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Abstract

This paper deals with a natural stochastic optimization procedure derived from the so-called Heavy-ball method
differential equation, which was introduced by Polyak in the 1960s with his seminal contribution [Pol64]. The Heavy-ball
method is a second-order dynamics that was investigated to minimize convex functions f . The family of second-order
methods recently received a large amount of attention, until the famous contribution of Nesterov [Nes83], leading to the
explosion of large-scale optimization problems. This work provides an in-depth description of the stochastic heavy-ball
method, which is an adaptation of the deterministic one when only unbiased evalutions of the gradient are available
and used throughout the iterations of the algorithm. We first describe some almost sure convergence results in the case
of general non-convex coercive functions f . We then examine the situation of convex and strongly convex potentials
and derive some non-asymptotic results about the stochastic heavy-ball method. We end our study with limit theorems
on several rescaled algorithms.
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1 Introduction

Finding the minimum of a function f over a set Ω with an iterative procedure is very popular among numerous scientific
communities and has many applications in optimization, image processing, economics and statistics, to name a few.
We refer to [NY83] for a general survey on optimization algorithms and discussions related to complexity theory, and to
[Nes04, BV04] for a more focused presentation on convex optimization problems and solutions. The most widespread
approaches rely on some first-order strategies, with a sequence pXkqkě0 that evolves over Ω with a first-order recursive
formula Xk`1 “ ΨrXk, fpXkq,∇fpXkqs that uses a local approximation of f at point Xk, where this approximation
is built with the knowledge of fpXkq and ∇fpXkq alone. Among them, we refer to the steepest descent strategy in
the convex unconstrained case, and to the Frank-Wolfe [FW56] algorithm in the compact convex constrained case.
A lot is known about first-order methods concerning their rates of convergence and their complexity. In comparison
to second-order methods, first-order methods are generally slower and are significantly degraded on ill-conditioned
optimization problems. However, the complexity of each update involved in first-order methods is relatively limited
and therefore useful when dealing with a large-scale optimization problem, which is generally expensive in the case
of Interior Point and Newton-like methods. A second-order “optimal” method was proposed in [Nes83] in the 1980s’
(also see [AB09] for an extension of this method with proximal operators). The so-called Nesterov Accelerated Gradient
Descent (NAGD) has particularly raised considerable interest due to its numerical simplicity, to its low complexity and
to its mysterious behavior, making this method very attractive for large-scale machine learning problems. Among the
available interpretations of NAGD, some recent advances have been proposed concerning the second-order dynamical
system by [WSC16], being a particular case of the generalized Heavy Ball with Friction method (referred to as HBF in
the text), as previously pointed out in [CEG09a, CEG09b]. In particular, as highlighted in [CEG09a], NAGD may be
seen as a specific case of HBF after a time rescaling t “

?
s, thus making the acceleration explicit through this change

of variable, as well as being closely linked to the modified Bessel functions when f is quadratic.

A growing field of interest related to these optimization algorithms concerns the development of efficient procedures
when only noisy gradients are available at each iteration of the procedure. On the practical side, this question was first
introduced in the seminal contributions on stochastic approximation and optimization of [RM51] and [KW52]. Even
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though the Robbins-Monro algorithm is able to achieve an optimal Op1{nq rate of convergence for strongly convex
functions, its ability is highly sensitive to the step sizes used. This remark led [PJ92] to develop an averaging method
that makes it possible to use longer step sizes of the Robbins-Monro algorithm, and to then average these iterates with
a Cesaro procedure so that this method produces optimal results in the minimax sense (see [NY83]) for convex and
strongly convex minimization problems, as pointed out in [BM11].

On the theoretical side, numerous studies have addressed a dynamical system point of view and studied the close
links between stochastic algorithms and their deterministic counterparts for some general function f (i.e., even non
convex). These links originate in the famous Kushner-Clark Theorem (see [KY03]) and successful improvements have
been obtained using differential geometry by [BH96, Ben06] on the long-time behavior of stochastic algorithms. In
particular, a growing field of interest concerns the behavior of self-interacting stochastic algorithms (see, among others,
[BLR02] and [GP14]) because these non-Markovian processes produce interesting features from the modeling point of
view (an illustration may be found in [GMP15]).

Several theoretical contributions to the study of second-order stochastic optimization algorithms exist. [Lan12]
explores some adaptations of the NAGD in the stochastic case for composite (strongly or not) convex functions. Other
authors [GL13, GL16] obtained convergence results for the stochastic version of a variant of NAGD for non-convex
optimization for gradient Lipschitz functions but these methods cannot be used for the analysis of the Heavy-ball
algorithm. Finally, a recent work [YLL16] proposes a unified study of some stochastic momentum algorithms while
assuming restrictive conditions on the noise of each gradient evaluation and on the constant step size used. It should
be noted that [YLL16] provides a preliminary result on the behavior of the stochastic momentum algorithms in the
non-convex case with possible multi-well situations. Our work aims to study the properties of a stochastic optimization
algorithm naturally derived from the generalized heavy ball with friction method.

Our paper is organized as follows: Section 2 introduces the stochastic algorithm as well as the main assumptions
needed to obtain some results on this optimization algorithm. For the sake of readability, these results are then provided
in Section 2.4 without too many technicalities. The rest of the paper then deals with the proof of these results. Section
3 is dedicated to the almost sure converegence result we can obtain in the case of a non-convex function f with
several local minima. Section 4 establishes the convergence rates of the stochastic heavy ball in the strongly convex
case. Section 5 provides a central limit theorem in a particular case of the algorithm. Appendix A consists of some
important results on the supremum of certain random variables needed for the non-convex case.

2 Stochastic Heavy Ball

We begin with a brief description of what is known about the underlying dynamical system.

2.1 Deterministic Heavy Ball

This method introduced by Polyak in [Pol64] is inspired from the physical idea of producing some inertia on the
trajectory to speed up the evolution of the underlying dynamical system: a ball evolves over the graph of a function f
and is submitted to both damping (due to a friction on the graph of f) and acceleration. More precisely, this method
is a second-order dynamical system described by the following O.D.E.:

:xt ` γt 9xt `∇fpxtq “ 0, (1)

where pγtqtě0 corresponds to the damping coefficient, which is a key parameter of the method. In particular, it is shown
in [CEG09a] that the trajectory converges only under some restrictive conditions on the function pγtqtě0, namely:

• if
`8
ş

0

γsds “ 8, then pfpxtqqtě0 converges,

• if
8
ş

0

e
´
t
ş

0
γsds

dt ă 8, then pxtqtě0 converges towards one of the minima of any convex function f .

Intuitively, these conditions translate the oscillating nature of the solutions of (1) into a quantitative setting for the
convergence of the trajectories: if γt ÝÑ 0 is sufficiently fast, then the trajectory cannot converge (the limiting case
being :x ` ∇fpxq “ 0). These properties lead us to consider two natural families of functions pγtqtě0: γt “ r{t with
r ą 1 and γt “ γ ą 0. To convert (1) into a tractable iterative algorithm, it is necessary to rewrite this O.D.E.
using a coupled momentum equation. Consistent with [CEG09b], (1) is equivalent to the following integro-differential
equation:

9xt “ ´
1

kptq

ż t

0

hpsq∇fpxsqds, (2)

where h and k are two memory functions related to γ. In the natural situation of two positive increasing functions h
and k, if pxtqtě0 is a solution of (2), then px̃sqsě0 is solution of (1) with:

x̃s “ xτpsq and 9τpsq “
a

pkh´1qpτpsqq with γs “
9kh` k 9h

2h3{2k1{2
˝ τpsq.

We can consider two typical situations where the deterministic HBF (1) converges (see [CEG09a] for further details):
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• The exponentially memoried HBF corresponds to the choice kptq “ λeλt and hptq “ eλt and to a constant
damping function γs “

?
λ when the time scale is given by τpsq “

?
λs. Note that in this situation, the two

convergence conditions are satisfied since:

`8
ż

0

γsds “

`8
ż

0

?
λds “ `8 and

8
ż

0

e
´
t
ş

0
γsds

dt “

8
ż

0

e´
?
λtdt ă 8.

• The polynomially memoried HBF corresponds to the choice kptq “ tα`1 and hptq “ pα` 1qtα and is associated

with an asymptotically vanishing damping γs “
2α`1
s

and a time scale τpsq “ s2

4pα`1q
, where the choice α “ 1 is

associated with the NAGD (see [WSC16] and their “magic” constant 3 “ 2α` 1 in that case).

2.2 Stochastic HBF

All these remarks lead to the consideration of a natural stochastic version of (2) when h “ 9k. As pointed out by
[GP14], the introduction of an auxiliary function yt “ kptq´1

şt

0
hpsq∇fpxsqds makes it possible to obtain a first-order

Markov evolution because 9yt “ rtp∇fpxtq ´ ytq with rt “
hptq
kptq

. Hence, we define the stochastic Heavy Ball system as

pX0, Y0q “ px, yq P R2d and:

#

Xn`1 “ Xn ´ γn`1Yn

Yn`1 “ Yn ` γn`1rnp∇fpXnq ´ Ynq ` γn`1rn∆Mn`1,
(3)

where the natural filtration of the sequence pXn, Ynqně0 is denoted pFnqně1 and:

• p∆Mnq is a sequence of Fnq-martingale increments. For applications, ∆Mn`1 usually represents the difference
between the “true” value of ∇fpXnq and the one observed at iteration n denoted BxF pXn, ξnq, where pξnqn is a
sequence of i.i.d. random variables and F is an Rd-valued measurable function such that:

@u P Rd E rBxF pu, ξqs “ ∇fpuq

In this case,
∆Mn`1 “ ∇fpXnq ´ BxF pXn, ξnq. (4)

The randomness appears in the second component of the algorithm (3), whereas it was handled in the first
component in [GP14]. We will introduce some assumptions on f and on the martingale sequence later.

• pγnqně1 corresponds to the step size used in the stochastic algorithm, associated with the “time” of the algorithm
represented by:

Γn “
n
ÿ

k“1

γk such that lim
nÝÑ`8

Γn “ `8.

For the sake of convenience, we also define:

Γp2qn “

n
ÿ

k“1

γ2
k,

which may converge or not according to the choice of the sequence pγkqkě1.

• prnqně1 is a deterministic sequence that mimics the function t ÞÝÑ rt defined as:

rn “
hpΓnq

kpΓnq
. (5)

In particular, when an exponentially weighted HBF with kptq “ ert is chosen, we have rn “ r ą 0, regardless of
the value of n. In the other situation where kptq “ tr, we obtain rn “ rΓ´1

n .

2.3 Baseline assumptions

We introduce some of the general assumptions we will work with below. Some of these conditions are very general,
whereas others are more specifically dedicated to the analysis of the strongly convex situation. We will use the notation
}.} (resp. }.}F ) below to refer to the Euclidean norm on Rd (resp. the Frobenius norm on Md,dpRq). Finally, when
A PMd,dpRq, }A}8 will refer to the maximal size of the modulus of the coefficients of A: }A}8 :“ supi,j |Ai,j |. Our
theoretical results will obviously not involve all of these hypotheses simultaneously.
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Function f We begin with a brief enumeration of assumptions on the function f .

‚ Assumption pHsq : f is a function in C2
pRd,Rq such that:

lim
|x|ÝÑ`8

fpxq “ `8 and }D2f}8 :“ sup
xPRd

}D2fpxq}F ă `8 and }∇f}2 ď cff.

The assumption pHsq is weak: it essentially requires that f be smooth, coercive and have, at the most, a quadratic
growth on 8. In particular, no convexity hypothesis is made when f satisfies pHsq. It would be possible to extend
most of our results to the situation where f is L-smooth (with a L-Lipschitz gradient), but we preferred to work with
a slightly more stringent condition to avoid additional technicalities.

‚ Assumption pHSCpαqq : f is a convex function such that α “ infxPRd Sp
`

D2fpxq
˘

ą 0 and D2f is Lipschitz.

In particular, pHSCpαqq implies that f is α-strongly convex, meaning that:

@px, yq P Rd ˆ Rd fpxq ě fpyq ` x∇fpyq, x´ yy ` α

2
}x´ y}2.

Of course, pHSCpαqq is still standard and is the most favorable case when dealing with convex optimization problems,
leading to the best possible achievable rates. pHSCpαqq translates the fact that the spectrum of the Hessian matrix at
point x, denoted by Sp

`

D2fpxq
˘

, is lower bounded by α ą 0, uniformly over Rd. The fact that D2f is assumed to be
Lipschitz will be useful to achieve convergence rates in Section 4.2.

Noise sequence p∆Mn`1qně1 We will essentially use three types of assumptions alternatively on the noise of the
stochastic algorithm (3). The first and second assumptions are concerned with a concentration-like hypothesis. The
first one is very weak and asserts that the noise has a bounded L2 norm.

‚ Assumption pHσ,pq : (p ě 1) For any integer n, we have:

Ep}∆Mn`1}
p
|Fnq ď σ2

p1` fpXnqq
p.

The assumption pHσ,2q is a standard convergence assumption for general stochastic algorithms. For some non-
asymptotic rates of convergence results, we will rely on pHσ,pq for any p ě 1. In this case, we will denote the
assumption by pHσ,8q. Finally, let us note that the condition could be slightly alleviated by replacing the right-hand
member by σ2

p1` fpXnq ` |Yn|
2
q
p. However, in view of the standard case (4), this improvement has little interest in

practice, which explains our choice.

‚ Assumption pHGauss,σq : For any integer n, the Laplace transform of the noise satisfies:

@t ě 0 E rexppt∆Mn`1q|Fns ď e
σ2t2

2 .

This hypothesis is much stronger than pHσ,pq and translates a sub-Gaussian behavior of p∆Mn`1qně1. In particular,
it can be easily shown that pHGauss,σq implies pHσ,pq. Hence, pHGauss,σq is somewhat restrictive and will be used
only to obtain one important result in the non-convex situation for the almost sure limit of the stochastic heavy ball
with multiple wells.

‚ Assumption pHEq : For any iteration n, the noise of the stochastic algorithm satisfies:

@v P S1
Rd E p|x∆Mn, vy| |Xn, Ynq ě cv ą 0.

This assumption will be essential to derive an almost sure convergence result towards minimizers of f . Roughly
speaking, this assumption states that the noise is uniformly elliptic given any current position of the algorithm at step
n: the projection of the noise has a non-vanishing component over all directions v. We will use this assumption to
guarantee the ability of (3) to get out of any unstable point.

Step sizes One important step in the use of stochastic minimization algorithms relies on an efficient choice of the
step sizes involved in the recursive formula (e.g. in Equation 3). We will deal with the following sequences pγnqně0

below.

‚ Assumption pHγ
βq : The sequence pγnqně0 satisfies:

@n P N γn “
γ

nβ
with β P p0, 1s,

leading to:

@β P p0, 1q Γn „
γ

1´ β
n1´β whereas Γn „ γ logn when β “ 1.
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Memory size We consider the exponentially and polynomially-weighted HBF as a unique stochastic algorithm
parameterized by the memory function prnqně1. From the definition of rn given in (5), we note that in the exponential
case, rn “ r remains constant while the inertia brought by the memory term in the polynomial case prnqnPN is defined
by rn “

r
Γn
. Under Assumption pHγ

βq, we can show that regardless of the memory, we have:

ÿ

nPN
γnrn “ `8.

This is true when rn “ r because γn “ γn´β with β ď 1. It is also true when we deal with a polynomial memory since
in that case:

• if β ă 1, then γnrn „ γn´β ˆ rp1´ βqγ´1n´1`β
„ rp1´ βqn´1

• if β “ 1, then γnrn „
r

n logn
and

ř

kďn γkrk „ logplognq.

Similarly, we also have that in the polynomial case, regardless of β:
ÿ

n

γ2
nrn ă `8,

although this bound holds in the exponential situation when β ą 1{2. Below, we will use these properties on the
sequences pγnqně0 and prnqně0 and define the next set of assumptions:

‚ Assumption pHrq: The sequence prnqně0 is a non-increasing sequence such that:

ÿ

ně1

γn`1rn “ `8 and
ÿ

ně1

γ2
n`1rn ă `8 and lim sup

nÑ`8

1

2γn`1

ˆ

1

rn
´

1

rn´1

˙

“: cr ă 1.

In the exponential case, cr “ 0, whereas if rn “ r{Γn, it can be shown that cr “
1
2r

and the last point is true when
r ą 1{2. In any case, r8 will refer to the limiting value of rn when n ÝÑ `8, which is either 0 or r ą 0.

2.4 Main results

Section 3 is dedicated to the situation of a general coercive function f . We obtain the almost sure convergence of the
stochastic HBF towards a critical point of f .

Theorem 1 Assume that f satisfies pHsq, that pHσ,2q holds and that and the sequences pγnqně1 and prnqně1 are
chosen such that pHγ

βq and pHrq are fulfilled. If for any z, tx, fpxq “ zu X tx,∇fpxq “ 0u is locally finite, then pXnq
a.s. converges towards a critical point of f .

This result obviously implies the convergence when f has a unique critical point. In the next theorem, we focus on the
case where this uniqueness assumption fails, under the additional elliptic assumption pHEq.

Theorem 2 Assume that f satisfies pHsq, that the noise is elliptic, i.e., pHEq holds, and the sequence pγnqně1 is
chosen such that pHγ

βq and pHrq are fulfilled. If for any z, tx, fpxq “ zu X tx,∇fpxq “ 0u is locally finite, we have:

paq If rn “ r (exponential memory) and pHσ,2q holds, then pXnq a.s. converges towards a local minimum of f .

pbq If rn “ rΓ´1
n and the noise is sub-Gaussian, i.e., pHGauss,σq holds, then pXnq a.s. converges towards a local

minimum of f when β ă 1{3.

