (K,A, S, q, g, p1) be a POMDP where K = {k1, k2},
A = {a, b}, S = {∗} and p1 = δk1 . The initial state is k1 and since there is only one

38



signal, the decision-maker will obtain no additional information on the state. We
say that he is in the dark. The payoff is given by g(k1, a) = g(k1, b) = g(k2, b) = 0
and g(k2, a) = 1, and the transition by q(k1, a) = q(k1, b) = δ∗,k1 , q(k2, a) = δ∗,k2
and q(k1, b) = 1

2
δ∗,k1 + 1

2
δ∗,k2 . On one hand if the decision-maker plays a then the

state stays the same, and he receives a payoff of 1 if and only if the state is k2.
On the other hand if he plays b then he receives a payoff of 0 but the probability
to be in state k2 increases.

We define the function r from X×A = ∆(K)×A to [0, 1] by r((p, 1−p), a) =
1− p and r((p, 1− p), b) = 0 for all p ∈ [0, 1], and we define the transition q̂ from
X × A to ∆f (X) by :

q̂((p, 1− p), a) = δ(p,1−p) and q̂((p, 1− p), b) = δ(p/2,1−p/2).

Then the standard MDP Ψ = (∆(K), A, q̂, r) is the MDP associated in the pre-
vious proof to Γ. This MDP is here deterministic, because the decision is in the
dark.

The existence of a general uniform value is immediate here. Given n ≥ 1, the
strategy σ = bna∞ which plays n times b and then a for the rest of the game,
guarantees a stage payoff of (1− 1

2n ) from stage n+1 on, so the game has a general
uniform value equal to 1. Finally if we consider the discounted evaluations, one
can show that the speed of convergence of vλ is here slower than λ :

vλ(p1) = 1− ln(λ)

ln(2)
λ+O(λ).

The partial observation allows for a speed of convergence slower than λ contrary
to the perfect observation case where it is well known that the convergence is in
O(λ).

Remark 4.3. It is here unknown if the uniform value exists in pure strategies,
i.e. if the behavior strategies σ(p) of Theorem 4.1 can be chosen with values in A.
This was already an open problem for the Cesàro-uniform value, that is when only
evaluations of the form θ = 1

n

∑n
t=1 δt are considered (see Rosenberg et al. [36]

and Renault [32] for different proofs requiring the use of behavioral strategies).
In the present proof, there are two related places where the use of lotteries on
actions is important. First in the proof of the convergence of the function hT,n
(within the proof of Theorem 3.10), we used Sion’s theorem in order to exchange
a supremum and an infimum, and to do so the convexity of the set of strategies
was required. Secondly when we prove that the extended transition is 1-Lipschitz
(see Lemma 3.27), the coupling between the two distributions u and u′ requires
some randomization.

4.2 Zero-sum repeated games with an informed controller

We finally consider zero-sum repeated games with an informed controller. We
start with a general model Γ = (K, I, J, C,D, q, g) of zero-sum repeated game,
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where we have 5 non empty finite sets: a set of states K, two sets of actions I and
J and two sets of signals C and D, and we also have a transition mapping q from
K×I×J to ∆(K×C×D) and a payoff function g from K×I×J to [0, 1]. Given
an initial probability π on ∆(K×C×D), the game Γ(π) = Γ(K, I, J, C,D, q, g, π)
is played as follows: at stage 1, a triple (k1, c1, d1) is drawn according to π, player
1 learns c1 and player 2 learns d1. Then simultaneously player 1 chooses an action
i1 in I and player 2 chooses an action j1 in J . Player 1 gets a (unobserved) payoff
r(k1, i1, j1) and player 2 the opposite payoff. Then a new triple (k2, c2, d2) is
drawn accordingly to q(k1, i1, j1). Player 1 observes c2, player 2 observes d2 and
the game proceeds to the next stage, etc...

A (behavioral) strategy for player 1 is a sequence σ = (σt)t≥1 where for each
t ≥ 1, σt is a mapping from (C × I)t−1 × C to ∆(I). Similarly a strategy for
player 2 is a sequence of mappings τ = (τt)t≥1 where for each t ≥ 1 ,τt is a
mapping from (D × J)t−1 ×D to ∆(J). We denote respectively by Σ and τ the
set of strategies of player 1 and player 2. An initial distribution π and a couple
of strategies (σ, τ) defines for each t a probability on the possible histories up to
stage t, which can be uniquely extended to a probability on the set of infinite
histories (K × C ×D × I × J)+∞.

Given an evaluation θ, we define the θ-payoff of (σ, τ) in Γ(π) as the expecta-
tion under IPπ,σ,τ of the payoff function,

γθ(π, σ, τ) = IEπ,σ,τ

(∑
t

θt r(kt, it, jt)

)
.

