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este sentimiento resume lo que actualmente soy. Puedo decir que soy feliz
porque miro mi pasado, mi presente y mi futuro, y la verdad, no puedo
pedir nada, absolutamente nada a este mundo. No sé si ésta es la correcta
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todos los d́ıas y hace que el trabajo ni si quiera parezca trabajo.
Viva tu jaleo y tus bailes trabajando.

- Pablo. Por ser ese amigo con el que uno sabe que siempre se puede
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- Niamh. Gracias por esas fiestas de San Patricio y descubrir el
irlandés.

Por último, después de todo esto y sólo por si no ha quedado claro el
mensaje . . . GRACIAS!! MUCHAS GRACIAS A TODOS!!

vii



viii



Abstract

In this thesis, within the context of sensor networks, we are interested
in the distributed detection problem under the Neyman-Pearson formulation
and conditionally dependent sensor observations. In order to exploit all the
detection potential of the network, the literature on this issue has faced
optimal distributed detection problems, where optimality usually consists in
properly designing the parameters of the network with the aim of minimizing
some cost function related to the overall detection performance of the
network. However, this problem of optimization has usually constraints
regarding the possible physical and design parameters that we can choose
when maximizing the detection performance of the network. In many
applications, some physical and design parameters, for instance the network
architecture or the local processing scheme of the sensor observations, are
either strongly constrained to a set of possible design alternatives or either
cannot be design variables in our problem of optimization. Despite the
fact that those parameters can be related to the overall performance of the
network, the previous constraints might be imposed by factors such as the
environment where the network has to be deployed, the energy budget of the
system or the processing capabilities of the available sensors. Consequently,
it is necessary to characterize optimal decentralized detection systems with
various architectures, different observation processes and different local
processing schemes.

The mayor part of the works addressing the characterization of distributed
detection systems have assumed settings where, under each one of the
possible states of our phenomenon of interest, the observations are
independent across the sensors. However, there are many practical scenarios
where the conditional independence assumption is violated because of the
presence of different spatial correlation sources. In spite of this, very few
works have faced the aforementioned characterizations under the same variety
of settings as under the conditional independence assumption. Actually,
when the strategy of the network is not an optimization parameter, under the
assumption of conditionally dependent observations the existing literature
has only obtained asymptotic characterizations of the detection performance
associated with parallel networks whose local processing rules are based on
amplify-and-relay schemes.
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Motivated by this last fact, in this thesis, under the Neyman-Pearson
formulation, we undertake the characterization of distributed detection
systems with dependent observations, various network architectures and
binary quantization rules at the sensors. In particular, considering a parallel
network randomly deployed along a straight line, we derive a closed-form
error exponent for the Neyman-Pearson fusion of Markov local decisions
when the involved fusion center only knows the distribution of the sensor
spacings. After studying some analytical properties of the derived error
exponent, we carry out evaluations of the closed-form expression in order
to assess which kind of trends of detection performance can appear with
increasing dependency and under two well-known models of the sensor
spacing. These models are equispaced sensors with failures and exponentially
spaced sensors with failures. Later, the previous results are extended to a
two-dimensional parallel network that, formed by a set of local detectors
equally spaced on a rectangular lattice, performs a Neyman-Pearson test
discriminating between two different two-dimensional Markov causal fields
defined on a binary state space. Next, under conditionally dependent
observations and under the Neyman-Pearson set up, this thesis dissertation
focuses on the characterization of the detection performance of optimal
tandem networks with binary communications between the fusion units. We
do so by deriving conditions under which, in an optimal tandem network
with an arbitrary constraint on the overall probability of false alarm, the
probability of misdetection of the system, i.e. at the last fusion node of the
network, converges to zero as the number of fusion stages approaches infinity.
Finally, after extending this result under the Bayesian set up, we provide
two examples where these conditions are applied in order to characterize the
detection performance of the network. From these examples we illustrate
different dependence scenarios where an optimal tandem network can or
cannot achieve asymptotic perfect detection under either the Bayesian set
up or the Neyman-Pearson formulation.
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Resumen

En esta tesis, dentro del contexto de las redes de sensores, estamos
interesados en el problema de detección distribuida bajo la formulación
de Neyman-Pearson y observaciones condicionalmente dependientes. Con
objeto de explotar el potencial de detección de la red, la literatura sobre
este tema se ha enfrentado a problemas de detección distribuida óptima,
donde la optimalidad normalmente hace referencia al diseño adecuado de
diferentes parámetros de la red con el objeto de minimizar alguna función de
coste relacionada con las prestaciones globales de detección. Sin embargo,
este problema de optimización tiene normalmente restricciones asociadas
con los posibles parámetros f́ısicos y de diseño de la red que pueden ser
seleccionados a la hora de maximizar las prestaciones de detección de la
misma. En muchas aplicaciones algunos parámetros f́ısicos y de diseño, como
por ejemplo la arquitectura de la red o los esquemas de procesado local de
las observaciones de los sensores, bien están fuertemente restringidos a un
conjunto de posibles alternativas de diseño, o bien no pueden ser variables de
diseño en nuestro problema de optimización. A pesar de que estos parámetros
pueden estar relacionados con las prestaciones de detección de la red, las
anteriores restricciones podŕıan estar impuestas por factores tales como el
entorno en el que la red se despliega, el presupuesto de enerǵıa disponible de
la red o las capacidades de procesado de los sensores. Consecuentemente, es
necesario caracterizar sistemas de detección distribuidos óptimos con varias
arquitecturas, diferentes procesos de observación y diferentes esquemas de
procesado local.

La mayor parte de los trabajos tratando la caracterización de sistemas de
detección distribuida han asumido escenarios en los que, bajo cada uno de los
posibles estados del fenómeno de interés, las observaciones son independientes
de un sensor a otro. Sin embargo, hay muchos escenarios prácticos donde
la asumpción de independencia condicional es violada como consecuencia
de la presencia de diferentes fuentes de correlación. A pesar de esto, muy
pocos trabajos han tratado las anteriores caracterizaciones bajo la misma
variedad de escenarios que bajo la asunción de independencia condicional.
De hecho, cuando la estrategia de la red no es un parámetro a optimizar,
bajo la asunción de observaciones condicionalmente dependientes la literatura
existente solo ha obtenido caracterizaciones asintóticas de las prestaciones
de detección asociadas con redes paralelas cuyas reglas de procesado local se
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basan en esquemas de amplificación y retransmisión.
Motivado por este último hecho, en esta tesis, bajo la formulación

de Neyman-Pearson, llevamos a cabo la caracterización de sistemas de
detección distribuida con observaciones dependientes, varias arquitecturas
de red y reglas de cuantificación binaria en los sensores. En particular,
considerando una red paralela desplegada aleatoriamente a lo largo de una
ĺınea recta, bajo la formulación de Neyman-Pearson derivamos una expresión
cerrada del exponente de error asociado a la fusión de decisiones locales
Makovianas cuando, con respecto a los espaciados entre sensores, sólo se
conoce su distribución. Después de analizar algunas propiedades anaĺıticas
del derivado exponente de error, llevamos a cabo evaluaciones de su expresión
cerrada con el objeto de determinar las diferentes tendencias de detección
que pueden aparecer con dependencia creciente y bajo dos modelos de
espaciado entre sensores muy conocidos. Estos dos modelos son sensores
equiespaciados con fallos y sensores exponencialmente espaciados con fallos.
Más tarde, los anteriores resultados son extendidos a una red paralela
bidimensional que, formada por un conjunto de dispositivos equiespaciados
sobre una rejilla rectangular, lleva a cabo un test de Neyman-Pearson
para discriminar entre dos diferentes campos aleatorios causales de Markov
definidos en un espacio de estados binario. Seguidamente, bajo observaciones
condicionalmente dependientes y bajo la formulación de Neyman-Pearson,
esta tesis se centra en la caracterización de las prestaciones de detección
asociada a redes tándem óptimas con comunicación binaria entre los nodos
de fusión. Para hacer eso, derivamos condiciones bajo las cuales, en una
red tándem óptima con una arbitraria restricción en la probabilidad de falsa
alarma global, la probabilidad de pérdida de la red, es decir la asociada
último nodo de fusión, converge a cero según el número de etapas de fusión
tiende a infinito. Finalmente, después de extender este resultado bajo la
formulación bayesiana, proporcionamos dos ejemplos donde estas condiciones
son aplicadas para caracterizar las prestaciones de detección de la red. A
partir de estos ejemplos ilustramos diferentes escenarios de dependencia en
los que una red tándem óptima puede o no lograr detección asintóticamente
perfecta tanto bajo la formulación bayesiana como bajo la formulación de
Neyman-Pearson.
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Chapter 1

Introduction

1.1 Background and motivation

Recent progress in micro-electro-mechanical systems has allowed the
development of devices integrating sensing, processing and wireless
communication capabilities. These devices, named wireless sensors, are
typically inexpensive, self-powered devices (by using batteries or devices
allowing to capture energy from the environment), and have limited
communication capability. They are deployed in large numbers over a
possible large geographical area to implement dense networks that, in a
distributed fashion, support a given application. Most of these applications
involve canonical problems such as the detection, localization or tracking
of a target. In this work we are interested in the distributed detection
problem. The framework of detection theory was firstly extended to
a decentralized setting by [Tenney and Sandell, 1981]. Evidently, the
performance of a distributed system is suboptimal in comparison with its
centralized counterpart, as information may be lost in local processing and
transmission. Nonetheless, factors such as cost, communication bandwidth,
and reliability have motivated the massive use of distributed systems. At
the same time, this last fact has raised a growing attention regarding the
design and analysis of distributed detection systems operating under different
stringent resource constraints.

With the aim of exploiting all the detection potential of the network,
the literature on this issue has faced optimal distributed detection problems,
where optimality usually consists in properly designing the parameters of
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the network in order to minimize some cost function related to the overall
detection performance of the network. However, not all the possible physical
and design parameters can be chosen in order to solve those optimization
problems. In many applications, some of them, such as the network
architecture or the local processing scheme of the sensor observations just
to cite a couple of examples, are either constrained to a set of possible
alternatives or to only one option. This might occur because of the
environment where the network is deployed, the energy budget of the system
or the processing capabilities of the devices among many other possible
factors. Consequently, there is a great interest on characterizing optimal
decentralized detection systems with various architectures, different local
processing schemes and different observation processes that can or cannot
present sources of spatial correlation among the different sensor observations.
This characterization usually involves the derivation of optimal data fusion
rules and optimal local processing schemes according to a specific criterion
and under different design constraints. Likewise, it can also involve the
development of design tools that link the detection performance of the
network with its different features such as its node deployment or the
kind of channels (parallel access channels or multiple access channels)
employed for the communication between the sensors and the fusion node.
Precisely, related to this last problem and focusing on the parallel and
serial architecture, the main issue addressed in this thesis dissertation
consists in characterizing the Neyman-Pearson detection performance of
distributed systems based on conditionally dependent observations and
binary quantization rules at the sensors.

The background associated with the problem faced in this thesis
dissertation is initiated with the study of distributed detection systems under
the assumption of conditionally independent sensor observations. Under
this assumption and under a specific formulation, Bayesian or Neyman-
Pearson, several works focused on the derivation of local processing schemes
and fusion rules for optimal sensor networks. Some of them considered
systems with a parallel architecture formed by a large number of devices
and a data fusion center that, regarding a local and non-cooperative
summary of the sensor observations, makes a global inference about the
occurrence of an event of interest. Regarding the local quantization
functions applied by the sensors under this kind of topology, [Tsitsiklis, 1993]
showed that when the number of sensors goes to infinity and the
observations taken by them are conditionally independent given any
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hypothesis, the optimal binary decentralized detection is achieved by
identical local detection rules. Later, in [Chamberland and Veeravalli, 2003]
the authors extended this last result in order to show that identical
transmitters are also optimal when an arbitrarily large parallel network
has to detect deterministic signals in additive Gaussian noise. Additionally,
in [Chamberland and Veeravalli, 2004], under the mentioned assumption of
conditional independence, they also proved that the gain offered by having
more sensors exceeds the benefits of getting detailed information from
each sensor. In connection with the design of the data fusion rules that
maximize the detection performance of the network, [Varshney, 1986] in the
Bayesian set up and [Thomopoulos et al., 1987] under the Neyman-Pearson
formulation obtained the optimal fusion rule when the sensor observations
are conditionally independent under each hypothesis of the test.

The literature addressing the design of sensor networks other than the
parallel configuration is less extensive. Nevertheless, due to different reasons
such as the coverage of the sensors or the energy budget of the network
among others, the study of networks with different architectures has also
been of great interest. Focusing on distributed detection systems with
serial architecture, as it happened for the analysis and design of parallel
configurations, their study was initiated with the derivation of the optimal
fusion rules performed at each fusion stage under the Bayesian set up and
the Neyman-Pearson formulation. According to [Ekchian and Tenney, 1982]
and [Viswanathan et al., 1988], under independent sensor observations given
any hypothesis the optimal decision rule for each fusion stage matches
a likelihood ratio test when a Bayesian set up and a Neyman-Pearson
formulation is considered respectively. By formulating the distributed
detection problem as a deterministic, multistage, nonlinear optimal control
problem, this same result is obtained in [Tang et al., 1991] for both the
Bayesian and the Neyman-Pearson set ups.

After deriving the optimal local processing schemes and the optimal
data fusion rules under a specific formulation, in several works the
corresponding detection performance is characterized in terms of different
physical and design parameters of the network. Among others, considering
a parallel architecture and a large number of sensor observations,
works such as [Artés-Rodŕıguez et al., 2005], [Appadwedula et al., 2005],
[Lázaro et al., 2005], [Artés-Rodŕıguez and Lázaro, 2007], [Tay et al., 2007]
and [Lázaro et al., 2009] carried out the aforementioned characterization for
systems operating under different censoring schemes that, avoiding specific
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communications between some sensors and the fusion center, try to preserve
the energy budget of the network. Alternatively, instead of considering a
censoring scheme, [Artés-Rodŕıguez, 2004] and [Artés-Rodŕıguez et al., 2004]
are based on a local parametric model of the detection probability
of the sensors in order to determine how the sensors should be
configured to be efficient in terms of energy and achieve the best local
discrimination between the two hypothesis at the same time. Additionally,
under the parallel architecture other studies, for instance [Huber, 1965]
and [Marano et al., 2009], conducted research on the effect of byzantine
sensors on the detection performance of sensor networks. When the number
of sensor observations approaches infinity, it has been also of great interest
to compare the detection performance achieved by distributed detection
systems with or without feedback. [Zoumpoulis et al., 2010], [Tay, 2011]
and [Tay and Tsitsiklis, 2011] are some examples of this kind of study.
Analogously, in [Tay et al., 2008a], [Tay et al., 2008b], [Tay et al., 2009] and
[Zhang et al., 2012] the previous comparison is also carried among different
tree architectures and under the same asymptotic regime. In the case
that the network architecture is not a design parameter, for systems other
than the parallel configuration there are also works addressing similar
design matters. For instance, the authors in [Papastavrou and Athans, 1992]
provide the conditions that have to be satisfied by the observation model
in order to make a serial system achieve zero probability of error in the
aforementioned asymptotic regime. Moreover, complementing the previous
work, [Tang et al., 1991] used optimal control theory in order to study the
best placement for a node in a serial system with binary communication
between the fusion units.