Remark 3 � The previous result provides some guarantees when f is a multiwell potential. In paq, we consider the
exponentially weighted HBF and show that the convergence towards a local minimum of f always holds under the
additional assumption pHEq. To derive this result, we will essentially use the former results of [BD96] on “homogeneous”
stochastic algorithms.
� Point pbq is concerned by polynomially-weighted HBF and deserves more comment:

• First, the result is rather difficult because of the time inhomogeneity of the stochastic algorithm, which can be
written as Zn`1 “ Zn`γn`1FnpZnq`γn`1∆Mn`1: the drift term Fn depends on Zn and on the integer n, which
will induce technical difficulties in the proof of the result. In particular, the assumption β ă 1{3 will be necessary
to obtain a good lower bound of the drift term in the unstable manifold direction with the help of the Poincaré
Lemma near hyperbolic equilibrium of a differential equation.

• Second, the sub-Gaussian assumption pHGauss,σq is less general than pHσ,2q even though it is still a reasonable
assumption within the framework of a stochastic algorithm. To prove pbq, we will need to control the fluctuations
of the stochastic algorithm around its deterministic drift, which will be quantified by the expectation of the
random variable supkěn γ

2
k}∆Mk}

2. The sub-Gaussian assumption will be mainly used to obtain an upper bound
of such an expectation, with the help of a coupling argument. Our proof will follow a strategy used in [Pem90]
and [Ben06] where this kind of expectation has to be upper bounded. Nevertheless, the novelty of our work is
also to generalize the approach to unbounded martingale increments: the arguments of [Pem90, Ben06] are only
valid for a bounded martingale increment, which is a somewhat restrictive framework.
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�

In Section 4, we focus on the consistency rate under stronger assumptions on the convexity of f . In the exponential
memory case, we are able to control the quadratic error and to establish a CLT for the stochastic algorithm under the
general assumption pHSCpαqq. In the polynomial case, the problem is more involved and we propose a result for the
quadratic error only when f is a quadratic function (see Remark 5 for further comments on this restriction). More
precisely, using the notation À to refer to an inequality, up to a universal multiplicative constant, we establish the
following results.

Theorem 4 Denote by x‹ the unique minimizer of f and assume that pHγ
βq, pHsq, pHSCpαqq and pHσ,2q hold, we

have:

paq When rn “ r (exponential memory) and β ă 1, we have:

E
“

}Xn ´ x
‹
}
2
` }Yn}

2
‰

À γn

If pHσ,8q holds and β “ 1, set αr “ r

ˆ

1´
b

1´ p4λq^r
r

˙

where λ denotes the smallest eigenvalue of D2fpx‹q.

We have, for any ε ą 0:

E
“

}Xn ´ x
‹
}
2
` }Yn}

2
‰

À

#

n´1 if γαr ą 1

n´αr`ε if γαr ď 1.

pbq Let f : Rd Ñ R be a quadratic function. Assume that rn “ rΓ´1
n (polynomial memory) with β ă 1. Then, if

r ą 1`β
2p1´βq

, we have:

E
“

}Xn ´ x
‹
}
2
` Γn}Yn}

2
‰

À γn

When rn “ rΓ´1
n (polynomial memory) and β “ 1, we have:

E
“

}Xn ´ x
‹
}
2
` logn}Yn}

2
‰

À
1

logn
.

For paq, the case β ă 1 is a consequence of Proposition 20 (or Proposition 15 in the quadratic case), whereas the (more
involved) case β “ 1 is dealt with Propositions 15 and 22 for the quadratic and the non-quadratic cases, respectively.
We first stress that that when β ă 1, the noise only needs to satisfy pHσ,pq to obtain our upper bound. When we
deal with β “ 1, we could prove a positive result in the quadratic case when we only assume pHσ,pq. Nevertheless, the
stronger assumption pHσ,8q is necessary to produce a result in the general strongly convex situation. Finally, pbq is a
consequence of Proposition 17.

Remark 5 � It is worth noting that in paq (β “ 1), the dependency of the parameter αr in D2f only appears through
the smallest eigenvalue of D2fpx‹q. In particular, it does not depend on inf

xPRd
λD2fpxq as it could be expected in this

type of result. In other words, we are almost able to retrieve the conditions that appear when f is quadratic. This
optimization of the constraint is achieved with a “power increase” argument, but this involves a stronger assumption
pHσ,8q on the noise.

� The restriction to quadratic functions in the polynomial case may appear surprising. In fact, the “power increase”
argument does not work in this non-homogeneous case. However, when β ă 1, it would be possible to extend to
non-quadratic functions through a Lyapunov argument (on this topic, see Remark 21), but under some quite involved
conditions on r, β and the Hessian of f . Hence, we chose to only focus on the quadratic case and to try to obtain
some potentially optimal conditions on r and β only (in particular, there is no dependence to the spectrum of D2f).
The interesting point is that it is possible to preserve the standard rate order when β ă 1 but under the constraint
r ą 1`β

2p1´βq
, which increases with β. In particular, the rate Opn´1

q cannot be attained in this case (see Remark 18 for

more details).

�

Finally, we conclude by a central limit theorem related to the stochastic algorithm the exponential memory case.

Theorem 6 Assume pHsq and pHSCpαqq are true. Suppose that rn “ r and that pHγ
βq holds with β P p0, 1q or, β “ 1

and γαr ą 1. Assume that pHσ,pq holds with p ą 2 when β ă 1 and p “ 8 when β “ 1. Finally, suppose that the
following condition is fulfilled:

E
“

p∆Mn`1qp∆Mn`1q
t
|Fn´1

‰ nÑ`8
ÝÝÝÝÑ V in probability (6)

where V is a symmetric positive dˆ d-matrix. Let σ be a dˆ d-matrix such that σσt “ V. Then,
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piq The normalized algorithm
´

Xn?
γn
, Yn?

γn

¯

n
converges in law to a centered Gaussian distribution µ

pβq
8 , which is the

invariant distribution of the (linear) diffusion with infinitesimal generator L defined on C2-functions by:

Lgpzq “
B

∇gpzq,
ˆ

1

2γ
1tβ“1uI2d `H

˙

z

F

`
1

2
TrpΣTD2gpzqΣq

with

H “

ˆ

0 ´Id
rD2fpx‹q ´rId

˙

and Σ “

ˆ

0 0
0 σ

˙

.

piiq In the simple situation where V “ σ2
0Id (σ0 ą 0) and β ă 1. In this case, the covariance of µ

pβq
8 is given by

σ2
0

2

ˆ

tD2fpx‹qu´1 0dˆd
0dˆd rId

˙

In particular,
Xn
?
γn
ùñ N p0, σ

2
0

2
tD2fpx‹qu´1

q.

Remark 7 � As a first comment of the above theorem, let us note that in the fundamental example where:

∆Mn`1 “ ∇fpXnq ´ BxF pXn, ξnq, n ě 1,

the additional assumption (6) is a continuity assumption. Actually, in this case:

Er∆Mn∆M t
n|Fn´1s “ V̄pXnq, with V̄pxq “ CovpF px, ξ1qq.

Thus, since Xn Ñ x‹ a.s., Assumption (6) is equivalent to the continuity of V̄ in x‹ so that:

V “ V̄px‹q.

� Point piiq of Theorem 6 reveals the behavior of the asymptotic variance of Y increases with r. This translates the
fact that the instantaneous speed coordinate Y is proportional to r in Equation (3), which then implies a large variance
of the Y coordinate when we use an important value of r.
� When β “ 1, it is also possible (but rather technical) to make the limit variance explicit. The expression obtained
with the classical stochastic gradient descent with step-size γn´1 and Hessian λ, the asymptotic variance is γ{p2λγ´1q,
whose optimal value is attained when γ “ λ´1 (it attains the Cramer-Rao lower bound). Concerning now the stochastic
HBF, for example, when d “ 1 and r ě 4λ (the result is still valid in higher dimensions, see Section 5), we can show
that:

lim
nÝÑ`8

γ´1
n ErX2

ns “ σ2
0

2λrγ3

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
,

where α̌` “ 1`
b

1´ 4λ
r

and α̌´ “ 1´
b

1´ 4λ
r

. Similar expressions may be obtained when r ă 4λ. Note also that

we assumed that γαr ą 1, and it is easy to check that this condition implies that γr ą 1 because αr ď r, regardless of
r. In the meantime, this condition also implies that 2λγ ą α̌` ě α̌´.

Finally, This explicit value could be used to find the optimal calibration of the parameters to obtain the best
asymptotic variance. Unfortunately, the expressions are rather technical and we can see that such calibrations are far
from being independent of λ, the a priori unknown Hessian of f on x‹.

�

3 Almost sure convergence of the stochastic heavy ball

In this section, the baseline assumption on the function f is pHsq, and we are thus interested in the almost sure
convergence of the stochastic HBF. In particular, we do not make any convexity assumption on f .
Below, we will sometimes use standard and sometimes more intricate normalizations for the coupled process Zn “
pXn, Ynq. These normalizations will be of a different nature and, to be as clear as possible, we will always use the
same notation qZn and Z̆n to refer to a rotation of the initial vector Zn, whereas rZn will introduce a scaling in the Yn
component of Zn by a factor

?
rn.
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3.1 Preliminary result

We first state a useful upper bound that makes it possible to derive a Lyapunov-type control for the mean evolution of
the stochastic algorithm pXn, Ynqně1 described by (3). This result is based on the important function px, yq ÞÝÑ Vnpx, yq
that depends on two parameters pa, bq P R2

` defined by:

Vnpx, yq “ pa` brn´1qfpxq `
a

2rn´1
}y}2 ´ bx∇fpxq, yy. (7)

We will show that Vn plays the role of a (potentially time-dependent) Lyapunov function for the sequence pXn, Ynqně1.
The construction of Vn shares a lot of similarity with other Lyapunov functions built to control second-order systems.
If the two first terms are classical and generate a ´}y}2 term, the last one is more specific to hypo-coercive dynamics
and was already used in [Har91]. Recent works fruitfully exploit this kind of Lyapunov function (see, among others,
the kinetic Fokker-Planck equations in [Vil09] and the memory gradient diffusion in [GP14]). This function is obtained
by the introduction of some Lie brackets of differential operators, leading to the presence of x∇fpxq, yy that generates
a mean reverting effect on the variable x.

Lemma 8 Assume that pHσ,2q and pHsq hold and suppose that cr ă 1. Then, for any pa, bq P R2
` such that:

a

b
ą

ˆ

1

2
_
}D2f}8
1´ cr

_ r8pcf ´ 1q

˙

, (8)

we have:

piq A constant C1 ą 0 and an integer n0 P N exist such that for any n ě n0,

@x, y P Rd, Vnpx, yq ě C1

ˆ

fpxq `
}y}2

rn´1

˙

. (9)

piiq Some positive constants C2, C3 and ca,b exist such that:

ErVn`1pXn`1, Yn`1q|Fns

ď VnpXn, Ynqp1` C2γ
2
n`1rnq ´ ca,bγn`1}Yn}

2
´ bγn`1rn}∇fpXnq}2 ` C3γ

2
n`1rn. (10)

Proof:

Point piq: For any non-negative u, v, the elementary inequality uv ď ρ
2
u2
` 1

2ρ
v2 holds for any ρ ą 0. We apply this

inequality with u “ }∇fpxq}, v “ }y} and ρ “ 2rn and obtain:

|x∇fpxq, yy| ď rn´1}∇fpxq}2 `
a

4rn´1
}y}2.

It follows from Assumption pHsq that }∇f}2 ď cff . Using the above inequality, we obtain that for any x, y P Rd:

Vnpx, yq ě pa` brn´1p1´ cf qqfpxq `
1

2rn´1

„

a´
b

2



}y}2.

Choosing now a and b such that a ą b{2 and a ą br8pcf ´ 1q, we obtain the first assertion follows from (8). ˛

Point piiq: The Taylor formula ensures the existence of ξn`1,1 and ξn`1,2 in rXn, Xn`1s such that:

Vn`1pXn`1, Yn`1q “ pa` brnq

ˆ

fpXnq ´ γn`1x∇fpXnq, Yny `
γ2
n`1

2
Y tnD

2fpξn`1,1qYn

˙

`
a

2rn

`

}Yn}
2
` 2γn`1rn

`

xYn,∇fpXnqy ´ }Yn}2 ` xYn ` γn`1rnp∇fpXnqy ´ Ynq,∆Mn`1y
˘

` γ2
n`1r

2
n}∆Mn`1}

2
˘

´ b
@

∇fpXnq ´ γn`1D
2fpξn`1,2qYn, Yn ` γn`1rn p∇fpXnq ´ Yn `∆Mn`1q

D

.

Combining the similar terms leads to:

Vn`1pXn`1, Yn`1q “ VnpXn, Ynq ´ bprn ´ rn´1qfpXnq

` γn`1x∇fpXnq, Yny

¨

˝´a´ brn ` a` brn
looooooooooomooooooooooon

“0

˛

‚´ γn`1Y
t
nDn`1Yn ´ γn`1rnb}∇fpXnq}2

` γn`1rn∆Nn`1 ` γn`1∆Rn`1,

where p∆Nnqně1 is a sequence of martingale increments, Dn is a dˆ d-matrix defined by:

Dn`1 “ a

ˆ

1´
1

2γn`1

ˆ

1

rn
´

1

rn´1

˙˙

Id ´ bD
2fpξn`1,2q,

8



and ∆Rn`1 is a remainder term. Using pHsq, we know that D2f is bounded, and we have the following bound for
∆Rn`1:

}∆Rn`1} ď C2γn`1rn
`

}Yn}
2
` }∆Mn`1}

2
` }∇fpXnq}.}Yn}

˘

,

where C2 is a deterministic positive constant independent of n. The fact that prnqně1 is a bounded sequence combined
with Assumptions pHσ,2q and pHsq yields Er}∆Rn`1}|Fns ď C2γn`1rn

`

1` }Yn}
2
` fpXnq

˘

. It follows that:

@n ě n0 Er}∆Rn`1}|Fns ď C2γn`1rnVnpXn, Ynq.

Second, the condition given by (8) shows that an integer n1 ě n0 and a constant ca,b ą 0 exist such that:

Dn`1Y
b2
n ě ca,b}Yn}

2.

Using the previous bounds in Vn`1pXn`1, Yn`1q and the fact that prnqnPN is non-increasing shows that:

Dn2 ě n1 @n ě n2 : ErVn`1pXn`1, Yn`1q|Fns ď VnpXn, Ynqp1` Cγ
2
n`1rnq ´ ca,bγn`1}Yn}

2
´ bγn`1rn}∇fpXnq}2.

˛˝

Note that if pHrq holds, then Equation (10) provides a strong repelling effect on the system px, yq because in that case,
ř

γn`1rn “ `8. This makes it possible to obtain a more precise a.s. convergence result, stated below.

Corollary 9 If pHσ,2q and pHsq hold and prnqně1 satisfies pHrq, then we have:

(i)

sup
ně1

ˆ

ErfpXnqs `
1

rn
Er}Yn}2s

˙

ă `8

(ii) pVnpXn, Ynqqně1 is a.s.-convergent to V8 P R`. In particular, pXnqně1 and pYn{
?
rnqně1 are a.s.-bounded.

(iii)
ÿ

ně1

γn`1rn

ˆ

}Yn}
2

rn
` }∇fpXnq}2

˙

ă `8 a.s.

(iv) pYn{
?
rnqně0 tends to 0 since nÑ `8 and every limit point of pXnqně0 belong to tx,∇fpxq “ 0u. Furthermore,

if for any z, tx, fpxq “ zu X tx,∇fpxq “ 0u is locally finite, pXnqně0 converges towards a critical point of f .

Proof

Proof of piq ´ piiq ´ piiiq: Under the conditions on prnq, we can check that some positive a and b exist such that the
conclusions of the previous lemma hold true. We then deduce that:

ErVn`1pXn`1, Yn`1q|Fns
ď VnpXn, Ynqp1` Cαn`1q ´ Un`1,

with αn “ γ2
nrn and Un`1 “ ca,bγn`1}Yn}

2
`bγn`1rn}∇fpXnq}2. Subsequently, using the Robbins-Siegmund Theorem

(see, e.g., Theorem 27 in Section A.1, borrowed from [Duf97]), we deduce, on the one hand, that supně1 ErVnpXn, Ynqs ă
`8 and that pVnpXn, Ynqqně1 almost surely (and in L1) converge towards a random variable V8 P R`. In particular,
the coercivity of f implies the a.s.-boundedness of pXnqně0. On the other hand, the Robbins-Siegmund Theorem also
implies that:

ÿ

ně1

γn`1rn

ˆ

}Yn}
2

rn
` }∇fpXnq}2

˙

ă `8 a.s.

Hence, the three first statements follow. ˛

Proof of pivq: The proof relies on the so-called ODE method (see, e.g., [Ben06]). Set r8 “ limnÑ`8 rn. We deal with
cases r8 ą 0 and r8 “ 0 separately.

Case r8 ą 0 (exponential memory): Set Γn “
řn
k“0 γk with the convention γ0 “ 0. Denote by pz̄ptqqtě0 the

interpolated process defined by z̄pΓnq “ Zn “ pXn, Ynq
1, n ě 0, with linear interpolations between times Γn and Γn`1

and let z̄pnq be the associated shifted-sequence defined by:

z̄pnqptq “ z̄pt` Γnq t ě 0.

Setting εn “ p0, prn´1 ´ r8qp∇fpXnq ´ Ynq `∆Mnq
1 and hpx, yq “ p´y, r8p∇fpxq ´ yqq1, we have:

Zn`1 “ Zn ` γn`1phpZnq ` εn`1q.

Set Npn, tq “ inftk ě n, γn`1 ` . . .` γk ě tu (with the convention infH “ n). Then, since pZnqně0 is a.s.-bounded, it
is a classical result on stochastic algorithm theory (see, e.g., [Duf97], Theorem 9.2.8 and the remark below) that if for
any T ą 0,

lim sup
nÑ`8

sup
tPr0,T s

›

›

›

›

›

Npn,tq`1
ÿ

k“n`1

γkεk

›

›

›

›

›

“ 0 a.s., (11)
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then pz̄pnqqně0 is relatively compact (for the topology of uniform convergence on compact sets) and its limit points are
solutions to the ODE 9z “ hpzq. Let us prove (11). Let T ą 0. Using the Cauchy-Schwarz inequality, we have, for every
t P r0, T s:

Npn,tq`1
ÿ

k“n`1

γkp}∇fpXk´1q} ` }Yk}q ď
?