By Sion’s theorem the game with θ-payoff has a value:

vθ(π) = max
σ∈Σ

min
τ∈τ

γθ(π, σ, τ) = min
τ∈τ

max
σ∈Σ

γθ(π, σ, τ),

and we can define the general limit value as in the MDP framework. Note that
we do not ask the convergence to be uniform for all π in ∆(K ×C ×D), because
we will later make some assumptions, in particular on the initial distribution.

Definition 4.4. The repeated game Γ(π) = (K, I, J, C,D, q, g, π) has a general
limit value v∗(π) if vθ(π) converges to v∗(π) when TV (θ) goes to zero, i.e.:

∀ε > 0,∃α > 0,∀θ, ( TV (θ) ≤ α =⇒ (|vθ(π)− v∗(π)| ≤ ε) ) .

Definition 4.5. The repeated game Γ(π) has a general uniform value if it has a
general limit value v∗(π) and for each ε > 0 one can find α > 0 and a couple of
strategies σ∗ and τ ∗ such that for all evaluations θ with TV (θ) ≤ α:

∀τ ∈ τ , γθ(π, σ∗, τ) ≥ v∗(π)− ε and ∀σ ∈ Σ, γθ(π, σ, τ
∗) ≤ v∗(π) + ε.

Without further assumption, the general values may fail to exist. We will focus
here on the case of a repeated game with an informed controller, as introduced in
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Renault [33]. The first assumption concerns the information of the first player.
We assume that he can always reconstruct the current state and the signal of the
second player from his own signal:

Assumption 4.6. There exist two mappings k̃ : C → K and d̃ : C → D such
that, if E denotes {(k, c, d) ∈ K × C × D, k̃(c) = k, d̃(c) = d}, we have:
∀(k, i, j) ∈ K × I × J , q(k, i, j)(E) = 1, and π(E) = 1.

Moreover we will assume that only player 1 has a meaningful influence on the
transitions, in the following sense.

Assumption 4.7. The marginal of the transition on K ×D is not influenced by
player 2’s action. For k in K, i in I and j in J , we denote by q̄(k, i) the marginal
of q(k, i, j) on K ×D.

The second player may influence the signal of the first player but he can not
prevent him neither to learn the state nor to learn his own signal. Moreover
he can not influence his own information, thus he has no influence on his beliefs
about the state or about the beliefs of player 1 about his beliefs. A repeated game
satisfying assumptions 4.6 and 4.7 is called a repeated game with an informed
controller. It was proved in Renault [33] that for such games the Cesàro-uniform
value (that is, when only evaluations of the form θ = 1

n

∑n
t=1 δt are considered)

exists and we will extend it here to the general uniform value.

Example 4.8. We consider the simplest case of zero-sum repeated game with
incomplete information introduced by Aumann and Maschler in the sixties (see
reference [5]). It is defined by a finite family (Gk)k∈K of payoff matrices in [0, 1]I×J

and p ∈ ∆(K) an initial probability. At the first stage, some state k is selected
according to p and told to player 1 only. The second player knows the initial distri-
bution p but not the realization of the state. Then the matrix game Gk is repeated
over and over. At each stage the players observe past actions but not their payoff
(notice that player 1 can always reconstruct the payoff from the actions and the
state). Formally it is a zero-sum repeated game Γ = (K, I, J, C,D, q, g) as defined
previously, with C = K × I × J and D = I × J , and for all (k, i, j) ∈ K × I × J ,
g(k, i, j) = Gk(i, j) and q(k, i, j) = δk,(k,i,j),(i,j). For all p ∈ ∆(K), we denote
by Γ(p) the game where the initial probability π ∈ ∆(K × C × D) is given by
π =

∑
k∈K p(k)δk,(k,i0,j0),(i0,j0) with (i0, j0) ∈ I × J fixed.

For each n, we denote by vn(p) the value of the n-stage game with initial
probability p, where the payoff is the expected average of the first n payoffs. The
value satisfies the standard recursive formula:

vn(p) = sup
a∈∆(I)K

(
1

n
r(p, a) +

n− 1

n

∑
i∈I

a(p)(i)vn−1(q̂(p, a, i))

)
,

where ak ∈ ∆(I) represents the lottery on actions played by player 1 if the state
is k, a(p)(i) =

∑
k∈K p

kak(i) is the probability that player 1 plays i, r(p, a) =
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minj(
∑

k p
kGk(ak, j)) is the minimal expected payoff for player 1, and q̂(p, a, i) is

the conditional belief on ∆(K) given p, a, i:

q̂(p, a, i) =

(
p(k)ak(i)

a(p)(i)

)
k

.