Although there are many results on the topic of decentralized detection,
a few studies try to solve the cited problem without assuming conditional
independence among local sensor observations given any hypothesis. In
many practical scenarios the sensor observations are dependent under both
hypothesis as a result of the presence of correlation sources in signals such
as the noise or the one associated with the event of interest in the detection
problem. Since the correlation sources are usually spatial, when they are
present in the detection scenario, the conditional independence assumption
is more and more violated as the density of the network increases, which
usually happens in asymptotic characterizations for networks deployed over
a region with a specific area and formed by an increasingly number of sensors.

Some of the first results removing the independence assumption designed
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the local processing schemes and the data fusion rules of optimal sensor
networks. In a scenario where the sensors send conditionally dependent
local decisions to the fusion center, [Drakopoulos and Lee, 1991] showed
that the optimal fusion rule under the Neyman-Pearson criterion consists
in the joint likelihood ratio of the messages received by the data fusion
center. In [Kam et al., 1992] the authors generalized the structure of the
optimal data fusion rule when a Bayes hypothesis test is performed, and
the sensor observations are dependent. Likewise, holding the conditional
dependence among sensor observations the optimal local processing schemes
were derived in [Hoballah and Varshney, 1989] under the Bayesian set up.
The extension of this result to the Neyman-Pearson formulation can be found
in [Blum, 1996] and [Yan and Blum, 2000]. More recently, some researchers
addressed the previous design for sensor networks with tree architectures. For
instance, in [Xiang and Wang, 2006] and [Yan and Blum, 2001] the authors
derived the optimal fusion rules for tandem networks performing a Bayesian
and a Neyman-Pearson test respectively.

In scenarios where the sensor observations are conditionally dependent
given the true hypothesis, the optimal local processing scheme of a given
sensor and the optimal fusion rule have intricate forms that depend on the
decision rules of other sensors. In [Willett et al., 2000] the authors presented
a thorough analysis for the binary quantization of a pair of dependent
Gaussian random variables. Using that analysis they indicated that, in
spite of the simplicity of the studied setting, the partition of the observation
space may be hard to determine for an optimal detector. Actually,
understanding and determining the partition of the sensor observation space
led by the optimal decision and fusion rules is still an open problem that
has been recently addressed in [Chen et al., 2011]. Due to this last fact,
when characterizing the detection performance of sensor networks with
conditionally dependent observations, the major part of the works assume
that either the fusion rule or the local processing schemes are not optimal
under the considered formulation.

In order to face the analysis of the detection performance of
systems with dependent observations, under both the Bayesian set up
and the Neyman-Pearson formulation the existing literature has usually
considered parallel networks with optimal fusion rules and suboptimal
local processing schemes. In particular, when addressing different design
issues under different settings several works assumed amplify-and-relay
schemes of continuous sensor observations whose correlation structure
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usually follows well-known models of dependence such as one-dimensional
(1-D) and two-dimensional (2-D) Markov random fields. Among them,
using tools from large deviation theory and information theory provided
in [Dembo and Zeitouni, 1998] and [Cover and Thomas, 2006] respectively,
there are results regarding the effect of different physical and design
parameters of the network on its detection performance. For 1-D sensor
networks and based on closed-form expressions of error exponents most
of these results are concerned with parameters such as the sensor density.
See for instance [Sung et al., 2006], [Chamberland and Veeravalli, 2006]
and [Misra and Tong, 2008]. Complementing the previous works,
in [Li and Dai, 2007] and [Sung et al., 2008b] the parameters of interest
are the sensor configuration as well as the kind of channel between
each sensor and the fusion center respectively. Furthermore, in
[Sung et al., 2008a], [Plata-Chaves et al., 2008], [Anandkumar et al., 2009],
[Sung et al., 2009] and [Plata-Chaves, 2009] some of the previous studies
were also extended to 2-D settings. However, due to the additional
complexity appearing in this kind of scenarios, the results are based on
implicit expressions of the error exponents or other well-known measures
of dissimilarity.

In many applications, the sensor network is intended to have a long
lifetime. In this case, energy consumption becomes a crucial aspect in
networks with self-powered sensors because it limits the lifetime of the
network and seriously affects the maintenance cost (to replace batteries in a
large network, when possible, can be a high demanding task). Likewise, there
are many practical scenarios where the amount of information forwarded from
each sensor node to the fusion center is usually limited by the capacity of
the channels between the sensors and the fusion center. When facing all
these resource constraints under continuous observations, independently of
the presence or absence of a correlation structure in the observation process,
the quantization of the sensor observations might be more adequate than
amplify-and-relay schemes. At the same time, it would be useful the use
of network topologies, such as the other architectures different from the
parallel, that allow for shorter-range communications. Nevertheless, these
resource constraints are not the only reason to implement quantization
rules at the sensors or to use different architectures. Sometimes, this may
occur because of the discrete nature of the observation process, the limited
cover and processing capabilities of cheap sensors and the features of area
of the network deployment. Despite of everything, under conditionally
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dependent observations, very few works have addressed the characterization
of the detection performance associated to distributed systems with
various architectures and local quantization rules at the sensors. For
instance, one of the few results analyzing this kind of distributed detection
systems is [Villard and Bianchi, 2011]. In this publication, considering a
parallel architecture, the authors investigate the detection loss caused by
the quantization of the sensor observations under the Neyman-Pearson
formulation and under high-rate quantization regime i.e., when the number of
quantization levels tends to infinity. However, motivating the research line
followed in this thesis, so far, under conditionally dependent observations,
there is no kind of characterizations of the detection performance associated
to distributed systems with different architectures and a finite number of
quantization levels at the sensors. Specifically, considering that the local
processing scheme is a binary quantization of the sensor observations, this
thesis addresses the subsequent problems:

• Derivation of analytically tractable expressions that, for parallel
networks randomly deployed along a straight line, allow to assess
which kind of trends of detection performance can appear with
increasing dependency during the Neyman-Pearson fusion of Markov
local decisions.

• Extension of the previous results to a 2-D parallel network that, being
formed by a set of devices equally spaced on a rectangular lattice,
discriminates between two different 2-D Markov causal fields defined
on a binary state space.

• Derivation of conditions under which the fusion nodes of an optimal
tandem network achieve zero probability of error as the number of
fusion stages approaches infinity and when either a Bayesian set up or a
Neyman-Pearson formulation is considered for an arbitrary correlation
model.

1.2 Outline and contributions

This dissertation is organized as follows. Chapter 2 describes the state
of the art associated with the data fusion problem in the framework of
distributed hypothesis testing. Additionally, it reviews the existing tools
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used to study the performance of distributed detection systems. Among
other design and physical parameters of a 1-D sensor network, supported
by large deviation theory Chapter 3 studies the effect of the correlation on
the Neyman-Pearson fusion of dependent local decision. Next, in Chapter 4
these same results are also extended to a 2-D parallel network. Afterwards,
Chapter 5 derives necessary and sufficient conditions that, under both the
Bayesian set up and the Neyman-Pearson formulation, make a serial network
converge to deciding the right hypothesis with arbitrary low probabilities of
error. Finally, Chapter 6 concludes with a summary and discussion of our
results as well as a description of the possible future research lines.

In the following we summarize the main contributions of this dissertation.
Chapter 3. In this part, published in [Plata-Chaves and Lázaro, 2009]

and [Plata-Chaves and Lázaro, 2011], we consider a distributed detection
system formed by a large number of local detectors and a data fusion center
that, under the Neyman-Pearson formulation, fuses the binary quantizations
of the sensor observations. In the analyzed two-stage detection system the
local decisions are taken with no kind of cooperation among the devices
and they are transmitted to the fusion center over an error free parallel
access channel. In addition, the sensors are randomly deployed along a
straight line, and the corresponding sensor spacings are independently drawn
from a common probability density function. For both hypothesis, H0 and
H1, depending on the correlation structure of the observed phenomenon
the local decisions might be dependent. In the case of being dependent,
their correlation structure is modelled with a 1-D Markov random field with
nearest-neighbour dependency and binary state space. Under this scenario,
we firstly derive a closed-form error exponent for the Neyman-Pearson fusion
of the local decisions when the involved data fusion center only knows the
distribution of the sensor spacings. Secondly, based on a single parameter
that captures the mean correlation strength among the local decisions, some
analytical properties of the error exponent are investigated. Finally, we
develop a physical model for the conditional probabilities of the Markov
random fields that might be present under each hypothesis. Using this model
we characterize the error exponent for two well-known models of the sensor
spacing: i) equispaced sensors with failures, and ii) exponentially spaced
sensors with failures.

Chapter 4. In this part of the dissertation, whose results have
been published in [Plata-Chaves and Lázaro, 2010], we consider the same
distributed detection system as in the previous chapter. However, this time
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the devices are located on a rectangular lattice so that sensors belonging to a
specific row or column are equally spaced. Additionally, for each hypothesis
H0 and H1, the correlation structure of the local decisions is modelled with a
2-D random causal field where the rows and columns are outcomes of the same
first-order binary Markov chain. Similarly to the previous chapter, under
this scenario we derive a closed-form error exponent for the Neyman-Pearson
fusion of the local decisions. After studying some analytical properties of
this error exponent, the transition probabilities defining the assumed 2-D
random causal field are associated to a specific physical model in order to
see the effect of different parameters of the network on its overall detection
performance. As we do in Chapter 3, among the different parameters of the
network we pay special attention to the mean correlation strength among
neighbour local decisions.

Chapter 5. In this final part, whose results have been published
in [Plata-Chaves et al., 2011a] and [Plata-Chaves et al., 2012b], we consider
a sensor network with tandem architecture. When solving a specific
distributed detection problem where the observations might be dependent
under each one of the two possible hypothesis, H0 or H1, we assume that,
based on the available information, each fusion stage provides a binary
message about the presence or absence of the event of interest. Under
this scenario and under the Neyman-Pearson formulation, we firstly derive
necessary and sufficient conditions ensuring that, for any arbitrary constraint
on the overall probability of false alarm and an arbitrary correlation model,
the corresponding probability of misdetection goes to zero as the number of
fusion stages approaches infinity. Afterwards, considering the same scenario
these conditions are extended to optimal tandem networks performing a
Bayesian hypothesis test. Finally, we provide some illustrative examples
where the application of the previous necessary and sufficient conditions is
shown. With these examples we illustrate different dependence scenarios
where a tandem network can or cannot achieve asymptotic perfect learning
under either the Bayesian set up or the Neyman-Pearson formulation.

9



10



Chapter 2

Hypothesis testing and data
fusion

2.1 Introduction

Based on observations regarding a specific phenomenon we frequently have
to select a course of action from a set of possible options. This problem
can be solved by one single decision maker in a centralized way. However,
because of different constraints, this detection task sometimes has to be
performed in a distributed fashion. In a distributed detection system
several devices, deployed in a specific region, generate summaries of their
locally available observations. Later, dealing with a data fusion problem the
aforementioned summaries are communicated and fused along the network
in order to produce a final decision regarding the state of the phenomenon
of the network. Clearly, the propagation of the summaries of the sensor
observations depends on the architecture of the distributed detection system.
In the case that the system has a parallel architecture as the one shown in
Figure 2.1(a), the summaries of the sensor observations are transmitted to
an entity, called data fusion center. Based on the summaries of the sensor
observations this fusion center provides a global decision regarding the best
course of action that has to be selected according to some specific criteria.
In other topologies the fusion of all the summaries of the sensor observations
is carried out cooperatively by all the devices of the network. For instance,
when a tree structure is considered (see Figure 2.1(b)), several partial (local)
decisions are taken hierarchically by different entities at different levels of
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Figure 2.1: Diagrams of distributed detection systems with different
architectures.

the network These local decisions are based on the fusion of their locally
available observations as well as the decisions taken by their successors in
the tree. This way, the final decision of the system matches the course of
action chosen by the root of the tree.

Due to the fact that, independently of the network topology, the
in-network processing strategies involve detection steps under a parallel
architecture, we are going to consider the topology shown in Figure 2.1(a)
when describing the state of the art associated with the data fusion problem
in the framework of distributed hypothesis testing. Specifically, focused
on parallel fusion networks where the devices take binary local decisions
when fusing its available local information, this chapter initially covers the
foundational work that, in a distributed setting, established the optimal
distributed schemes under the subsequent different formulations

• Bayesian detection.

• Neyman-Pearson detection.

• Sequential detection.

• Composite hypothesis testing.
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Afterwards, in the spirit of the research topic associated with this thesis
dissertation, the chapter concludes with a brief review of the different
analytic tools used in the characterization of optimal parallel networks solving
parametric detection problems with a fixed sample size.

2.2 Basic model and notation

In this section we firstly introduce the basic model used during this chapter
when describing the state of the art associated with the data fusion problem
in the framework of distributed hypothesis testing. At the same time,
we will start to establish some notation that will be useful for the rest
of the chapters of this thesis dissertation. In general terms, this notation
will be standard. Scalar magnitudes are denoted using regular face letters,
e.g., x, while matrices and vectors are written as bold-face upper-case and
lower-case letters, respectively, e.g., matrix X and vector x. All vectors
are column vectors. For a matrix A, AT and AH indicate the transpose
and Hermitian transpose, respectively. Additionally, A(m,n) denotes the
element of the m-th row and n-th column in the matrix A. Sets are denoted
using calligraphic letters, e.g. Q, and random variables are in capital letters,
e.g. X. The mean and the variance of a random variable X are written as
E{X} and V ar{X}, respectively. When there is potential ambiguity in the
argument of the expectation or the variance operator, EX|y{·} and V arX|y{·}
denote the expectation and the variance with respect to (w.r.t.) a random
variable X when the random variable Y = y respectively. For instance,
EX|Hk{·} and V arX|Hk{·} indicate the expectation and the variance given the
hypothesis Hk as the true hypothesis. Moreover, X ∼ fX(x) denotes that
the continuous random variable X is distributed according to the probability
density function (p.d.f.) fX(·) whereas Y ∼ PY (y) means that the discrete
random variable Y has PY (·) as probability mass function (p.m.f.). Finally,
when denoting the probability that a discrete random variable, X, whose
p.m.f. equals PX(x), takes on the value x, we will simply write P (X = x)
for the sake of simplicity.

Regarding the model used along this chapter we consider a parallel fusion
network as the one shown in Figure 2.1(a). This distributed detection
system is formed by a set of ` devices, also called sensors, deployed over
a two-dimensional area, D ⊆ R2. Assuming that, for k ∈ {0, 1}, i ∈
{1, 2, . . . , `} and y = [y1, y2, . . . , y`]

T , the marginal and joint p.d.f. of the
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sensor observations under Hk is continuous and given by fYi|H(yi|Hk) and
fY |H(y|Hk) respectively, each sensor, placed at the coordinates xi ∈ D,
initially performs a binary quantization of its own observations, yi ∈ Yi. To
do that, it applies the following quantization function

ui = γi(yi) : Yi −→ U (2.1)

where U ∈ {0, 1} and

ui =

{
0 if H0 is locally decided,
1 if H1 is locally decided.

(2.2)

This way, for the detection process undertaken by the i-th device

PM(i) = P (Ui = 0|H1) (2.3)

denotes the probability of misdetection,

PD(i) = 1− PM(i), (2.4)

is the probability of detection and

P
FA

(i) = P (Ui = 1|H0) (2.5)

is equal to the corresponding probability of false alarm. Note that the
previous probabilities characterize the performance of the first detection
stage of the network. In order to undertake the second detection step
the set of binary local decisions taken by all the devices of the network,
u = [u1, u2, . . . , u`]

T , is transmitted to an entity over a set of parallel access
channels. Afterwards this central entity, called fusion center, fuses all the
local decisions and makes a global inference about what hypothesis is present.
In particular, completing the detection task of the network the fusion rule
applied by the fusion center is defined as follows

uFC = γFC(u) : U ` −→ U (2.6)

where U ` is the cartesian product of the set U with itself ` times and where

uFC =

{
0 if H0 is decided,
1 if H1 is decided.

