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Abstract

We consider optimal control problem with an integral cost which is a mean of a given
function. As a particular case, the cost concerned is the Cesàro average. The limit of the value
with Cesàro mean when the horizon tends to in�nity is widely studied in the literature. We
address the more general question of the existence of a limit when the averaging parameter
converges, for values de�ned with means of general types.

We consider a given function and a family of costs de�ned as the mean of the function
with respect to a family of probability measures�the evaluations�on R+. We give several
conditions on the evaluations in order to obtain the uniform convergence of the associated
value function (when the parameter of the family converges).

Our main result gives a necessary and su�cient condition in term of the total variation of
the family of probability measures on R+. As a byproduct, we obtain the existence of a limit
value (for general means) for control systems having a compact invariant set and satisfying
suitable nonexpansive property.

Key words limit value, general means, long time average value

1 Introduction

We consider a control system de�ned on Rd whose dynamic is given by

y′(t) = f
(
y(t), u(t)

)
(1.1)

where f : Rd × U → Rd and u(·) is a measurable function � called the control � from R+ to U
a �xed metric space. We will make later on assumptions on (1.1) ensuring that for any initial
condition y(0) = y0, and any measurable control u(·), the equation (1.1) has a unique solution
t 7→ y(t, u, y0) de�ned on R+.

To any pair
(
y0, u(·)

)
, we associate to a cost∫ +∞

0
g
(
y(t, u, y0), u(t)

)
dθ(t),

where g : Rd × U × R is Borel measurable bounded and θ is a Borel probability measure on R+

(called an evaluation throughout the article). Denote by ∆(R+) the set of such measures .

We will refer the previously described optimal control problem by the short notation J =
〈U, g, f〉. Let θ ∈ ∆(R+), we de�ne for J = 〈U, g, f〉 the following value function:

Vθ(y0) = inf
u∈U

∫ +∞

0
g
(
y(t, u, y0), u(t)

)
dθ(t), (1.2)

where U denotes the set of measurable controls u : [0,+∞)→ U .

Typical means in the de�nition (1.2) of the value function are well studied in the literature for

Cesàro mean: ∀t > 0, θt with density s 7→ fθt(s) = 1
t1[0,t](s), and the t-horizon value is

Vθt(y0) = inf
u∈U

1

t

∫ t

s=0
g
(
y(s, u, y0), u(s)

)
ds

2



Abel mean: ∀λ ∈ (0, 1], θλ with density s 7→ fθλ(s) = λe−λs, and the λ-discounted value is

Vθλ(y0) = inf
u∈U

∫ +∞

s=0
λe−λsg

(
y(s, u, y0), u(s)

)
ds

The limit of the above value functions as t tends to in�nity or as λ tends to zero are well
investigated in the control literature, (cf. [1], [2], [3], [4], [6], [7] and the references therein),
which are often called ergodic control.

When θ ∈ ∆(R+) is given, the contribution of the interval [T,+∞) in the mean (1.2) is less
and less signi�cant as T becomes large. Thus the control problem is essentially interesting only
on [0, T0] for certain T0, roughly named the "duration" for the problem. In this article, we are
interested in the long-run property of J , i.e., the asymptotic behavior of the function θ 7→ Vθ
when the "duration" of θ tends to in�nity. In the particular examples of Cesàro mean and Abel
mean, the uniform convergence of Vθt as t tends to in�nity and of Vθλ as λ tends to 0 are studied.
It is a priori unclear how to de�ne the "duration" of a general evaluation θ over R+. If one just
assumes the expectation of θ to be very high, we can obtain very di�erent value functions, as
shown by the following

Example 1.1 Consider the uncontrolled dynamic y(t) = t, the running cost t 7→ g(t) =
1∪∞m=1[2m−1,2m](t), and two sequences of evaluations (µk)k≥1 and (νk)k≥1 with densities: fµk =
1
k1∪km=1[2m−1,2m] and fνk = 1

k1∪km=1[2m−2,2m−1]. Clearly, Vµk = 1 and Vνk = 0, ∀k ≥ 1.

For this reason, we introduce an asymptotic regularity condition for evaluations, called the
long-term condition (LTC for short), to express the "extremely long duration" and the "asymp-
totic uniformity of distributions over R+", and we will study the convergence of the value func-
tions along a sequence of evaluations satisfying the LTC.

More precisely, for any s ≥ 0, we de�ne the s-total variation of an evaluation θ to be the total
variation between the measure θ and its s-shift along R+:

TVs(θ) = max
Q∈B(R+)

|θ(Q)− θ(Q+ s)|.

We say that a sequence of evaluations (θk)k≥1 satis�es the LTC if:

∀S > 0 sup
0≤s≤S

TVs(θ
k) −−−→

k→∞
0.

The optimal control problem J = 〈U, g, f〉 is said to have a general limit value given by some
function V ∗ de�ned on Rd if for any sequence (θk)k satisfying the LTC, (Vθk(y0))k converges
uniformly to V ∗ as k tends to in�nity.

Our main result (Theorem 4.1) states that for any (θk)k satisfying the LTC, (Vθk)k converges
uniformly if and only if the family {Vθk} is totally bounded with respect to the uniform norm.
Moreover, in this case, the limit is characterized by the following:

V ∗(y0) =def sup
θ∈∆(R+)

inf
s∈R+

inf
u∈U

∫ ∞
t=0

g (y(t+ s, u, y0), u(t+ s)) dθ(t), ∀y0 ∈ Rd. (1.3)
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The above function V ∗ naturally appears to be the unique possible long-term value function of
the control problem.

As a byproduct of our main result, we obtain the existence of general limit value for any
control problem J = 〈U, g, f〉 with a running cost g that does not depend on u and with a
control dynamic (1.1) which is non-expansive and has a compact invariant set. This can be
viewed as a generalization of already obtained results in [8] for optimal control with Cesàro
mean.

Existing results in the erdogic control literature are concerned mainly with the convergence of
the t-horizon Cesàro mean values or the convergence of the λ-discounted Abel mean values. To
the best of the authors' knowledge, this paper is the �rst to consider general long-term evaluations
for optimal control problems.

Also it is worth pointing out that while many works (including [1], [2], [3], [4], [6], [7]) suppose
controllability or ergodicity conditions, the present approach does not reply on such conditions.
This could be understood by the fact that the limit value V ∗ may depend on the initial state y0

(which does not occur under ergodic or controlability assumptions).

We also make here a link with the discrete time framework, where an evaluation θ = (θm)m≥1

is a probability measure over positive integers N∗ = N\{0}, and θt is the weight for the stage-
t payo�. The analogue notion of total variation is de�ned for any θ ∈ ∆(N∗): TV (θ) =∑∞

m=1 |θm+1 − θm| (cf. [12] and [10]). Recently, the existence of general limit value of dy-
namic optimization problems in several discrete time frameworks has been obtained in [10], [11]
and [13]. Our work is partially inspired by [10]. Similar idea and tool for the proof appeared in
[9].