Starting from a belief p about the state, if player 2 observes action i and knows
that the distribution of actions of player 1 is a, then he updates his beliefs to
q̂(p, a, i). Aumann and Maschler have proved that the limit value exists and is
characterized by

v∗ = cavf ∗ = inf{v : ∆(K)→ [0, 1], v concave v ≥ f ∗},

where f ∗(p) = V al
(∑

k p
kGk

)
for all p ∈ ∆(K). The function f ∗ is the value of

the game, called the non-revealing game, where player 1 is forbidden to use his
information.

Theorem 4.9. A zero-sum repeated game with an informed controller has a gen-
eral uniform value.

Proof of Theorem 4.9: Assume that Γ(π) = (K, I, J, C,D, q, g, π) is a repeated
game with an informed controller, i.e. that assumptions 4.6 and 4.7 are satisfied.
The proof will consist of 5 steps. First we introduce an auxiliary standard Markov
Decision Process Ψ(π̂) on the state space X = ∆(K). Then we show that for all
evaluations θ, the repeated game Γ(π) and the MDP Ψ(π̂) have the same θ-value.
In step 3 we check that the MDP satisfies the assumption of Theorem 3.20 so it
has a general limit value and a general uniform value v∗. As a consequence the
repeated game has a general limit value v∗(π). Then we prove that player 1 can
use an ε-optimal strategy of the auxilliary MDP in order to guarantee v∗(π)− ε
in the original game. Finally we prove that Player 2 can play by blocks in the
repeated game in order to guarantee v∗(π) + ε. And we obtain that v∗(π) can
be guaranteed by both players in the repeated game, so it is the general uniform
value of Γ(π).

For every P ∈ ∆(K × C ×D), we denote by P the marginal of P on K ×D
and we put P̂ = ψD(P ) where ψD is the disintegration with respect to D (recall
Theorem 2.22): for all µ ∈ ∆(K ×D), ψD(µ) =

∑
d∈D µ(d)δµ(.|d).

Step 1: We put X = ∆(K) and A = ∆(I)K and for every p in X, a in A and
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b in ∆(J), we define:

r(p, a, b) =
∑

(k,i,j)∈K×I×J

pkak(i)b(j)g(k, i, j) ∈ [0, 1],

r(p, a) = inf
b∈∆(J)

r(p, a, b) = inf
j∈J

r(p, a, j),

q(p, a) =
∑

(k,i)∈K×I

pkak(i)q(k, i) ∈ ∆(K ×D),

q̂(p, a) = ψD(q(p, a)) =
∑
d∈D

q(p, a)(d)δq̂(p,a,d) ∈ ∆f (X).

Here q̂(p, a, d) ∈ ∆(K) is the belief of the second player on the new state after
observing the signal d and knowing that player 1 has played a at p:

∀k′ ∈ K, q̂(p, a, d)(k′) =
q(p, a)(k′, d)

q(p, a)(d)
=

∑
k p

kq(k, a(k))(k′, d)∑
k p

kq(k, a(k))(d)
.

We define the auxiliary MDP Ψ = (X,A, q̂, r), and denote the θ-value in the MDP
by v̂θ. The MDP with initial state π̂ has strong links with the repeated game Γ(π).

Step 2: By proposition 4.23, part b) in Renault [33], we have for all evalua-
tions θ with finite support:

vθ(π) = v̂θ(π̂).

The proof relies on the same recursive formula satisfied by v and v̂, and the
equality can be easily extended to any evaluation θ.

∀θ ∈ ∆(IN∗),∀p ∈ X, vθ(p) = sup
a∈A

inf
b∈B

( θ1r(p, a, b) + (1− θ1)vθ+(q̂(p, a)) ) .

where vθ+ is naturally linearly extended to ∆f (X). As a consequence if Ψ(π̂) has
a general limit value so does the repeated game Γ(π).

Step 3: Let us check that Ψ satisfies the assumption of Theorem 3.20. Con-
sider p, p′ in X, a in A, and α ≥ 0 and β ≥ 0. We have:

|αr(p, a)− βr(p′, a)| ≤ sup
b∈∆(J)

|αr(p, a, b)− βr(p′, a, b)|

≤ sup
b∈∆(J)

|
∑
k∈K

αpkg(k, ak, b)− βp′kg(k, ak, b)|

≤ sup
b∈∆(J)

∑
k∈K

|αpk − βp′k| = ‖αp− βp′‖1.
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Moreover, let ϕ : ∆(K) −→ IR be in D1.

|αϕ(q̂(p, a))− βϕ(q̂(p′, a))| =
∑
d∈D

(αq̄(p, a)(d)ϕ(q̂(p, a, d))− βq̄(p′, a)(d)ϕ(q̂(p′, a, d)))

≤
∑
d∈D

‖α q̄(p, a)(d) q̂(p, a, d)− β q̄(p′, a)(d) q̂(p′, a, d)‖1

≤
∑
d∈D

‖α (q̄(p, a)(k′, d))k′ − β (q̄(p′, a)(k′, d))k′‖1

≤
∑
d∈D

∑
k∈K

‖αpk (q̄(k, a)(k′, d))k′ − βp′k (q̄(k, a)(k′, d))k′‖1

≤
∑
d∈D

∑
k′∈K

∑
k∈K

q̄(k, a)(k′, d)|αpk − βp′k| = ‖αp− βp′‖1.