(2.7)

14



Consequently,

PM = P (UFC = 0|H1) (2.8)

denotes the overall probability of misdetection of the system,

PD = 1− PM , (2.9)

is equal to the corresponding overall probability of detection and

P
FA

= P (UFC = 1|H0) (2.10)

is the overall probability of false alarm of the network. Obviously, for any
given decision problem, we can select different strategies formed by a set of
local decisions rules and a fusion rule

Γ = {γFC , {γi}`j=1}. (2.11)

We can easily verify that each strategy, Γ, will yield specific values for PM and
P
FA

. However, we would like to choose some strategy, Γ∗, that is optimal
in some sense. There are several useful definitions of optimality for such
problems. Precisely, the main issue of this chapter is the design of the
strategy under some of these useful definitions of optimality.

2.3 Some important properties of the fusion

rules

For the setting considered in the previous section, when designing the fusion
rule we have to take into account that it is essentially a logical function with
` binary inputs and one binary output. In general, we can easily realize that
there are 22` possible fusion rules when there are ` binary local decisions.
For instance, as it is listed in Table 2.1, there are 16 possible fusion rules
for combining two binary local decisions. In this data fusion problem two
commonly used fusion rules are the AND rule and the OR rule. In the AND
rule, indexed as f2 in Table 2.1, uFC is equal to one only when both of the
binary local decisions are one, i.e.

uFC =

{
1 if u1 = 1 and u2 = 1,
0 otherwise.

(2.12)
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Input Output uFC

u1 u2 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 2.1: Possible fusion rules for the fusion of two binary decisions.

In the case of the OR rule, f8 in Table 2.1, uFC equals one if at least one of
the binary inputs is equal to one, i.e.,

uFC =

{
0 if u1 = 0 and u2 = 0,
1 otherwise.

(2.13)

At the same time, in the considered fusion problem there are also some
functions that may not be suitable as fusion rules. Realize that the all zero
function, f1, and the all one function, f16, totally disregard the two inputs
and, therefore, may not be adequate in many scenarios. Similarly, some other
fusion rules that may be unsuitable totally disregard one of the inputs. This
is the case of f4 which totally disregards the binary input u2.

At first sight, from the previous example we can verify that the possible
number of fusion rules is very high. However, simplifying the search of the
fusion that has to be applied there are many useful definitions of optimality
discarding functions γFC(u) that do not satisfy the subsequent property.

Definition I (Monotonic fusion rule). Let S1(m) be the set of m binary local
decisions that are equal to one and S0(`−m) be the set of remaining `−m
local decisions that are equal to zero. Given S1(m) and S0(` −m), assume
that the global decision is uFC = 1. Now, consider that S1(m′), with m′ > m,
is another set of m′ positive local decisions containing the set S1(m). Let
S0(`−m′) be the corresponding set of local decisions equal to zero. Then, a
fusion rule is monotonic if and only if the global decision, uFC, equals one
for all possible sets S1(m′) satisfying the previous condition.

In [Varshney, 1997] we can find several definitions of optimality that,
under the assumption of independent sensor observations, satisfy the above
property and that, therefore, drastically reduce the number of fusion rules
that have to be considered in the design problem. Some illustration of this
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drastic reduction can be found in the example considered in this section.
Looking at Table 2.1 we can easily see that, under definitions of optimality
discarding non-monotonic fusion rules, only the functions f1, f2, f4, f6, f8

and f16 could be taken into account when fusing two binary inputs.

In addition to the monotonocity property, other further considerations
and constraints often result in further reductions of the number of fusion rules
to be taken into account. One of the most typical additional considerations
is the one given in the subsequent corollary.

Corollary I. For a fusion center with ` binary inputs and any fixed
monotonic fusion rule, the corresponding probability of detection PD is an
increasing function of the probabilities of detection associated with each one
of its binary inputs, i.e. {PD(i)}`i=1.

It can be easily seen that the previous corollary is direct consequence
of the monotonocity property appearing in the fusion rules derived under
some definitions of optimality. One instance of this last fact can be found
in [Thomopoulos et al., 1989] when the local decisions are conditionally
independent given the true hypothesis. Nevertheless, we do not have to forget
that, depending on the considered setting, there could be other constraints
reducing the number of suitable fusion rules. To see that and conclude this
section, assume that, in the problem of fusing two binary inputs, both local
detectors have the same performance in terms of probability of detection and
probability of false alarm, i.e. PD(1) = PD(2) and P

FA
(1) = P

FA
(2). Besides

considering a definition of optimality that discards non-monotonic fusion
rules, also assume that our cost function symmetrically penalizes errors and
hits. In other words, there is the same cost assigned if H1 is decided when
H0 is true and vice-versa. Analogously, the cost is the same when the null or
the alternative hypothesis is correctly detected. Under all these constraints,
we can realize that the output of the optimal fusion rule should be the same
for both u1 = 0, u2 = 1 and u1 = 1, u2 = 0. This means that the monotonic
fusion rules f4 and f6 are no longer suitable. Thus, out of the 16 possible
fusion rules, only f1, f2, f8 and f16 may be suitable in the setting that we
have considered along this section.
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2.4 Bayesian distributed detection

In this section, as it was carried out in [Hoballah and Varshney, 1989], we
deal with the derivation of the optimal strategy that has to be applied by
a parallel fusion network performing binary hypothesis testing under the
Bayesian formulation. This means that we are looking for the strategy,
Γ, that minimizes the average cost of the overall system operation, <(Γ).
If we consider the setting described in Section 2.2 we can easily see that
four possible courses of action can be chosen by the sensor network. Thus,
assigning costs to each one of these possibilities the Bayes risk function, <(Γ),
we wish to minimize is given by

<(Γ) =
1∑

k=0

1∑
i=0

Cik P (Hk)P (Decide Hi|Hk is true) (2.14)

where Cik is a positive constant denoting the cost of global decision being Hi

when Hk is present and P (Hk) equals the prior probability of hypothesis Hk,
with i, k ∈ {0, 1}. If we make the usual assumption that making a wrong
decision is more costly than making a correct decision, i.e. C10 > C00 and
C01 > C11, the design of the considered distributed detection system under
the Bayesian formulation can be casted as follows

Γ∗ = argmin
Γ
{<(Γ)}

= argmin
Γ
{CF PFA − CD PD + C}

(2.15)

where

CF = P (H0) (C10 − C00) > 0 (2.16)

CD = (1− P (H0)) (C01 − C11) > 0 (2.17)

and

C = C01 (1− P (H0)) + C00 P (H0) > 0. (2.18)

For the system optimization problem stated in (2.15)-(2.18), after
omitting the dependence of < on Γ for notational simplicity, a person-
by-person optimization (PBPO) methodology is usually adopted. This
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optimization procedure gives necessary but not, in general, sufficient
conditions to determine the globally optimal solution of the considered
optimization problem. Usually, the aforementioned necessary conditions
are provided by means of a set of coupled equations whose simultaneous
solution yields the desired PBPO solution. In order to obtain that set of
equations the PBPO procedure focuses on the optimization of one of the
optimization variables under the assumption that the rest of the variables
have been optimized and remain fixed. In particular, when solving (2.15) we
have to view the decentralized detection system as a team whose members
are the ` local detectors and the data fusion center. Afterwards, we have to
optimize the decision rule associated with one of those team members under
the assumption that the rest of decision rules have been already designed.

Initially under the previously described PBPO methodology we are going
to focus on the derivation of the local decision rule associated with i-th
detector that minimizes <. Consequently, we are going to determine the
decision rule associated with the i-th local detector when the fusion center
and the remaining ` − 1 local detectors have been designed. Toward this
goal, under the previous assumption and taking into account the subsequent
expressions for the overall probability of false alarm

P
FA

=
∑
u

P (UFC = 1|u)PU |H(u|H0) (2.19)

and the overall probability of detection

PD =
∑
u

P (UFC = 1|u)PU |H(u|H1) (2.20)

with U = [U1, U2, . . . , U`]
T we firstly expand < in terms of the local decision

taken by the i-th local detector

< = C +
∑
ui

P (UFC = 1|ui1)
[
CF PU |H(ui1|H0)− CD PU |H(ui1|H1)

]
+
∑
ui

P (UFC = 1|ui0)
[
CF PU |H(ui0|H0)− CD PU |H(ui0|H1)

] (2.21)

where i ∈ {1, 2, . . . , `},

ui = [u1, . . . , ui−1, ui+1, . . . , u`]
T (2.22)
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and

uik = [u1, . . . , ui−1, ui = k, ui+1, . . . , u`]
T (2.23)

with k ∈ {0, 1}. Next, by noting that, for k ∈ {0, 1},

PU |H(ui0|Hk) = PU i|H(ui|Hk)− PU |H(ui1|Hk) (2.24)

we can express < as

< = C +
∑
ui

P (UFC = 1|ui1)
[
CF PU |H(ui1|H0)− CD PU |H(ui1|H1)

]
+
∑
ui

P (UFC = 1|ui0)
[
CF PU i|H(ui|H0)− CD PU i|H(ui|H1)

]
+
∑
ui

P (UFC = 1|ui0)
[
CD PU |H(ui1|H1)− CF PU |H(ui1|H0)

]
= Ci +

∑
ui

A(ui)
[
CF PU |H(ui1|H0)− CD PU |H(ui1|H1)

]
(2.25)

where

Ci = C +
∑
ui

P (UFC = 1|ui0)
[
CF PU i|H(ui|H0)− CD PU i|H(ui|H1)

]
(2.26)

and

A(ui) = P (UFC = 1|ui1)− P (UFC = 1|ui0). (2.27)

Since the decision of each detector, defined in (2.1), depends only on its own
observation we have that

PU |Y (u|y) =
∏̀
i=1

PUi|Yi(ui|yi) (2.28)

and

PU |Y (uik|y) = P (Ui = k|yi)PU i|Y i(ui|yi) (2.29)
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for k ∈ {0, 1}. Subsequently, if we remember that fY |H(y|Hk) denotes the
joint p.d.f. of the sensor observations Y = [Y1, Y2, . . . , Y`] under hypothesis
Hk with k ∈ {0, 1}, after defining

yi = [y1, . . . , yi−1, yi+1, . . . , y`]
T (2.30)

we can express

PU |H(uik|Hk) =

∫
Y`
PU |Y (uik|y) fY |H(y|Hk)dy

=

∫
Y`
P (Ui = k|yi)PU i|Y i(ui|yi) fY |H(y|Hk)dy

(2.31)

where the last equality follows from (2.29) and where

Y` = Y1 × Y2 × . . .× Y`. (2.32)

Hence, the Bayes risk function, <, that we are optimizing w.r.t. γi(yi) can
be written as follows

< = Ci +
∑
ui

A(ui)CF

∫
Y`
P (Ui = k|yi)PU i|Y i(ui|yi) fY |H(y|H0)dy

−
∑
ui

A(ui)CD

∫
Y`
P (Ui = k|yi)PU i|Y i(ui|yi) fY |H(y|H1)dy

= Ci +

∫
Yi

dyi P (Ui = 1|yi)

×

{∑
ui

∫
Y`−1

[i]

dyiA(ui)PU i|Y i(ui|yi)
[
CFfY |H(y|H0)− CDfY |H(y|H1)

]}
(2.33)

where

Y`−1
[i] = Y1 × Y2 × . . .Yi−1 × Yi × . . .× Y`. (2.34)

At this point, realize that Ci is a constant as far as the i-th local detector
is concerned. At the same time, we can also note that, if the fusion center
as well as the rest of sensors are fixed, the Bayes risk is minimized when the
i-th decision maker applies the subsequent decision rule

P (Ui = 1|yi) =

{
1 if D(i) ≤ 0,
0 otherwise

(2.35)
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where

D(i) =
∑
ui

∫
Y`−1

[i]

dyiA(ui)PU i|Y i(ui|yi)
[
CFfY |H(y|H0)− CDfY |H(y|H1)

]
.

(2.36)

To conclude the derivation of γi(yi), by noting that, for k ∈ {0, 1},

fY |H(yi|Hk) = fY i|Yi,H(yi|yi, H0) fYi|H(yi|Hk) (2.37)

from (2.35) and (2.36) we have that, for i ∈ {1, 2, . . . , `}, the decision
rule γi(yi) minimizing the Bayes risk < is the one shown in the subsequent
expression

ui = γi(yi)

=
fYi|H(yi|H1)

fYi|H(yi|H0)

1

≷
0

∑
ui

∫
Y`−1

[i]
A(ui)CFPU i|Y i(ui|yi)fY i|Yi,H(yi|yi, H0)dyi∑

ui

∫
Y`−1

[i]
A(ui)CDPU i|Y i(ui|yi)fY i|Yi,H(yi|yi, H1)dyi

(2.38)

or equivalently

ui = γi(yi) =
fYi|H(yi|H1)

fYi|H(yi|H0)

1

≷
0

∑
ui A(ui)CFPU i|Yi,H(ui|yi, H0)∑
ui A(ui)CDPU i|Yi,H(ui|yi, H1)

. (2.39)

From the previous expression we can see that the local decision rule γi(yi)
minimizing < under the PBPO methodology is not, in general, a threshold
test. Realize that the right-hand side (r.h.s.) of (2.39) is dependent on
the sensor observation performed by the i-th local detector. However, if
the sensor observations are assumed to be conditionally independent given
each one of the two possible hypothesis the aforementioned dependence
disappears and the local decision rule expressed in (2.37) reduces to the
following threshold test

ui = γi(yi)

=
fYi|H(yi|H1)

fYi|H(yi|H0)

1

≷
0

∑
ui CFA(ui)

∏`
j=1,j 6=i PUj |H(uj|H0)∑

ui CDA(ui)
∏`

j=1,j 6=i PUj |H(uj|H1)
.

(2.40)

Note that the previous simplification does not mean a reduction in the
number of coupled non-linear equations to be solved when implementing the
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local decision rules. In particular, it only means a considerable reduction
of the computational difficulty that appears when we have to solve the
aforementioned coupled equations.

To complete the design of the parallel fusion network under the Bayesian
set up we now focus on the derivation fusion rule γFC(u) that minimizes <
when a PBPO methodology is considered. Toward this goal, we first have to
remember that the local detectors take their local decisions based on their
own observations and with no kind of cooperation. These observations are
precisely the inputs used by the data fusion in order to give a global inference
about what hypothesis is present. Next, taking this last fact into account,
with the aim of finding the fusion rule uFC = γFC(u∗) minimizing the Bayes
risk function given one of the 2` possible values of u, we substitute (2.19)
and (2.20) into (2.15) and express the Bayes risk function as follows

< = P (UFC = 1|u∗)
[
CF PU |H(u∗|H0)− CD PU |H(u∗|H1)

]
+K(u∗) (2.41)

where

K(u∗) = C +
∑

u;u6=u∗
P (UFC = 1|u)

[
CF PU |H(u|H0)− CD PU |H(u|H1)

]
(2.42)

with C given in (2.18) and u∗ denoting the considered vector of binary
decisions taken by the ` local detectors of the network. Looking at (2.42) it
is clear that K(u∗) is constant once u∗ is fixed. Therefore, for a given u∗ the
Bayes risk function < expressed in (2.41) is minimized when the following
fusion rule is employed

P (UFC = 1|u∗) =

{
1 if

[
CF PU |H(u∗|H0)− CD PU |H(u∗|H1)

]
≤ 0,

0 otherwise.

