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Existence of internal modes of sine-Gordon kinks
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We study whether or not sine-Gordon kinks exhibit internal modes or ‘‘quasimodes.’’ By considering the
response of the kinks to ac forces and initial distortions, we show that neither intrinsic internal modes nor
‘‘quasimodes’’ exist in contrast to previous reports. However, we do identify a different kind of internal mode
bifurcating from the bottom edge of the phonon band which arises from the discretization of the system in the
numerical simulations, thus confirming recent predictions.

PACS number~s!: 05.45.Yv, 02.30.Jr, 03.50.2z, 63.20.Pw
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I. INTRODUCTION

Solitons, which were originally a concept arising in th
study of integrable systems@1#, have rapidly become a ke
paradigm in perturbed, nonintegrable systems describ
many physical applications@2#. A very successful picture o
soliton dynamics under different perturbations has resu
from the use of collective coordinate~CC! techniques@3#: In
many instances, solitons behave basically like pointlike p
ticles, and therefore their time evolution can be predicted
equations of motion which are ordinary differential equ
tions. Nevertheless, along the last decade it has been pro
sively realized that internal degrees of freedom of the s
tons play a crucial role in a number of problems: Th
govern resonant soliton~or solitary wave!collisions@4#, give
rise to nontrivial soliton-impurity interactions@5#, and can be
excited both by ac forces@6# and by thermal noise@7#. There-
fore, it is very important to assess whether or not physica
relevant solitons possess internal modes.

In this Rapid Communication we study solitons of t
sine-Gordon~SG! equation, which arises in a diverse ran
of areas of physics, covering from crystal dislocation the
to Josephson junctions@1–3#. In spite of the fact that linea
stability analysis leads to only one eigenvalue in the disc
spectrum, corresponding to a zero frequency Goldst
mode@2#, Boesch and Willis@8# claimed that they found an
internal ‘‘quasimode’’ above but close to the lower phon
band edge. They described this ‘‘quasimode’’ as a long-liv
oscillation of the width of the SG kink. The possibility o
such a mode had been suggested earlier by Rice@9#, by
means of a variational approach that reproduced with g
accuracy the internal mode frequency of thef4 model @1#
and predicted the existence of a similar mode for the
problem. To our knowledge, Ref.@8# is the only paper re-
porting the observation of this mode, although hints of
existence are scattered all over the soliton literature@10#. A
few years later, it was theoretically found@11#, within the
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Rice approach, that the internal mode of the SG and thef4

kinks could be excited by a constant external force or by
initial distortion; however, no numerical evidence was p
sented to confirm these results. Therefore, we decided to
visit the issue of the existence of the internal mode of the
equation in order to give a definitive answer to it. Our a
proach, based in part on our earlier findings@6#, overcomes
the difficulty that the internal ‘‘quasimode’’ would lie within
the phonon band by allowing us to look at driving freque
cies well in the gap. As we will show below, this permits
to establish clearly that this putative internal mode does
exist. Furthermore, we do observe the excitation of a d
creteness induced internal mode@12,13#, whose frequency i
in excellent agreement with recent predictions by Kevreki
and Jones@14#. We substantiate these claims by briefly r
calling our main analytical results in Sec. II, collecting o
numerical results in Sec. III, and discussing our conclusi
in Sec. IV.

II. RESONANCES DUE TO ac FORCES

We begin by considering the perturbed SG equation

f tt2fxx52sinf1e sin~dt1d0!, ~1!

wheree, d, andd0 are the amplitude, frequency, and pha
of the external periodic force. In@6# we analyzed analytically
and numerically the above problem in the more general c
text of nonlinear~possibly damped!Klein-Gordon systems,
which includes Eq.~1! as well as thef4 model. Particular-
izing our results, obtained by means of the generalized tr
eling waveAnsatz@15# combined with the RiceAnsatz@9#,
we find that the momentumP(t) and the width of the kink
l (t) ~of a general nonlinear Klein-Gordon equation; spec
constants for the SG case will be given below! obey the
equations

dP

dt
52q e sin~dt1d0!, P~ t ![

M0l 0Ẋ

l ~ t !
, ~2!
R60 ©2000 The American Physical Society
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a~ l̇ 222l l̈ !5
l 2

l 0
2 S 11

P2

M0
2D 21, ~3!

where X(t) is the kink position. For SG,q52p, M058,
l 051 anda5p2/12. The equation for the momentum is lin
ear and can be solved exactly, yielding

P~ t !5FP~0!2
q e cos~d0!

d G1
q e

d
cos~dt1d0!. ~4!

We thus see that the termP(t)2 in Eq. ~3! involves two
frequencies,d and 2d. As shown in@6#, for thef4 kink this
leads to dramatic resonance effects when the ac driving
quency d is half the frequencyV i of the internal mode.
Without resonant excitation of kink modes, the kink osc
lates around its initial position as a pure pointlike particle,
shown analytically and numerically in@16#. However, as
shown in @6# for the above parameters, in case an inter
mode is excited as in thef4 system, the system energ
grows and eventually leads to chaotic motion of the kink.
addition, the resonance atV i /2 turns out to be much stronge
than that atV i , which makes it a convenient way to prob
those modes: In case the SG kink would possess such a
gree of freedom, we should observe similar phenomena
@8#, the frequency of the numerically observed ‘‘quasimod
wasvs51.00460.001 in our units, whereas Rice’s theore
ical analysis leads to@9# VR51.103. In both cases, the co
responding half frequencies lie well within the gap; we c
thus force the system at the predicted resonances wit
exciting much radiation which could mask any internal mo
effects.