The article is organized as follows. Section 2 contains some preliminary notations and basic
examples. The long-term condition is introduced and studied in Section 3. Section 4 contains our
main result and its consequences. We discuss in the end of this section two (counter)examples.
Section 5 is devoted to the proof of the main result. A weaker notation of LTC is discussed in
Section 6.

2 Preliminaries

Consider now the optimal control problem J = 〈U, g, f〉 described by (1.1)-(1.2). We make the
�oowing assumptions on g and f :

the function g : Rd × U → R is Borel measurable and bounded;

the function f : Rd × U → Rd is Borel measurable, and satis�es:

(∗). ∃L ≥ 0,∀(y, y) ∈ R2d,∀u ∈ U, ||f(y, u)− f(y, u)|| ≤ L||y − y||,
(∗∗). ∃a > 0,∀(y, u) ∈ Rd × U, ||f(y, u)|| ≤ a(1 + ||y||).

(2.1)

Under these hypotheses, given any control u in U , (1.1) has a unique absolutely continuous
solution t 7→ y(t, u, y0) de�ned on de�ned on [0,+∞). As the running cost function g : Rd×U →
R is bounded, we can always assume that g : Rd × U → [0, 1] after some a�ne transformation.

Below we introduce several notations.
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θ-evaluated cost γθ(y0, u) Given θ ∈ ∆(R+) and y0 ∈ Rd, the θ-evaluated cost induced by a
control u is denoted by:

γθ(y0, u) =

∫ ∞
0

g (y(s, u, y0), u(s)) dθ(s),

With this notation, the θ-value function in (1.2) writes as Vθ(y0) = infu∈U γθ(y0, u).

Reachable map Rt For any y0 ∈ Rd, the reachable map in R+, t 7→ Rt(y0), is de�ned as:

Rt(y0) = {y ∈ Rd|∃ u ∈ U : y(t, u, y0) = y}. (2.2)

Rt(y0) represents the set of states that via certain control the dynamic can reach in at time
t, starting from the initial state y0 at time 0. We write Rt(y0) = ∪ts=0Rs(y0) and R(y0) =
∪∞s=0Rs(y0). R(y0) is the set of states that can be reached in any �nite time starting from y0.

Image measure Tt]θ and the auxiliary value function VTt]θ Given t ∈ R and θ in ∆(R+),
we use Tt]θ to denote the image (push-forward) measure of θ by the function s 7→ s+ t, i.e.,

Tt]θ(Q) = θ
(
T −1
t (Q)

)
= θ(Q− t), ∀Q ∈ B(R+),

where B(R+) denotes the set of all Borel subsets in R+. This leads us to write the t-shift
θ-evaluated cost induced by a control u as following:

γTt]θ(y0, u) =

∫ ∞
0

g (y(s+ t, u, y0), u(s+ t)) dθ(s), ∀t ≥ 0. (2.3)

Taking on both sides of (2.3) the in�mum over u ∈ U and using the notation of reachable map
Rt, we obtain the t-shift θ-value function

VTt]θ(y0) = inf
u∈U

∫ +∞

0
g(y(s+ t, u, y0), u(s+ t))dθ(s) = inf

y∈Rt(y0)
Vθ(y). (2.4)

The interpretation of the function VTt]θ(y0) is the following: consider the control problem where
the controller is allowed to choose (with no cost) a "good" initial state in the reachable set Rt(y0)
and the evaluation θ begins from the time t on, and VTt]θ(y0) is the corresponding value.

s-total variation Given an evaluation θ, de�ne its s-total variation for each s ≥ 0:

TVs(θ) = sup
Q∈B(R+)

|θ(Q)− θ(Q+ s)|. (2.5)

Long-term condition (LTC) A sequence of evaluations (θk)k≥1 satis�es the LTC if:

∀S > 0, TV S(θk) =def sup
0≤s≤S

TVs(θ
k) −−−→

k→∞
0. (2.6)

De�nition 2.1 Let V be a function de�ned on Rd. The optimal control problem J has V as a
general limit value if and only if: for any sequence of evaluations (θk)k≥1 satisfying the LTC,
for all y0 in Rd, (Vθk(y0)) converges to V (y0) as k tends to in�nity, and moreover the convergence
is uniform in y0.
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Below are several some basic examples.

Example 2.2 Here y lies in R2 seen as the complex plane, there is no control, and the dynamic
is given by f(y, u) = i y, where i2 = −1. We clearly have

Vθk(y0) −−−→
k→∞

1

2π

∫ 2π

0
g(|y0|erit)dt,

for any sequence of evaluations (θk)k satisfying the LTC.

Example 2.3 Here y lies in the complex plane again, with f(y, u) = i y u, where u ∈ U is a
given bounded subset of R, and g is any continuous function in y (which thus does not depend
on u).

Example 2.4 f(y, u) = −y + u, where u ∈ U a given bounded subset of Rd, and g is any
continuous function in y (which thus does not depend on u).

We show later (using Corollary 4.6) that the general limit value exists in Examples 2.3 and 2.4.

3 On the long-term condition (LTC)

In this section, we discuss the LTC. First, we give the following remarks.

Remark 3.1 (a). From the de�nition, one obtains

∀s ≥ 0,∀t ≥ 0,∀θ ∈ ∆(R+), TVs+t(θ) ≤ TVs(θ) + TVt(θ).

This implies that (θk)k≥1 satis�es the LTC if and only if ∃S0 > 0, s.t. TV S0(θk) −−−→
k→∞

0.

(b). If one takes Q = R+ in de�nition of TVs(θ
k) for each s ≥ 0 and each k ≥ 1, we deduce that

if (θk)k≥1 satis�es the LTC, then θk([0, s]) −−−→
k→∞

0 for any s ≥ 0.

Remark 3.2 Let θ be an evaluation absolutely continuous w.r.t. the Lebesgue measure on R+,
and fθ its density. Sche�é Theorem (cf. [5], Theorem 1 in p.12) implies that:

∀s ≥ 0, 2TVs(θ) = Is(θ) =def

∫ ∞
t=0
|fθ(t+ s)− fθ(t)|dt.

Thus, if (θk)k≥1 is a sequence of evaluations with densities (fθk)k≥1:
(a). (θk)k≥1 satis�es the LTC if and only if sup0≤s≤1 Is(θ

k) −−−→
k→∞

0. If moreover, for each

k ≥ 1, t 7→ fθk(t) is non increasing on R+, then (θk)k≥1 satis�es the LTC if and only if ∀s ≥ 0,
θk([0, s]) =

∫∞
t=0 fθ(t)dt−

∫∞
t=0 fθ(t+ s)dt −−−→

k→∞
0.

(b). if (θk)k≥1 satis�es the LTC, then
∫∞
t=0 tfθk(t)dt −−−→

k→∞
∞. Indeed, Chebychev's inequality

gives that
∫∞
t=0 tfθk(t)dt ≥M

(
1− θk([0,M ])

)
for all M > 0.
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Here we discuss several cases where the LTC condition is satis�ed.