(2.43)

Equivalently, if we use the fact that CF > 0 and that CD > 0, the fusion rule
γFC(u∗) minimizing < may also be written as follows

uFC = γFC(u∗) =
PU |H(u∗|H1)

PU |H(u∗|H0)

uFC=1

≷
uFC=0

CF
CD

. (2.44)

In comparison with the local decision rules provided in (2.39), the previous
expression shows that, even when the sensor observations are conditionally
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dependent given one of the two hypothesis, a threshold test is the optimal
fusion rule, γFC(u∗), minimizing < under the PBPO methodology. In this
case, concluding the Bayesian design of a parallel fusion network we can
check that the conditional independence among the sensor observations only
allows us to implement the fusion rule as the following weighted sum of the
local decisions

uFC = γFC(u∗)

=
∑̀
i=1

ln

(
PD(i) (1− P

FA
(i))

(1− PD(i)) P
FA

(i)

)
ui

uFC=1

≷
uFC=0

ln

(
CF
CD

∏̀
i=1

1− P
FA

(i)

1− PD(i)

)
.

(2.45)

2.5 Neyman-Pearson distributed detection

After performing the design of the optimal Bayesian strategy in a parallel
fusion network we now consider the same problem under the Neyman-
Pearson formulation. In this case, without requiring the knowledge of
the prior probabilities associated with each one of the possible hypothesis,
we are looking for the strategy Γ that maximizes the overall probability
of detection of the system subject to (s.t.) a specific constraint on the
corresponding probability of false alarm. Specifically, taking into account the
aforementioned Neyman-Pearson criterion, our problem can be formulated as
follows

Γ∗ = argmax
Γ s.t. P

FA
(Γ)≤α∈[0,1]

{PD(Γ)} (2.46)

where PD(Γ) and P
FA

(Γ) denote the probability of detection and the
probability of false alarm at the fusion center under the strategy Γ
respectively, i.e.

PD(Γ) = P (UFC = 1|Γ, H1) (2.47)

and

P
FA

(Γ) = P (UFC = 1|Γ, H0). (2.48)

We consider again the PBPO methodology to solve the system
optimization problem stated in (2.46). This time, we are firstly going to
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consider the design of the optimal fusion rule. When facing that design
problem we can easily verify that the Neyman-Pearson lemma, described
in [Blahut, 1987], gives the optimal fusion rule under the PBPO methodology,
in other words, when all the sensor detectors have already been designed.
Specifically, from Neyman-Pearson lemma we have that, when the decisions
taken by the sensors of the parallel network are u∗, the optimal fusion rule
is given by

uFC = γFC(u∗)

= P (UFC = 1|u∗) =


1 if PU |H(u∗|H1) > λFCPU |H(u∗|H0),
ξ(u∗) if PU |H(u∗|H1) = λFCPU |H(u∗|H0),
0 otherwise,

(2.49)

with the threshold, λFC <∞, and the randomization function, ξ(u∗) ∈ (0, 1),
chosen in order to satisfy that P

FA
(Γ) ≤ α. Except for the presence of a

randomization function ξ(u∗) as well as the way the threshold λFC is selected
we can note that this fusion rule takes the same form as the one derived in
the previous section under the Bayesian set up. This last fact can also be
seen when the sensor observations are conditionally independent given each
one of the two possible hypothesis. To be more precise, as it happens under
the Bayesian set up, if we take logarithms, the conditional independence
among the sensor observations allows to implement the fusion rule as the
subsequent weighted sum of the binary local decisions taken by the devices
of the network

uFC = γFC(u∗)

=


1 if

∑`
i=1 ln

(
PD(i) (1−P

FA
(i))

(1−PD(i))P
FA

(i)

)
ui > ln

(
λFC

∏`
i=1

1−P
FA

(i)

1−PD(i)

)
,

ξ(u∗) if
∑`

i=1 ln

(
PD(i) (1−P

FA
(i))

(1−PD(i))P
FA

(i)

)
ui = ln

(
λFC

∏`
i=1

1−P
FA

(i)

1−PD(i)

)
,

0 otherwise.

(2.50)

Once we have undertaken the design of the optimal fusion rule
under the Neyman-Pearson formulation we are now going to consider the
design of the optimal sensor detectors under the PBPO methodology.
Consequently, when providing conditions on the optimal decision rule
performed by the i-th sensor we are going to assume that the fusion
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rule and the rest of decision rules have already been designed. Under
this assumption several approaches have been considered in the literature.
Initially, several works attempted to solve (2.46) by using the Lagrange
multiplier technique, in other words, maximizing PD(Γ)− λP

FA
(Γ) without

constraints. However, in [Tsitsiklis, 1993] the author demonstrates that this
approach, which was taken in [Srinivasan, 1986a] and [Srinivasan, 1986b],
fails if the overall receiving and operating curve (ROC) associated with
the fusion center is not concave. This is significant since, as it is
shown in [Cherikh, 1989], [Willett and Warren, 1992], [Yan and Blum, 2000]
and [Yan and Blum, 2001] by means of different examples, it is not true that
the overall ROC curve must be concave. In order to overcome this problem,
in [Blum, 1996] it is shown that under some mild assumptions and the PBPO
methodology the conditions on the optimal sensor detectors can be derived
regardless the concavity of the overall ROC. Precisely, this approach, which
relies on the proof used in [Blahut, 1987] when deriving the Neyman-Pearson
Lemma for a centralized system, is the one that we are going to follow in this
section.

With the aim of deriving the i-th local decision rule that, under the
PBPO methodology, solves the Neyman-Pearson problem stated in (2.46)
we are going to assume that the marginal p.d.f., fYi|H(yi|Hk), has no point
masses for all k ∈ {0, 1}. Additionally, consider that the i-th sensor performs
the subsequent binary quantization rule of its own observations

ui = γi(yi) = P (Ui = 1|yi) =

{
1 if D1i(yi) ≥ λiD0i(yi),
0 if D1i(yi) < λiD0i(yi),

(2.51)

where, for i ∈ {1, 2, . . . , `} and k ∈ {0, 1},

Dki(yi) = fYi|H(yi|Hk)
∑
ui

PU i|Yi,H(ui|yi, Hk)A(ui) (2.52)

with ui and A(ui) defined in (2.22) and (2.27) respectively. Due to the
previous definition of γi(yi) we know that

(γi(yi)− γ′i(yi)) · (D1i(yi)− λiD0i(yi)) ≥ 0 (2.53)

for all yi and for any decision rule γ′i(yi) ∈ [0, 1]. Hence, if we define Yi as
the subset of all yi for which fYi|H(yi|Hk) > 0 for either k = 0 or k = 1, then∫

Yi
(γi(yi)− γ′i(yi)) · (D1i(yi)− λiD0i(yi)) dyi ≥ 0. (2.54)
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If we now expand the previous equation we are able to obtain∫
Yi
D1i(yi)γi(yi)dyi −

∫
Yi
D1i(yi)γ

′
i(yi)dyi

≥ λi

(∫
Yi
D0i(yi)γi(yi)dyi −

∫
Yi
D0i(yi)γ

′
i(yi)dyi

) (2.55)

At this point, we undertake a reduction of each one of the terms appearing
in (2.55). First, using the definition provided in (2.52) we have that, for
k ∈ {0, 1},∫

Yi
Dki(yi)γi(yi)dyi

=
∑
ui

{
A(ui)

∫
Yi
γi(yi) fYi|H(yi|Hk)PU i|Yi,H(ui|yi, Hk)dyi

}
=
∑
ui

A(ui)PU |H(ui1|Hk)

(a)
= −Qki +

∑
ui

[
P (UFC = 1|ui1)PU |H(ui1|Hk)

+P (UFC = 1|ui0)PU |H(ui0|Hk)
]

= −Qki + P (UFC = 1|γi(yi), Hk)

(2.56)

where (a) follows from (2.24) and where

Qki =
∑
ui

P (UFC = 1|ui0)PU i|H(ui|Hk). (2.57)

Similarly, following the same steps as in (2.56) we obtain this equality∫
Yi
Dki(yi)γ

′
i(yi)dyi = −Qki + P (UFC = 1|γ′i(yi), Hk). (2.58)

Thus, by noting that the terms Q0i and Q1i will cancel out in the r.h.s.
and the left-hand side (l.h.s.) of (2.55) respectively, from (2.56)-(2.58) the
aforementioned inequality can be rewritten as follows

PD(γi(yi))− PD(γ′i(yi)) ≥ λi (PFA(γi(yi))− PFA(γ′i(yi))) (2.59)
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if we use the subsequent definition

P (UFC = 1|ζi(yi), Hk) =

{
PD(ζi(yi)) if k = 1,
P
FA

(ζi(yi)) if k = 0,
(2.60)

with PD(ζi(yi)) and P
FA

(ζi(yi)) denoting the overall probability of detection
and the overall probability of false alarm at the fusion center when the
decision rule ζi(yi) is applied by the i-th sensor respectively. Due to the fact
that we require P

FA
(γi(yi)) = α, then for any decision rule γ′i(yi) satisfying

the same constraint, i.e. P
FA

(γ′i(yi)) = α, (2.59) shows

PD(γi(yi)) ≥ PD(γ′i(yi)). (2.61)

This means that, under the PBPO methodology, the local decision rule
provided in (2.51) solves (2.46) as long as we can always pick a λi yielding
P
FA

(γi(yi)) = α when there exists some sensor test achieving the required
false alarm probability α for the given fusion rule and the given set of sensor
processor rules.

Due to the fact that

P
FA

= α =P
FA

(i) (P (UFC = 1|ui = 1, H0)− P (UFC = 1|ui = 0, H0))

+ P (UFC = 1|ui = 0, H0)
(2.62)

by noting that the quantities P (UFC = 1|ui = 1, H0) and P (UFC = 1|ui =
0, H0) are dictated by the already designed fusion rule and the other sensor
rules, we check that, for any sensor test applied by the i-th sensor, i.e. for
any P

FA
(i) ∈ [0, 1], the overall probability of false alarm, P

FA
, is between

P (UFC = 1|ui = 1, H0) and P (UFC = 1|ui = 0, H0). Therefore, in order
to show that (2.51) solves (2.46) under the PBPO methodology, bearing in
mind (2.61) we only need to verify that for any of the aforementioned possible
values of P

FA
we can obtain any 0 ≤ P

FA
(i) ≤ 1 when (2.51) is performed

at the i-th sensor. To do that, as it frequently holds in scenarios where the
conditional p.d.f. of the sensor observations is continuous under H0 and H1,
we only have to assume that the ratio D1i(yi)/D0i(yi) is a continuous scalar
random variable whose p.d.f. has no point masses of probability under either
hypothesis, H0 and H1. Note that, under this assumption, if we define

a(λi) = P

(
D1i(yi)

D0i(yi)
> λi|H0

)
(2.63)
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1 − a(λi) is the cumulative distribution function of a continuous random
variable, D1i(yi)/D0i(yi). Hence, since a(λi) is non-increasing and continuous
with a(−∞) = 1 and a(∞) = 0, we have that, for any of the possible values
of P

FA
, we can get 0 ≤ P

FA
(i) ≤ 1 when the decision rule (2.51) is performed

at the i-th sensor.
Till now we have shown that the local decision rule given in (2.51) is a

PBPO solution of the Neyman-Pearson problem stated in (2.46). However,
we do not know if that solution in unique or not. In order to know more
about this issue we can consider some decision rule γ′′i (yi) that solves (2.46)
under the PBPO methodology. Taking into account (2.61) we have that this
local decision rule satisfies the subsequent equality

PD(γi(yi)) = PD(γ′′i (yi)). (2.64)

Next, since P
FA

(γi(yi)) = P
FA

(γ′′i (yi)) = α the following equation obtained
from (2.64) is still valid

PD(γi(yi))−Q1i − λi (PFA(γi(yi))−Q0i)

= PD(γ′′i (yi))−Q1i − λi (PFA(γ′′i (yi))−Q0i) .
(2.65)

If we now recall (2.56)-(2.58) and (2.60), the previous equation can be
rewritten as ∫

Yi
(γi(yi)− γ′i(yi)) · (D1i(yi)− λiD0i(yi)) dyi = 0. (2.66)

Due to the fact that (2.54) holds for any local decision rule, we have that the
integrand in (2.66) has to be equal to zero for all yi ∈ Yi. This last means that
γi(yi) and γ′′i (yi) can differ only for yi ∈ Yi such that D1i(yi)−λiD0i(yi) = 0.
Consequently, we can conclude that, as long as yi and D1i(yi)/D0i(yi) are
continuous random variables whose marginal probability density functions
have no point masses of probability, the PBPO solutions of (2.46) have the
form expressed in (2.51) except possibly on a set having zero probability
under H0 and H1.

As it happens under a Bayesian set up, when the sensor observations
are conditionally independent given H0 or H1, the PBPO solution of (2.46)
associated with the i-th detector reduces to the following likelihood ratio test

ui = γi(yi)

=
fYi|H(yi|H1)

fYi|H(yi|H0)

1

≷
0
λi

∑
ui A(ui)

∏`
j=1,j 6=i PUj |H(uj|H0)∑

ui A(ui)
∏`

j=1,j 6=i PUj |H(uj|H1)
.

(2.67)
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Looking at (2.67) we can realize that the previous simplification does not
mean a reduction in the number of coupled non-linear equations associated
with the local decision rules obtained as PBPO solutions of (2.46). In
particular, as we mentioned when we considered the Bayesian set up,
the conditional independence among the sensor observations only means a
considerable reduction of the computational difficulty that appears when
solving the aforementioned coupled equations. This shows one of the many
connections that exist between the Neyman-Pearson optimal strategy and
the corresponding one under the Bayesian formulation. Actually, the only
differences in the form of both strategies are that the Neyman-Pearson
strategy may need randomization at the fusion center and that each device
of the network uses a different threshold λi. Nevertheless, except the
fact that the thresholds {λi}`i=1 and λFC are chosen in order to satisfy
a constraint on the overall probability of false alarm, in the literature
we can find several conditions that make the randomized fusion rules be
suboptimal and that make all the thresholds be identical. On the one hand,
in [Willett and Warren, 1992] it was shown that, as long as likelihood ratios
of the unquantized observations are independent and contain no point masses
of probability, the optimal Neyman-Pearson strategy does not randomize
when the sensor observations are independent upon the hypothesis. This
is so despite the fact that the data to be fused can be considered discrete.
On the other hand, in [Yan and Blum, 2000] and [Yan and Blum, 2001] the
authors show that, under the assumptions made in the derivation of the
PBPO solution of (2.46), the optimal scheme has to have identical thresholds,
i.e. λFC = λ1 = λ2 = . . . = λ`−1 = λ`, whenever the p.d.f. of D1i(yi)/D0i(yi)
under Hj is greater than zero for 0 < D1i(yi)/D0i(yi) < ∞ and j ∈ {0, 1}.
Thus, as it is pointed out in [Yan and Blum, 2000], when designing and
implementing algorithms that provide the PBPO solution of (2.46), it should
be taken into account that some conditions allow us to write in the same
form the optimal strategies derived under the Bayesian set up and under the
Neyman-Pearson formulation. This means that those algorithms can have
many common features.