III. NUMERICAL RESULTS

In this section, we present the results of our numeri
search for internal modes or ‘‘quasimodes’’ of the SG eq
tion. We have computed the numerical solution of the p
turbed SG equation~1! by using the Strauss-Va´zquez scheme
@17#, the total length of the system beingL5100, the steps
beingDx50.05,Dt50.005~or other values when indicated
Free boundary conditions were also used, and the final t
in the simulations was 25 000, enough to detect any poss
resonance@6#.

A. ac force

First, we have perturbed our system with an ac force
amplitudee50.01 and phased05p/2. We have used a SG
kink at rest as initial condition. We have computed the e
ergy ~as defined in@17#! during the evolution, and then th
mean value of the energy in the time interval 10 000<t
<25 000, studying a range of values ofd around half of the
possible internal mode frequencies. Figure 1 collects our
sults for the mean energy as a function of the frequency.
clearly see that the mean energy rapidly increases for s
values ofd which do not coincide with any of the propose
internal modes or ‘‘quasimodes.’’ The first~leftmost!maxi-
mum lies below half the frequency of the lower phonon ba
edge; therefore, this one cannot be associated with a pho
mode and we will discuss its origin in detail below. As f
the other peaks, Table I shows that we have been abl
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identify them with half of the values of the first frequenci
of the phonon band,vn , which are given by

vn5A11@~2pn!/L#2, n51,2,3, . . . ,N5L/Dx. ~5!

A comparison of the third and fourth columns of Table
where we list the half values of the frequencies correspo
ing to the first eight radiational modes and the numeri
peak frequenciesṽn in Fig. 1, counting from the secon
maximum from the left, allows us to verify that these valu
are nearly identical in all cases~see also the relative differ
encesuvn/22ṽnu in Table I!. We stress that identification o
radiation modes as the origin of these resonances makes
fect physical sense: Indeed, an extended CC approach
cluding radiation modes leads to the conclusion that the
diation modes should also be excited parametrically by
drivings. In view of all this, the main conclusion we ca
draw from Fig. 1 is the absence of any resonance due to
internal quasimode in the phonon band reported by Boe
and Willis @8#, which, in view of the frequency they reporte
would lead to an extra peak located between the two rig

FIG. 1. Mean energy of the SG system, in dimensionless un
whend is close toVR/2. Points have been calculated from nume
cal simulations for 10 000<t<25 000, with e50.01, d05p/2,
u(0)50, X(0)50. The parameters of the discretization areDx
50.05, Dt50.005, andL5100.

TABLE I. Comparison of the half of the first eight frequencie

vn/2 of radiational modes with the computed frequenciesṽn from
numerical simulations of Eq.~1! at which peaks inEm arise ~see
Fig. 1!.

Mode(n) vn vn/2 ṽn uvn/22ṽnu

1 1.0019 0.5009 0.5009 8.631025

2 1.0079 0.5039 0.5040 731025

3 1.0176 0.5088 0.5090 1.931024

4 1.0311 0.5155 0.5161 5.531024

5 1.0482 0.5241 0.5250 9.131024

6 1.0687 0.5343 0.5356 1.331023

7 1.0924 0.5462 0.5479 1.731023

8 1.1192 0.5596 0.5618 2.231023
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most ones in Fig. 1. In this regard, it is important to note t
the accuracy of our simulations in detecting every radiat
mode rules out the possibility that we have missed this qu
mode~at eithervs or VR).

Interestingly, we do observe an internal mode: Let us
call that the first maximum of the energy occurs atd5vd
50.4999, i.e., 2vd50.9998 is below the lower phonon fre
quencyvph51 as we mentioned above. The reason for t
peak is a different internal mode of the SG kink, that appe
as a bifurcation from the lowest phonon of the continuu
equation, of frequencyvph51, due to the effect of discrete
ness @12–14#. As has been recently shown@14#, the fre-
quency of this internal mode isv i'A12(4/2025)(Dx)4 @the
(Dx)4 dependence was already observed in@12##. In our
simulations,Dx50.05, hencev i50.999 998, approximately
equal to 2vd . Therefore, the first peak in Fig. 1 correspon
to the parametric resonance at half the value of the discr
ness induced internal mode, very much like the resona
with the f4 kink internal mode reported earlier@6#.

B. Deformed initial kink

In view of our negative result about the internal qua
mode of the SG kink, we carried out more numerical sim
lations specifically designed to find it. Following@8#, we
chose initial conditions given by

f~x,0!54 arctanS expFx2X~0!

l ~0! G D ,

f t~x,0!52

F2
u~0!

l ~0!
2

x2X~0!

l 2~0!
l̇ ~0!G

coshFx2X~0!

l ~0! G , ~6!

which correspond to a deformed kink ifl (0)Þ1 or l̇ (0)
Þ0. By starting their simulations with such initial cond
tions, Boesch and Willis claimed that they were able to
cite the internal quasimode, and hence we hope that, if
indeed present, we should find it.