Example 3.3 (Uniform distributions) Assume that for each k, θk is the uniform law over the
interval [ak, bk], with 0 ≤ ak ≤ bk. For each k,

• s ≥ bk − ak: Is(θ
k) =


2

bk−ak if 0 < s < ak
1+(bk−s)
bk−ak if ak < s < bk

1
bk−ak if bk < s

,

• s < bk − ak: Is(θ
k) =

{
2s

bk−ak if 0 < s < ak
2s

bk−ak if ak < s < bk
.

One can check easily that (θk)k satis�es the LTC if and only if bk − ak −−−→
k→∞

∞. Indeed, by

Remark 3.2 (a), it is su�cient to look at Is(θ
k) for s ∈ [0, 1].

Example 3.4 (Abel average) Assume that for each k, θk has density s 7→ fθk(s) = λke
−λks1R+(s),

with λk > 0. Since ∀k ≥ 1, s 7→ fθk(s) is non increasing, so Remark 3.2 (a) implies that (θk)k
satis�es the LTC if and only if: ∀T > 0, θk([0, T ]) =

∫ T
s=0 λke

−λksds = 1 − e−T/λk −−−→
k→∞

0,

which is again equivalent to λk −−−→
k→∞

0.

Example 3.5 (Folded normal distributions) Assume that for each k, θk is the distribution of a
random variable |Xk|, where Xk follows a normal law N (mk, σ

2
k). The density of θk is given by:

∀t ≥ 0, fθk(t) =
1

σk
√

2π

[
exp

(
−1

2

(
t−mk

σk

)2
)

+ exp

(
−1

2

(
t+mk

σk

)2
)]

.

Claim 3.1 (θk)k satis�es the LTC if and only if σk −−−→
k→∞

∞.

Our argument relies on the following lemma, whose proof is put in the Appendix. Without loss
of generality, we may assume that mk is non-negative for each k.

Lemma 1 Let θ be the distribution of X where |X| follows the normal law N (m,σ) with m,σ >
0. There exists some t∗ ∈ [0,m) such that f ′θ(t) > 0 for any t ∈ (0, t∗) and f ′θ(t) < 0 for any
t ∈ (t∗,∞).

Proof for Claim 3.1 We apply Lemma 1 to each evaluation θk to obtain some t∗k ∈ [0,mk)
such that: fθk(·) is increasing on [0, t∗k) and decreasing on [t∗k,∞). This enables us to write:

∀s ≤ t∗k, Is(θ
k) =

∫ t∗k

t∗k−s
fθk(t)dt+

∫ t∗k

t∗k−s
|fθk(t+ s)− fθk(t)|dt+

∫ t∗k+s

t∗k

fθk(t)dt.
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We deduce then sfθk(t∗k − s) ≤ Iθk(s) ≤ 4sfθk(tk∗) for s ≤ t∗k. Assume below t̂∗ =def

lim infk→∞ t
∗
k > 0, and the analysis is analogue for t̂∗ = 0, which we omit here.

(*). Suppose that σk →∞, then

fθk(t∗k) =
1

σk
√

2π

[
exp

(
−1

2

(
t∗k −mk

σk

)2
)

+ exp(−1

2

(
t∗k +mk

σk

)2

)

]
≤ 2

σk
√

2π
−−−→
k→∞

0.

This implies that: ∀S ∈ [0, t̂∗], sup0≤s≤S Is(θ
k) −−−→

k→∞
0.

(**). Conversely, suppose that (θk)k satis�es the LTC. Then for any s < t̂∗, Is(θ
k) thus fθk(t∗k−s)

vanishes as k tends to in�nity. This implies that either σk → ∞ or (σk)k is bounded and(
mk − (t∗k − s)

)
k
→∞. Lemma 1 shows that the speci�ed point t∗k for the evaluation θk satis�es

(t∗k)
2 ≥ m2

k − σ2
k, thus mk − (t∗k + s) ≤ mk − t∗k ≤

σ2
k

mk+t∗k
≤ σ2

k
mk

. If (σk)k is bounded, (mk − t∗k)k

thus (mk)k should tend to in�nity, but this leads to a contradiction with mk − t∗k ≤
σ2
k

mk
. �

Below we link the LTC condition to the discrete time framework. In a discrete time dynamic
optimization problem, a general evaluation on the payo� stream is a probability distribution over
N∗ = N/{0} the set of postive integers. For any θ = (θ1, ..., θt, ...) in ∆(N∗), its "total variation"
TV (θ) =

∑∞
m=1 |θm+1− θm| is the stage by stage absolute di�erence between the measure θ and

its one-stage "shift" measure θ′ = (θ2, ..., θt+1, ...). (cf. Sorin [12] or Renault [11]).

Compare with any ξ in ∆(R+): TVs(ξ) = supQ∈B(R+) |ξ(Q)−ξ(Q+s)| is the total variation of
the measure ξ and its s-shift image measure T−s]ξ. For ξ being absolutely continuous, 2TVs(ξ) =
Is(ξ) =

∫∞
t=0 |fξ(t + s) − fξ(t)|dt. When the sequence of evaluations admits step functions as

densities, this link is much clearer as seen by the following

Proposition 3.6 Let (θk)k be a sequence of absolutely continuous evaluations in ∆(R+), and

their densities are given as: ∀k ≥ 1, fθk =
∑∞

m=1 θ
k
m1[m−1,m), where (θ

k
m)m≥1 is a non negative

sequence summing to 1. Then (θk)k satis�es the LTC if and only if
∑∞

m=1 |θ
k
m+1 − θ

k
m| −−−→

k→∞
0.

Proof : Fix s ∈ [0, 1]. We shall write for each k,

Is(θ
k) =

∞∑
m=1

∫
[m−1,m)

∣∣∣fθk(t+ s)− fθk(t)
∣∣∣dt.

For each m = 1, 2, ..., we have∫
[m−1,m)

∣∣∣fθk(t+ s)− fθk(t)
∣∣∣dt =

∫
[m−1,m−s)

∣∣∣fθk(t+ s)− fθk(t)
∣∣∣dt+

∫
[m−s,m)

(
fθk(t+ s)− fθk(t)

)
dt

=s|θkm+1 − θ
k
m|.

As a consequence,Is(θ
k) = s

∑∞
m=1 |θ

k
m+1 − θ

k
m| ≤

∑∞
m=1 |θ

k
m+1 − θ

k
m|, ∀s ∈ [0, 1]. In view of

Remark 3.2, (θk)k satis�es the LTC if and only if
∑∞

m=1 |θ
k
m+1 − θ

k
m| −−−→

k→∞
0. �

We end this section by a technical lemma, which will be useful in later results.
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Lemma 3.7 Fix any θ ∈ ∆(R+) and any t ∈ R+, we have∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s− t)dθ(s)

∣∣∣∣∣ ≤ TVt(θ)
and ∣∣∣∣∣

∫
[0,+∞)

h(s)dθ(s)−
∫

[0,+∞)
h(s+ t)dθ(s)

∣∣∣∣∣ ≤ 2TVt(θ),

for any h ∈M(R+, [0, 1]), whereM(R+, [0, 1]) =
{
h
∣∣∣h : R+ → [0, 1],Borel measurable

}
.