2

˜

Npn,tq`1
ÿ

k“n`1

γk

¸

1
2
˜

Npn,tq`1
ÿ

k“n`1

γk
`

}∇fpXk´1q}
2
` }Yk´1}

2
˘

¸

1
2

ď
a

2pT ` γ1q

˜

`8
ÿ

k“n`1

γk
`

}∇fpXk´1q}
2
` }Yk´1}

2
˘

¸ 1
2

nÑ`8
ÝÝÝÝÑ 0,

(12)

where the last convergence follows from piiiq. On the basis of Assumption pHσ,2q and piiiq, we also note that
px
řn
k“1 γk∆Mkyqně1 is a.s.-convergent so that

ř

γn∆Mn. It easily follows that:

lim sup
nÑ`8

sup
tPr0,T s

›

›

›

›

›

Npn,tq`1
ÿ

k“n`1

γk∆Mk

›

›

›

›

›

“ 0 a.s.

and that (11) is satisfied. Now, we again deduce from (12) that for any T ą 0,

sup
tďT

}z̄pnqptq ´ z̄pnqp0q} “ sup
tďT

}z̄pnqptq ´ Zn}
nÑ`8
ÝÝÝÝÑ 0

so that each limit point is stationary. At this stage, we have thus proven that every limit point of pz̄nqně0 is a
stationary solution to 9z “ hpzq. This implies that any limit point Z8 of pZnqně0 satisfies hpZ8q “ 0 (and thus
Y8 “ ∇fpX8q “ 0). Actually, let pZnk qkě1 be a convergent subsequence of the (a.s. bounded) sequence pZnqně0 and
denote its limit by Z8. Up to a second extraction, pz̄pnkqq converges to a stationary solution z̄8 of 9z “ hpzq. As a
consequence, hpz̄8ptqq “ 0 for any t ě 0. In particular, hpz̄8p0qq “ hpZ8q “ 0. By piiq and the fact that pYnqně0

converges to 0, we also deduce that pfpXnqqně0 is a.s.-convergent. To conclude the proof, it remains to observe that
the set of possible limits of subsequences of pXnqně1 is connected. This is true since Xn ´Xn´1 “ ´γnYn´1 Ñ 0 as
nÑ `8. ˛

Case r8 “ 0 (polynomial memory): In this case, the proof is somewhat similar but the identification of the
asymptotic dynamics requires an appropriate normalization of Yn

1. Let us set:

rγn “ γn
?
rn, rΓn “

n
ÿ

k“0

γ̃k, rXn “ Xn, rYn “
Yn
?
rn
.

Also set by rZn “ p rXn, rYnq
1. The dynamic of rZn is described by Lemma 10 below. We denote as przptqqtě0 the

interpolated process, i.e. defined by z̃prΓnq “ rZn, n ě 0, with linear interpolations between times rΓn and rΓn`1 and let
z̃pnq be the associated shifted-sequence defined by

z̃pnqptq “ z̃pt` rΓnq t ě 0.

With this setting, the idea is to show that the sequence pz̃pnqptqqtě0 is tight with limits being stationary solutions of a
homogeneous O.D.E. 9z “ h̃pzq (h̃ being the drift to be determined). The sequence p rZnqně0 satisfies Lemma 10 that

shows that rZn`1 “ rZn ` rγn`1

´

h̃p rZnq ` ε̃n`1

¯

with h̃px̃, ỹq :“ p´ỹ,∇fpx̃qq1 and:

ε̃n`1 “

˜

0

υ
p1q
n ∇fp rXnq ` υp2qn rYn `

b

rn
rn`1

∆Mn`1

¸

,

where υ
p1q
n and υ

p2q
n are given in the statement of Lemma 10.

On the basis of Assumption pHrq, we know that: lim supnÑ`8
1

2γn`1

´

1
rn`1

´ 1
rn

¯

ă 1 so that:

υp1qn “ O

ˆ

rn ´ rn`1

rn`1

˙

“ Oprγn`1
?
rnq and υp2qn “ O p

?
rnq .

Thus, pυ
p1q
n qně1 and pυ

p2q
n qně1 converge to 0 as n Ñ `8. We can now repeat the arguments used in the situation

r8 ą 0 and we obtain:

lim sup
nÑ`8

sup
tPr0,T s

›

›

›

›

›

›

ĂNpn,tq`1
ÿ

k“n`1

γ̃kε̃k

›

›

›

›

›

›

“ 0 a.s.,

where rNpn, tq “ inftk ě n, rγn`1 ` . . . ` rγk ě tu. We can still combine (12) and piiiq to obtain suptďT |z̃
pnq
ptq ´

z̃pnqp0q|
nÑ`8
ÝÝÝÝÑ 0 for any T ą 0. We conclude that pz̃pnqqně0 is relatively compact and that its limits are stationary

solutions of 9z “ h̃pzq. The end of the proof is exactly the same as in the case r8 ą 0. ˛˝

1In fact, due to the asymptotic stationarity, the limiting dynamics is not intrinsic.
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Lemma 10
rZn`1 “ rZn ` rγn`1

´

h̃p rZnq ` ε̃n`1

¯

where h̃px̃, ỹq “ p´ỹ,∇fpx̃q ´ ?r8ỹq1 and

ε̃n`1 “

˜

0

υ
p1q
n ∇fp rXnq ` υp2qn rYn `

b

rn
rn`1

∆Mn`1

¸

,

with

υp1qn “

c

rn
rn`1

´ 1 and υp2qn “
1

qγn`1
υp1qn `

ˆ

?
r8 ´

rn
?
rn`1

˙

.

Proof

First, the fact that rXn`1 “ rXn ´ γ̃n`1
rYn is obvious. Second,

rYn`1 “ rYn

c

rn
rn`1

`γ̃n`1

ˆ
c

rn
rn`1

∇fp rXnq ´
rn

?
rn`1

rYn `

c

rn
rn`1

∆Mn`1

˙

.

The lemma follows. ˝

3.2 Convergence to a local minimum

To motivate the next theoretical result, we address the result of Corollary 9. We have shown the almost sure convergence
of (3) towards a point of the form px8, 0q in both exponential and polynomial cases where x8 is a critical point of
f . This result is obtained under very weak assumptions on f and on the noise p∆Mn`1qně1 and is rather close to
Theorems 3-4 of [YLL16] (obtained within a different framework). Unfortunately, it this only provides a very partial
answer to the problem of minimizing f because nothing is said about the stability of the limit of the sequence pXnqně0

by Corollary 9: the attained critical point may be a local maximum, a saddle point or a local minimum.
This result is made more precise below and we establish some sufficient guarantees for the a.s. convergence of pXnq

towards a minimum of f , even if f possesses some local traps with the additional assumption pHEq. This proof follows
the approach described in [BD96] and [Ben06] but requires some careful adaptations because of the hypo-elliptic noise
of the algorithm (there is no noise on the x-component) for both the exponentially and polynomially-weighted memory.
Moreover, the linearization of the inhomogeneous drift around a critical point of f in the polynomial memory case is
a supplementary difficulty we need to bypass.

Note that some recent works on stochastic algorithms (see, e.g., [LSJR16]) deal with the convergence to minimizers
of f of deterministic gradient descent with a randomized initialization. In our case, we will obtain a rather different
result because of the randomization of the algorithm at each iteration. Note, however that the main ingredient of the
proofs below will be the stable manifold theorem (the Poincaré Lemma on stable/unstable hyperbolic points of [Poi86])
and its consequence around hyperbolic points. This geometrical result is also used in [LSJR16].

3.2.1 Exponential memory rn “ r ą 0

The exponential memory case may be (almost) seen as an application of Theorem 1 of [BD96]. More precisely, if
Zn “ pXn, Ynq and hpx, yq “ p´y, r∇fpxq ´ ryq, then the underlying stochastic algorithm may be written as:

Zn`1 “ Zn ` γnhpZnq ` γn∆Mn,

When rn “ r ą 0 (exponential memory), Corollary 9 applies and Zn
a.s.
ÝÝÑ Z8 “ pX8, 0q where X8 is a critical point

of f . For the analysis of the dynamics around a critical point of the drift, the critical poinf of f is denoted x0 and we
can linearize the drift around px0, 0q P Rd ˆ Rd as:

hpx, yq “

ˆ

0 ´Id
rD2

pfqpx0q ´rId

˙ˆ

x´ x0

y

˙

`Op}x´ x0}
2
q,

where Id is the dˆ d identity-squared matrix and D2
pfqpx0q is the Hessian matrix of f at point x0. When x0 is not a

local minimum of f , the spectral decomposition of D2
pfqpx0q leads to the spectral decomposition:

DP P OdpRq D2
pfqpx0q “ P´1ΛP,

where Λ is a diagonal matrix with at least one negative eigenvalue λ ă 0. Considering now qZn “ p qXn, qYnq where
qXn “ PXn and qYn “ PYn, we have:

qZn`1 “ qZn ` γnh̃p qZnq ` γnP∆Mn,

where qh may be linearized as:

qhpqx, qyq “

ˆ

0 ´Id
rΛ ´rId

˙ˆ

qx´ qx0

qy

˙

`Op}qx´ qx0}
2
q where qx0 “ Px0.
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In particular, if eλ is an eigenvector associated with the eigenvalue λ ă 0 of D2fpx0q, we can see that the linearization
of h̃ on the space Spanpeλq b p1, 0, . . . , 0q acts as:

Aλ,r “

ˆ

0 ´1
rλ ´r

˙

.

Its spectrum is SppAλ,rq “ ´
r
2
˘

b

r2

4
´ rλ. The important fact is that when λ ă 0, the eigenvalue ´ r

2
`

b

r2

4
´ rλ

is positive and whose corresponding eigenspace is E`λ “

´

1, 1
2
´

b

1
4
´ λ{r

¯

. In the initial space Rd ˆ Rd (without

applying the change of basis through P b P ), the corresponding eigenvector is:

e`λ “ eλ b

˜

1

2
´

c

1

4
´ λ{r

¸

eλ

Consequently, when x0 is not a local minimum of f , it generates a hyperbolic equilibrium of h and we can apply the
“general” local trap Theorem 1 of [BD96]. If Π

E`
λ

denotes the projection on the eigenspace Spanpe`λ q, then the noise

in the direction E`λ is:

ξ`n “ Π
E`
λ
p0,∆Mnq “

x∆Mn, eλy

}eλ}2
eλ.

Now, Assumption pHEq implies that:

lim inf
nÝÑ`8

E
›

›

›
Π
E`
λ
p0,∆Mnq

›

›

›
ě ceλ ą 0.

We can then apply Theorem 1 of [BD96] and conclude the following result.

Theorem 11 If pHσ,2q , pHsq and pHEq hold and rn “ r, then Xn a.s. converges towards a local minimum of f .

3.2.2 Polynomial memory rn “ rΓ´1
n ÝÑ 0

We introduce a key normalization of the speed coordinate and define the rescaled process:

rXn “ Xn and rYn “
?

ΓnYn.

We can note that rYn “
?
rYnr

´1{2
n and the important conclusion brought by pivq of Corollary 9 is that p rXn, rYnq

a.s.
ÝÝÑ

pX8, 0q still holds (under the assumptions of Corollary 9) We can write the recursive upgrade of the couple p rXn, rYnq.

The evolution of p rXnqně0 is easy to write: rXn`1 “ rXn ´
γn`1?

Γn
rYn. The recursive formula satisfied by prYnqně0 is:

rYn`1 “
a

Γn`1 rYn ` γn`1rn`1 p∇fpXnq ´ Yn `∆Mn`1qs

“

?
Γn`1
?

Γn
rYn ` r

γn`1
?

Γn
ˆ

?
Γn`1
?

Γn
∇fp rXnq ´ r

γn`1
?

Γn
ˆ

?
Γn`1

Γn
rYn ` r

γn`1
?

Γn
ˆ

?
Γn`1
?

Γn
∆Mn`1

Hence, the couple p rXn, rYnq evolves as an almost standard stochastic algorithm, whose step size is rγn`1 “ γn`1Γ
´1{2
n :

#

rXn`1 “ rXn ´ rγn`1
rYn

rYn`1 “ rYn ` rrγn`1∇fp rXnq ` rγn`1qn`1∆Mn`1 ` rγn`1Un`1,
(13)

where qn`1 “
a

Γn`1{Γn “ 1` opn´1
q as n ÝÑ `8 and pUn`1qně1 is defined by:

Un`1 “
1{2´ rqn`1 ` opn

´1
q

?
Γn

rYn ` rpqn`1 ´ 1q∇fp rXnq.

This dynamical system is related to the deterministic one

#

9xt “ ´yt

9yt “ r∇fpxtq
or equivalently:

9zt “ F pztq with F pzq “ F px, yq “ p´y, r∇fpxqq. (14)

It is easy to see that when x8 is a local maximum of f , then the above drift is unstable near z8 “ px8, 0q.
Unfortunately, Theorem 1 of [BD96] cannot be applied because of the size of the remainder terms involved in (13) and
the a.s. convergence of pXn, Ynqně0 requires further investigation. From [Ben06], we borrow a tractable construction of
a “Lyapunov” function η in the neighborhood of each hyperbolic point, which translates a mean repelling effect of the
unstable points. This construction still relies on the Poincaré Lemma (see [Poi86] and [Har82] for a recent reference).
Again, in the neighborhood of any hyperbolic point, we will treat the projection Π` as a projection on the unstable
manifold.
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Proposition 12 ([Ben06]) For any local maximum point x8 of f , a compact neighborhood N of z8 “ px8, 0q and a
positive function η P C2

pRd ˆ Rd,R˚`q exist such that:

piq @z “ px, yq P N , Dηpzq : Rd ˆ Rd ÝÑ Rd ˆ Rd is Lipschitz, convex and positively homogeneous.

piiq Two constants k ą 0 and c1 ą 0 and a neighborhood U of p0, 0q exist such that:

@z P N @u P U ηpz ` uq ě ηpzq ` xDηpzq, uy ´ k}u}2,

and if t u` denotes the positive part:

@z P N @u P U tDηpzqpuqu` ě c1}Π`puq}.

piiiq A positive constant κ exists such that:

@z P N xDηpzq, F pzqy ě κηpzq

When d “ 1, it is possible to check that if λ is a negative eigenvalue of the Hessian of f around a local maximum
x8, then the drift may be linearized in p´y, λpx ´ x8qq and a reasonable approximation of η is given by ηpx, yq “
1
2
}y´

?
´λx}2. Nevertheless, the situation is more involved in higher dimensions and the construction of the function

η relies on the stable manifold theorem. We are now able to state the next important result.

Theorem 13 Assume that the noise satisfies pHGauss,σq and pHEq, that the function satisfies pHsq, and that γn “
γn´β with β ă 1{3, then pXnqně0 a.s. converges towards a local minimum of f .

The proof relies on an argument of [Pem90, Ben06] even though it requires major modifications to deal with the
time inhomogeneity of the process and the unbounded noise, which are assumed in these previous works. We denote
N as any neighborhood of z8 and consider any integer n0 P N. We then introduce rZn “ p rXn, rYnq and the stopping
time:

T :“ inf
!

n ě n0 : rZn R N
)

.

We will show that PpT ă `8q “ 1, which implies the conclusion. We introduce two sequences pΩnqněn0 and pSnqněn0 :

Ωn`1 “ rηp rZn`1q ´ ηp rZnqs1năT ` γ̃n`11něT and Sn “ ηpZ̃n0q `

n
ÿ

k“n0`1

Ωk. (15)

Note that the construction of η implies that z ÞÝÑ Dηpzq is Lipschitz, so that the following inequality holds:

ηpz ` uq ´ ηpzq ě xDηpzq, uy ´
}Dη}Lip}u}

2

2
.

This inequality provides some information when u is small. In the meantime, η is positive so that:

@α P p0, 1s Dkα ą 0 @pz, uq P N ˆ Rd ηpz ` uq ´ ηpzq ě xDηpzq, uy ´ kα}u}
1`α (16)

The family of inequalities described in (16) will be used with an appropriate value of α in the next result.

Proposition 14 The random variables pΩnqně0 satisfy the following conditions:

piq A constant c exists such that:
ErΩ2

n`1|Fns ď cγ̃2
n`1

piiq A sequence pεnqně0 exists such that:
1SněεnErΩn`1|Fns ě 0,

with εn „ cn´p1´αq{2 for a large enough c and α “ p1´ βq{p1` βq.

piiiq Assume that β ă 1
3

, then pS2
nqně0 has a submartingale increment:

ErS2
n`1 ´ S

2
n|Fns ě aγ̃2

n`1

for a small enough constant a.

Proof:
Proof of piq. When n ě T , we have Ωn`1 “ γ̃n`1 by definition and the conclusion follows. In the other situation when
n ď T , we use the Lipschitz continuity of η: if m “ supzPN }Dηpzq}, then Equation (13) yields:

}ηp rZn`1q ´ ηp rZnq}
2
ď 4m2γ̃2

n`1

”

}rYn}
2
` r2

}∇fp rXnq}2 ` q2
n`1}∆Mn`1}

2
` }Un`1}

2
ı

.

The neighborhood N being compact, we deduce from the previous inequality that a constant C ą 0 exists such that:

E
“

}Ωn`1}
21năT |Fn

‰

ď E
”

}ηp rZn`1q ´ ηp rZnq}
21năT |Fn

ı

ď Cγ̃2
n`1,

where we used a uniform upper bound on Er}∆Mn`1}
21năT |Fns, leading to the proof of piq. ˛
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Proof of piiq. Note that 1năT and 1něT are Fn measurable and we have:

1něTE rΩn`1|Fns “ 1něT γ̃n`1 ě 0.