At this point, we have to recall the work of Majernı´ková,
Gaididei, and Braun@11#, who, as mentioned in the Introdu
tion, theoretically considered the problem of a deformed k
given by the expressions above driven by a external cons
force. When applied to this problem, our CC approach yie
the same two ordinary differential equations as in@11# for
X(t) and l (t) @Eqs.~2!–~3! without the sine term, i.e., with
only a constant forcee]. We have solved these equation
exactly for arbitrary initial conditions@18# in terms of the
Whittaker functions, concluding that the kink width osc
lates only if l (0)Þl s @the natural width of the undistorte
kink, 1/A12u(0)2] or l̇ (0)Þ0 in Eq. ~6!, whereas externa
force and dissipation~if present!only damp out those oscil
lations. Hence, kink width oscillations should be easies
detect without force and damping and, consequently, here
consider only free propagation of an initially distorted kin
~a general analysis of the constant force problem will
presented elsewhere@18#!. As a check of the validity of this
procedure to probe internal modes, we have numeric
verified that thef4 kink indeed behaves in this fashion du
t
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to the excitation of the internal mode, exhibiting oscillatio
in the kink width very close to those predicted by the C
approach. We then turned to the SG case, and we found
the oscillations are not correctly described by the CC eq
tions. In Fig. 2 we can see the evolution of the kink wid
computed from numerical simulation of the SG system, w
l (0)51, u(0)50, andl̇ (0)50.3. It is clear thatl (t) is not a
simple oscillatory function as in thef4 case, and Fourier
analysis yields the following frequencies:vd50.9983, ṽ1

51.0034, ṽ251.0083, ṽ351.0184, ṽ451.0335, ṽ5

51.0511,ṽ651.0712,ṽ751.0963. As before, all these fre
quencies are very close to the discreteness induced inte
mode and the first few radiational modes, with no eviden
supporting the existence of the internal quasimode above
phonon band edge.

IV. CONCLUSIONS

The first conclusion of this work is that the existence
the proposed internal quasimode of the SG kink above
phonon band edge@8# is very unlikely. We have found nei
ther resonances nor long-lived kink width oscillations arisi
from such a mode when the kink is subject to ac driving or
initial deformations, respectively. We are confident that
have carefully explored all the range of relevant frequenc
as we have accurately detected all possible resonances w
that range. In addition, the comparison with the phenomen
ogy observed for thef4 kink, which possesses a true intern
mode, shows that if the SG kink would have such an inter
mode, we would have detected its influence through num
cal simulations as for thef4 equation@6,18#. In fact, now
that we have seen that radiation modes are parametric
excited by their corresponding half-frequency drivings, w
believe we can suggest an explanation for the results
Boesch and Willis. Notice that they used Eq.~5! to calculate
the lower phonon frequency, obtaining thatv1

5A11(2p/1000)251.000 02, whereas the internal ‘‘quas
mode’’ frequency that they found in the numerical simu

FIG. 2. Evolution of the kink width, in dimensionless unit
obtained from numerical simulations starting from a free, deform

kink, with u(0)50, l (0)51 and l̇ (0)50.3. The parameters of th
discretization areL5100, Dx50.1, andDt50.01.
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tions wasvs51.004. As those two values were largely d
ferent, they concluded that the quasimode was well ab
the lowest phonon frequency and different from it. Howev
as we have discussed in the preceding sections, they
initial conditions in which the initial kink velocity was no
zero; in this case, it can be easily shown that the correspo
ing frequencies of the phonons are given by

v̄k5
vk2k u~0!

A12u2~0!
, vk5A11k2.

If we now insert the parameters used in@8# to perform a
numerical experiment similar to the one discussed here,
find v151.004, i.e., the resonance observed by Boesch
Willis took place in fact with the lowest frequency phononin
the presence of a moving kinkand not with any interna
quasimode.

The second conclusion of the present Rapid Commun
tion relates to the recently proposed internal modes indu
by perturbations, in our case by discreteness@12–14#. By the
two different types of numerical simulations used in our
search, we have detected the internal mode bifurcating f
the edge of the phonon band~of the continuum problem!
The frequency of that mode agrees qualitatively very w
v.
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with the one predicted in@14#. Therefore, our research full
confirms the results of those papers and, in addition, sh
that these perturbation induced internal modes behave
much like intrinsic ones. Our result, along with the finding
similar internal modes in other nonintegrable SG syste
@19#, strongly supports the generality of the phenomen
predicted in@13#. Finally, the fact that we are able to dete
this mode reinforces our previous conclusion of the non
istence of the internal quasimode, as indeed the SG k
responds to the ac driving or to deformations as it should
had an internal mode, but for the discreteness induced
only. We thus believe that the present work definitely ru
out the possibility of internal modes or ‘‘quasimodes’’ of S
kinks close to and above the lower phonon band edge.
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