Proof : By de�nition of Ts]θ for any θ in ∆(R+) and s ∈ R, we have∫
[0,+∞)

h(s)dθ(s)−
∫

[t,+∞)
h(s− t)dθ(s) =

∫
[0,+∞)

h(s)dθ(s)−
∫

[0,+∞)
h(s)dT−t]θ(s) (3.1)

and∫
[0,+∞)

h(s)dθ(s)−
∫

[0,+∞)
h(s+ t)dθ(s) =

∫
[0,+∞)

h(s)dθ(s)−
∫

[0,+∞)
h(s)dTt]θ(s). (3.2)

Since T−t]θ and Tt]θ are both Borel measures on R+, "θ−T−t]θ" and "θ−Tt]θ" are both signed
measures. Hahn's decomposition theorem1 implies that:

sup
h∈M(R+,[0,1])

∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s)dT−t]θ(s)

∣∣∣∣∣ = sup
Q∈B(R+)

∣∣∣θ(Q)− T−t]θ(Q)
∣∣∣.

and

sup
h∈M(R+,[0,1])

∣∣∣∣∣
∫

[0,+∞)
h(s)dθ(s)−

∫
[0,+∞)

h(s)dTt]θ(s)

∣∣∣∣∣ = sup
Q∈B(R+)

∣∣∣θ(Q)− Tt]θ(Q)
∣∣∣.

Combining with (3.1)-(3.2), we obtain:∣∣∣∣∫ ∞
s=0

h(s)dθ(s)−
∫ ∞
s=t

h(s− t)dθ(s)
∣∣∣∣ = sup

Q∈B(R+)

∣∣∣θ(Q)− θ(Q+ t)
∣∣∣ = TVt(θ)

and∣∣∣∣∫ ∞
s=0

h(s)dθ(s)−
∫ ∞
s=0

h(s+ t)dθ(s)

∣∣∣∣ ≤ sup
Q∈B(R+)

∣∣∣θ(Q)− θ(Q− t)
∣∣∣ ≤ θ([0, t))+ TVt(θ) ≤ 2TVt(θ).

The proof for the lemma is complete. �

1The �rst author acknowledges Eilon Solan for the discussion on using Hahn's decomposition theorem.
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4 Main Result

First rewrite the function V ∗(y0)
(
de�ned in (1.3)

)
as:

V ∗(y0) = sup
θ∈∆(R+)

inf
t∈R+

VTt ] θ(y0) = sup
θ∈∆(R+)

inf
y∈R(y0)

Vθ(y).

We shall give the following interpretation: consider the auxiliary optimal control problem (game)
where an adversary of the controller chooses a worst evaluation θ, and then knowing the θ as
given, the controller chooses a "good" initial state in the reachable set of any �nite time t. The
running cost from the time t is evaluated by θ. V ∗(y0) is then the value of this auxiliary problem
starting from y0.

Recall that a metric space X is totally bounded if for each ε > 0, X can be covered by �nitely
many balls of radius ε.

Theorem 4.1 Let (θk)k≥1 be a sequence of evaluations satisfying the LTC. Assume (2.1) for
the optimal control problem J = 〈U, g, f〉. Then,
(i). V ∗ = supk∈N inft∈R+ VTt ] θk .
(ii). Any accumulation point (for the uniform convergence) of the sequence (Vθk)k is equal to
V ∗.
(iii). The sequence (Vθk)k uniformly converges if and only if the space ({Vθk}, || · ||∞) is totally
bounded.

Remark 4.2 Let (θk)k be a sequence of evaluations which contains a subsequence (θϕk)k satis-
fying the LTC. Then Part (i) of Theorem 4.1 still holds true for (θk)k.

A more precise convergence result is obtained if we suppose that there exists a compact set
Y ⊆ Rd which is invariant for (1.1), i.e., y(t, u, y0) ∈ Y for all u ∈ U , t ≥ 0 and y0 in Y .

Corollary 4.3 Assume (1.1) and (2.1) for the optimal control problem J = 〈U, g, f〉. Suppose
that there is a compact set Y ⊆ Rd which is invariant for (1.1), and that the family {Vθ : θ ∈
∆(R+)} is uniformly equicontinuous on Y . Then there is general uniform convergence of the
value functions {Vθ} to V ∗, namely,

∀ε > 0, ∃S > 0,∃η > 0 s.t. ∀θ ∈ ∆(R+),with TV S(θ) ≤ η, ||Vθ − V ∗||∞ ≤ ε.

Proof : By assumption, the family of value functions {Vθ : θ ∈ ∆(R+)} is both uniformly
bounded and uniformly equicontinuous on the compact invariant set Y , so we can use Ascoli's
theorem to deduce the totally boundedness of the space ({Vθ}, || · ||∞). Theorem 4.1 implies that:
for any (θk)k satisfying the LTC, the corresponding sequence of value functions (Vθk) converges
uniformly to V ∗ as k tends to in�nity. Thus J has a general limit value given as V ∗.

Next we show that the existence of general limit value given as V ∗ is su�cient to deduce the
general uniform convergence of {Vθ} to V ∗. Suppose by contradiction that there is no general
uniform convergence of {Vθ} to V ∗, i.e.,

∃ε0 > 0, ∀S > 0, ∀ηk > 0, ∃θk ∈ ∆(R+) with TV S(θk) ≤ ηk, and ||Vθk − V ∗||∞ > ε0, ∀k ≥ 1.
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Let ε0 > 0 be �xed as above. We take a vanishing positive sequence (ηk)k and some S0 > 0, then
there is a sequence of evaluations (θk) with TV S0(θk) ≤ ηk −−−→

k→∞
0, and lim infk ||Vθk −V ∗||∞ ≥

ε0. According to Remark 3.1 (a), such (θk)k satis�es the LTC, while (Vθk) does not converges
uniformly to V ∗. This is a contradiction. The proof is complete. �

Remark 4.4 From the proof of Corollary 4.3, we see that the general uniform convergence of
{Vθ} to V ∗ and the existence of general limit value V ∗ are equivalent.

We shall give the existence result of general limit value under su�cient conditions expressed
directly in terms of properties of the control dynamic (1.1) and of the running cost g.

Let us introduce the following non expansive condition (cf. [8]). The control dynamic (1.1)
is non expansive if

∀y1, y2 ∈ Rd, sup
a∈U

inf
b∈U
〈y1 − y2, f(y1, a)− f(y2, b)〉 ≤ 0.

De�nition 4.5 The optimal control problem J = 〈U, g, f〉 is called compact non expansive

if it satis�es the following three conditions:
(A.1) there is a compact set Y ⊆ Rd is the invariant for (1.1);
(A.2) the running cost function g(·) does not depend on u, and is continuous in y;
(A.3) the control dynamic (1.1) is non expansive on Y .

Corollary 4.6 Assume (2.1) for the optimal control problem J = 〈U, g, f〉. Suppose that that
J is compact non expansive, then the general limit value exists in J and is given as V ∗.