On the complementary set, we also have:

1năTE rΩn`1|Fns ě 1năTE
”

rηp rZn`1q ´ ηp rZnqs|Fn
ı

“ 1năTE
”

ηp rZn`1q ´ ηp rZnq|Fn
ı

Hence, we can use the lower bound given by (16): for any value of α P p0, 1s:

1năTE rΩn`1|Fns ě 1năT
”

γ̃n`1xDηp rZnq, F p rZnqy ` γ̃n`1xDηp rZnq,Er∆Mn`1|Fns ` Un`1y

ı

´1năT kαγ̃
1`α
n`1

”

}rYn} ` r}∇fp rXnq} ` qn`1}∆Mn`1} ` }Un`1}

ı1`α

where we used the triangle inequality in the last line to derive an upper bound of } rZn`1 ´ rZn}. When n ă T , rZn is
bounded and we have Er}∆Mn`1}

2
|Fns ď σ2M for a large enough M . Hence, the Hölder inequality implies that:

Er}∆Mn`1}
1`α

|Fns ď σ1`αM
1`α

2 .

Therefore, we can find a large enough constant C1 ą 0 such that:

1năTE rΩn`1|Fns ě 1năT
”

γ̃n`1xDηp rZnq, F p rZnqy ´mγ̃n`1}Un`1} ´ C1γ̃
1`α
n`1

ı

.

The lower bound piiiq of Proposition 12 and the definition of Un`1 implies that a constant C2 exists such that:

1năTE rΩn`1|Fns ě 1năT γ̃n`1

„

κηp rZnq ´ C1γ̃
α
n`1 ´

C2
?

Γn



We now choose α so that γ̃αn`1 » Γ
´1{2
n , which corresponds to the choice:

α “
1´ β

1` β
.

Defining εn “ κ´1
”

C1γ̃n`1 ` C2Γ
´1{2
n

ı

, we then deduce that if n ă T , then Sn “ ηp rZnq so that:

1SněεnE rΩn`1|Fns ě 0,

which concludes the proof. In particular, εn must be chosen on the order γ̃αn`1 (or on the order Γ
´1{2
n „ n´p1´βq{2). ˛

Proof of piiiq. Observe that S2
n`1 ´ S2

n “ Ω2
n`1 ` 2SnΩn`1. Now, if Sn ě εn, then we have seen in the proof of piiq

that:
1SněεnErS

2
n`1 ´ S

2
n|Fns “ 1SněεnErΩ

2
n`1|Fns ` 2Sn1SněεnErΩn`1|Fns ě 1SněεnErΩ

2
n`1|Fns.

In the other situation, we have Sn ď εn, meaning that n ă T and we have seen in the proof of piiq that:

1năTErΩn`1|Fns ě 1năT
”

γ̃n`1κηp rZnq ` γ̃n`1xDηp rZnq, Un`1y

ı

´k2γ̃
2
n`1

”

}rYn} ` r}∇fp rXnq} ` qn`1}∆Mn`1} ` }Un`1}

ı2

Consequently, because of the positivity of η, we deduce that:

1năTErΩn`1|Fns ě ´}Dηp rZnq} ˆOpγ̃n`1Γ´1{2
n q ´Opγ̃2

n`1q.

We know that Dη is locally bounded on N , we then obtain:

1SnďεnErΩn`1|Fns “ 1Snďεn1năTErΩn`1|Fns “ 1ηp rZnqďεn1năTErΩn`1|Fns

ě ´1ηp rZnqďεn1năT
”

}Dηp rZnq} ˆOpγ̃n`1Γ´1{2
n q `Opγ̃2

n`1q

ı

.

ě ´Cγ̃n`1

”

Γ´1{2
n ` γ̃n`1

ı

,

for a large enough constant C. In the two situations, we then have:

ErS2
n`1 ´ S

2
n|Fns ě ErΩ2

n`1|Fns ´ 2Cεnγ̃
2
n`1 ´ 2Cεnγ̃n`1Γ´1{2

n .

Finally, Lemma 9.7 of [Ben06] and our hypoelliptic assumption pHEq implies that for small enough c:

ErΩ2
n`1|Fns ě cγ̃2

n`1

14



The conclusion follows if εnγ̃n`1Γ
´1{2
n “ o

`

γ̃2
n`1

˘

. Since εn is chosen on the order Γ
´1{2
n „ γ̃αn`1 with α “ p1´βq{p1`βq,

this condition is equivalent to:
γ̃1`2α
n`1 “ o

`

γ̃2
n`1

˘

.

meaning that α ą 1{2. It then implies that β should be less than 1{3. ˛˝

We use now the key estimations derived from Proposition 14 to obtain the proof of the main result of this Section.
Proof of Theorem 13: The proof is split into three parts. We consider:

Sn “ S0 `

n
ÿ

k“1

Ωk and define δn “
ÿ

iěn

γ̃2
i .

In our case, we have chosen β P p0, 1{3q and we can check that:

γ̃n „ n´p1`βq{2 so that δn „ n´β . (17)

We consider the sequence εn defined in Proposition 14:

εn „ Γ´1{2
n „ γ̃αn`1 with α “

1´ β

1` β
ą 1{2.

In this case, we have:
εn “ n´p1´βq{2 “ opn´β{2q “ op

?
δnq because β ă 1{3 ă 1{2.

The proof now proceeds by considering the sequential crossings Sn ď c
?
δn and Sn ě c

?
δn for a suitable value of c.

Step 1: Sn becomes greater than
?
bδn with a positive probability.

For a given constant b and a positive n P N, we introduce the stopping time:

T “ inf
!

i ě n : Si ě
?
bδi

)

,

and we show that an ε ą 0 exists such that P pT ă 8q ě 1´ ε. For a given by piiiq of Proposition 14, we consider:

Mk “ S2
k ´ a

k
ÿ

i“0

γ̃2
i .

pMkqkěn is a submartingale, so that pMk^T qkěn is also a stopped submartingale. This yields:

E
“

S2
m^T ´ S

2
n|Fn

‰

ě aE

«

m^T
ÿ

n`1

γ̃2
i |Fn

ff

ě a

˜

m
ÿ

n`1

γ̃2
i

¸

P pT ą m|Fnq . (18)

In the meantime, we can decompose S2
m^T ´ S

2
n into:

S2
m^T ´ S

2
n “ S2

m^T ´ S
2
m^T´1 ` S

2
m^T´1 ´ S

2
n

ď 2Sm^T´1Ωm^T ` Ω2
m^T ` S

2
m^T´1

ď 2S2
m^T´1 ` 2Ω2

m^T

ď 2bδm^T´1 ` 2Ω2
m^T .

Since pδkqkěn is decreasing, we then have δm^T´1 ď δn. We then study the remaining term. We can use Equation
(13) and the Lipschitz continuity of η over the neighborhood N (before time T ) to obtain a large enough C such that:

Ω2
m^T “ Ω2

m^T r1m^T´1ăT ` 1m^T´1ěT s

“

”

ηpZ̃m^T q ´ ηpZ̃m^T´1q

ı2

1m^T´1ăT ` γ̃
2
m^T 1m^T´1ěT

ď Crγ̃2
m^T ` γ̃

2
m^T }∆Mm^T }

2
s.

However, nothing more is known about the stopped process }∆Mm^T }
2 and we are forced to use:

E
“

S2
m^T ´ S

2
n|Fn

‰

ď 2bδn ` 2C

„

γ̃2
n ` E

„

sup
kěn

γ̃2
k}∆Mk}

2



.

Given that all ∆Mk are independent sub-Gaussian random variables that satisfy Inequality (56), we can use Theorem
30 and obtain that a constant C large enough exists such that for any ε ą 0:

E
“

S2
m^T ´ S

2
n|Fn

‰

ď 2bδn ` 2Cγ̃2
n logpγ̃´2

n q. (19)
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We can plug the estimate (19) into Inequality (18) to obtain:

P pT ą m|Fnq ď
2bδn ` 2Cγ̃2

n logpγ̃´2
n q

a
řm
i“n`1 γ̃

2
i

.

Letting m ÝÑ `8, we deduce that:

P pT “ 8|Fnq ď
2b

a
`

2Cγ̃2
n logpγ̃´2

n q

aδn
.

According to the calibration (17), we have γ̃2
n logpγ̃´2

n q “ opδnq. Consequently, we can choose n large enough such that:

P pT ă 8|Fnq ě 1´
3b

a
.

˛

Step 2: The sequence pSkqkěn may remain larger than
a

b{2δn with a positive probability.
We introduce the stopping time S and the event En P Fn:

S “ infti ě n : Si ă

?
b

2

?
δnu and En “

!

Sn ě
?
b
?
δn
)

.

Since the sequence pδiqiěn is non-increasing, piiq of Proposition 14 yields:

E
“

Spi`1q^S ´ Si^S |Fi
‰

“ 1SąiE rSi`1 ´ Si|Fis “ 1Sąi1Siě
?
b{2δn

E rSi`1 ´ Si|Fis

ě 1Sěi1Siě
?
b{2δi

E rXi`1|Fis ě 1Sěi1SiěεiE rXi`1|Fis ě 0.

Hence, pSi^Sqiěn is a submartingale and the Doob decomposition reads Si^S “Mi` Ii where pMiqiěn is a Martingale
and pIiq is a predictable increasing process such that In “ 0. Hence,

PpS “ 8|Fnq “ P|Fn

ˆ

@i ě n : Si ě

?
b

2

?
δn

˙

ě P|Fn

ˆ

@i ě n : Mi ě

?
b

2

?
δn

˙

On the event En, Sn “Mn ě
?
b
?
δn so that Mi ´Mn ďMi ´

?
b
?
δn. Therefore:

P
ˆ

@i ě n : Mi ě

?
b

2

?
δn |Fn

˙

1En ě P
ˆ

@i ě n : Mi ´Mn ě ´

?
b

2

?
δn |Fn

˙

1En .

The rest of the proof follows a standard martingale argument:

E
`

pMi ´Mnq
2
|Fn

˘

“

i´1
ÿ

j“n

E
`

pMj`1 ´Mjq
2
|Fn

˘

“

i´1
ÿ

j“n

E
`

E
`

pMj`1 ´Mjq
2
|Fj

˘

|Fn
˘

“

i´1
ÿ

j“n

E
`

E
`

pSj`1 ´ Sjq
2
|Fj

˘

´ pIj`1 ´ Ijq
2
|Fn

˘

ď

i´1
ÿ

j“n

E
`

pSj`1 ´ Sjq
2
|Fn

˘

ď

i´1
ÿ

j“n

E
`

Ω2
j`1|Fn

˘

ď c
i
ÿ

j“n

γ̃2
j`1 ď cδn.

where we used the upper bound given by piq of Proposition 14 in the last line. Now, the Doob inequality implies that:

Pp inf
nďiďm

pMi ´Mnq ď ´s|Fnq “ Pp inf
nďiďm

pMi ´Mn ´ tq ď ´s´ t|Fnq

ď Pp sup
nďiďm

|Mi ´Mn ´ t| ď s` t|Fnq

ď
E
`

pMm ´Mn ´ tq
2
|Fn

˘

ps` tq2

“
E
`

pMm ´Mnq
2
|Fn

˘

` t2

ps` tq2
“
cδn ` t

2

ps` tq2
.

We apply this inequality with s “
?
b

2

?
δn and use ps` tq2 ď p1` ϑqs2

` p1` ϑ´1
qt2 for any ϑ ą 0. It leads to:

P
ˆ

inf
nďiďm

pMi ´Mnq ď ´

?
b

2

?
δn|Fn

˙

ď
cδn ` t

2

p1` ϑqbδn{4` p1` ϑ´1qt2
.
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We now choose ϑ “ 4c{b , t “
?
δn and deduce that:

P
ˆ

inf
nďiďm

pMi ´Mnq ď ´

?
b

2

?
δn|Fn

˙

ď
c` 1

c` 1` b{4c
.

Consequently, we deduce that:

PpS “ 8|Fnq1En ě P|Fn

ˆ

@i ě n : Mi ě

?
b

2

?
δn

˙

1En ě

ˆ

1´
c` 1

c` 1` b{4c

˙

1En “
b

b` 4c` 4c2
1En

˛

Step 3: pSnqně0 does not converge to 0 with probability 1.
We denote G as the event that pSnqně0 does not converge to 0. For any integer n, we have the inclusion:

tS “ `8u “
!

@i ě n : Si ě
a

b{4
?
δn
)

Ă G,

which implies:

Er1G |Fis1T“i “ Er1G |Fis1T“i1Ei ě
b

b` 4c` 4c2
1T“i1Ei “

b

b` 4c` 4c2
1T“i

Hence,

Er1G |Fns “
ÿ

iěn

Er1G1T“i|Fns “ E rEr1G |Fis1T“i |Fns

ě
b

b` 4c` 4c2

ÿ

iěn

E r1T“i |Fns ě
b

b` 4c` 4c2
P pT ă `8|Fnq ě

b

b` 4c` 4c2

ˆ

1´
3b

a

˙

ą 0.

Since 1G P F8, we have limnÝÑ`8 Er1G |Fns “ 1G . The previous lower bound implies that G almost surely holds. ˛

Conclusion of the proof: The stochastic algorithm does not converge to a local trap.
Consider N a neighborhood of a local maximum of f , and its associated function η given by Proposition 12. We then
consider the random variables pΩnqně0 and pSnqně0. We have seen that Sn does not converge to 0 with probability 1.
We define:

TN :“ inf
!

n ě 0 : rZn R N
)

.

and assume that TN “ `8. In that case, we always have:

Ωn`1 “ ηp rZn`1q ´ ηp rZnq and Sn “ ηp rZnq.

The limit set of p rZnqně0 is a non empty compact subset of N , which is left invariant by the flow pΦtqtě0 of the O.D.E.

whose drift is F . Now, consider z in p rZnqně0 and apply piiiq of Proposition 12. We then have ηpΦtpzqq ě eκtηpyq.
Since ηpΦtpzqq ď supN η, we therefore deduce that ηpzq “ 0. Hence, the unique limiting value for pSnqně0 is zero,
meaning that Sn ÝÑ 0 as n ÝÑ `8. However, we have seen in Step 3 that Sn does not converge to 0 with probability
1. Therefore, PpTN “ `8q “ 0 and the process does not converge towards a local maximum of f with probability 1. ˝

4 Convergence rates for strongly convex functions

This section focuses on the convergence rates of algorithm (3) according to the step-size γn “ γn´β for λ-strongly
convex function f with a L-Lipschitz gradient, corresponding to the assumptions pHSCpλqq and pHsq.

4.1 Quadratic case

We first study the benchmark case of a purely quadratic function f , meaning that ∇f is linear. In this case, fpxq “
1
2
}Ax}2 and ∇fpxq “ Sx, leading to the following form of the algorithm:

#

Xn`1 “ Xn ´ γn`1Yn

Yn`1 “ Yn ` γn`1rnpSXn ´ Ynq ` γn`1rn∆Mn`1,
(20)

where S is a d ˆ d squared matrix defined by S “ A1A. The matrix S is assumed to be positive definite with lower
bounded eigenvalues, e.g., SppSq Ă rλ,`8r when f is pHSCpλqq with λ ą 0.
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4.1.1 Reduction to a two dimensional system

Equation (20) may be parameterized in a simpler form using the spectral decomposition of S “ P´1ΛP , where P is
orthogonal, and Λ is a diagonal matrix:

@pi, jq P t1 . . . du2 Λi,j “ λiδi,j ě λ ą 0.

Keeping the notation p qXn, qYnqně1 for the change of basis induced by P , we define qXn “ PXn and qYn “ PYn and
obtain:

#

qXn`1 “ qXn ´ γn`1
rYn

qYn`1 “ qYn ` γn`1rnpΛ qXn ´ qYnq ` γn`1rnP∆Mn`1,

Since Λ is diagonal, we are now led to study the evolution of d couples of stochastic algorithms:

@i P t1 . . . du

#

qx
piq
n`1 “ qxpiqn ´ γn`1qy

piq
n

qy
piq
n`1 “ qypiqn ` γn`1rnpλiqx

piq
n ´ qypiqn q ` γn`1rn∆|M

piq
n`1,

where we used the notations qXn “ pqx
piq
n q1ďiďd and qYn “ pqy

piq
n q1ďiďd. Consequently, in the quadratic case, the stochastic

HBF may be reduced to d couples of 2-dimensional random dynamical systems:

@i P t1, . . . , du2 qZ
piq
n`1 “ pI2 ` γn`1C

piq
n q

qZpiqn ` γn`1rnΣ2∆N
piq
n`1, (21)

where

qZpiqn :“ pqxpiqn , qypiqn q and Cpiqn “

ˆ

0 ´1

λpiqrn ´rn

˙

and Σ2 “

ˆ

0 0
0 1

˙

,

λpiq “ Λi,i ě λ ą 0 and p∆N
piq
n qně1 is a sequence of martingale increments.

It is worth noting that due to the multiplication by the matrix P , the martingale increment ∆N
piq
n`1 potentially

depends on the whole coordinate p qZ
pjq
n q1ďjďd. In a completely general case, this involves technicalities mainly due to

the fact that the system (21) is not completely autonomous (in general, the components qZ
piq
n and qZ

pjq
n do not evolve

independently). To overcome this difficulty, the idea is to obtain some general controls for a system solution to (21)
and to then bring the controls of each coordinate together. For the sake of simplicity, we propose in the sequel to state
the results in the general case but to only make the proof for (21) with the assumption that:

Er|∆N pjqn`1|
2
|Fns ď Cp1` } qXpjqn }

2
q. (22)

From now on, we will omit the indexation by j to alleviate the notations. An easy computation shows that the
characteristic polynomial of Cn is given by:

χCn ptq “
´

t`
rn
2

¯2

`
rnp4λ´ rnq

4
.

We now consider the two different cases:

• For all n ě 1, Cn has two real or complex eigenvalues whose values do not change from n to n, which corresponds
to rn “ r. This case necessarily corresponds to an exponentially-weighted memory and rn is thus kept fixed
constant: rn “ r ě 4λ or rn “ r ă 4λ.

• For a large enough n, Cn has two complex conjugate and vanishing eigenvalues. This situation may occur if we
use a polynomially-weighted memory because, in that case, rn ÝÑ 0 as n ÝÑ `8.