2.6 Distributed sequential detection

This section considers the derivation of the optimal strategy that solves a
sequential detection problem in a parallel fusion network as the one described
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in Section 2.2. Unlike the fixed-sample-size detection problems studied in
the last two sections, observations are collected sequentially so that more
information is available as time progresses. Under this setting, it is clear
that the optimal strategy has to allow the system to process the observations
sequentially and make a final decision as soon as we are able to guarantee
the constraints associated with the detection performance. In this way, since
the main aim is to take additional observations only if they are necessary, on
average we need fewer observations to achieve the same probability of error as
a distributed detection system solving a fixed-sample-size test. Nevertheless,
as we will be able to verify in the optimal strategies, the aforementioned
advantage is attained at the expense of an additional computation that is
affordable under the restrictive assumption of independent and identically
distributed (i.i.d.) sensor observations given each one of the two possible
hypothesis.

As it will be assumed throughout this section, when sensor observations
are i.i.d. under both hypothesis, two distinct formulations are possible during
the design of a parallel fusion network that solves a sequential detection
problem. In one case, first each sensor performs a sequential test on its own
observations and arrives at a final local decision. Subsequently, in order to
make a global decision about what hypothesis is present, the local decisions
are fused at a site possibly remote to all local detectors. Thus, unlike fixed-
sample-size detection problems, in this context the different fusion schemes
have to take into account that local decisions may arrive at the fusion center
at different times depending on the stopping times of the local detectors. In
the other case, at each time instant each sensor i, with i ∈ {1, 2, . . . , `}, uses
the rule γni (·) in order to perform a binary quantization of its own observation.
The resulting local decision is transmitted to the fusion center over an error
free channel. This entails that each local detector sends a sequence of binary
messages to the fusion center. In order to determine the true hypothesis, the
fusion center carries out a sequential test where ` binary local decisions are
processed at each time instant.

Following the same spirit as in the preceding sections, we consider the
latter formulation. In other words, we face the design of a distributed
detection system where the fusion center performs a test under a specific
set up, in this case, under the sequential formulation. More formally, our
problem is stated as deriving the optimal strategy associated with a parallel
fusion network where, at each time instant n, the fusion center may choose
to make a final decision on a stopping time τ or continue to take a new set
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of ` local decisions, Un = [Un
1 , U

n
2 , . . . , U

n
` ]T , with uni equal to the binary

decision taken by the i-th detector at time n. Hence, considering a Bayesian
formulation, if the final decision of the distributed detection system is given
by

uFC = γτFC(U 1:τ ) ∈ {0, 1} (2.68)

with

Un = [γn1 (·), . . . , γn` (·)]T = γn (2.69)

and

Una:nb =
[
γna ,γna+1, . . . ,γnb

]T
= γna:nb (2.70)

for na, nb ∈ {1, 2, . . . , τ} and na < nb, the problem that we wish to solve is

Γ∗ = argmin
Γ,τ>0

E
{
J(γτFC(U 1:τ ), H)

}
(2.71)

where

Γ = [γ1
FC(γ1), γ2

FC(γ1:2), . . . , γτFC(γ1:τ ),γ1:τ ] (2.72)

and

J(γτFC(γ1:τ ) = i,H = Hk) = C τ + Cik (2.73)

with C equal to positive cost associated with each time step used by the
fusion center to take a set of ` local decisions and with Cik denoting the cost
of the final global decision, at time τ , being Hi when H = Hk for i, k ∈ {0, 1}.

As we proceeded in the previous sections we use the PBPO methodology
with the aim of providing necessary conditions that have to be satisfied
by the strategy solving (2.71). Initially, focusing on the derivation of the
local decision rules at a specific time instant n0, i.e. γn0 , we can verify
that the solution to (2.71) may vary with the information available at the
local detectors, in other words, the arguments of the functions γn0

i (·) with
i ∈ {1, 2, . . . , `}. Due to this last fact, before solving (2.71) we have to know
the amount of available memory at the sensors as well as the presence or
absence of feedback channels in the distributed detection system. We can
easily realize that, depending on those features, the binary local decision, un0

i ,
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taken by the i-th sensor at the time instant n0 can be a function of any subset
of the union of its current observation yn0

i , all its past observations {yni }
n0−1
n=1 ,

all its past local decisions {uni }
n0−1
n=1 and all the past decisions taken by the rest

of local detectors {un1 , un2 , . . . , uni−1, u
n
i+1, . . . , u

n
`−1, u

n
` }

n0−1
n=1 . In this section, in

order to have the same network architecture as the one considered along
the current chapter, we are going to assume a system with neither feedback
from the fusion center nor local memory at the sensors. Equivalently, we will
assume that, for any sensor i with i ∈ {1, 2, . . . , `}, the corresponding binary
decision uni at time instant n only depends on its own current observation
yni , i.e.

uni = γni (yni ) . (2.74)

Consequently, if we suppose that the fusion center and all the local detectors
other than the i-th sensor at time n0 have already been designed, for that
time instant the objective function appearing in (2.71) can be written as
follows when the sensor observations are conditionally independent across
time as well as from sensor to sensor

EY n0
i

{
argmin
u
n0
i

EH|yn0
i
{Ξn0

i (un0
i , H)}

}
(2.75)

where

Ξn0
i (un0

i , H) = EU(n0,i)

{
J(γτFC(γ1:τ ), H)

}
(2.76)

and

U(n0, i) = U 1:n0−1,Un0,i,Un0+1:τ (2.77)

with

Un0,i =
[
Un0

1 , Un0
2 , . . . , Un0

i−1, U
n0
i+1, . . . , U

n0
`

]T
. (2.78)

Developing the innermost expectation appearing in (2.75) we have that,
under the PBPO methodology, (2.71) is minimized when the i-th detector
applies the subsequent decision rule at time n0

un0
i = γn0

i (yn0
i ) =

{
0 Dn0

i (yn0
i ) ≤ 0,

1 otherwise
(2.79)
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with

Dn0
i (yn0

i ) = Ξn0
i (0, H0)P (H0|yn0

i ) + Ξn0
i (0, H1)P (H1|yn0

i )

− Ξn0
i (1, H0)P (H0|yn0

i )− Ξn0
i (1, H1)P (H1|yn0

i ).
(2.80)

At this point, taking into account

P (Hk|yn0
i ) =

fY n0
i |H

(yn0
i |Hk)P (Hk)

fY n0
i

(yn0
i )

(2.81)

with k ∈ {0, 1} and P (Hk) denoting the prior probability of hypothesis Hk,
if we note that Ξ(1, H0) > Ξ(0, H0) and that Ξ(0, H1) > Ξ(1, H1) when
C10 > C00 and C01 > C11, we can express (2.79) as the subsequent decision
rule

un0
i = γn0

i (yn0
i ) =

 0
f
Y
n0
i
|H(y

n0
i |H1)

f
Y
n0
i
|H(y

n0
i |H0)

≤ P (H0)
P (H1)

Ξ
n0
i (1,H0)−Ξ

n0
i (0,H0)

Ξ
n0
i (0,H1)−Ξ

n0
i (1,H1)

,

1 otherwise.
(2.82)

Next, we focus on the derivation of the fusion rule γn0
FC(u) that, at

time n = n0, solves (2.71) under the PBPO methodology. To do that,
it suffices to realize that, when all the local detectors have already been
designed, the joint conditional density pU1:τ |H(u1:τ |Hk) can be determined
for any k ∈ {0, 1}. Hence, the fusion center is faced with a classical
centralized sequential detection problem that, from (2.71), can be casted
as the subsequent optimization problem

γ∗FC(τ) = argmin
γFC(τ),τ>0

E
{
J(γτFC(U 1:τ ), H)

}
= argmin
γFC(τ),τ>0

{
E
{
J(γτFC(U 1:τ ), H0)

}
(1− P (H1))

+E
{
J(γτFC(U 1:τ ), H1)

}
P (H1)

}
.

(2.83)

with

γFC(τ) =
[
γ1
FC(U 1), γ2

FC(U 1:2), . . . , γτFC(U 1:τ )
]T
. (2.84)

Taking into account the definition of J(γτFC(U 1:τ ), H) given in (2.73) we can
initially check that, once the local detectors have been fixed, the objective
function of the previous optimization problem basically depends on the
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stopping time τ as well as the value of the global decision, UFC , at that
time. This implies that the solution of (2.83) does not only need a fusion
rule that gives a global decision from the local decisions received by the
fusion center up to the stopping time. Actually, in addition to that fusion
rule, the solution of (2.83) also needs a stopping rule that, based on the
local decisions received up to each time instant n ≤ τ , indicates what is the
optimal stopping time τ , i.e. the stopping time associated with the sequential
fusion rule γ∗FC(τ) minimizing (2.83).

From the classical detection theory associated with the sequential test, it
can be straightforwardly checked that, for an arbitrary number of sets of `
independent local decisions, at time n0 ≤ τ the optimal fusion test can be
expressed as

γFC(u1:n0) =

{
0 if Λ(un0) + Λ(u1:n0−1) ≤ log (PL) ,
1 if Λ(un0) + Λ(u1:n0−1) ≥ log

(
PU

) (2.85)

with the thresholds PL ∈ (0, 1) and PU ∈ (0, 1), and with

Λ(un) = ln

(
pUn|H(un|H1)

pUn|H(un|H0)

)
=
∑̀
i=1

ln

(
pUni |H(uni |H1)

pUni |H(uni |H0)

)
, (2.86)

Otherwise, the test is continued by taking the set of ` local decisions un0+1.
As it is illustrated in Figure 2.2, the Bayes sequential test, also

called Sequential Probability Ratio Test (SPRT), takes samples until the
accumulated sum of the log-likelihoods

Λ(u1:n0) =

n0∑
n=1

Λ(un) (2.87)

with n0 ∈ {1, 2, . . . , τ}, falls outside the interval (log (PL) , log
(
PU

)
).

Then, the aforementioned test decides on H0 or H1 depending on whether
Λ(u1:n0) falls bellow the threshold log (PL) or above the threshold log

(
PL

)
respectively. Therefore, due to the fact that the derived fusion rule converges
almost surely to 1 under H1 and to 0 under H0, any level of performance
can be achieved if we provide the right thresholds log (PL) and log

(
PU

)
.

Precisely, this calculation is the second aspect we have to deal with when
implementing the optimal sequential test provided in (2.85) and (2.86).
Unfortunately, unlike the computation of the posterior P (H1|u1:n), an exact

35



Choose&H1&

Choose&H0&

4&2& 6& τ =&8& 10&0& n&

log(PL)&

log(PU)&

Λ(&u1:n%)&

Figure 2.2: Depiction of a realization of a Bayes sequential test with stopping
time τ = 8.

calculation of log (PL) and log
(
PL

)
can only be carried out in some special

cases. Typically, they are selected according to the well-known Wald’s
approximations [Wald, 1947]. Considering that, at the decision stage, the
log-likelihood ratio Λ(u1:τ ) is likely to exceed the threshold only by a
small amount, these approximations establish that the thresholds appearing
in (2.85) can be approximated by

log (PL) ≈ log

(
PM

1− P
FA

)
(2.88)

and

log
(
PU

)
≈ log

(
1− PM
P
FA

)
. (2.89)

At this point, we already know that the local processing scheme and
the fusion rule provided in (2.82) and (2.85) constitute the PBPO solution
of (2.71) when the sensor observations are conditionally independent and
when the local decision un0

i only depends on yn0
i . As it happened under

36



previous formulations, we can see that the thresholds appearing in those
PBPO rules are coupled. However, unlike the fixed-sample-size detection
problems, a different set of thresholds has to be calculated at each time
instant n0 ≤ τ . This highlights the extra computational burden associated
with sequential detection schemes. Nevertheless, recalling the Wald-
Wolfowitz theorem [Poor, 1994, Section III.D] we do not have to forget that,
at the expense of that extra computational cost, the average sample size of
a distributed sequential scheme is no larger than the sample size of a fixed-
sample-size strategy with the same performance.

In many occasions, due to the extra computational burden associated
with the sequential schemes, when deciding whether implementing this
kind scheme or a fixed-sample-size strategy it is interesting to know the
ratio between the average sample size of both detectors under the same
detection performance. This motivates the computation of closed-form
expressions of the average sample size associated with each one of the possible
schemes. Note that, in fixed-sample-size detection problems, the number of
observations is a fixed constant, and therefore, the average sample size is
equal to the number of observations required to achieve the desired level of
performance. On the contrary, from the fusion rule provided in (2.85) realize
that the number of sensor observations required for terminating the test
is random. This implies that the computation of a closed-form expression
for the average sample size is not so straightforward. In publications
such as [Tartakovsky, 1998] and [Tartakovsky and Veeravalli, 2005] recent
advances in that direction are available for scenarios where, as it happens
in the current section, the observations might be non-identically distributed
given each one of the two possible hypothesis. In our setting it can be
noted that Un and Un′ , with n, n′ ∈ {1, 2 . . . , τ} and n 6= n′, may not be
identically distributed depending on the value of the thresholds solving the
coupled equations obtained under the PBPO methodology and expressed
in (2.82). This notwithstanding, in order to give a first insight into the
form of the expected sample size, we will analyze the analytical expression
obtained under the assumption that the elements of the sequence {Un}τn=1

are conditionally i.i.d. given each one of the two possible hypothesis.

Assuming that {Un}τn=1 is a sequence of i.i.d. random variables and
that the test is at the τ -th decision stage, i.e. the decision stage where
the fusion center stops taking more sets of ` local decisions, supported
by [Varshney, 1997, section 2.5] we can straightforwardly check that the
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expected sample size under Hk is given by

E{τ |Hk} =
EU1:τ |Hk {Λ(u1:τ )}
EU1|Hk {Λ(u1)}

(2.90)

for k ∈ {0, 1}. According to the previous expression, under a specific
hypothesis the expected sample size , E{τ |Hk}, depends on two quantities
or two expectations. On the one hand, due to the conditional independence
assumption one of them can be expressed as

EU1|Hk

{
Λ(u1)

}
=
∑̀
i=1

EU1
i |Hk

{
Λ(u1

i )
}

(2.91)

where

EU1
i |Hk

{
Λ(u1

i )
}

=

 (1− P 1
FA

(i))log
(

1−P 1
D(i)

1−P 1
FA

(i)

)
+ P 1

FA
(i)log

(
P 1
D(i)

P 1
FA

(i)

)
if k = 0,

(1− P 1
D(i))log

(
1−P 1

D(i)

1−P 1
FA

(i)

)
+ P 1

D(i)log
(
P 1
D(i)

P 1
FA

(i)

)
if k = 1,

(2.92)

with

P 1
D(i) = P (U1

i = 1|H1) (2.93)

and

P 1
FA

(i) = P (U1
i = 1|H0). (2.94)

On the other hand, as we considered when deriving Wald’s approximations,
the other expectation appearing in (2.90) can be approximated under the
assumption that Λ(U 1:τ ) is equal to log (PL) or log

(
PU

)
. In this way,

knowing that

P
(

Λ(U 1:τ ) ≥ log
(
PU

)∣∣H0

)
= P

FA
(2.95)

and that

P
(

Λ(U 1:τ ) ≤ log (PL)
∣∣H1

)
= PM (2.96)
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we have that, for k ∈ {0, 1}, the expected value of Λ(U 1:τ ) under Hk is given
by

EΛ(U1:τ )|Hk

{
Λ(u1:τ )

}
=

{
P
FA

log
(
PU

)
+ (1− P

FA
) log (PL) if k = 0,

(1− PM) log
(
PU

)
+ PM log (PL) if k = 1.