Proof : Under (A.1) and (A.3), Proposition 3.7 in [8] implies that:

∀(y1, y2) ∈ Y 2, ∀u ∈ U , ∃v ∈ U , s.t. ∀t ≥ 0, ||y(t, u, y1)− y(t, v, y2)|| ≤ ||y1 − y2||. (4.1)

We claim that the family (Vθ)θ∈∆(R+) is uniformly equicontinuous on Y , thus Corollary 4.3 and
Remark 4.4 apply. Fix any (y1, y2) ∈ Y 2, θ ∈ ∆(R+), and ε > 0. Let u be ε-optimal for Vθ(y1):

Vθ(y1) ≥
∫ +∞

s=0
g
(
y(s, u, y1)

)
dθ(s)− ε.

By the non expansive property, there exists v in U as in (4.1) such that

||y(s, u, y1)− y(s, v, y2)|| ≤ ||y1 − y2||, ∀s ≥ 0. (4.2)

By de�nition, Vθ(y2) ≤
∫ +∞
s=0 g

(
y(s, y2, v)

)
dθ(s), hence

Vθ(y2)− Vθ(y1) ≤
∫ +∞

s=0

[
g
(
y(s, v, y2))− g(y(s, u, y1)

)]
dθ(s) + ε.

Denoting ωg the modulus of continuity of g, we obtain in view of (4.2):

Vθ(y2)− Vθ(y1) ≤
∫ +∞

s=0

[
g
(
y(s, v, y2)

)
− g
(
y(s, u, y1)

)]
dθ(s) + ε ≤ ωg(||y1 − y2||) + ε.

Interchanging y1 and y2 and taking into account of ε > 0 being arbitrary, we deduce that
(Vθ)θ∈∆(R+) is uniformly equicontinuous on the invariant set Y . This �nishes the proof. �
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Remark 4.7 Both Example 2.3 and Example 2.4 satisfy conditions in Corollary 4.6, so there is
general uniform convergence of the value functions {Vθ} (the existence of general limit value).

Remark 4.8 Our result generalizes Proposition 3.3 in [8] which proved the uniform convergence
of the t-horizon values in compact non expansive optimal control problems.

We end this section by presenting two (counter)examples, showing that the results in Theorem
4.1 are not valid if some of their conditions is not satis�ed.

The �rst example is an uncontrolled dynamic. We show that if (θk)k contains no subse-
quence satisfying the LTC, then the result in Part (i) of Theorem 4.1 does not hold, i.e.,
supk≥1 inft≥0 VTt]θk(y0) < supθ∈∆(R+) inft≥0 VTt]θ(y0) for some y0 (cf. Remark 4.2).

Counter-example 4.9 Consider the uncontrolled dynamic on R: y(0) = y0 and y′(t) =
− (y(t)− 1) ,∀t ≥ 0. The trajectory is then y(t) = 1 + (y0 − 1)e−t. The running cost func-
tion g : R→ [0, 1] is given by:

g(y) =


0 if y < 0
y if 0 ≤ y ≤ 1
1 if y > 1

We have that V ∗(y0) = supθ∈∆(R+) inft∈R+ VTt]θ(y0) = 1, ∀y0 ∈ R. Indeed, let y0 be given and
�x any ε > 0, there is some Tε > 0 such that |y(T )− 1| ≤ ε for all T ≥ Tε. Take an evaluation
θ in ∆(R+) with θ([0, Tε]) = 0. This enables us to deduce that: for all t ≥ 0,

VTt]θ(y0) =

∫ ∞
t=Tε

g
(
y(s+ t)

)
dθ(s) ≥

∫ ∞
s=Tε

g
(
y(Tε)

)
dθ(s) ≥

(
1− y(Tε)

)
θ([Tε,∞]) ≥ 1− ε.

time t

distance of y(t) from 1

|y0 − 1|

0
ε

Tε

Figure 5.1: The solution y(t) = 1 + (y0 − 1)e−t to the dynamic is represented. Here, the thick
curve represents the distance of y(t) from the point 1, which is |y0−1|e−t the exponential function
e−t times the initial distance |y0 − 1|. For ε > 0, Tε > 0 is chosen such that |y(Tε)− 1| = ε.

Consider now any sequence of evaluations (θk)k which does not contain any subsequence satisfying
the LTC. Under the assumption that the density fθk for each evaluation θk is non increasing, we
show that Part (i) of Theorem 4.1 is not valid: V ∗ 6= supk∈N inft∈R+ VTt]θk .

Indeed, let us take any y0 < 1 and suppose that supk∈N inft∈R+ VTt]θk(y0) = V ∗(y0), which is
equal to 1 as was proved. Let ϕ(k) be a subsequence such that limk→∞ inft∈R+ VTt]θϕ(k)(y0) = 1.
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(θϕ(k))k does not satisfy the LTC by assumption, so Remark 3.2 (a) implies that there exists
some T > 0 with θϕ(k)([0, T ]) 9 0. Let ϕm be the subsequence of ϕ and η > 0 such that
θϕm(k)([0, T ]) −−−→

k→∞
η. We obtain for any k ≥ 1,

inf
t∈R+

VTt]θϕm(k)(y0) ≤ Vθϕm(k)(y0) =

∫ T

t=0
g (y(t)) dθϕm(k)(t) +

∫ ∞
t=T

g (y(t)) dθϕm(k)(t)

≤ y(T )θϕk(m)([0, T ]) + θϕk(m)([T,∞]).

This implies that for such �xed y0 < 1 , limk inft∈R+ VTt]θϕm(k)(y0) ≤ y(T )η + (1− η) < 1. This
contradicts the assumption that supk∈N inft∈R+ VTt]θk(y0) = 1, and our claim is proved.

In the second example, we study the convergence of the value functions of a control problem
along two di�erent sequences of evaluations satisfying the LTC. Along the �rst sequence, the
value functions converge uniformly to V ∗; while along the second, the value functions point-
wisely converge, but not uniformly (thus the family of value functions is not totally bounded for
the uniform norm), to a limit function which is di�erent from V ∗.

Counter-example 4.10 Consider the control problem on the state space R = (−∞,+∞), where
the control set is U = {+1,−1}; the dynamic is2 :f(y, u) = u for all (y, u) ∈ R+ × U and
f(y, u) = −1 for all (y, u) ∈ R∗− × U , where R∗− = R−/{0}; and the running cost function is:

g(y, u) =


+1 if u = +1, y ≥ 0
0 if u = −1, y ≥ 0

+K if y < 0

Suppose that K > 1 big enough, so the cost on R− is positive and high. Whenever the state
reaches y = 0, it is optimal to choose control u = +1 and this drives the state back to R+; on
R∗−, the dynamic is f = −1, independent of control and state. Vθ(y0) = K for all y0 in R∗− and
θ in ∆(R+), so the reduced state space is R+, and we consider value functions de�ned on it.

V ∗(y0) = supθ inft≥0 VTt]θ(y0) = 0 for any y0 ≥ 0. Fix any y0 ≥ 0. For any θ ∈ ∆(R+) and
ε > 0, let tε ≥ 0 such that θ([0, tε]) ≥ 1 − ε. De�ne now the control uε(·) to be: uε(t) = +1, if
t ∈ [0, tε] and uε(t) = −1 if t ∈ (tε,∞), which gives: γTtε ]θ(y0, u

ε) ≤ εK.