4.1.2 Exponential memory rn “ r

We first study the situation when rn “ r, which is easier to deal with from a technical point of view.

Proposition 15 Assume pHσ,2q. Let pZnqně0 be defined by (20) with SppSq Ă rλ,`8r and rn “ r. Set:

αr “

$

&

%

r
´

1´
b

1´ 4λ
r

¯

, if r ě 4λ

r if r ă 4λ,
.

Assume that γn “ γn´β, we then have:

piq If β ă 1, then a constant cr,λ,γ exists such that:

@n ě 1 E
“

}Xn}
2
` }Yn}

2
‰

ď cr,λ,γγn.

piiq If β “ 1, then a constant cr,λ,γ exists such that:

@n ě 1 E
“

}Xn}
2
` }Yn}

2
‰

ď cr,λ,γn
´p1^γαrq logpnq1tγαr“1u .
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Proof: According to Subsection 4.1.1, we only make the proof for a system solution to (21) with the assumption that
(22) holds. We begin with the simplest case where r ě 4λ. The above computations show that:

SppCnq “

#

µ` “
´r `

a

pr ´ 4λqr

2
;µ´ “

´r ´
a

pr ´ 4λqr

2

+

, (23)

while the associated eigenvectors are given by e` “

ˆ

1
´µ`

˙

and e´ “

ˆ

1
´µ´

˙

and are kept fixed throughout the

iterations of the algorithm. Consequently, (21) may be rewritten in an even simpler way:

qZn`1 “

ˆ

1` γn`1µ` 0
0 1` γn`1µ´

˙

qZn ` rγn`1
qξn`1, (24)

where qZn “ QZn (pZnq being defined by (21) ) where Q is an invertible matrix such that Cn “ Q´1

ˆ

µ` 0
0 µ´

˙

Q

and qξn`1 “ QΣ2∆Nn`1. The squared norm of p qZnqně1 is now controlled using a standard martingale argument and
Assumption pHσ,2q:

E
”

} qZn`1}
2
|Fn

ı

ď rp1` µ`γn`1q
2
` Cγ2

n`1s}
qZn}

2
` Cγ2

n`1,

so that by setting un “ Er} qZn}2s, this yields:

un`1 ď p1` 2µ`γn`1 ` C1γ
2
n`1q ` C2γ

2
n`1. (25)

The result then follows from Propositions 28 piiiq and 29 piiiq (see Appendix A).

We now study the situation r ă 4λ. In this case, Cn possesses two conjugate complex eigenvalues:

SppCnq “

#

µ` “
´r ` i

a

rp4λ´ rq

2
;µ´ “

´r ´ i
a

rp4λ´ rq

2
.

+

,

Once again, we use the notation p qZnqně1 defined as qZn “ QZn with Q an invertible (complex) matrix such that

Sn “ Q´1

ˆ

µ` 0
0 µ´

˙

Q and qξn`1 “ QΣ2∆Nn`1. The squared norm of p qZnqně1 may be controlled while paying

attention to the modulus of complex numbers, and we obtain an inequality similar to (25).

E
”

} qZn`1}
2
|Fn

ı

ď max
`

|1` µ`γn`1|
2 ; |1` µ´γn`1|

2
˘

} qZn}
2
` C2γ

2
n`1,

ď

ˆ

´

1´
γn`1r

2

¯2

` C1γ
2
n`1

˙

} qZn}
2
` C2γ

2
n`1,

ď
`

1´ γn`1r ` C1γ
2
n`1

˘

} qZn}
2
` C2γ

2
n`1.

Once again, we can apply piiiq of Propositions 28piiiq and 29piiiq to obtain the desired conclusion. ˝

Remark 16 In the above proposition, the constants cr,λ,γ are not made explicit. However, it is possible to obtain
an estimation if we assume that Er∆Mn`1|

2
s ď σ2 and r ě 4λ. In this particular case, with the notations of (25), we

have:
un`1 ď p1´ αrγnqun ` r

2σ2
}Qr}

2γ2
n`1,

where un “ E} qZn}2. The Propositions 28 piiiq and 29 piiiq now imply that:

E
”

} qZn}
2
ı

ď E
”

} qZ0}
2
ı

e´αrΓn ` Cγ
2r2
}Qr}

2

αr
σ2γn,

which, in the end, provide an explicit upper bound of E}Zn}2 since Zn “ Q´1
r

qZn.
A more important issue concerns the rate obtained when β “ 1 and we can remark in the statement of Proposition

15 that this rate depends on the size of γ and of αr. In particular, the best rate (of order Opn´1
q) is obtained when

γαr ą 1, meaning that αr must be as large as possible to optimize the performance of the algorithm and we therefore
obtain a non-adaptive rate. It is easy to see that r ÞÝÑ αr increases on r0, 4λs and decreases on r4λ,`8q. It attains its
maximal value (maxr αr “ 4λ) when r “ 4λ. This maximal value is twice the size of the eigenvalue of the (standard)
stochastic gradient descent (SGD). Finally, limrÝÑ`8 αr “ 2λ. This limiting value 2λ corresponds to the size of the
eigenvalue of the SGD. In other words, the limit r “ `8 in HBF may be seen as an almost identical situation to SGD.

If we compare the rate of convergence of HBF to the one of SGD using the same step size γn “ γn´1, we see that
choosing a reasonably large r makes it possible to obtain a less stringent condition on γ to recover the (optimal) rate
Opn´1

q. In particular, the rate of the HBF is better when r ě 2λ than the one attained by the SGD. Unfortunately, it
seems impossible to obtain an adaptive procedure on the choice of pγ, rq that guarantees the rate Opn´1

q, unlike the
Polyak-Ruppert averaging procedure.

�
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4.1.3 Polynomial memory rn “ rΓ´1
n ÝÑ 0

This case is more intricate because of the variations with n of the eigenvectors of the matrix Cn defined in (21).

Proposition 17 Assume pHσ,2q. Let pZnqně0 be defined by (20) with SppSq Ă rλ,`8r and rn “
r

Γn
.

piq If β ă 1 and r ą 1`β
2p1´βq

, a constant cβ,λ,r exists such that:

@n ě 1 E}Xn}2 ď cβ,λ,rγn,

and
@n ě 1 E}Yn}2 ď cβ,λγnrn.

piiq If β “ 1, a constant C exists such that:

@n ě 1 E}Xn}2 ď
C

logn

and

@n ě 1 E}Yn}2 ď
C

n logn

Remark 18 We can observe that when β ă 1, the rates of the exponential case are preserved under a constraint
on r which becomes harder and harder when β is close to 1: r needs to be greater than 1`β

2p1´βq
. Carefully following

the proof of this result, we could in fact show that when 1{2 ă r ă 1`β
2p1´βq

, then E}Xn}2 ď Cn´pr´
1
2
qp1´βq. Since

pr ´ 1
2
qp1 ´ βq ÝÑ 0 as β ÝÑ 1, our upper bound in plognq´1 related to the case β “ 1 becomes reasonable.

Another possible interpretation of the poor convergence rate in that case is that the size of the negative real part of

the eigenvalues of Cn is on the order 1
n logn

, which leads to a contraction of the bias equivalent to O
´

e
´c

řn
1

1
k log k

¯

.

Regardless of c, we cannot obtain a polynomial rate of convergence in that case since
řn

1
1

k log k
„ log logn.

�

Proof

Proof of piq: We study the case β ă 1 here. According to the arguments used in the proof of Proposition 15 and

Subsection 4.1.1, the dynamical system may be reduced to d couples of systems in the form px
piq
n , y

piq
n qně1 so that we

only make the proof for a system solution to (21) under assumption (22). Another key feature of the polynomial case
has been observed in the proof of the a.s. convergence of the algorithm (Theorem 13): the study of the rate in the
polynomial case involves a normalization of the algorithm with a

?
rn-scaling of the Y coordinate. Therefore, we set

Z̃n “ pX̃n, Ỹnq with X̃n “ Xn and Ỹn “ Yn{
?
rn. With these notations, we obtain (similar to Lemma 10):

Z̃n`1 “ pI2 ` γ̃n`1C̃nqZ̃n ` γ̃n`1

c

rn
rn`1

Σ2∆Nn`1, (26)

with γ̃n`1 “ γn`1
?
rn and:

C̃n “

˜

0 ´1

λ
b

rn
rn`1

ρn

¸

with

ρn :“
1

γ̃n`1

ˆ
c

rn
rn`1

´ 1

˙

´
rn

?
rn`1

.

Since rn “ rΓ´1
n , the following expansion holds:

ρn “
1
?

Γn

ˆ

1

2
?
r
´
?
r

˙

`O

˜

γn

Γ
3
2
n

¸

. (27)

In particular, for a large enough n, ρn ă 0 if and only if r ą 1{2. Furthermore, an integer n0 P N exists such that for
any n ě n0, C̃n has complex eigenvalues given by:

µ
pnq
˘ “

1

2

˜

ρn ˘ i

d

4λ

c

rn
rn`1

´ ρ2
n

¸

nÑ`8
ÝÝÝÝÑ ˘i

?
λ.

We define the diagonal matrix:

Λn :“

˜

µ
pnq
` 0

0 µ
pnq
´

¸
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and let Qn be the matrix that satisfies Q´1
n ΛnQn “ C̃n. We have:

Q´1
n “

ˆ

1 1

´µ
pnq
` ´µ

pnq
´

˙

and Qn “
1

µ
pnq
` ´ µ

pnq
´

˜

´µ
pnq
´ ´1

µ
pnq
` 1

¸

.

We can now introduce the change of basis brought by Qn and the new coordinates qZn :“ Qn rZn. We have:

qZn`1 “ Qn`1pI2 ` γ̃n`1C̃nqQ
´1
n

qZn ` γ̃n`1

c

rn
rn`1

Qn`1Σ2∆Nn`1

“ Qn`1Q
´1
n pI2 ` γ̃n`1Λnq qZn ` γ̃n`1

c

rn
rn`1

Qn`1Σ2∆Nn`1. (28)

We now observe that:
Qn`1Q

´1
n “ I2 `Υn with Υn “ pQn`1 ´QnqQ

´1
n

and that for n large enough:

}Υn}8 ď C}Qn`1 ´Qn}8 “ Op|µ
pn`1q
` ´ µ

pnq
` |q “ O

´

|ρn`1 ´ ρn| ` |Impµ
pn`1q
` ´ µ

pnq
` q|

¯

.

Expansion (27), the fact that
b

rn
rn`1

“ 1 ` 1
2

γn`1

Γn
` O

ˆ

γ2
n`1

Γ2
n

˙

and the Lipschitz continuity of x ÞÑ
?

1` x on

r´1{2,`8q yield:

}Υn}8 “ O

˜

γn

Γ
3
2
n

`
γn ´ γn´1

Γn

¸

“ O

˜

γn

Γ
3
2
n

¸

“ O
´

n´
β`3

2

¯

.

From the above, we obtain, for any z P R2,

}Qn`1Q
´1
n pI2 ` γ̃n`1Λnqz}

2
ď

«˜

1` γ̃n`1
ρn
2
`O

˜

γn

Γ
3
2
n

¸¸2

`

˜

γ̃n`1Impµ
pnq
` q `O

˜

γn

Γ
3
2
n

¸¸2ff

}z}2,

which after several computations yields:

}Qn`1Q
´1
n pI2 ` γ̃n`1Λnqz}

2
ď

ˆ

1`
γn`1

Γn

ˆ

1

2
´ r ` op1q

˙˙

}z}2.

Note that a universal constant C (independent of n) exists such that }Qn`1}8 ď C and the upper bounds above can
be used into (28) to deduce that:

} qZn`1}
2
ď

˜

1`
γn`1

Γn

ˆ

1

2
´ r

˙

` b

ˆ

γn`1

Γn

˙2
¸

} qZn}
2
` γ̃n`1∆|Mn ` C

γ2
n`1

Γn
}∆Nn`1}

2, (29)

where p∆|Mnqně1 is a sequence of martingale increments and b a large enough constant.

When γn “ γn´β with β ă 1, the fact that Γn “
n1´β

1´β
` Op1q combined with the upper bound of the variance of

the martingale (22) imply that:

Er} qZn`1}
2
s ď

ˆ

1´
α

n
`

b

n2

˙

Er} qZn}2s ` Cn´1´β (30)

where α :“ pr ´ 1
2
qp1´ βq. Under the condition r ą 1`β

2p1´βq
, we observe that:

α ą β.

An induction based on Inequality (30) yields:

Er} qZn`1}
2
s ď Er} qZnε}

2
s

n
ź

`“nε

ˆ

1´
α

`
`

b

`2

˙

` C
n
ÿ

k“nε`1

k´1´β
n
ź

`“k`1

ˆ

1´
α

`
`

b

`2

˙

ď Cn´β

where in the second line, we repeated an argument used in the proof of Propositions 29 and made use of the property
α ą β. To conclude the proof, it remains to observe that }Q´1

n`1}8 ď C regardless of n. ˛

piiq When β “ 1, Inequality 29 leads to:

Er} qZn`1}
2
s ď

ˆ

1´
α

n logn
`

b

n2 logn

˙

Er} qZn}2s `
C

n2 logn

and a procedure similar to the one used above (given that
řn
k“1pk log kq´1

„ logplognq) leads to the desired result.
˛˝
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4.2 The non-quadratic case under exponential memory

The objective of this subsection is to extend the results of the quadratic case to strongly convex functions satisfying
pHSCpαqq for a given positive α. As pointed out in Remark 5, we are not able to obtain neat and somewhat intrinsic
results in the polynomial memory case, so we therefore preferred to only consider the exponential memory one.

With the help of Subsection 4.1.1, we can restrain the study to the situation where d “ 1 and f has a unique
minimum in x‹ and we denote λ “ f2px‹q, which is assumed to be positive. We also assume that f2 “ infxPR f

2
pxq ą 0.

It is worth noting that in this setting, we are able to obtain some non-asymptotic bounds with some assumptions on
λ only. This means that our results do not involve the quantity f2. To only involve the value of the second derivative
in x‹, the main argument is a power increase stated in the next lemma.

Lemma 19 Let pu
pkq
n qně0,kě1 be a sequence of non-negative numbers satisfying for every integers n ě 0 and k ě 1,

u
pkq
n`1 ď p1´ akγn`1 ` bkγ

2
n`1qu

pkq
n ` Ckpγ

2
n`1 ` γn`1u

pk`1q
n q (31)

where pakqkě1 and pbkqkě1 are sequences of positive numbers. Furthermore, assume that K ě 2 exists and a constant
C ą 0 exists such that:

@n ě 1, upKqn ď Cγn. (32)

Then, suppose that γn “ γn´β pγ ą 0, β P p0, 1sq and that a :“ minkďK ak ą 0 and b̄ :“ maxkďK bk ă `8.

(i) If β P p0, 1q, a constant C ą 0 exists such that for every k P t1, . . . ,Ku,

@n ě 1, upkqn ď Cγn.

(ii) If β “ 1 and aγ ą 1, a constant C ą 0 exists such that for every k P t1, . . . ,Ku,

@n ě 2, upkqn ď Cn´1. (33)

Proof

Let K ě 2. We proceed by a decreasing induction on k P t1, . . . ,Ku. The initialization is given by (32). Then, let

k P t1, . . . ,K ´ 1u and assume that u
pk`1q
n ď Ck`1γn (where Ck is a positive constant that does not depend on n). We

can use this upper bound in the second term of the right hand side of (31) and obtain:

u
pkq
n`1 ď p1´ aγn`1 ` b̄γ

2
n`1qu

pkq
n ` Cγ2

n`1

where C is a constant that does not depend on n.

When β ă 1, it follows from Proposition 28piiiq that:

@n ě 1, upkqn À γn.

˛

If β “ 1 and aγ ą 1 now, the above control is a consequence of Proposition 29piiiq. This concludes the proof. ˛˝

We will apply this lemma to u
pkq
n “ Er| qZn|2ks where qZn is an appropriate linear transformation of Zn

Therefore, we will mainly have to check that Conditions (31) and (32) hold.

Proposition 20 Assume pHsq, pHSCpαqq and pHσ,8q with p ě 1. Let a and b be some positive numbers such that
(8) holds. Then, an integer K ě 1 exists such that for any p ě K:

ErV pn pXn, Ynqs ď Cpγn. (34)

Furthermore, if rn “ r and γn “ γn´β with β P p0, 1q, then (34) holds for p “ K “ 1 under pHσ,2q instead of pHσ,8q.
As a consequence,

Er}Xn ´ x‹}2K ` }Yn}2Ks ď Cγn. (35)

Remark 21 Note that the second assertion (35) easily follows from Equations (9) and (34) and from the fact that
under pHSCpαqq, a constant c exists such that for all x, fpxq ě c}x}2.

Moreover, note that this proposition is not restricted to the exponential memory case. In particular, as suggested
in Remark 5, this Lyapunov approach could lead to some (rough) controls of the quadratic error in the polynomial
case when the function is not quadratic.

�

Proof

We begin by the first assertion under Assumption pHσ,8q. Going back to the proof of Lemma 8 (and to the associated
notations), we obtain the existence of some positive a and b such that

Vn`1pXn`1, Yn`1q ď VnpXn, Ynq ` γn`1∆n`1 with

∆n`1 “ ´ca,b}Yn}
2
´ rnb}∇fpXnq}2 ´ brnx∇fpXnq,∆Mn`1y `∆Rn`1 pca,b ą 0q.

22



Denoting the smallest (positive) eigenvalue of D2fpx‹q by λ, we have:

}∇fpxq}2 ě λ}x}2 ě C λfpxq.

Following the arguments of the proof of Lemma 8 once again, we can easily deduce the existence of some positive ε
and C such that:

Er∆n`1|Fns ď p´ε` Cγn`1qrnVnpXn, Ynq ` Cγn`1rn.

Using pHσ,8q, we also obtain for every r ě 1:

Er}∆n`1}
r
|Fns ď Crp1` V

r
n pXn, Ynqq.

As a consequence, a binomial expansion of pVnpXn, Ynq ` γn`1∆n`1q
K yields:

ErV Kn`1pXn`1, Yn`1q|Fns ď p1´Kεγn`1rn ` Cγ
2
n`1rnqV

K
n pXn, Ynq ` Cγ

2
n`1rn.