(2.97)

As it could be expected, from the previous expressions we are now able
to realize that, under i.i.d. local decisions, the conditional average sample
size of our distributed detection strategy given Hk, i.e. E{τ |Hk}, directly
depends on the performance of the local detectors as well as the overall
detection constraints imposed on the fusion center. Taking into account
that all these detection and false alarm probabilities are given by the PBPO
solution of (2.71), at the end we have that the average sample size depends
on the distribution of the observations under H0 and H1. Due to this last
fact, concerns regarding the termination of the proposed distributed detection
scheme can arise. In order to address this issue and conclude this section, we
can use the result shown by [Wald, 1947]. From the proofs undertaken in the
aforementioned work we can easily check that, under mild conditions, the
derived distributed detection strategy terminates with probability equal to
one. However, this does not mean that sample size is bounded. Although the
Wald-Wolfowitz theorem states that the average sample size is minimized in
a SPRT, we can check that, if the observed data is ambiguous, a distributed
scheme based on sequential detection can occasionally run for a large number
of samples. This fact may not be practical for many applications and
could make us abandon the sequential schemes in favor of fixed-sample-size
strategies. Fortunately, this practical difficulty can be overcome quite easily
by modifying the SPRT performed at the fusion center. That modification
would make the fusion center to stop taking local decisions and undertake
a hard (single-threshold) decision after some maximum number of decision
stages. Even though this scheme, called truncated SPRT, is suboptimal, it
retains favorable properties of the SPRTs provided that the truncated point
is not taken too small.

2.7 Composite distributed hypothesis testing

The optimal detection strategies designed in the previous sections solve
simple hypothesis testing problems where the sensor observations distribute
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according to a single distribution, fY |H(y|Hk), under hypothesis Hk with
k ∈ {0, 1}. However, in many hypothesis testing problems there are many
possible distributions that can occur under each one of the hypothesis. This
kind of detection problems are known as composite hypothesis tests and
might arise in different applications where the statistical properties of the
observation model are non-stationary. For instance, in radar detection, the
returned signal, if present, has unknown parameters such as its exact time of
arrival and its Doppler shift. Additionally, it could happen that the noise and
clutter background might be varying across time and from sensor to sensor.
Thus, when discriminating between the null and the alternative hypothesis,
H0 and H1 respectively, we require detection schemes that take into account
and handle the statistical nonstationarity of the observation model. Precisely,
based on a centralized setting where the sensor observations, y, are directly
transmitted to the fusion center, the scope of this section is a review of
distributed detection schemes implemented by parallel networks that solve
different composite hypothesis testing problems. To do that, for the sake of
clarity the composite hypothesis testing problems will be presented under a
centralized setting where the sensor observations, y, are directly transmitted
to the fusion center over a bank of parallel access channels. Afterwards, we
will comment the steps that have to be undertaken in order to obtain the
optimal distributed detection schemes.

To model the most general type of composite hypothesis testing problem,
we are going to consider a family of probability density functions, Υ, indexed
by a vector of parameters, θ, taking values in a parameter set, T , that
represents the set of all possible states of nature. Consequently, we have a
family

{
fY |Θ(y|θ);θ ∈ T

}
where fY |Θ(y|θ) equals the joint p.d.f. of the

sensor observations when θ is the true parameter value. At this point, we
can easily see that T ∈ {0, 1} in a simple hypothesis testing problem. On
the contrary, in a more general setting we might have that the parameter
space, T , is equal to the union of two disjoint parameter sets T0 and T1, each
one of them denoting the ranges of the unknown vector of parameters under
each one of the two hypothesis.

Completing the model of the considered problem we need to assume that
the unknown vector of parameters is a random variable, Θ, that takes on the
value in T according to a prior distribution fΘ(θ). If we now focus on the
Bayesian formulation of the composite hypothesis testing problem, we firstly
have to assign costs to our decisions through a cost function C(i,θ) where
C(i,θ) is the cost of deciding Hi when the sensor observations are generated
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from fY |Θ(y|θ) with i ∈ {0, 1} and θ ∈ T . This way, after assuming that
C(i,θ) is non-negative and bounded for all i ∈ {0, 1} and θ ∈ T , for a given
specific fusion rule γFC(y) we can also define conditional risks analogous to
those of the simple hypothesis test

<θ(γFC) = EY |θ {C (γFC(Y ),θ)} (2.98)

where EY |θ denotes the expectation w.r.t. the joint p.d.f. fY |Θ(y|θ).
Similarly, the Bayes risk associated with the considered fusion rule is given
by

<(γFC) = E {RΘ(γFC)} (2.99)

where the expectation is now taken w.r.t. the prior distribution fΘ(θ).
Consequently, it is clear that, under the Bayesian set up, the optimal fusion
for the composite hypothesis testing problem rule is the decision rule solving
the subsequent optimization problem

γ∗FC(y) = argmin
γFC

{<(γFC)} . (2.100)

Due to the fact that, from the property of iterated expectations
E{g(X, Y )} = EY {EX|Y {g(X, Y )}} = EX{EY |X{g(X, Y )}},

<(γFC) = EY
{
EΘ|y {C (γFC(y),Θ)}

}
, (2.101)

using (2.100) we have that γ∗FC(y) is the decision rule that, for each
y ∈ Y1 × . . .× Y`, minimizes the posterior cost

EΘ|y {C (γFC(y),Θ)} (2.102)

By noting that γFC(Y ) ∈ {0, 1} we can easily see that, for the composite
hypothesis testing problem, the optimal Bayes rule is expressed as follows

γ∗FC(y) =

{
1 if EΘ|y {C (1,Θ)} ≤ EΘ|y {C (0,Θ)} ,
0 if EΘ|y {C (1,Θ)} > EΘ|y {C (0,Θ)} . (2.103)

An analysis of the previous expression reveals that, for the composite
hypothesis testing problem, the optimal Bayes rule, γ∗FC(y) chooses the
hypothesis with the least average cost given the sensor observations, y. If
T ∈ {0, 1}, as it can be expected, realize that the optimal fusion rule, γ∗FC(y),
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given in (2.103) matches the optimal Bayes rule for a simple hypothesis
testing problem. Nonetheless, for many problems of interest the parameter
space, T is usually decomposed into two disjoint sets T0 and T1, each one
associated with hypothesis H0 and H1 respectively. In this case, if the costs
are also uniform over the aforementioned sets T0 and T1, i.e.

C(i,θ) = Ci,k, θ ∈ Tk (2.104)

with k ∈ {0, 1}, we can easily see that, under the assumptions C11 < C0,1

and C00 < C10, the optimal Bayes rule for the composite hypothesis testing
problem reduces to

uFC =γ∗FC(y) =
P (Θ ∈ T1|Y = y)

P (Θ ∈ T0|Y = y)

uFC=1

≷
uFC=0

C10 − C00

C01 − C11

. (2.105)

where, for k ∈ {0, 1}, P (Θ ∈ Tk|Y = y) denotes the conditional probability
that Θ belongs to Tk given that Y = y. Equivalently, if we take into account
Bayes’ formula

P (Θ ∈ Tk|Y = y) =
fY |Θ(y|θ ∈ Tk)P (Θ ∈ Tk)

fY (y)
(2.106)

where

fY |Θ(y|θ ∈ Tk) =

∫
T
fY |Θ(y|θ) fΘ|Hk(θ|Hk)dθ (2.107)

and

fY (y) =
1∑

k=0

fY |Θ(y|θ ∈ Tk)P (Θ ∈ Tk) (2.108)

with

fΘ|Hk(θ|Hk) ,

{
0 if θ /∈ Tk,
fΘ(θ)

P (Θ∈Tk)
if θ ∈ Tk

(2.109)

and

P (Θ ∈ Tj) =

∫
Tk
fΘ(θ)dθ (2.110)
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for k ∈ {0, 1}, the optimal Bayes rule, γ∗FC(y), provided in (2.105) can be
rewritten as

uFC =γ∗FC(y) =
fY |Θ(y|θ ∈ T1)

fY |Θ(y|θ ∈ T0)

uFC=1

≷
uFC=0

P (Θ ∈ T0) (C10 − C00)

P (Θ ∈ T1) (C01 − C11)
. (2.111)

At this point, from the previous derivation we can easily see that,
under any specific fixed-sample-size formulation such as the Bayesian
or the Neyman-Pearson set ups, the optimal fusion rule for composite
hypothesis testing problems has the same form as the one associated with
the corresponding simple hypothesis test. The only difference is that the
optimal fusion rules are based on the conditional joint probability density
functions fY |Θ(y|θ ∈ Tk) provided in (2.107) for k ∈ {0, 1}. Consequently,
replacing fY |H(y|Hk) by fY |Θ(y|θ ∈ Tk) with k ∈ {0, 1} in the development
of the preceding sections, we can straightforwardly design the optimal
strategy implemented by a distributed detection system solving a composite
hypothesis testing problem under a fixed-sample-size formulation.

Looking at (2.107)-(2.110) we can note that, for k ∈ {0, 1}, the probability
density functions fY |Θ(y|θ ∈ Tk), with k ∈ {0, 1} depend on the conditional
p.d.f. fY |Θ(y|θ) and the prior distribution fΘ(θ). This entails that we
require the knowledge of the two aforementioned distributions when solving
composite hypothesis testing problems with a fixed sample size. However,
there might be composite hypothesis testing problems in which we do not
have a prior distribution for the vector of parameters. In that case, the
development of hypothesis tests that satisfy precise analytical definitions of
optimality is very often an illusive task. One way of defining optimality in
such problems is a generalization of the Neyman-Pearson criterion described
in Section 2.5. In particular, assume that, as before, the parameter space,
T , can be decomposed into two disjoint sets T0 and T1. Then, an ideal
decision rule γFC(y) would be the one that, for every θ ∈ T1, maximizes
the conditional probability of detection given θ, PD(θ) s.t. the following
constraint on the corresponding conditional probability of false alarm

P
FA

(θ) ≤ α ∈ (0, 1) (2.112)

with θ ∈ T0. Such a test is known as an uniformly most powerful (UMP)
test of level α.

Unfortunately, although UMP tests are very desirable, they exist only
under very special circumstances. To see this, consider the situation in which
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T1 = T \θ0 and the null hypothesis is simple with T0 = θ0. Assuming that the
conditional p.d.f. of the sensor observations given θ is given by fY |Θ(y|θ) for
each θ ∈ T , from the Neyman-Pearson’s Lemma detailed in [Blahut, 1987]
we can verify that, for each θ ∈ T1, the unique and most powerful α-level
test for the detection problem

H0 : y ∼ fY |Θ(y|θ0)
H1 : y ∼ fY |Θ(y|θ) with θ ∈ T1

(2.113)

has the following acceptance region for H1

V(1)
` (θ, η) =

{
y ∈ Y1 × . . .× Y` : fY |Θ(y|θ) > η fY |Θ(y|θ0)

}
(2.114)

with η equal to the smallest number such that

P
FA

(θ) =

∫
V(1)
` (θ,η)

fY |Θ(y|θ0)dy ≤ α ∈ (0, 1). (2.115)

If we choose two elements θ′ and θ′′ of T1, this implies that, unless
V(1)
` (θ′, η) = V(1)

` (θ′′, η), the test with critical region V(1)
` (θ′, η) will have

smaller power in testing H0 versus Y ∼ fY |Θ(y|θ′′) than does the test with

critical region V(1)
` (θ′′, η) and viceversa. Thus, it can be concluded that

an UMP test exists for (2.113) if and only if the acceptance region for H1,

V(1)
` (θ, τ), is the same for all θ ∈ T1. Note that this condition does not

happen in many detection scenarios. An example of this can be found in
[Poor, 1994, section II.E].

In the absence of an UMP test for a specific composite hypothesis
testing problem where the prior distribution fΘ(θ) is not known, we have
to resort to suboptimal detection schemes. To see a review of these scheme
see [Blum et al., 1997] and the references therein. Among them, we will
focus on two of the most used techniques that, despite being suboptimal,
can achieve optimality under some specific scenarios. In particular, we will
cover the distributed detection schemes based on the subsequent suboptimal
criteria:

- Generalized likelihood ratio test (GLRT).

- Locally optimum test.
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2.7.1 Generalized likelihood ratio test

From the Neyman-Pearson’s Lemma recall that, for each θ0 ∈ T0 and θ1 ∈ T1,
the unique and most powerful α-level test for the composite hypothesis
testing problem

H0 : y ∼ fY |Θ(y|θ) with θ ∈ T0

H1 : y ∼ fY |Θ(y|θ) with θ ∈ T1
(2.116)

is given by

γ∗FC(y) =


1 if

fY |Θ(y|θ1)

fY |Θ(y|θ0)
> η,

γ if
fY |Θ(y|θ1)

fY |Θ(y|θ0)
= η,

0 otherwise,

(2.117)

where

V(1)
` (θ0,θ1, η) =

{
y :

fY |Θ(y|θ1)

fY |Θ(y|θ0)
> η

}
, (2.118)

η is the smallest number such that

ς =
∑

u∈V(1)
` (θ0,θ1,η)

fY |Θ(y|θ0) ≤ α ∈ (0, 1)
(2.119)

and γ ∈ {0, 1} is a randomization function that takes on the value 1 with
the subsequent probability

ν =

{
1 if ϑ = 0,
α−ς
ϑ

otherwise
(2.120)

with

ϑ = P

(
fY |Θ(y|θ1)

fY |Θ(y|θ0)
= η

∣∣∣∣H0

)
. (2.121)

Consequently, when solving the composite hypothesis testing problem
provided in (2.116) no fusion rule can be better than a hypothetical test
in which the fusion center first estimates θ0 and θ1 and then applies the
randomized likelihood ratio test given in (2.117). Because of this, unless an
UMP test can be derived, and therefore, the likelihood ratio test provided
in (2.117) can be completely characterized without the knowledge of θk with
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k ∈ {0, 1}, a logical procedure could be estimate θ1 assuming that H1 is
true, then estimate θ0 assuming that H0 is true, and use these estimates
in (2.117) as if they were correct. Precisely, if maximum likelihood estimates
are used for θk with k ∈ {0, 1}, the previous procedure yields the generalized
likelihood ratio test. Formally, the GLRT for (2.116) is expressed as

γFC(y) =


1 if ΛGLRT(y) > η,
γ if ΛGLRT(y) = η,
0 otherwise,

(2.122)

where

ΛGLRT(y) =
max
θ∈T1

{
fY |Θ(y|θ1)

}
max
θ∈T0

{
fY |Θ(y|θ0)

} (2.123)

with
V(1)
` (η) = {y : ΛGLRT(y) > η} , (2.124)

η denoting the smallest number such that

ς =
∑

u∈V(1)
` (η)

max
θ∈T0

{
fY |Θ(y|θ)

}
≤ α ∈ (0, 1)

(2.125)

and γ ∈ {0, 1} equal to a randomization function that takes on the value 1
according to the probability provided in (2.120) with

ϑ = P (ΛGLRT(y) = η|H0) . (2.126)

Analyzing (2.117) we can check that, from the fusion rule given in (2.122),
the GLRT for (2.116) is obtained by replacing

fY |Θ(y|θk)

with
max
θ∈Tk

{
fY |Θ(y|θ)

}
for all k ∈ {0, 1}. This entails two aspects. On the one hand, using this
approach we can straightforwardly design distributed detection systems that,
under a formulation with a fixed sample size, solve composite hypothesis
testing problems in which an UMP test does not exist and the prior
distribution fΘ(θ) is not known. On the other hand, to conclude this
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subsection we can also note that a GLRT is not optimal as long as the
estimates of θ0 and θ1 are not perfect. However, as a result of the consistency
property shown by the maximum likelihood estimates under independent
sensor observations [Van Trees, 2001, Section 2.4.2], the GLRT is known
to perform well in practice and it has well established optimality in an
asymptotic regime where the number of observations, `, approaches infinity
(see [Zeitouni et al., 1992], [Dembo and Zeitouni, 1998] and [Levy, 2008]).
This is the main reason why this approach has been so used in sensor networks
formed by a large number of devices and solving a composite hypothesis
testing problem.