Consider (θk)k the sequence of evaluations with density fθk(s) = 1
k1[k,2k](s) for each k, and (θ̄k)k

the sequence of k-horizon evaluations with density fθ̄k(s) = 1
k1[0,k](s) for each k. We show that:

({Vθk}, || · ||∞) is totally bounded and (Vθk) converges uniformly to V ∗; while ({V
θ
k}, || · ||∞)

is not totally bounded and (V
θ
k) does not converge to V ∗.

Let y0 ≥ 0, we have that:

1. Vθk(y0) = 0, for all k ≥ 1. Indeed, one optimal control for Vθk(y0) can be taken as:
u∗(t) = +1, t ∈ [0, k] and u∗(t) = −1, t ∈ (k, 2k];

2Notice that the dynamic is discontinuous at y = 0 when u = +1. To get the desired asymptotic result under
the Liptchitz regularity, one can slightly modify dynamic to set f(y,+1) = y for y ∈ [0, 1] and others unchanged.
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2. V
θ
k(y0) = 0 if k ≤ y0 and V

θ
k(y0) = 1

2 −
y0
2k if k > y0. Indeed, for k ≤ y0, one optimal

control for V
θ
k(y0) can be taken as: u∗(t) = −1, t ∈ [0, k]; for k > y0, one optimal control

for V
θ
k(y0) can be taken as: u∗(t) = +1, t ∈ [0, k−y02 ] and u∗(t) = −1, t ∈ (k−y02 , k], so

γ
θ
k(y0, u

∗) = (k−y0)/2
k = 1

2 −
y0
2k .

See the following two pictures for illustration.

0 0

y0

k

π
4

π
4

y0

k

k−y0
2

one optimal control for θk one optimal control for θ
k
, k > y0

time time

distance from 0 distance from 0

u = +1 and g = 1 u = −1 and g = 0

Figure 5.2: The left �gure describes the dynamic of one optimal control for the evaluation θk,
which is u∗ = +1 on [0, k] and u∗ = −1 on (k, 2k]; the right �gure describes the dynamic of one
optimal control for the evaluation θ̄k with k > y0, which is u∗ = +1 on [0, k−y02 ] and u∗ = −1 on

(k−y02 , k]. Here, the vertical axis represents the distance of y(t) from zero and the thick trajectory
(resp. thin trajectory) corresponds to state on which u = +1 and g = 1 (resp. u = −1 and g = 0).

We deduce that (Vθk(y0))k converges uniformly to V ∗(y0) = 0 on R+; and that V
θ
k(y0) −−−→

k→∞
1
2 ,

while the convergence is not uniformly in y0 ∈ R+: indeed, for all k ≥ 1, V
θ
k(k) = 0.

5 Proof of main result: Theorem 4.1

Let's �x through out this section a sequence of evaluations (θk)k that satis�es the LTC. As the
proof is rather long, we divide it into two main parts:

• in Subsection 5.1, we present the �rst preliminary result, Proposition 5.1. It is used in
two ways: �rst, we obtain an immediate consequence of it for later use, which bounds
lim infk Vθk from below in terms of the auxiliary value functions {VTt]θk : k ∈ N∗, t ∈ R+};
second, we deduce from it in Corollary 5.2 the proof for Part (i) of Theorem 4.1.

• In Subsection 5.2, we prove Parts (ii)-(iii) of Theorem 4.1. Lemma 5.4 gives an upper
bound of lim supk Vθk in terms of the auxiliary value functions {VTt]θk : k ∈ N∗, t ∈ R+},
which is, together with the result from Proposition 5.1, used to end the proof.
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5.1 A �rst preliminary result and proof for Part (i)

Proposition 5.1 For any θ in ∆(R+), and any initial state y0 in Rd,

inf
y∈R(y0)

Vθ(y) = inf
t∈R+

VTt]θ(y0) ≤ lim inf
k

Vθk(y0).

In particular, we have for all y0 in Rd,

sup
k∈N∗

inf
t∈R+

VTt]θk(y0) ≤ lim inf
k

Vθk(y0).

Proof: Fix y0 and θ, we set β =def infy∈R(y0) Vθ(y). For any ε > 0 �xed, there exists some
T0 > 0 such that θ([T0,∞)) < ε. Take any control u in U . By de�nition of β, we have that

∀T ≥ 0,

∫ ∞
t=0

g (y(t+ T, u, y0), u(t+ T )) dθ(t) ≥ β,

thus

∀T ≥ 0,

∫ T0

t=0
g (y(t+ T, u, y0), u(t+ T )) dθ(t) ≥ β − ε. (5.1)

For each k ≥ 1, integrating both sides of (5.1) over T ∈ [0,∞) w.r.t. the evaluation θk, we obtain∫ ∞
T=0

∫ T0

t=0
g (y(t+ T, u, y0), u(t+ T )) dθ(t)dθk(T ) ≥ β − ε. (5.2)

Applying Fubini's Theorem to (5.2) yields

β − ε ≤
∫ T0

t=0

[∫ ∞
T=0

g (y(t+ T, u, y0), u(t+ T )) dθk(T )

]
dθ(t) =

∫ T0

t=0

[
γTt]θk(y0, u)

]
dθ(t), (5.3)

where γTt]θk(y0, u) =
∫∞
T=0 g (y(t+ T, u, y0), u(t+ T )) dθk(T ). According to Lemma 3.7, we have

|γθk(y0, u)− γTt]θk(y0, u)| ≤ 2TVt(θ
k). This enables us to rewrite (5.3) as:

β − ε ≤
∫ T0

t=0

(
γθk(y0, u) + 2TVt(θ

k)
)

dθ(t)

≤
(
γθk(y0, u) + 2TV T0(θk)

)
θ([0, T0])

≤ γθk(y0, u) + 2TV T0(θk).

The control u ∈ U being taken arbitrarily, we deduce that

β − ε ≤ Vθk(y0) + 2TV T0(θk).

Since (θk) satis�es the LTC, TV T0(θk) vanishes as k tends to in�nity. The proof is achieved. �

We end the proof for Part (i) of Theorem 4.1 by the following corollary of Proposition 5.1.

Corollary 5.2 [Proof for Part (i) of Theorem 4.1]

sup
θ∈∆(R+)

inf
t∈R+

VTt]θ(y0) = sup
k≥1

inf
t∈R+

VTt]θk(y0), ∀y0 ∈ Rd.
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Proof: Fix y0 ∈ Rd, and denote % = supk≥1 inft≥0 VTt]θk(y0). It is clear that % ≤
supθ∈∆(R+) inft≥0 VTt]θk(y0). Now for each k ≥ 1 there exists m(k) in R+ such that

VTm(k)]θ
k(y0) ≤ %+ 1/k. Since Tm(k)]θ

k � the image measure of θk by the function s 7→ s+m(k)
� is also an evaluation on R+ we have:

∀s ≥ 0, TVs(Tm(k)]θ
k) = sup

Q∈B(R+)
|θ(Q−m(k))− θ(Q−m(k) + s)| ≤ TVs(θk) + θk([0, s]).