Setting un “ ErV Kn`1pXn`1, Yn`1qs, we obtain:

un`1 ď p1´Kεγn`1rn ` Cγ
2
n`1rnqun ` Cγ

2
n`1rn.

Now, assume that γn “ γn´β with β P p0, 1s and successively consider exponential and polynomial cases:

• If rn “ r and β ă 1, the result holds with K “ 1 by Proposition 28piiiq. ˛

• If rn “ r and β “ 1, we have to choose K large enough in order that Kεγ ą 1. In this case, Proposition 29piiiq
yields the result. ˛

• If rn “ r{Γn and β ă 1 now, then the above inequality yields the existence of a ρ ą β and a n0 ě 1 for K large
enough such that:

@n ě n0, un`1 ď

´

1´
ρ

n

¯

un ` Cn
´β´1.

We have:

un ď un0

n
ź

k“n0

´

1´
ρ

k

¯

` C
n
ÿ

k“n0`1

k´β´1
n
ź

`“k`1

´

1´
ρ

k

¯

.

Given that 1´ x ď expp´xq and that
řn
k“1

1
k
“ logn`Op1q, we obtain:

un ď Cn´ρp1`
n
ÿ

k“n0`1

k´β´1`ρ
q ď Cn´β

where in the last inequality, we deduced that ´β ´ 1` ρ ą ´1 since ρ ă β.

˛˝

Proposition 22 Assume pHsq, pHSCpαqqand pHσ,8q and rn “ r for all n ě 1. Set λ “ f2px‹q. Then, assume that
γn “ γn´β with β P p0, 1s.

• If β ă 1, then:
Er}Xn ´ x‹}2s ` Er}Yn}2s ď Cγn.

• If β “ 1, then for every ε ą 0, a constant Cε exists such that

Er}Xn ´ x‹}2s ď Cεn
´ppr`ε´

?
r2´4λr1rě4λqγq^1.

Proof

The starting point is to linearize the gradient:

f 1pXnq “ λpXn ´ x
‹
q ` φn where φn “ pf

2
pξnq ´ f

2
px‹qqpXn ´ x

‹
q.

Since f2 is Lipschitz continuous, then:
|φn| ď CpXn ´ x

‹
q
2. (36)

Let us begin with the case where the matrix Cn defined in (21) has real eigenvalues µ` and µ´ (given by (23)). With
the notations introduced in (24),

qZn`1 “

ˆ

1` γn`1µ` 0
0 1` γn`1µ´

˙

qZn ` rγn`1Q

ˆ

0
φn

˙

` rγn`1
qξn`1. (37)

As a consequence,

} qZn`1}
2
ď p1` µ`γn`1q

2
} qZn}

2
` Cγn`1} qZn}

3
` γ2

n`1p}
qZn}

4
` }∆Nn`1}

2
q `∆Mn`1
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where p∆Mnq is a sequence of martingale increments. Using the elementary inequality |x| ď ε`Cε|x|
2, x P R (available

for any ε ą 0),

} qZn`1}
2
ď rp1` p2µ` ` εqγn`1 ` Cγ

2
n`1qs}

qZn}
2
` Cεγn`1} qZn}

4
` Cγ2

n`1}∆Nn`1}
2
`∆Nn`1.

Then, by Assumption pHσ,8q and the fact supn Er| qZn|
r
s ă `8 for any r ą 1 (by Proposition 20 for example), we

obtain, for any k ě 1,

E
”

} qZn`1}
2k
ı

ď p1` kp2µ` ` εqγn`1 ` Ckγ
2
n`1qEr} qZn}2ks ` Ck,εpγn`1Er} qZn}2k`2

s ` γ2
n`1q.

At this stage, we observe that Assumption (31) is satisfied with u
pkq
n “ Er} qZn}2ks and ak “ kp2µ` ` εq. Using

Proposition 20 and Lemma 8piq, we check that the second assumption of Lemma 19 also holds. Thus, the result follows
in this case from this lemma. ˝

5 Limit of the rescaled algorithm

In this paragraph, we establish a (functional) Central Limit Theorem when the memory is exponential, i.e., when
rn “ r and when pHSCpαqq holds. In particular, f admits a unique minimum x‹. Without loss of generality, we
assume that x‹ “ 0.

5.1 Rescaling stochastic HBF

We start with an appropriate rescaling by a factor
?
γn. More precisely, we define a sequence pZ̄nqně1:

Z̄n “
Zn
?
γn
“

ˆ

Xn
?
γn
,
Yn
?
γn

˙

.

Given that f is C2 (and that x‹ “ 0), we “linearize” ∇f around 0 with a Taylor formula and obtain that ξn P r0, Xns
exists such that:

∇fpXnq “ D2fpξnqXn.

Therefore, we can compute that:

Z̄n`1 “ Z̄n ` γn`1bnpZ̄nq `
?
γn`1

ˆ

0
∆Mn`1

˙

where bn is defined by:

bnpzq “
1

γn`1

ˆ
c

γn
γn`1

´ 1

˙

z ` C̄nz, z P R2d, (38)

where:

C̄n :“

c

γn
γn`1

ˆ

0 ´Id
rD2fpξnq ´rId

˙

. (39)

It is important to observe that:

1

γn`1

ˆ
c

γn
γn`1

´ 1

˙

“ γ´1
pn` 1qβ

„

1`
β

2n
` opn´1

q ´ 1



“

"

opnβ´1
q if β ă 1

1
2γ
` op1q if β “ 1

(40)

We associate to the sequence pZ̄nqně1 a sequence pZ̄pnqqně1 of continuous-time processes defined by:

Z̄
pnq
t “ Z̄n `B

pnq
t `M

pnq
t , t ě 0, (41)

where:

B
pnq
t “

Ñpn,tq
ÿ

k“n`1

γkbk´1pZ̄k´1q ` pt´ tnqbÑpn,tqpZ̄Ñpn,tqq,

M
pnq
t “

Ñpn,tq
ÿ

k“n`1

?
γk

ˆ

0
∆Mk

˙

`
a

t´ tn

ˆ

0
∆MÑpn,tq`1

˙

.

We used the standard notations tn “ ΓÑpn,tq ´ Γn above where Npn, tq “ min

#

m ě n,
m
ř

k“n`1

γk ą t

+

.

To obtain a CLT, we show that pZ̄pnqqně1 converges in distribution to a stationary diffusion, following a classical
roadmap based on a tightness result and on an identification of the limit as a solution to a martingale problem.
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5.2 Tightness

The next lemma holds for any sequence of processes that satisfy (41).

Lemma 23 Assume that D2f is bounded, that supkě1 Er}Z̄k}
2
s ă `8 and that a p ą 2 exists such that supkě1 Er}∆Mk}

p
s ă

`8, then pZ̄pnqqně1 is tight for the weak topology induced by the weak convergence on compact intervals.

Proof

First, note that Z̄
pnq
0 “ Z̄n, the assumption supkě1 Er}Z̄k}

2
s ă `8 implies the tightness of pZ̄

pnq
0 qně1 (on R2d).

Then, by a classical criterion (see, e.g., [Bil95, Theorem 8.3]), we deduce that a sufficient condition for the tightness of
pZ̄pnqqně1 (for the weak topology induced by the uniform convergence on compacts intervals) is the following property:
for any T ą 0, for any positive ε and η, a δ ą 0 exist and an integer n0 such that for any t P r0, T s and n ě n0,

Pp sup
sPrt,t`δs

}Z̄pnqs ´ Z̄
pnq
t } ě εq ď ηδ.

We consider Bpnq and M pnq separately and begin by the drift term Bpnq. On the one hand,

P

˜

sup
sPrt,t`δs

}Bpnqs ´B
pnq
t } ě ε

¸

ď P

¨

˝

Npn,t`δq`1
ÿ

k“Npn,tq

γk}bk´1pZ̄k´1q} ě ε

˛

‚.

The Chebyschev inequality and the fact that }bkpzq} ď Cp1` }z}q (where C does not depend on k) yield:

P

˜

sup
sPrt,t`δs

}Bpnqs ´B
pnq
t } ě ε

¸

ď ε´2E

»

–

¨

˝

Npn,t`δq`1
ÿ

k“Npn,tq

γkp1` }pZ̄k´1q}q

˛

‚

2fi

fl

The Jensen inequality and the fact that
řNpn,t`δq`1
k“Npn,tq γk ď 2δ when n is large enough imply that a constant C exists

such that for large enough n and for a small enough δ:

P

˜

sup
sPrt,t`δs

}Bpnqs ´B
pnq
t } ě ε

¸

ď ε´2
ˆ Cδ2

p1` sup
kě1

Er}Z̄k}2sq ď ηδ

˛

We now consider the martingale component M pnq: if we denote α “
b

t´tn
γNpn,tq`1

, we have for any t ě 0,

M pnq
s “ p1´ αqM

pnq
Npn,sq ` αM

pnq
Npn,sq`1

so that }M
pnq
s ´M

pnq
t } ď maxt}M

pnq
Npn,sq ´M

pnq
t }, }M

pnq
Npn,sq`1 ´M

pnq
t }u. As a consequence,

P

˜

sup
sPrt,t`δs

}M pnq
s ´M

pnq
t } ě ε

¸

ď P

˜

sup
Npn,tq`1ďkďNpn,t`δq`1

}M
pnq
Γk
´M

pnq
t } ě ε

¸

Let p ą 2 and applying the Doob inequality, the assumption of the lemma leads to:

P

˜

sup
sPrt,t`δs

}M pnq
s ´M

pnq
t } ě ε

¸

ď ε´pE
”

}M
pnq

Ñpn,t`δq`1
´M

pnq
t }

p
ı

and the Minkowski inequality yields:

P

˜

sup
sPrt,t`δs

}M pnq
s ´M

pnq
t } ě ε

¸

ď ε´p
Npn,t`δq`1

ÿ

k“Npn,tq`1

γ
p
2
k E r}∆Mk}

p
s .

Under the assumptions of the lemma, Err}∆Mk}
p
s ď C. Furthermore, we can use the rough upper bound:

Npn,t`δq`1
ÿ

k“Npn,tq`1

γ
p
2
k ď γ

p
2
´1

n

Npn,t`δq`1
ÿ

k“Npn,tq`1

γk ď ηδ

for large enough n. This concludes the proof. ˛˝

Corollary 24 Let the assumptions of Theorem 6 hold, then pZ̄pnqqně1 is tight.

Proof

To prove this result, it is enough to check that the assumptions of Lemma 23 are satisfied. First, one remarks that the
assumptions of Theorem 6 imply the ones of Theorem 4paq so that Er}Zn ´ z‹}2s ď Cγn (this also holds when β “ 1
since we assume that γαr ą 1). As a consequence, supkě1 Er}Z̄k}

2
s ă `8.

On the other hand, since pHσ,pq holds for a given p ą 2, we can derive by following the lines of the proof of Proposition
20 that supně1 ErV

p
pXn, Ynqs ă `8. As a consequence, supn Erf

p
pXnqs ă `8 and pHσ,pq leads to:

sup
ně1

Er}∆Mn}
p
s À sup

n
ErfppXnqs ă `8.

˝
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5.3 Identification of the limit

Starting from our compactness result above, we now characterize the potential weak limits of pZ̄pnqqně1. This step is
strongly based on the following lemma.

Lemma 25 Suppose that the assumptions of Lemma 23 hold and that:

Er∆Mnp∆Mnq
t
|Fn´1s

nÑ`8
ÝÝÝÝÑ V in probability,

where σ2 is a positive symmetric d ˆ d-matrix. Then, for every C2-function g : R2d
Ñ R, compactly supported with

Lipschitz continuous second derivatives, we have:

EpgpZ̄n`1q ´ gpZ̄nq|Fnq “ γn`1LgpZ̄nq `Rgn

where γ´1
n`1R

g
n Ñ 0 in L1 and L is the infinitesimal generator defined in Theorem 6.

Remark 26 We recall that L is the infinitesimal generator of the following stochastic differential equation:

dZ̄t “ H̄Z̄tdt` ΣdBt

where: H̄ “ 1
2γ

1tβ“1uI2d ` H and Σ is defined in Theorem 6. pZ̄tqtě0 lies in the family of Ornstein-Uhlenbeck

processes: on the one hand, the drift and diffusion coefficients being respectively linear and constant, pZ̄tqtě0 is a
Gaussian diffusion; on the other hand, since H̄ has negative eigenvalues, pZ̄tqtě0 is ergodic.

�

Proof

C will denote an absolute constant whose value may change from line to line, for the sake of convenience. We use a
Taylor expansion between Z̄n and Z̄n`1 and obtain that θn exists in r0, 1s such that:

gpZ̄n`1q ´ gpZ̄nq “ x∇gpZ̄nq, pZ̄n`1 ´ Z̄nqy `
1

2
pZ̄n`1 ´ Z̄nq

TD2gpZ̄nqpZ̄n`1 ´ Z̄nq (42)

`
1

2
pZ̄n`1 ´ Z̄nq

T
pD2gpθZ̄n ` p1´ θqZ̄n`1q ´D

2gpZ̄nqqpZ̄n`1 ´ Z̄nq
looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

R
p1q
n`1

.

We first deal with the remainder term R
p1q
n`1 and observe that pC̄nq introduced in (39) is uniformly bounded so that a

constant C exists such that }bnpzq} ď C}z}. We thus conclude that:

}Z̄n`1 ´ Z̄n} ď C
`

γn`1}Z̄n} `
?
γn`1}∆Mn`1}

˘

.

Using pHσ,pq, we deduce that for any p̄ ď p,

E
“

}Z̄n`1 ´ Z̄n}
p̄
‰

ď Cγ
p̄
2
n`1. (43)

Since D2g is Lipschitz continuous and compactly supported, D2g is also ε-Hölder for all ε P p0, 1s. We choose ε such
that 2` ε ď p and obtain:

E r|Rn`1|s ď CE
“

}Z̄n`1 ´ Z̄n}
2`ε

‰

ď Cγ
1` ε

2
n`1 .

We deduce that γ´1
n`1R

p1q
n`1 Ñ 0 in L1. ˛

Second, we can express (40) when γn “ γn´β with β P p0, 1s in the following form:

εn :“
1

γn`1

ˆ
c

γn
γn`1

´ 1

˙

´
1

2γ
1tβ“1u “ op1q.

Then, given that D2f is Lipschitz (and that x‹ “ 0), it follows that:

@z P Rd ˆ Rd
›

›

›

›

bnpzq ´

ˆ

1

2γ
1tβ“1uI2d `H

˙

z

›

›

›

›

ď pεn ` }X̄n}q}z}

where pεnqně1 is a deterministic sequence such that limnÑ`8 εn “ 0.
Under the conditions of Theorem 6, we may apply the convergence rates obtained in Theorem 4 and observe that

supn Er}Xn}
2
s À γn, meaning that supn Er}Z̄n}

2
s ă `8. Since }X̄n} ď }Z̄n}, we deduce that:

Erx∇gpZ̄nq, pZ̄n`1 ´ Z̄nqy|Fns “ γn`1x∇gpZ̄nq, p
1

4γ
?
r

1tβ“1uI2d `HqZ̄ny `R
p2q
n
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where γ´1
n`1R

p2q
n Ñ 0 in L1 as nÑ `8. Let us now consider the second term of the right-hand side of (42). We have:

ErpZ̄n`1 ´ Z̄nq
TD2gpZ̄nqpZ̄n`1 ´ Z̄nq|Fns “ γn`1

ÿ

i,j

D2
yiyjgpZ̄nqEr∆M

i
n`1∆M j

n`1|Fns `R
p3q
n

where
|γ´1
n`1R

p3q
n | ď Cγn`1}Z̄n}

2 nÑ`8
ÝÝÝÝÑ 0 in L1

under the assumptions of the lemma. To conclude the proof, it remains to note that under the assumptions of the
lemma for any i and j, pEr∆M i

n`1∆M j
n`1|Fnsqně1 is a uniformly integrable sequence that satisfies:

Er∆M i
n`1∆M j

n`1|Fns “ Vi,j in probability.

Thus, the convergence also holds in L1. The conclusion of the lemma easily follows from the boundedness of D2g.˛˝

We are now able to prove Theorem 6:

Proof of Theorem 6, piq: Note that under the assumptions of Theorem 6, we can apply Lemma 23 and Lemma 25
and obtain that the sequence of processes pZ̄pnqqně1 is tight. The rest of the proof is then divided into two steps. In the
first one, we prove that every weak limit of pZ̄pnqqně1 is a solution of the martingale problem pL, Cq where C denotes
the class of C2-functions with compact support and Lipschitz-continuous second derivatives. Before going further, let
us recall that, owing to the Lipschitz continuity of the coefficients, this martingale problem is well-posed, i.e., tha,t
existence and uniqueness hold for the weak solution starting from a given initial distribution µ (see, e.g., [EK86] or
[SV06]).

In a second step, we prove the uniqueness of the invariant distribution related to the operator L and the convergence
in distribution to this invariant measure. We end this proof by showing that pZ̄pnqq converges to this invariant
distribution, so that the sequence pZ̄pnqqně1 converges to a stationary solution of the previously introduced martingale
problem. We will characterize this invariant (Gaussian) distribution in the next paragraph.

Step 1: Let g belong to C and let pF pnqt qtě0 be the natural filtration of Z̄pnq. To prove that any weak limit of pZ̄pnqqně1

solves the martingale problem pL, Cq, it is enough to show that:

@t ě 0, gpZ̄
pnq
t q ´ gpZ̄

pnq
0 q ´

ż t

0

LgpZ̄pnqs qds “Mpn,gq
t `Rpn,gqt

where pMpn,gq
t qtě0 is an pF pnqt q-adapted martingale and Rpn,gqt Ñ 0 in probability for any t ě 0. We set:

Mpn,gq
t “

Npn,tq
ÿ

k“n`1

gpZ̄k`1q ´ gpZ̄kq ´ ErgpZ̄k`1q ´ gpZ̄kq|Fk´1s.