2.7.2 Locally optimum distributed detection

In many situations of interest, the parameter set T is of the form T0 = {θ0}
and T1 = T \ {θ0}; so that we have the subsequent composite hypothesis
testing problem

H0 : y ∼ fY |Θ(y|θ0)
H1 : y ∼ fY |Θ(y|θ) with θ ∈ T \ {θ0}.

(2.127)

This kind of problems usually occurs when, in a noisy environment, the
parameters θ involved in the observation process are known under H0 and
unknown under H1. From now and on and for the sake of simplicity, as
it happens when detecting a known or a random signal whose amplitude is
parametrized by the scalar θ, we will consider that θ0 = 0. For the more
general case where the vector of parameters θ0 6= 0, see [He and Blum, 2011]
and the references therein.

In the above hypothesis test, the detection probability of a strategy Γ
will generally depend on the parameter θ, so the probability of detection
at the fusion center is denoted as PD(Γ, θ) for that particular strategy. As
we have illustrated along this section, one cannot find an UMP test that
will maximize PD(Γ, θ) for all possible values of θ. In these cases, one can
search for a locally optimum scheme [Kassam and Thomas, 1988] that, under
P
FA

(Γ) = PD(Γ, 0) ≤ α ∈ (0, 1), maximizes

∂mPD(Γ, θ)

dθm

∣∣∣∣
θ=0

(2.128)
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with m equal to the lowest order for which the previous derivative is not
identically zero. Let m be defined in this manner for the rest of this
subsection.

Locally optimum strategies tend to outperform GLRT for cases where
the unknown parameter θ is close to θ0 = 0. This occurs because the
maximization of the quantity given in (2.128) subject to P

FA
(Γ) = PD(Γ, 0) ≤

α ∈ (0, 1) matches the optimal Neyman-Pearson formulation that, under
the previous upper bound on the probability of false alarm, maximizes the
m-th order Taylor series of PD(Γ, θ) about θ0 = 0. At the same time,
from this last fact we can easily verify that the derivation of the locally
optimum strategy does not differ a lot from the optimal Neyman-Pearson
strategy. In particular, under the PBPO methodology and following a similar
development as in Section 2.5, the fusion rule for an input vector of local
decisions u∗ is given by

uFC = γFC(u∗)

= P (UFC = 1|u∗) =



1 if
∂mPU|Θ(u∗|θ)

dθm

∣∣∣
θ=0

> λFCPU |Θ(u∗|0),

ξ(u∗) if
∂mPU|Θ(u∗|θ)

dθm

∣∣∣
θ=0

= λFCPU |Θ(u∗|0),

0 otherwise,

(2.129)

with the threshold, λFC <∞, and the randomization function, ξ(u∗) ∈ (0, 1),
chosen in order to satisfy that P

FA
(Γ) ≤ α. Likewise, from the results

provided in [Blum, 1996] we can see that, under the PBPO methodology and
conditionally dependent sensor observations, the locally optimum decision
rule for the i-th sensor is given by

ui = γi(yi) = P (Ui = 1|yi) =

{
1 if D1i(yi) ≥ λiD0i(yi),
0 if D1i(yi) < λiD0i(yi)

(2.130)

where, for i ∈ {1, 2, . . . , `},

D0i(yi) =
∑
ui

A(ui)
[
PU i|Yi,Θ(ui|yi, 0) fYi|Θ(yi|0)

]
(2.131)

and

D1i(yi) =
∑
ui

A(ui)

(
∂m

dθm
[
PU i|Yi,Θ(ui|yi, θ) fYi|Θ(yi|θ)

])∣∣∣∣
θ=0

(2.132)
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with ui and A(ui) defined in (2.22) and (2.27) respectively. Besides assuming
that fYi|Θ,H(yi|θ) and the p.d.f. of D1i(yi)/D0i(yi) do not contain any point
masses of probability for any θ where D0i(yi) and D1i(yi) are defined, the
derivation of the previous decision rule requires that

PU i|Yi,Θ(ui|yi, θ) fYi|Θ(yi|θ)

is sufficiently smooth so that we can interchange the integral and the
derivative in∫
Yi
D1i(yi)γi(yi)dyi

=

[
∂m

dθm

(∫
Yi
γi(yi)

∑
ui

{[
PU i|Yi,Θ(ui|yi, θ) fYi|Θ(yi|θ)

]
A(ui)

}
dyi

)]∣∣∣∣∣
θ=0

(2.133)

for any γi. Apart from these assumptions, as it happens for the fusion rule,
the derivation of the sensor decision rule given in (2.130) is analogous to the
one performed under the PBPO methodology and under the Neyman-Pearson
formulation. Therefore, for the sake of brevity it has also been omitted.

To conclude we show one more connection between the Neyman-
Pearson formulation and the locally optimum set ups. Under conditionally
independent sensor observations, we can check that the locally optimum
sensor decision rule given in (2.130)-(2.132) can be simplified to likelihood
ratio tests with the subsequent form

ui = γi(yi) = P (Ui = 1|yi) =

{
1 if Li(yi) ≥ λ̃i,

0 if Li(yi) < λ̃i
(2.134)

where, for i ∈ {1, 2, . . . , `},

Li(yi) =

∂mfYi|Θ(yi|θ)
dθm

∣∣∣
θ=0

fYi|Θ(yi|0)
(2.135)

and

λ̃i = λi −

∑
ui A(ui)

∂mPUi|Yi,Θ
(ui|yi,θ)

dθm

∣∣∣∣
θ=0∑

ui A(ui)PU i|Yi,Θ(ui|yi, 0)

(2.136)
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with ui and A(ui) defined in (2.22) and (2.27) respectively. Thus, as
it happened with other formulations, the conditional independence among
the sensor observations does not imply a reduction in the number of
coupled non-linear equations that, provided by (2.129)-(2.132), have to
be solved when implementing the locally optimum strategy. Instead, the
conditional independence assumption means a considerable a reduction of
the computational difficulty that appears when solving the aforementioned
coupled equations.

2.8 Performance measures for distributed

detection systems

In the previous sections we have undertaken the derivation of optimal
schemes that have to be implemented by two-stage distributed detection
systems under different formulations. Recall that, under the different
formulations, optimality has usually implied the minimization of some cost
function related to the overall detection performance among other physical
and design parameters of the network. If we focus on the parallel fusion
network considered in this chapter, we can check that the overall detection
performance is given by the different error probabilities at the fusion center,
i.e. the probability of misdetection, PM , and the probability of false alarm,
P
FA

, defined in (2.8) and (2.10) respectively. Consequently, given a specific
formulation, if we want to analyze and characterize the detection performance
of the network as a function of physical and design parameters such as
the censoring scheme or the sensor spacing, we have to evaluate or obtain
analytically tractable expressions adopted by those probabilities under the
considered formulation. In this section, according to the research topic of
this thesis dissertation, we will address that evaluation or derivation when,
under the Bayesian or the Neyman-Pearson formulation, the considered
parallel network implements the optimal strategy solving a binary and simple
hypothesis testing problem with a fixed sample size. Nevertheless, from the
results of the previous section it should be noted that this task will require
a similar approach when we consider composite hypothesis testing problems
with a fixed sample size.

Assuming that, when the number of local detectors, `, is very large, there
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exists a value of τ such that∑
u∈V1

` (τ)

PU |H(u|H0) ≈ α ∈ (0, 1)
(2.137)

with

V1
` (τ) =

{
u :

Λ(u)

`
> τ`

}
, (2.138)

Λ(u) = ln

(
PU |H(u|H1)

PU |H(u|H0)

)
(2.139)

and

τ` =
τ

`
. (2.140)

At this point, we can recall that, for both the Bayesian and Neyman-Pearson
formulations, the probability of misdetection at the fusion center is

PM = 1−
∑

u∈V1
` (τ)

PU |H(u|H1) = P (Λ(U) ≤ τ |H1) = P

(
Λ(U)

`
≤ τ`

∣∣∣∣H1

)
,

(2.141)

and the corresponding probability of false alarm is obtained as

P
FA

=
∑

u∈V1
` (τ)

PU |H(u|H0) = P (Λ(U) > τ |H0) = P

(
Λ(U )

`
> τ`

∣∣∣∣H0

)
(2.142)

where τ is a bounded constant chosen in a different way under the Bayesian
set up and under the Neyman-Pearson formulation. From (2.141) and (2.142)
and the optimal strategies derived under the two considered formulations, we
can check that the derivation of closed-form expressions for PM and P

FA
is

not analytical feasible when the number of local detectors ` is large. What
is more, the evaluation of the two previous probabilities is combinatorial
in `, and therefore, it involves a high computational cost when we are
considering sensor networks with a moderate size. For instance, note that the
summations appearing in (2.141) and (2.142) have 2100 terms if the considered

51



sensor network is formed by ` = 100 local detectors. Because of this, if we
take into account that the global performance of parallel network is given by

Pe = P (H0)P
FA

+ (1− P (H0))PM (2.143)

under the Bayesian set up, and by PM when P
FA
≤ α under the

Neyman-Pearson formulation, some performance measures related to the
aforementioned probabilities are required during the design or analysis of the
network as a function of its physical and design parameters. In particular,
we will focus on the subsequent methodologies:

- Normal approximation.

- Saddlepoint approximation.

- Error exponents.

2.8.1 Normal approximation

Possibly, the approximation covered in this subsection is the most simple
but, at the same time, it is the most limited regarding the number of
scenarios where it can be applied. Assuming that the sensor observations
are conditionally i.i.d. and that the local detectors use the same binary
quantization rule, it is based on the application of the central limit theorem
in order to approximate the p.m.f. of Λ(U) under H0 and H1. In particular,
the central limit theorem [Papoulis and Pillai, 2002, Section 8.4] states that,
under certain general conditions, the distribution function, F (s), of a sum of
` i.i.d. random variables,

S =
∑̀
i=1

Xi, (2.144)

approaches the normal distribution with the same mean and variance as `
increases.

Take into account that, when the local decisions are i.i.d. under a specific
hypothesis,

1

`
Λ(U) =

1

`

∑̀
i=1

Λ1(ui) (2.145)
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with

Λ1(Ui) = ln

(
PUi|H(ui|H1)

PUi|H(ui|H0)

)
. (2.146)

Applying the central limit theorem, this entails that, if ` is sufficiently
large, the distribution of 1

`
Λ(U) under H0 can be approximated by a normal

distribution whose mean is equal to

EH0 {Λ1(U1)} = −D(B(P
FA

(1))||B(PD(1)))

= − (1− P
FA

(1)) ln

(
1− P

FA
(1)

1− PD(1)

)
− P

FA
(1) ln

(
P
FA

(1)

PD(1)

)
,

(2.147)

and whose variance is equal to

V arH0 {Λ1(Ui)} = EH0

{
Λ1(U1)2

}
−D2(B(P

FA
(1))||B(PD(1))) (2.148)

where

EH0

{
Λ1(U1)2

}
= (1− P

FA
(1)) ln2

(
1− PD(1)

1− P
FA

(1)

)
+ P

FA
(1) ln2

(
PD(1)

P
FA

(1)

)
(2.149)

and where D(B(P
FA

(1))||B(PD(1))) denotes the Kullback-Leibler divergence
between B(P

FA
(1)) and B(PD(1)) with B(p) equal to a Bernoulli random

variable whose probability of success equals p. Analogously, if ` is sufficiently
large the distribution of 1

`
Λ(U) under H1 can be approximated by a normal

distribution whose mean is equal to

EH1 {Λ1(U1)} = D(B(PD(1))||B(P
FA

(1)))

= (1− PD(1)) ln

(
1− PD(1)

1− P
FA

(1)

)
+ PD(1) ln

(
PD(1)

P
FA

(1)

)
,

(2.150)

and whose variance is equal to

V arH1 {Λ1(Ui)} = EH1

{
Λ1(U1)2

}
−D2(B(PD(1))||B(P

FA
(1))) (2.151)

where

EH1

{
Λ1(U1)2

}
= (1− PD(1)) ln2

(
1− PD(1)

1− P
FA

(1)

)
+ PD(1) ln2

(
PD(1)

P
FA

(1)

)
.

(2.152)
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Consequently, from the central limit theorem the probability of misdetection
and the probability of false alarm at the fusion center can be approximated
as

PM ≈ 1−Q

(
τ` − EH1 {Λ1(U1)}√
V arH1 {Λ1(U1)}

√
`

)
(2.153)

and

P
FA
≈ Q

(
τ` − EH0 {Λ1(U1)}√
V arH0 {Λ1(U1)}

√
`

)
(2.154)

respectively, where

Q(x0) =

∫ ∞
x0

1√
2 π

e−
x2

2 dx. (2.155)

By realizing that the local decisions probabilities can be straightforwardly
computed, we can now check that the normal approximations given in (2.153)
and (2.154) are easy to compute for a parallel network with different sizes.
In fact, under the Bayesian and the Neyman-Pearson formulation this allows
us the characterization and the design of the global detection performance
w.r.t. different features of a large wireless network. However, first of all we
do not have to forget that, with the normal approximations, that design and
analysis can only be addressed in scenarios where the local decisions are i.i.d.
under each one of the two possible hypothesis. This prevents the application
of the normal approximation to many scenarios where the local decisions
are not identically distributed although they are conditionally independent.
Note that if the local detectors are not identical, the local decisions are
not going to be identically distributed although the sensor observations are
i.i.d. under both hypothesis. Unfortunately, this is not the only drawback
associated with the normal approximation. Although we are considering a
scenario where the binary local decisions are i.i.d., the approximations given
in (2.153) and (2.154) may not provide acceptable accuracy, especially when
the value of the threshold is in a tail region that is several standard deviations
far from the mean of the decision variable, Λ(U ). If we note that, for all
k ∈ {0, 1},

EHk

{
Λ(U)

`

}
= EHk {Λ1(U1)} (2.156)
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and

V arHk

{
Λ(U)

`

}
=
V arHk {Λ1(U1)}

`
, (2.157)

we can see that the larger is `, the larger is the distance between EHk

{
Λ(U)
`

}
and τ` in terms of V arHk

{
Λ(U)
`

}
. Despite the asymptotic convergence of the

central limit theorem w.r.t. `, this entails that, when ` is large, the normal
approximation of PM and P

FA
may not provide adequate accuracy. In those

cases other approaches as the ones presented in the subsequent sections have
to be taken.

2.8.2 Saddlepoint approximation

Under the assumption of i.i.d. local decisions, the saddlepoint approximation
allows the analysis and design of networks of arbitrary size by considering
a large deviation theory based approximation to the error probabilities
provided in (2.141) and (2.142). However, to overcome the lack of accuracy
shown by the normal approximation when the fusion threshold is several
standard deviations far from the mean of Λ(U), this technique applies the
normal approximation after relating the original density of Λ(U) to a new
so-called tilted density centered at the value of the fusion threshold. Due
to the fact that the saddlepoint approximation for the tail probabilities of
sum of continuos random variables is still valid when, as it happens in our
setting, the random variables are discrete (see [Booth et al., 1994]), we will
highlight results from the continuous saddlepoint theory that are relevant to
the problem at hand.