We deduce that (Tm(k)]θ
k)k satis�es the LTC whenever (θk)k does so. According to Proposition

5.1, ∀θ ∈ ∆(R+), infy∈R(y0) Vθ(y) ≤ lim infk VTm(k)]θ
k(y0) ≤ %, thus supθ∈∆(R+) infy∈R(y0) Vθ(y) ≤

%. The proof is complete. �

5.2 Proof for Parts (ii)-(iii)

In this subsection, we give the proof for Parts (ii)-(iii) of Theorem 4.1. We begin with the
following result, which compares the values under evaluation θ and its t-"shifted" evaluation
Tt]θ for any t > 0.

Lemma 5.3 Let θ in ∆(R+) be any evaluation. Then: for all t ≥ 0 and y0 ∈ Rd,

Vθ(y0) ≤ inf
y∈Rt(y0)

Vθ(y) + 2TVt(θ).

Proof : Fix θ ∈ ∆(R+), t ≥ 0, y0 ∈ Rd. By Lemma 3.7, we have

γθ(y0, u) ≤ γTt]θ(y0, u) + 2TVt(θ), ∀u ∈ U .

For all ε > 0, take uε ∈ U be an ε-optimal control for VTt]θ(y0), i.e., γTt]θ(y0, u
ε) ≤ VTt]θ(y0) + ε.

We obtain that
γθ(y0, u

ε) ≤ VTt]θ(y0) + ε+ 2TVt(θ).

Since Vθ(y0) = infu∈U γθ(y0, u) and ε > 0 being arbitrary, we deduce that

Vθ(y0) ≤ VTt]θ(y0) + 2TVt(θ).

Finally notice that infy∈Rt(y0) Vθ(y) = VTt]θ(y0). The proof is complete. �

The following result gives an upper bound on lim supk Vθk in terms of the auxiliary value functions
{VTt]θk : k ∈ N∗, t ∈ R+}.

Lemma 5.4 For all T0 ≥ 0 and any y0 in Rd,

lim sup
k

Vθk(y0) = lim sup
k

inf
t≤T0

VTt]θk(y0).

In particular, for all T0 ≥ 0 and any y0 in Rd,

lim sup
k

Vθk(y0) ≤ sup
k∈N∗

inf
t≤T0

VTt]θk(y0).
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Proof: Fix T0 ≥ 0 and y0 ∈ Rd. The inequality ′′ lim supk inft≤T0 VTt]θk ≤ lim supk V
′′
θk

is clear by
taking t = 0 for each k. Now for the converse inequality ′′ lim supk inft≤T0 VTt]θk ≥ lim supk V

′′
θk
:

according to Proposition 5.3, we have that for all k and t ≤ T0,

Vθk(y0) ≤ VTt]θk(y0) + 2TVt(θ
k).

For each k ≥ 1, take tk ≤ T0 with VT
tk
]θk(y0) ≤ inf0≤t≤T0 VT

tk
]θk + 1

k , which gives us:

Vθk(y0) ≤ inf
0≤t≤T0

VTt]θk(y0) +
1

k
+ 2TVtk(θk)

≤ inf
0≤t≤T0

VTt]θk(y0) +
1

k
+ 2TV T0(θk).

Since (θk)k satis�es the LTC, TV T0(θk) vanishes as k tends to in�nity. By taking "lim supk" on
both sides of above inequality, the proof for the lemma is complete. �

Now we end the proof for Theorem 4.1. To do this, we �rst summarize results in Proposition 5.1
and Lemma 5.4 in the following chain form, which is then used for the study of the convergence
of (Vθk)k.

Corollary 5.5 For all T0 ≥ 0 and y0 in Rd,

sup
k≥1

inf
t≤T0

VTt]θk(y0) ≥ lim sup
k

Vθk(y0) ≥ lim inf
k

Vθk(y0) ≥ sup
k≥1

inf
t≥0

VTt]θk(y0)

Remark 5.6 Corollary 5.5 states that the uniform convergence of supk≥1 inft≤T0 VTt]θk to
supk≥1 inft≥0 VTt]θk as T0 tends to in�nity implies the uniform convergence of (Vθk)k as k tends to
in�nity. Moreover, according to Corollary 5.2, in case of uniform convergence, the limit function
is V ∗.

For any states y and y in Rd, let us de�ne d̃(y, y) = supk≥1 |Vθk(y)− Vθk(y)|. The space (Rd, d̃)
is now a pseudometric space (may not be Hausdor�).

This following is similar to the proof of Theorem 2.5 in [10], and is also similar to the proof of
Theorem 3.10 in [9]. We rewrite it here for sake of completeness. Roughly speaking, we shall use
the total boundedness of the space {Vθk} for the uniform metric so as to make the state space
(Rd, d̃) totally bounded for the pseudometric metric d̃. This allows us to prove the convergence
of the reachable set RT in �nite time to R at in�nity. We are then able to prove the convergence
of supk≥1 inft≤T0 VTt]θ to supk≥1 inft≥0 VTt]θ.

Proof for Theorem 4.1, Parts (ii)-(iii).

We �rst prove Part (iii). One direction is easy: the uniform convergence of (Vθk) implies the
totally boundedness of the space ({Vθk}, || · ||∞).

Let us prove the converse. Suppose that ({Vθk}, || · ||∞) is totally bounded, so there exists a
�nite set of indices I such that for all k ≥ 1, there exists i ∈ I satisfying ||Vθk −Vθi)||∞ ≤ ε. The
set {

(
Vθi(y)

)
, y ∈ Rd}, it is a subset of the compact metric space [0, 1]I with the uniform norm,

thus it is itself totally bounded and so there exists a �nite subset C of states in Rd such that

∀y ∈ Rd, ∃c ∈ C,∀i ∈ I, |Vθi(y)− Vθi(c)| ≤ ε.
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We have obtained that for each ε > 0, there exists a �nite subset C of Rd such that for every
y ∈ Rd, there is c ∈ C with d̃(y, c) ≤ ε. The pseudometric space (Rd, d̃) is itself totally bounded.
Equivalently, any sequence in Rd admits a Cauchy subsequence for d̃. Notice that all value
functions Vθk are clearly 1-Lipschitz for d̃.

Fix y in Rd, we observe that:

∀T, S ∈ R+, RT (y) ⊂ RT+S(y).

From the precompacity of (Rd, d̃) it is not di�cult to show (cf. Step 2 in the proof of Theorem
3.7 in [9]) that RT converges to R in the following sense

∀ε > 0,∃T ≥ 0, ∀y ∈ R(y),∃ỹ ∈ RT (y), d̃(y, ỹ) ≤ ε. (5.4)

By Corollary 5.5, for all T ≥ 0:

sup
k≥1

inf
y∈RT (y0)

Vθk(y) ≥ lim sup
k

Vθk(y) ≥ lim inf
k

Vθk(y) ≥ sup
k≥1

inf
y∈R(y)

Vθk(y).