By construction, pMpn,gq
t qtě0 is an pF pnqt q-adapted martingale (given that F pnqs “ F pnqsn ) and:

Rpn,gqt “ gpZ̄
pnq
t q ´ gpZ̄

pnq
tn
q ´

ż t

tn

LgpZ̄pnqs qds`

ż tn

0

´

LgpZ̄pnqsn
q ´ LgpZ̄pnqs q

¯

ds`

Npn,tq´1
ÿ

k“n

Rgk

where pRgkqkě1 has been defined in Lemma 25. Using an argument similar to (43), we can check that for any t ě 0:

sup
sďt

Er}Z̄pnqs ´ Z̄pnqsn
}
2
s ď C

?
γ
n
.

This inequality combined with the Lipschitz continuity of g and its derivatives implies that the first three terms tend
to 0 when nÑ `8. Now, concerning the last one, the previous lemma yields:

E

«ˇ

ˇ

ˇ

ˇ

ˇ

Npn,tq´1
ÿ

k“n

Rgk

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď Ct sup
kěn

E
“ˇ

ˇγ´1
k Rgk

ˇ

ˇ

‰ nÑ`8
ÝÝÝÝÑ 0.

˛

Step 2: First, let us prove that uniqueness holds for the invariant distribution related to L. We denote it by µ
pβq
8 below.

In this simple setting where the coefficients are linear, we could use the fact that the process, which is solution to the
martingale problem, is Gaussian so that any invariant distribution is so. Uniqueness could then be deduced through the
characterization of the mean and the variance through the relationship

ş

Lfpxqµpβq8 pdxq “ 0 (see next subsection for such
an approach). However, at this stage, we prefer to use a more general strategy related to the hypoellipticity of L (see,
e.g., [GP14] for a similar approach). More precisely, set LD :“ ´xy, Bxy ` rxD

2fpx‹qx´ ys, Byy and σi :“
řd
j“1 σ

j
i Byj ,

where σ satisfies σσt “ V (where V is defined by (6)). We have assumed that σ is invertible, so that:

spanpσ1, . . . , σdq “ spanpBy1 , . . . , Bydq.

Therefore,
Lie pLD, σ1, . . . , σdq “ Lie pLD, By1 , . . . , Bydq
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Now, it is straightforward to check that:

@i P t1, . . . , du rLD, Byi s pfq “ ´Bxipfq,

and we deduce that Lie pLD, σ1, . . . , σdq “ Lie pBx1 , . . . , Bxd , By1 , . . . , Bydq. This means that the Hormandër bracket
condition holds at any point z of R2d, which implies that the process admits a density pptpz, .qqtě0 such that for any
t ą 0, pz, z1q ÞÑ ptpz, z

1
q, which is smooth on R2d

ˆR2d. It is moreover possible to show that these densities are positive,
for any t ą 0, given that the linear vector field is approximately controllable: for any time T ą 0, any η ą 0 and any
couple of initial points px0, y0q and ending points pxT , yT q, we can build a function ϕ such that 9ϕ P L2 and such that
the controlled trajectory:

"

9xptq “ ´yptq
9yptq “ rptqp∇Upxptqq ´ yptqq ` σ 9ϕ,

(44)

satisfies: z0 “ px0, y0q and }zT ´ pxT , yT q} ď η. This implies the irreducibility of the diffusion and, therefore, the
uniqueness of the invariant distribution. We refer to [GP14] for more details on this controllability problem.

Then, checking that L}x}2 ď β´α}x}2 for positive α and β, it can be classically deduced from the Meyn-Tweedie-

type arguments (see [MT93]) that the process converges locally uniformly, exponentially fast in total variation to µ
pβq
8 .

For more details, we refer to [MSH02, Theorem 4.4]. Below, we will only use the following corollary: for any bounded
Lipschitz-continuous function f , for any compact set K of R2d,

sup
zPK

|Ptfpzq ´ µ
pβq
8 pfq|

tÑ`8
ÝÝÝÝÑ 0 (45)

where pPtqtě0 denotes the semi-group related to the (well-posed) martingale problem pL, Cq. ˛

Step 3: Let pZ̄nk qkě1 be a (weakly) convergent subsequence of pZ̄nqně1 to a probability ν. We have to prove that

ν “ µ
pβq
8 . To do this, we take advantage of the “shifted” construction of the sequence pZ̄pnqqnPN. More precisely, as a

result of construction, for any positive T , a sequence pψpnk, T qqkě1 exists such that:

NpT, ψpnk, T qq “ nk.

In other words,
Z̄
pψpnk,T qq
Tψpnk,T q

“ Z̄nk .

At the price of a potential extraction, pZ̄pψpnk,T qqqkě1 is convergent to a continuous process, which is denoted by Z8,T

below. Given that Z̄
pnq
T ´ Z̄

pnq
Tn

tends to 0 as nÑ `8 in probability, it follows that Z8,TT has distribution ν. However,

according to Step 1, Z8,T is also a solution to the martingale problem pL, Cq so that for any Lipschitz continuous
function f ,

ErfpZ8,TT qs ´ µ
pβq
8 pfq “

ż

R2d

´

PT fpzq ´ µ
pβq
8 pfq

¯

P
Z
8,T
0

pdzq.

Denote by P, the set of weak limits of pZ̄nqně1. P is tight and as a result of construction, Z8,T0 belongs to P. Thus,
for any ε ą 0, a compact set Kε exists such that for any T ą 0,

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kcε

´

PT fpzq ´ µ
pβq
8 pfq

¯

P
Z
8,T
0

pdzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2}f}8 sup
µPP

µpKc
εq ď 2}f}8ε.

On the other hand,
ˇ

ˇ

ˇ

ˇ

ż

Kε

´

PT fpzq ´ µ
pβq
8 pfq

¯

P
Z
8,T
0

pdzq

ˇ

ˇ

ˇ

ˇ

ď sup
zPKε

|PT fpzq ´ µ
pβq
8 pfq|

and it follows from Step 2 that the right-hand member tends to 0 as T Ñ `8. From this, we can therefore conclude
that for any bounded Lipschitz-continuous function f , a large enough T exists such that:

ˇ

ˇ

ˇ
ErfpZ8,TT qs ´ µ

pβq
8 pfq

ˇ

ˇ

ˇ
ď Cfε.

Since ErfpZ8,TT qs “ νpfq, it follows that νpfq “ µ
pβq
8 pfq. Finally, the set P is reduced to a single element P “ tµpβq8 u,

and the whole sequence pZ̄nqně1 converges to µ
pβq
8 .

Before ending this section, let us note that µpβq
8

is a Gaussian centered distribution is a simple consequence of Remark
26. We therefore leave this point to the reader. ˛˝

5.4 Limit variance

We end this section on the analysis of the rescaled algorithm with some considerations on the invariant measure µpβq
8

involved in Theorem 6 for the exponential memoried stochastic HBF, i.e. when rn “ r. As shown in the above
paragraph, this invariant measure describes the exact asymptotic variance of the initial algorithm. We now focus on
its characterization i.e., on the proof of Theorem 6piiq. In particular, to ease the presentation, we assume that the
covariance matrix V related to p∆Mn`1qně1 is proportional to the identity matrix:
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lim
nÝÑ`8

E
“

∆Mn`1 p∆Mn`1q
t
|Fn

‰

“ σ2
0Id in probability. (46)

We also assume that γn “ γn´β with β ă 1. Then, piq of Theorem 6 states that pZ̄nqně1 weakly converges toward a
diffusion process, whose generator L is the one of an Ornstein-Uhlenbeck process. Assumption (46) leads to a simpler
expression:

Lpφqpx, yq “ ´xy,∇xφy ` rxD2
pfqpx‹qx´ y,∇yφy ` r2 σ0

2

2
∆yφ. (47)

A particular feature of Equation (47) when γn “ γn´β is that L does not depend on β nor γ. The invariant measure µpβq
8

is a multivariate Gaussian distribution that may be well described in the basis given by the eigenvectors of the Hessian
D2
pfqpx‹q. The reduction to d couples of two-dimensional system used in Section 4.1.1 makes it possible to use the

spectral decomposition of D2
pfqpx‹q “ P´1ΛP where P is an orthonormal matrix and Λ a diagonal matrix with positive

eigenvalues. The process p qXn, qYnq “ pPX̄n, P Ȳnq is therefore centered and Gaussianly distributed asymptotically. This
process is associated with d 2ˆ 2 blockwise independent Ornstein-Uhlenbeck processes, whose generator is now

Ľpφqpx̌, y̌q “ ´xy̌,∇x̌φy ` rxΛx̌´ y̌,∇y̌φy ` r2 σ0
2

2
∆y̌φ,

where we used Tr
`

P tD2
y̌P

˘

“ Tr
`

D2
y̌PP

t
˘

“ Tr
`

D2
y̌

˘

in the last line because P tP “ Id. If we denote µ̌pβq
8

the

associated invariant gaussian measure, the tensor structure of Ľ leads to

@i ‰ j Epx̌,y̌q„γ̌β
8
rx̌piqx̌pjqs “ Epx̌,y̌q„γ̌β

8
rx̌piqy̌pjqs “ Epx̌,y̌q„γ̌β

8
ry̌piqy̌pjqs “ 0. (48)

Now, using the relationship

ż

Ľpφqdµ̌pβq
8
“ 0 for some well chosen functions φ, we can identify the rest of the covariance

matrix. Denote i any integer in t1, . . . , du. We chose φpx̌, y̌q “
tx̌piqu

2

2
and obtain that Ľ

ˆ

tx̌piqu
2

2

˙

px̌, y̌q “ ´x̌piqy̌piq.

It then implies that
E
px̌,y̌q„µ̌

pβq
8
rx̌piqy̌piqs “ 0. (49)

Picking now φpx̌, y̌q “
ty̌piqu

2

2
, we obtain Ľ

ˆ

ty̌piqu
2

2

˙

px̌, y̌q “ rλix̌
piqy̌piq ´ r

!

y̌piq
)2

`
r2σ0

2

2
so that

E
px̌,y̌q„µ̌

pβq
8
rty̌piqu2s “

rσ0
2

2
. (50)

Finally, we chose φpx̌, y̌q “ x̌piqy̌piq and obtain Ľ
´

x̌piqy̌piq
¯

px̌, y̌q “ ´
!

y̌piq
)2

` rλitx̌
piq
u
2
´ rx̌piqy̌piq. Therefore, we

deduce that:

E
px̌,y̌q„µ̌

pβq
8
rtx̌piqu2s “

σ0
2

2λi
. (51)

We can sum-up formulae (48)-(51) in µ̌pβq
8

“ N p0, Dr,σ0q with Dr,σ0 “
σ0

2

2

ˆ

Λ´1 0dˆd
0dˆd rId

˙

. Since pX̄n, Ȳnq “

pP´1
qXn, P

´1
qYnq, we deduce that:

µpβq
8
“ N

ˆ

0,
σ0

2

2

ˆ

tD2fpx‹qu´1 0dˆd
0dˆd rId

˙˙

.

˛

Theorem 6- Step size γn “ γn´1

This situation is more involved since we can observe that the drift of the limit diffusion is modified according to
the size of γ. In particular, the generator L in that case is shifted from the one above by 1

2γ
I so that:

Lpφqpx, yq “ 1

2γ
rx∇xφ, xy ` x∇yφ, yys ´ xy,∇xφy ` rxD2fpx‹qx´ y,∇yφy ` r2 σ0

2

2
∆yφ.

Again, we can use the decomposition D2fpx‹q “ P´1ΛP where P is an orthonormal matrix, and the generator of the
rotated process p qXn, qYnq “ pPX̄n, P Ȳnq is:

Ǎpφqpx, yq “
B

x̌

2γ
´ y̌,∇x̌φ

F

`

B

rΛx̌`

ˆ

1

2γ
´ r

˙

y̌,∇y̌φ
F

` r2 σ0
2

2
∆y̌φ

The associated Ornstein-Uhlenbeck process has a unique Gaussian invariant measure µ̌p1q
8

if and only if γαr ą 1 where
αr is the constant defined in the statement of Proposition 15. The following equations still hold:

@i ‰ j E
px̌,y̌q„µ̌

p1q
8
rx̌piqx̌pjqs “ E

px̌,y̌q„µ̌
p1q
8
rx̌piqy̌pjqs “ E

px̌,y̌q„µ̌
p1q
8
ry̌piqy̌pjqs “ 0. (52)
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To determine the rest of the covariance matrix, we follow the same strategy and only address the case d “ 1 for the
sake of convenience. We define: σ2

x :“ E
px̌,y̌q„µ̌

p1q
8

“

x̌2
‰

, σ2
y :“ E

px̌,y̌q„µ̌
p1q
8

“

y̌2
‰

and σx,y :“ E
px̌,y̌q„µ̌

p1q
8
rx̌y̌s.

We start by chosing φpx̌, y̌q “ x̌2

2
and obtain Ǎpφqpx, yq “ x̌2

2γ
´ x̌y̌. Therefore, we deduce that:

2γ σx,y “ σ2
x (53)

Now we pick φpx̌, y̌q “ y̌2

2
and obtain Ǎpφqpx, yq “ rλx̌y̌ `

´

1
2γ
´ r

¯

y̌2
`

r2σ0
2

2
so that:

ˆ

r ´
1

2γ

˙

σ2
y “ rλσx,y `

r2σ0
2

2
. (54)

Finally, the function φpx̌, y̌q “ x̌y̌ yields Ǎpφqpx, yq “ x̌y̌
´

1
γ
´ r

¯

´ y̌2
` rλx̌2, which implies:

σ2
y “ rλσ2

x `

ˆ

1

γ
´ r

˙

σx,y (55)

We are led to the introduction of:

α̌´ “ 1´

c

1´
4λ

r
and α̌` “ 1`

c

1´
4λ

r
,

which leads to:

σ2
x “ σ0

2 2λrγ3

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
, σ2

y “ σ0
2 λrγp2λrγ2

´ rγ ` 1q

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
,

and

σx,y “ σ0
2 λrγ2

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
.

˛˝

6 Numerical experiments

In this short paragraph, we briefly investigate the behavior of several algorithms, widely used in the field of stochastic
approximation. In particular, we are interested in the convergence rates of each algorithm, as well as their behavior in
the case of non-convex potential f with multiple wells, to illustrate both Theorem 4 and Theorem 2.

Convergence rates We are first concerned by the typical behavior of the heavy ball stochastic approximation
algorithm in the convex case. In particular, we are interested in the role played by the parameter r that varies, both
in the polynomial case and in the exponential case. Figure 1 represents the logarithmic loss of the algorithms with

respect to the logarithm of the number of iterations in the 1 dimensional case with fpxq “ x2

2
. The step size used

is γk “ k´1. We immediately observe that for small values of r (that correspond to a long-term memory case), the

Figure 1: Evolution of logpfpXkqq with respect to logpkq. Left: Exponential memory. Right: Polynomial memory.

algorithm possesses a lengthy oscillating behavior, which is a feature of second-order algorithms with a very mild
damping effect. This phenomenon has also been observed in previous works (see, e.g., [FB15] and the references
therein). We also observe that the use of an excessively large value of r (say, when r is greater than 10) creates a
numerical instability at the beginning of the iterations. This could be fixed by using a supplementary truncating trick
introduced in [Lem07]. Finally, the obtained rates are better (from a numerical point of view) when r is chosen at
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around 5 in the exponential case, and at around 10 in the polynomial case, mainly because of the oscillations that
deteriorate the convergence when r is too small.

Figure 2 then compares several stochastic optimization algorithms in the toy example fpxq “ |x|p{p: the standard
Robbins-Monro stochastic gradient descent introduced in [RM51] (SGD) and several second order algorithms: the
“optimal” Ruppert-Polyak averaging algorithm (see [PJ92, Rup88]), the Nesterov accelerated gradient descent [Nes83]
adapted in the stochastic framework in a straightforward way using an unbiased evaluation of the gradient in each
iteration, and the recent SAGE method introduced in [HPK09]. Note that the Rupper-Polyak averaging algorithm is
used according to the recommendation of [Bac14] with γk “ k´1{2.

Figure 2: Evolution of logpfpXkqq with respect to logpkq with fpxq “ |x|p{p. Left: Convex case p “ 4. Right: Strongly convex case
p “ 2.

The first elementary remark is that the rate is of course deteriorated by the loss of strong convexity (left side,
Figure 2). In this case, the Ruppert-Polyak averaging outperforms other methods and attains the Op1{

?
nq minimax

rate (see [NY83]). When f is strongly convex, the second-order algorithms then all share an equivalent efficiency with,
apparently a Op1{nq convergence rate. This corresponds to piiq of Theorem 4 when the Hessian at the critical point is
sufficiently large to make this minimax optimal rate possible. Nevertheless, the ability of the stochastic heavy ball in a
more general situation may deserve further numerical investigation, which is beyond the scope of this paper. The SGD
seems to be a little bit less effective in the strongly convex case. Finally, the Nesterov adaptation to the stochastic case
does not lead to an efficient algorithm (in comparison to the other methods tested). However, this remark should be
balanced by the fact that we did not use the Lan adaptation of the Nesterov accelerated gradient descent introduced
in [Lan12]. It appears that this modification that consists in an addition of an intermediary point in the NAGD seems
important to optimize the behavior of the algorithm in the stochastic case.

Non-convex case In this paragraph, we investigate the ability of the stochastic algorithm to avoid local traps and,
in particular, we focus on the behavior of second order algorithms that may be an intermediary step towards global
optimization methods such as simulated annealing. For this purpose, we defined f as:

@x P R fpxq “ ax4
` bpx´ 1q2.

with a “ 1{40 and b “ ´1{5. These values have been fixed to guarantee the numerical stability of the stochastic
procedures, but the results we obtained may be replicated for other values. The values of a and b above yield a
double-well potential with a global minimizer of f of around x‹ » ´4.9, although f has a local trap on the positive
part at around x` » 4. The function f is represented on the top left of Figure 3.