So Ψ = (X,A, q̂, r) has a general limit value and a general uniform value that
we denote by v∗. As a consequence, Γ(π) has a general limit value v∗(π).

Step 4: Given ε > 0, there exists α > 0 and a strategy σ in the MDP
Ψ(π̂) such that the θ-payoff in the MDP is large: γ̂θ(π̂, σ) ≥ v∗(π) − ε when-
ever TV (θ) ≤ α. Moreover if we look at the end of the proof of Theorem
3.20 we can choose σ to be induced by a deterministic play in the Gambling
House Γ̂ with state space Z = ∆f (X) × [0, 1]. As a consequence one can
mimic σ to construct a strategy σ∗ in the original repeated game Γ(π) such
that: ∀τ ∈ τ , γθ(π, σ∗, τ) ≥ v∗(π)− ε whenever TV (θ) ≤ α.

Step 5: Finally we show that player 2 can also guarantee the value v∗ in
the repeated game Γ. Note that in the repeated game he can not compute the
state variable in ∆(K) without knowing the strategy of player 1. Nevertheless
he has no influence on the transition function so playing independently by large
blocks will be sufficient for him in order to guarantee v∗(π). We use the following
characterization of the value proved in Renault [33]:

v∗(π) = inf
n

sup
m
vm,n(π).

where vm,n is the value of the game with payoff function the Cesàro mean of the
stage payoffs between stages m + 1 and m + n. We proceed as in proposition
4.22 of Renault [33]. Fix n0 ≥ 1, then we consider the strategy τ ∗ which for
each j ∈ IN , plays optimally in the game with evaluation the Cesàro mean of the
payoffs on the block of stages Bj = {n0(j − 1) + 1, ..., n0j}. Since player 2 does
not influence the state, τ ∗ is well defined and guarantees supt≥0 vt,n0(z) on each
block Bj.

Let θ be an evaluation and σ be a strategy of player 1. For each j ≥ 1, denote
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by θj the minimum of θ on the block Bj. We have

γθ(π, σ, τ
∗) =

+∞∑
j=1

IEπ,σ,τ∗

 jn0∑
t=(j−1)n0+1

θt g(kt, at, bt)


≤

+∞∑
j=1

n0 θj sup
t≥0

vt,n0(π) + n0

+∞∑
t=1

|θt+1 − θt|

≤ sup
t≥0

vt,n0(π) + n0TV (θ).

Given ε, there exists n0 such that supt≥0 vt,n0(π) ≤ v∗(π) + ε. Fix α = ε
n0

and τ ∗

defined as before then for all θ such that TV (θ) ≤ α, we have

sup
σ∈Σ

γθ(π, σ, τ
∗) ≤ v∗(π) + 2ε,

and this concludes the proof of Theorem 4.9. �

Example 4.10. The computation of the value is in general a difficult problem,
as shown by the next example introduced in Renault [31] and studied by Hörner
et al. [21]. In this example the value exists but has been computed only for some
values of the parameter. The set of states is K = {k1, k2}, the set of actions of
player 1 is I = {T,B}, the set of actions of player 2 is J = {L,R}, and the payoff
of player 1 is given by:

L R L R
T
B

(
1 0
0 0

)
and

T
B

(
0 0
0 1

)
.

k1 k2

The sequence of states follows an exogeneous Markov chain, with initial proba-

bility (1/2, 1/2) and transition matrix

(
p (1− p)

(1− p) p

)
, where p is a given

parameter. At the beginning of every stage, only player 1 oberves the cur-
rent state in K, and at the end of each stage the actions played are observed.
(with the previous notations C = K × I × J , D = I × J , and q(k, i, j) =
p δk,(k,i,j),(i,j) + (1− p) δk′,(k′,i,j),(i,j) for all k in K, k′ ∈ K\{k}, i in I and j in J).

For each value of the parameter p ∈ [0, 1], we have a repeated game Γp and by
symmetry it is sufficient to study the case p ∈ [1/2, 1]. If p = 1 we are in the setup
of Example 4.8 and the value is clearly 1/4. Hörner et al. [21] proved that for
p ∈ [1/2, 2/3), the value is vp = p

4p−1
. For p ≥ 2/3 the value is not known, except

for p∗, the solution of 9p3 − 12p2 + 6p− 1 = 0, where one has vp∗ = p∗

1−3p∗+6(p∗)2
.
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