Fix �nally ε > 0, and consider k ≥ 1 and T ≥ 0 given by assertion (5.4). Let y ∈ R(y) be
such that Vθk(y) ≤ infy∈R(y) Vθk(y) + ε. Let ỹ in RT (y) be such that d(y, ỹ) ≤ ε. Since Vθk is

1-Lipschitz for d̃, we obtain Vθk(ỹ) ≤ infy∈R(y) Vθk(y) + 2ε. Consequently, infy∈RT (y) Vθk(y) ≤
infy∈R(y) Vθk(y) + 2ε for all k, so

sup
k≥1

inf
y∈RT (z)(y)

Vθk(y) ≤ sup
k≥1

inf
y∈R(y)

Vθk(y) + 2ε.

One obtains that lim supk≥1 Vθk(y) ≤ lim infk≥1 Vθk(y) + 2ε, and so
(
Vθk(y)

)
k
converges. Since

(Rd, d̃) is precompact and all Vθk is 1-Liptschitz, the convergence is uniform.

Next, Part (ii) can be deduced from the proof of Part (iii). Let (θϕ(k)) be any subsequence
of (θk) that converges uniformly to some function V . This implies that ({Vθϕ(k)}, || · ||∞) is
totally bounded. As we have shown in the proof of Part (iii) that if ({Vθϕ(k)}, || · ||∞) is totally
bounded, (Vθϕ(k)) converges uniformly to V = V ∗, which implies Part (ii) that V ∗ is the unique
accumulation point (for the uniform convergence) of the sequence (Vθk)k. �

6 Discussion on a weaker long-term condition

One might state the long-term condition (LTC) in the following weaker form:

Long-term condition' (LTC') A sequence of evaluations (θk)k≥1 satis�es the LTC' if:

∀s > 0, TVs(θ
k) −−−→

k→∞
0. (6.1)

It is not clear whether the LTC' is strictly weaker than the LTC. One might want to construct
an example of (θk) such that TVs(θ

k) −−−→
k→∞

0 for all s > 0 while TV s0(θk) −−−→
k→∞

α > 0 for

some s0 > 0 and α > 0. The following example shows that this is possible if we consider only s
being rational numbers. In general, the question is still open.
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Example 6.1 Given a positive integer k, consider the density θk with support included in [0, k]
by dividing [0, k] in k2 consecutive small intervals of length 1/k, and θk is uniform over the union
of all small odd intervals... and puts no weight on even small intervals. De�ne the support

Sk =
⋃

l∈N,l≤ k2−1
2

,

[
2l

k
,
2l + 1

k

)
.

θk has density:

fk(x) =
2

k
1x∈Sk =

2

k
1x∈[0,k],E(kx)∈2N

(where 2N is the set of even numbers in N, E(x) is the integer part of x).

For each k, we have (consider s = 1/k):

sup
0≤s≤1

∫
x≥0

∣∣fk(x+ s)− fk(x)
∣∣dx ≥ 2− 1/k

Consider now only k of the form n!, and we de�ne the density gn = fn! for each n in N. For all
x ≥ 0,

gn(x+ s)− gn(x) =
2

n!

(
1E(n!(x+s))∈2N,x+s≤n! − 1E(n!x)∈2N,x≤n!

)
.

Assume s is a rational number. Then for n large enough, n!s is an even integer, so for all x
such that 0 ≤ x ≤ n!− s, we have gn(x+ s)− gn(x) = 0. Consequently∫

x≥0

∣∣gn(x+ s)− gn(x)
∣∣dx −−−→

n→∞
0.

7 Appendix

Proof for Lemma 1: The following calculation of f ′t(θ) is straight:

∀t > 0, f ′θ(t) =
1

σ
√

2π

[
exp

(
−1

2

( t−m
σ

)2
)
m− t
σ2

− exp

(
−1

2

( t+m

σ

)2
)
m+ t

σ2

]
,

thus

f ′θ(t) > 0 (resp. < 0)⇐⇒ (m−t) exp

(
−1

2

( t−m
σ

)2
)
−(m+t) exp

(
−1

2

( t+m

σ

)2
)
> 0 (resp. < 0).

As a consequence, one obtains that

f ′θ(t) < 0, ∀t ≥ m.

Now we look at t ∈ (0,m). Let us denote H(t) =def exp
(

2mt
σ2

)
− m+t

m−t , which yields:

f ′θ(t) > 0 (resp. < 0)⇐⇒ H(t) > 0 (resp. < 0), ∀t ∈ (0,m).

From above we deduce that, to prove the lemma, it is essentially reduced to the following

Claim There is some t∗ ∈ [0,m) such that H(t) < 0 for t ∈ (0, t∗) and H(t) > 0 for t ∈ (t∗,m).

Below we prove this claim through the study of the variation of H(·) on [0,m) (on which it
is obviously C∞). For this aim, one calculates:
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• the values at the end point, H(0) = 0 and limt→m− H(t) = −∞;

• the �rst-order derivative at any t ∈ [0,m),

H ′(t) = exp

(
2mt

σ2

)
2m

σ2
− 2m

(m− t)2
(7.1)

• at any rest point te ∈ [0,m) (i.e., H(te) = 0),

exp

(
2mte

σ2

)
=
m+ te

m− te
, (7.2)

which is thus substituted back into (7.1), to yield

H ′(te) > 0
(
resp. H ′(te) < 0

)
⇐⇒ (te)2 < m2 − σ2

(
resp. (te)2 > m2 − σ2

)
. (7.3)

First, it is easy to prove the following result:

Let te1 ∈ [0,m) be a rest point for H(·), and suppose that te2 ∈ (te1,m) is the smallest rest point
after te1. Then H

′(te1)H ′(te2) ≤ 0 and if H ′(te1) ≤ 0, such te2 does not exist.

Indeed, H ′(te1)H ′(te2) ≤ 0 can be derived from the continuity of H(·); suppose that H ′(te1) ≤ 0,
we have (te1)2 ≥ m2 − σ2 and H ′(te2) ≥ 0, which leads to a controdiction (with te2 > te1) as the
later implies that (te2)2 ≤ m2 − σ2.

Finally, remark that H(0) = 0, thus t = 0 is a rest point. We discuss the following two cases:

Case 1. m2 − σ2 ≤ 0, thus H ′(0) ≤ 0.

This implies that no rest point exists after 0. Since limt→m− H(t) = −∞, we deduce that
H(t) < 0, ∀t ∈ (0,m). The claim is proved for t∗ = 0.

Case 2. m2 − σ2 > 0, thus H ′(0) > 0.

limt→m− H(t) = −∞ implies that some rest point exists in (0,m). Take te the closet to 0,
implying that H(t) > 0, ∀t ∈ (0, te). Further, we obtain that H ′(te) ≤ 0 by the continuity of
H(·). Again, there exists no other rest point after te. Since limt→m− H(t) = −∞, we deduce
that H(t) < 0, ∀t ∈ (te,m). The claim is proved for t∗ = te.

To conclude, we see that in both cases, the claim is proved. This �nishes the proof for the
lemma. �
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