We used γk “ k´1 for all of the methods and we varied the initialization point of each algorithm from ´10 to 10
with 100 Monte-Carlo replications. For each simulation, we arbitrarily stopped the evolution of the algorithm after
T “ 104 iterations, and considered that optimization was successful when |xT ´x

‹
| ď 1. This criterion may be replaced

by a more stringent inequality, at the price of an increase of T , without really changing the main conclusions below.
Performances are reported in Figure 3. We observe that both SGD and Ruppert-Polyak algorithms have the same

behavior. This fact is absolutely clear because Polyak averaging is built with a Cesaro average of SGD. The target
convergence point of SGD and of Polyak averaging are thus the same. We can also note that in the almost no noise
setting, the basin of attraction of x‹ for SGD may be roughly approximated by s ´ 8, 1s. Nevertheless, both SAGE
and HBF seem to behave better behaviour with a somewhat larger basin of attraction: in particular, it is possible to
start from an initialization point x1 “ 8 and still obtain convergence of SAGE or HBF towards x‹. This last point
is clearly impossible with SGD. The same conclusions hold for different values of σA ce stade, repréciser ce qu’est σ
? (see Figure 3, bottom left and right). Finally, we observe that NAGD does not present very good behavior: the
probability of failure when the algorithm is initialized at ´4 is lower than 1 for σ “ 1 or σ “ 2.

We can calculate a more quantitative indicator of this behavior with the computation of the average rate of success
of each algorithm when the initialization point is sampled uniformly over r´10; 10s. Table 1 seems to indicate that the
stochastic heavy ball leads to a better exploration of the state space, in particular, with reasonable values of r (see
Table 2). These conclusions should be understood as numerical observations of experimental results on this particular
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Figure 3: Top left: function f to be minimized. Top right: probability of success of the stochastic algorithms with respect to the
initialization point with small variance: σ “ 0.1. Bottom left: σ “ 1. Bottom right: σ “ 2.

σ SGD AV SGD SAGE NAGD HBF Poly r=5 HBF Expo r=5
0.1 0.47 0.47 0.49 0.29 0.58 0.52
1 0.47 0.47 0.49 0.27 0.58 0.55
2 0.47 0.47 0.49 0.20 0.58 0.54

Table 1: Average rate of success of each stochastic algorithm with a uniformly sampled initialization over r´10; 10s when σ varies.

type of synthetic case, but we do not have any theoretical arguments to strengthen these final observations at this
time.

A Technical results

A.1 Standard tools of stochastic algorithms

We recall below a standard version of the so-called Robbins-Siegmund Theorem (see e.g. [Duf97]):

Theorem 27 Given a filtration Fn and four positive, integrable and Fn-adapted sequences pαnqn,pβnqn, pUnqn and
pVnqn satisfying:

• (i) pαnqn,pβnqn, pUnqn are predictible sequences.

Exp 1 Exp 2 Exp 5 Exp 10 Poly 1 Poly 2 Poly 5 Poly 10
0.51 0.53 0.55 0.58 0.26 0.43 0.58 0.50

Table 2: Average rate of success of heavy ball stochastic algorithm for several values of r, when σ “ 1 and the initialization point
is sampled uniformly over r´10; 10s.
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• (ii) supω
ś

n

p1` αnpωqq ă 8,
ř

n

Epβnq ă 8.

• (iii) @n P N,
EpVn`1|Fnq ď Vnp1` αn`1q ` βn`1 ´ Un`1

Then:

(i) Vn converges to V8 in L1 and supn ErVns ă 8.

(ii)
ř

n

EpUnq ă 8,
ř

n

Un ă 8 a.s.

A.1.1 Step sizes γn “ γ n´β with β ă 1

Proposition 28 For any positive values a ą 0 and b ą 0, for any β P p0, 1q and any sequence pγnqně1 defined by
γn “ γn´β, one has:

piq ´ a If β ă 1{2, then
n
ř

k“1

aγk ´ bγ
2
k ě

aγ
1´β

n1´β
´

bγ2

1´2β
n1´2β

piq ´ b If β ą 1{2, then
n
ř

k“1

aγk ´ bγ
2
k ě

aγ
1´β

n1´β
´

bγ2

2β´1

piq ´ c If β “ 1{2, then
n
ř

k“1

aγk ´ bγ
2
k ě

aγ
1´β

n1´β
´ bγ2 logn

piiq An integer n0 exists such that @n ě n0

n
ř

k“1

γ2
k

n
ś

l“k`1

p1´ aγlq
2
ď 2

a
γn`1

piiiq An integer n0 exists such that @n ě n0

n
ř

k“1

γ2
k

n
ś

l“k`1

p1´ aγl ` bγ
2
l q ď

2
a
γn`1

Proof: The upper bounds involved in piq ´ a, piq ´ b and piq ´ c are straightforward. ˛

Proof of piiq: Using Γn introduced in the beginning of Section 2, we write:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγlq
2
ď

n
ÿ

k“1

γ2
ke
´a

řn
k`1 γl

“

n
ÿ

k“1

γ2
ke
´aΓn`aΓk ď γ2e´aΓn

n
ÿ

k“1

k´2βe
aγ

1´β
k1´β

The function x ÞÝÑ x´2βe
aγ

1´β
x1´β

being increasing for x ě ca,γ,β , we then obtain, considering an integer t ą ca,γ,β :

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγlq
2
ď γ2e´aΓn

ˆ

Ct `

ż n

t

x´2βe
aγ

1´β
x1´β

dx

˙

.

We can write x´2βeKx
1´β

“

´

eKx
1´β

¯1

x´βK´1
p1´ βq´1 and integrating by parts, we obtain for a large enough n:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγlq
2
ď γ2e´aΓn

ˆ

Ct `
eaΓn

aγ
n´β

˙

ď
2

a
γn.

˛

Proof of piiiq: We only deal with β ă 1{2, which is the most involved situation. Using Γn and Γ
p2q
n introduced in the

beginning of Section 2, we write:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγl ` bγ
2
l q ď

n
ÿ

k“1

γ2
ke
´aΓn`aΓk`bΓ

p2q
n ´bΓ

p2q
k

ď e´aΓn`bΓ
p2q
n

n
ÿ

k“1

γ2
ke
aΓk´bΓ

p2q
k

ď γ2e´aΓn`bΓ
p2q
n

n
ÿ

k“1

k´2βe
aγ

1´β
k1´β´

bγ2

1´2β
k1´2β
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The function x ÞÝÑ x´2βe
aγ

1´β
x1´β´

bγ2

1´2β
x1´2β

being increasing for x ě ca,b,γ,β , we then obtain considering an integer
t ą ca,b,γ,β :

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγl ` bγ
2
l q ď γ2e´aΓn`bΓ

p2q
n

˜

t
ÿ

k“1

k´2βe
aγ

1´β
k1´β´

bγ2

1´2β
k1´2β

`

ż n

t

x´2βe
aγ

1´β
x1´β´

bγ2

1´2β
x1´2β

dx

¸

ď γ2e´aΓn`bΓ
p2q
n

ˆ

Ct `

ż n

t

x´2βe
aγ

1´β
x1´β´

bγ2

1´2β
x1´2β

dx

˙

ď γ2e´aΓn`bΓ
p2q
n pCt

`

ż n

t

x´β
„

3

2

aγx´β ´ bγ2x´2β

aγ
`

3bγx´2β
´ aγx´β

2



e
aγ

1´β
x1´β´

bγ2

1´2β
x1´2β

dx

˙

Now choosing t ě p3b{aqβ
´1

yields 3bγx´2β
ď aγx´β for any x ě t. Integrating by parts, we obtain:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγl ` bγ
2
l q ď γ2e´aΓn`bΓ

p2q
n

ˆ

Ct `
n´β

aγ
e´aΓn`nΓ

p2q
n

˙

ď
γn´β

a
` γ2Cte

´aΓn`bΓ
p2q
n .

Then, choosing n0 large enough (that depends on a, b, γ and β), we deduce that:

@n ě n0

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγl ` bγ
2
l q ď

2

a
γn.

˛

˝

A.1.2 Step sizes γn “ γ n´1

Proposition 29 For any positive values a ą 0 and b ą 0 and any sequence pγnqně1 defined by γn “ γn´1, we have:

piq
n
ř

k“1

aγk ´ bγ
2
k ě a logn´ bπ2

{6

piiq
n
ř

k“1

γ2
k

n
ś

l“k`1

p1´ aγlq
2
ď Cγ

$

’

&

’

%

1
aγ´1

n´1 if aγ ą 1

lognn´1 if aγ “ 1
1

1´aγ
n´aγ if aγ ă 1

piiiq
n
ř

k“1

γ2
k

n
ś

l“k`1

p1´ aγl ` bγ
2
l q ď Cγ,b

$

’

&

’

%

1
aγ´1

n´1 if aγ ą 1

lognn´1 if aγ “ 1
1

1´aγ
n´aγ if aγ ă 1

pivq For any ε ą 0, a ą 0 and b ą 0:
n
ř

k“1

γk`1

n
ś

l“k`1

p1´ aγl ` bγ
1`ε
l q ď 2ebΓ

p1`εq
8

a
.

Proof: The upper bounds involved in piq and piiq are straightforward. ˛

Proof of piiiq: The situation is easier than the one involved in point piiq of Proposition 28 because in that case, we
have:

@n ě 1 Γp2qn ď γ2π2
{6.

Therefore, we can repeat the computations above and get:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγl ` bγ
2
l q ď

n
ÿ

k“1

γ2
ke
´aΓn`aΓk`bΓ

p2q
n ´bΓ

p2q
k

ď e´aΓn`bγ
2π2{6

n
ÿ

k“1

γ2
ke
aΓk

ď γ2ebγ
2π2{6n´aγ

n
ÿ

k“1

k´2`aγ .

We then deduce that:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´ aγl ` bγ
2
l q “ γ2ebγ

2π2{6

$

’

&

’

%

1
aγ´1

n´1 if aγ ą 1

lognn´1 if aγ “ 1
1

1´aγ
n´aγ if aγ ă 1
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˛

Proof of piiiq: We follow the same guideline: remark that pΓ
p1`εq
n qně1 is a bounded sequence and write

n
ÿ

k“1

γk`1

n
ź

l“k`1

p1´ aγl ` bγ
1`ε
l q ď

n
ÿ

k“1

γ

k ` 1
e´aγ logn`aγ log k`bΓ

p1`εq
n

ď γebΓ
p1`εq
8 n´aγ

ż n

1

xaγ´1dx

ď
ebΓ

p1`εq
8

a
.

˝

A.2 Expectation of the supremum of the square of sub-Gaussian random vari-
ables

We consider a sequence of independent random variables pξiqiěn of Rd such that each coordinate satisfies a sub-Gaussian
assumption pHGauss,σq:

@λ P R @j P t1, . . . , du @i ě n logE
”

eλξ
j
i

ı

ď λ2 σ
2

2
, (56)

where σ2 is a variance factor. If pγkqkěn is a decreasing sequence in `2pNq, we are looking for an upper bound of:

m‹n “ E
„

sup
kěn

 

γ2
k}ξk}

2
(



. (57)

For any ν ą 0 and any decreasing sequence γn „ γn´ν , we establish the following result (useful for Theorem 13).

Theorem 30 If each coordinate ξji is absolutely continuous w.r.t. the Lebesgue measure and satisfies pHGauss,σq,
then:

m‹n À σ2d γ2
n logpγ´2

n q,

where À refers to an inequality up to a universal constant.

We begin with a preliminary lemma.

Lemma 31 Assume that X is a real random variable that satisfies pHGauss,σq with median 0:

P pX ą 0q “ P pX ă 0q “
1

2
.

Then, we can find Y „ N p0, σ2
q on the same probability space and c large enough s.t.

|X| ď c|Y | a.s.

Proof:
We use a coupling argument. We denote FX as the cumulative distribution function:

FXptq “

ż t

´8

fXpuqdu “ PrX ď ts.

Similarly, we also denote Ψσ2 as the cumulative distribution function of a Gaussian random variable N p0, σ2
q:

Ψσ2ptq “

ż t

´8

e´x
2{2σ2

?
2πσ

dx “ PrN p0, σ2
q ď ts.

Our assumption on the distribution on X shows that the generalized inverse of FX (denoted F´1
X ) exists and if U is

a uniform random variable between on r0, 1s, then X „ F´1
X pUq. We now consider the random variable Y „ F´1

σ2 pUq
built with the same realization of U . Of course, Y is distributed according to a Gaussian random variable N p0, σ2

q.
We need to show that a sufficiently large c ą 0 exists such that |X| ď c|Y |, that is:

ˇ

ˇF´1
X puq

ˇ

ˇ ď c
ˇ

ˇΨ´1
σ2 puq

ˇ

ˇ . (58)

Using the fact that FX is an increasing function, and letting u “ Ψσ2pyq, it is then equivalent to show that:

@y P R FXp´c|y|q ď Ψσ2p|y|q ď FXpc|y|q (59)
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We now study two different situations for y. If y “ 0, then Inequality (59) holds since the median of X is 0. If |y| ď η is
close to 0, the same inequality is satisfied with a first-order Taylor expansion. For example, the right hand side reads:

FXpc|y|q „
1

2
`

ż c|y|

0

fXpuqdu ě
1

2
` cfXp0q|y| ` op|y|q,

which is greater than Ψσ2p|y|q for c large enough. Hence, we deduce that Inequality (59) holds around 0.
Now, we assume that |y| ą η ą 0, the desired upper bound (59) is equivalent to:

1´ FXpc|y|q ď 1´Ψσ2p|y|q.

The Chernoff bound associated with the sub-Gaussian assumption pHGauss,σq on the distribution of X implies that:

PpX ą c|y|q ď einfλą0tλ
2σ2{2´λc|y|u “ e

´
c2|y|2

2σ2 .

At the same time, the lower bound of the Gaussian tail is given by:

1´Ψσ2pc|y|q ě
e´|y|

2{2σ2

?
2πσ

“

|y|´1
´ |y|´3

‰

ě κpδqe´|y|
2{2σ2

,

with κpδq a constant independent of |y| ě δ. Hence, the right hand side of (59) holds for a large enough c (independent
on σ2). A symmetry argument permits to conclude for the left hand side of (59).
Inequality (59) being equivalent to (58), the conclusion of the proof follows. ˝

We are now looking at to the proof of Theorem 30.
Proof of Theorem 30:
We will shift all of the coordinates of the random variables pξiqiěn by their corresponding medians. Assuming
pHGauss,σq, the coordinates pξji q1ďjďd are centered and have a second-order moment upper bounded by σ2 (see
[Str94], for example):

@i ě n @j P t1, . . . , du Ertξiju2s ď σ2.

The Tchebychev inequality implies that each median mj
i of the random variables ξji are bounded by:

@i ě n @j P t1, . . . , du |mj
i | ď

?
2σ. (60)

We then consider the centered (w.r.t. their medians) random variables:

ξ̃ji “ ξji ´m
j
i ,

and use the inequality pa` bq2 ď 2a2
` 2b2 together with the upper bound (60) to deduce that:

m‹n “ E sup
kěn

γ2
k}ξk}

2
“ E sup

kěn
γ2
k

d
ÿ

j“1

tξjku
2

ď E sup
kěn

γ2
k

«

2
d
ÿ

j“1

tξjk ´m
k
j u

2
` 2dσ2

ff

ď 2dσ2γ2
n ` 2E sup

kěn
γ2
k}ε̃k}

2.

We can use Lemma 31 and deduce that up to a multiplicative universal constant:

m‹n À 2dσ2γ2
n ` 2σ2E sup

kěn
γ2
k}Zk}

2,

where each pZkqkěn are i.i.d. realizations of Gaussian random variables N p0, σ2Idq.
We now aim to apply a chaining argument to control the supremum of the empirical process above. To apply

Lemma 32, we define Tn :“ Jn;`8J and compute the Laplace transform of the chi-square-like random variables:

logEeλrγ
2
k}Zk}

2´γ2
j }Zj}

2s
“
d

2
log

ˆ

1´ 2λγ2
j

1´ 2λγ2
k

˙

We can check that up to a universal multiplicative constant, we have:

@λ P R` @pa, bq P R` ˆ R` : log
1´ aλ

1´ bλ
À λ|a´ b| `

|a´ b|2λ2

1´ λ|a´ b|
.

We are naturally driven to define the pseudo-metric on Tn by:

@pi, jq P T 2
n dpi, jq “

ˇ

ˇγ2
i ´ γ

2
j

ˇ

ˇ .
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It remains to upper bound the covering number of Tn according to d for any radius ε ą 0. Indeed, when 2γ2
n ď ε, we

have Npε, Tnq “ 1 although when ε ď 2γ2
n, we use the rough bound:

Npε, Tnq ď inf
 

j ě n : 2γ2
j ď ε

(

.

In particular, if γj “ γj´ν , we then obtain
Npε, Tnq „ ε´1{2ν .

We apply Lemma 32 and obtain an upper bound for the right hand side of (61). The first term is proportionnal to γ2
n.

The other terms lead to the computation of the two integrals (up to some universal multiplicative constants):

ż γ2
n

0

a

logpε´1qdε and

ż γ2
n

0

logpε´1
qdε

The change of variable ε “ e´x and an integration by parts leads to an upper bound whose size is logpγ´2
n qγ2

n. ˝ The

next Lemma, borrowed from [BLM13] (see Lemma 13.1, Chapter 13), provides a key estimate for the expectation of
the suppremum of an empirical process indexed by a pseudo metric space pT , dq. This estimate involves the covering
numbers Npδ, T q associated with the set T and the pseudo-metric d.

Lemma 32 Let T be a separable metric space and pXtqtPT be a collection of random variables such that for some
constants a, v, c ą 0,

logEeλrXi´Xj s ď aλdpi, jq `
vλ2d2

pi, jq

2p1´ cλdpi, jq

for all pi, jq P T 2 and all 0 ă λ ă tcdpi, jqu´1. Then, for any i0 P T :

E sup
iPT
rXt ´Xi0 s ď 3aδ ` 12

?
v

ż δ{2

0

a

Hpu, T qdu` 12c

ż δ{2

0

Hpu, T qdu (61)
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