In saddlepoint techniques, the original density of Λ(U) under Hk, denoted
as fΛ(s|Hk) = fΛ(U)|H(s|Hk) with k ∈ {0, 1}, is embedded in a conjugate
exponential family

fΛ̂(s, θ̂k|Hk) = esθ̂k−Mk(θ̂k) fΛ(s|Hk) (2.158)

where Λ̂(U) is the transformed random variable, θ̂k is a fixed parameter, and
Mk(θ) is the cumulant generating function (CGF) of Λ(U), which, under the
assumption of i.i.d. local decisions, is given by

Mk(θ) = ` ln (Gk(θ)) (2.159)
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with Gk(θ) equal to the moment generating function (MGF) of Λ1(U1) under
Hk defined by

Gk(θ) = (1− P (U1 = 1|Hk))

[
P (U1 = 0|H1)

P (U1 = 0|H0)

]θ
+ P (U1 = 1|Hk)

[
P (U1 = 1|H1)

P (U1 = 1|H0)

]θ
.

(2.160)

The transformation performed in (2.158) is often called exponential tilting.

Its objective is to shift the mean of the transformed random variable, Λ̂(U),
so that it becomes close to the evaluation point s. This way, we are able to
ensure that the normal approximation can be applied safely when estimating
the density of Λ̂(U) at s. In particular, note that the CGF of Λ̂(U) under
Hk is MΛ̂,k(θ) = Mk(θ+ θ̂k)+Mk(θ̂k). Taking the first derivative w.r.t. θ and
evaluating it at θ = 0, we get the mean of the transformed random variable,
i.e.

EHk

{
Λ̂(U)

}
=
∂Mk(θ̂k)

dθ
(2.161)

where, for k ∈ {0, 1},

∂Mk(θ)

dθ
= `W1,k(θ)/Gk(θ) (2.162)

with

Wj,k(θ) = (1− P (U1 = 1|Hk))

[
P (U1 = 0|H1)

P (U1 = 0|H0)

]θ
(Λ1(0))j

+ P (U1 = 1|Hk)

[
P (U1 = 1|H1)

P (U1 = 1|H0)

]θ
(Λ1(1))j

(2.163)

and Λ1(U) defined in (2.146) for U ∈ {0, 1}. Consequently, the mean of the

transformed random variable, Λ̂(U) can be made precisely equal to s if we
find θ̂k such that

∂Mk(θ̂k)

dθ
= s. (2.164)
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At the same time, the variance of Λ̂(U ) is obtained from the second cumulant,
which is equal to the second derivative of Mk(θ) at θ = 0, i.e.

V arHk

{
Λ̂(U)

}
=
∂2Mk(θ̂k)

dθ2
(2.165)

where

∂2Mk(θ)

dθ2
=
`
[
Gk(θ)W2,k(θ)−W 2

1,k(θ)
]

G2
k(θ)

. (2.166)

Since we set s such that it satisfies (2.164), we can accurately approximate

the density of Λ̂(U) at s using the normal approximation as follows:

fΛ̂(s, θ̂k|Hk) ≈
1√

2π ∂
2Mk(θ̂k(s))

dθ2

(2.167)

where θ̂k(s) is the saddlepoint at s, which equals the value of θ̂k
solving (2.164). Dividing by es θ̂k(s)−Mk(θ̂k(s)), and therefore, carrying out the
reverse transformation in (2.158), the previous expression yields the so-called
saddlepoint approximation of the density of the original variable Λ(U) at s

fΛ(s|Hk) ≈ f̃Λ(s|Hk) =
eMk(θ̂k(s))−s θ̂k(s)√

2π ∂
2Mk(θ̂k(s))

dθ2

=
θ̂k(s)

(2π)1/2 gk

[
θ̂k(s)

] e− r2k[θ̂k(s)]
2

(2.168)

where

gk(θ) = θ

√
∂2Mk(θ)

dθ2
(2.169)

and

rk(θ) = sgn(θ)

√
2

[
θ
∂Mk(θ)

dθ
−Mk(θ)

]
(2.170)

with sgn(·) denoting the sign operator.
Next, from the saddlepoint approximation provided in (2.168) we will

derive the tail probabilities of Λ(U) yielding the probability of misdetection,
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PM , and the probability of false alarm, P
FA

at the fusion center. To do
that, since PM requires an analogous development, we only focus on P

FA
for

the sake of brevity. According to (2.141), the probability of false alarm at
the fusion center can be found by integrating the saddlepoint approximation
f̃Λ(s|H0), i.e.

P
FA

= P (Λ(U) > τ |H0) ≈
∫ ∞
τ

f̃Λ(s|H0) ds =

∫ ∞
τ

eM0(θ̂0(s))−s θ̂0(s)√
2π ∂

2M0(θ̂0(s))
dθ2

ds

(2.171)

where the last equality follows from (2.168). If we now apply the change of

variables s = ∂M0(θ̂0)
dθ

, the previous expression results into

P
FA
≈
∫ ∞
θ̂0(τ)

1√
2 π

√
∂2M0(θ)

dθ2
eM0(θ)−θ ∂M0(θ)

dθ dθ (2.172)

where θ̂0(τ) equals the saddlepoint at τ obtained by solving

∂M0(θ̂0)

dθ
= τ. (2.173)

Adding and subtracting 1/r0(θ) and using the definition given in (2.170) for
k = 0 as change of variable, (2.173) can be written as

P
FA
≈
∫ ∞
θ̂0(τ)

1√
2π

θ
∂2M0(θ)

dθ2

 1

r0(θ)
− 1

r0(θ)
+

1

θ
√

∂2M0(θ)
dθ2

 e−
r0(θ)2

2 dθ

=

∫ ∞
θ̂0(τ)

1√
2 π

θ
∂2M0(θ)

dθ2

[
1

g0(θ)
− 1

r0(θ)

]
e−

r0(θ)2

2 dθ +

∫ ∞
r0[θ̂0(τ)]

e−
r2

2

√
2π

dr

(2.174)

where g0(θ) is defined in (2.169). The first integration is the normal right
tail probability while the second term in (2.174) can be integrated by parts
with

dV = θ
∂2M0(θ)

dθ2
e−

r0(θ)2

2 (2.175)
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and

U =
1

g0(θ)
− 1

r0(θ)
. (2.176)

This way, taking into account that an analogous development could be
undertaken for the overall probability of misdetection PM , the simplified
approximation formulas for the probabilities of error at the fusion center are

P
FA

= P (Λ(U) > τ |H0)

≈ Q
(
r0

[
θ̂0(τ)

])
+
e−

r20[θ̂0(τ)]
2

√
2π

 1

g0

[
θ̂0(τ)

] − 1

r0

[
θ̂0(τ)

]
 (2.177)

and

PM = P (Λ(U) ≤ τ |H1)

≈ Q
(
−r1

[
θ̂1(τ)

])
− e−

r21[θ̂1(τ)]
2

√
2 π

 1

g1

[
θ̂1(τ)

] − 1

r1

[
θ̂1(τ)

]
 .

(2.178)

with Q(·) defined in (2.155).
An analysis of (2.177) and (2.178) reveals that, from a computational

point of of view, the saddlepoint approximation is much less costly than
the direct evaluation of the error probabilities. Note that the saddlepoint
approximation only requires computing few simple expressions besides
finding the saddlepoint θ̂(τ) with k ∈ {0, 1}. Due to the fact that ∂Mk(θ)

dθ

is strictly increasing in θ and that, in our setting,

lim
θ→−∞

∂Mk(θ)

dθ
= `Λ1(0), (2.179)

and

lim
θ→∞

∂Mk(θ)

dθ
= `Λ1(1), (2.180)

the existence and uniqueness of the aforementioned saddlepoint can be
ensured as long as τ ∈ (`Λ1(0), `Λ1(1)) and can be found with numerical
univariate techniques such as the Newton-Raphson method. This last fact
shows that the saddlepoint approximation is simple to compute besides being
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accurate. What is more, although it is based on asymptotic expansions, as it
is illustrated in [Aldosari and Moura, 2007] the saddlepoint approximation is
also highly accurate even for parallel networks of few sensors. Nevertheless,
we have to keep in mind that it can only be applied to scenarios where
the binary local decisions are conditionally i.i.d. under each one of the
two possible hypothesis. For instance, in [Aldosari and Moura, 2007] some
extensions to a setting where the binary local decisions are non identically
distributed have been undertaken. However, as far as the authors are
concerned, all of these extensions require that not all the involved random
variables are non-identically distributed. In that case and in other scenarios
where the binary local decisions might also be conditionally dependent, we
have to resort to other analytical tools such as the error exponents.

2.8.3 Error exponent

When considering scenarios where the binary local decisions are conditionally
dependent and/or non-identically distributed, the literature usually avoids
the direct computation of the performance probabilities. Additionally, as
we explained in the previous subsections, under the previous conditions
the normal and the saddlepoint approximations cannot be applied to
approximate the aforementioned probabilities. Instead, the performance
measure can be obtained by following an approach that does not have a
high computational cost and that consists in evaluating their exponential
rate of decay in an asymptotic regime where the number ` of local decisions
approaches infinity. These exponential rates of decay for the overall
probabilities of error are the so-called error exponents.

Although the error exponents do not help with evaluating the receiver
operating characteristic curve (ROC) or designing the optimal fusion rule
under both the Bayesian and the Neyman-Pearson set ups, their closed-
form expression allows to adapt the network parameters with the aim of
minimizing the error probabilities. However, before that and given a specific
detection scenario, it is necessary to derive them and, at the same time, check
their existence. To do that, the Gärtner-Ellis theorem has to be employed.

Theorem I (Gärtner-Ellis theorem [Dembo and Zeitouni, 1998]). Let
{Λ`} ∈ Rm be a sequence of random variables and define

I(`)(θ) = ln
(
E
{

exp
(
θT Λ`

)})
. (2.181)
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Suppose that for each θ ∈ Rm, the logarithmic moment generating function,
defined as

I(θ) = lim
`→∞

I(`)(`θ)

`
(2.182)

exists as an extended real number. If I(·) is an essentially smooth and lower-
semicontinuous function, {Λ`} satisfies the large deviation principle with rate
transform

I∗(x) = sup
θ∈Rm

{
θT x− I(θ)

}
. (2.183)

That is, for any measurable set B

− inf
x∈int(B)

I∗(x) ≤ lim inf
`→∞

ln (P (Λ` ∈ B))

`

≤ lim sup
`→∞

ln (P (Λ` ∈ B))

`
≤ − inf

x∈clos(B)
I∗(x)

(2.184)

where int(B) denotes the interior of B and clos(B) the closure of B.

In an implicit form the previous theorem basically provides the
asymptotic behavior of a sequence of non-i.i.d. random variables {Λ`} ∈ Rm.
Toward this goal, unlike the approaches described in the last two subsections,
assumptions about the dependency structure of the sequence {Λ`} are
dispensed. Instead, the proof of the previous theorem, which has been
omitted for the sake of brevity, is supported by assumptions on a sequence of
moment generating functions, or more specifically, the logarithmic moment
generating function defined in (2.182). Note that, if we define

Λ` =
1

`
Λ(U) (2.185)

with U = [U1, U2, . . . , U`]
T , most of the detection scenarios satisfy those

assumptions. In addition to that, the sets of interest in hypothesis testing
mostly hold the continuity property

inf
x∈int(B)

I∗(x) = inf
x∈clos(B)

I∗(x), (2.186)
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which implies

− lim
`→∞

ln (P (Λ` ∈ B))

`
= inf

x∈B
I∗(x) (2.187)

This is precisely the implicit form that, provided by the Gärtner-Ellis
theorem, yields the exponential rate of decay, or error exponent, associated
with each one of the two error probabilities at the fusion center. In particular,
if we focus on the overall probability of error when Hk is true with k ∈ {0, 1},
by realizing that I∗(x) is a convex function that achieves its minimum at

lim
`→∞

E {Λ`}
`

, (2.188)

as long as τ` ∈ (l0, l1) with l0 ≤ 0 ≤ l1 and

lk = lim
`→∞

EHk {Λ(U )}
`

(2.189)

under both the Bayesian and the Neyman-Pearson set ups the error exponent
is given by

− lim
`→∞

ln (P (UFC 6= Hk))

`

=

{
lim`→∞

− ln(P ( Λ`∈(τ`,∞)|H0))
`

= I∗0 (τ`) if k = 0

lim`→∞
− ln(P ( Λ`∈(−∞,τ`]|H1))

`
= I∗1 (τ`) if k = 1

(2.190)

where

P (Λ` ∈ (τ`,∞)|H0) = P
FA
, (2.191)

P (Λ` ∈ (−∞, τ`]|H1) = PM (2.192)

and

I∗k(x) = sup
θ∈R
{θ x− Ik(θ)} (2.193)

with

Ik(θ) = lim
`→∞

I
(`)
k (` θ)

`
= lim

`→∞

ln (EHk {exp (` θΛ`)})
`

= lim
`→∞

ln (EHk {exp (θΛ(U ))})
`

= lim
`→∞

ln

(
EHk

{(
PU|H(u|H1)

PU|H(u|H0)

)θ})
`

.

(2.194)
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Due to the fact that I∗(x) equals zero at its minimum, we can easily check
that

lim
`→∞

ln (P
FA

)

`
= 0 (2.195)

if τl ≤ l0 and that

lim
`→∞

ln (PM)

`
= 0 (2.196)

if τl ≥ l1. However, this kind of choices of τ` are not frequent in many
detection applications. For instance, if PU |H(u|Hk) is a symmetric p.m.f. for
all k ∈ {0, 1}, the previous choices of τ` would be possible whenever we want
to ensure that P

FA
≥ 0.5 and that PM ≥ 0.5 at the fusion center. Because

of this, from now and on we will assume that τ` ∈ (l0, l1).
As we have just shown, the Gärtner-Ellis theorem provides the error

exponent for the probability of misdetection and the probability of false
alarm at the fusion center and under both the Bayesian and the Neyman-
Pearson set ups. Indeed, the use of the Gärtner-Ellis theorem is wider
and it is not only restricted to hypothesis testing problems. Realize that
it can be applied to whatever sequence of random variables as long as the
corresponding sequence of moment generating functions satisfy the conditions
stated by the theorem. Because of this, taking full advantage of the particular
features associated with each one of the two considered formulations, several
works have undertaken the extension and particularization of the Gärtner-
Ellis theorem under the Bayesian set up and under the Neyman-Pearson
formulation.

Possibly, the more straightforward particularization of the Gärtner-Ellis
theorem to a hypothesis testing problem is the so-called Chernoff information
generalization, which it is derived for fusion rules performing an optimal
Bayesian test on non-i.i.d. sensor observations. After noting that, under the
Bayesian set up,

lim
`→∞

τ` = lim
`→∞

τ

`
= lim

`→∞

CF
CD`

= 0 (2.197)

where the last equality follows from (2.45), since

I∗0 (0) = sup
θ∈R
{−I0(θ)} = −inf

θ∈R
{I0(θ)} = − inf

θ∈[0,1]
{I0(θ)}

= − inf
θ∈[0,1]

{I1(θ)} = −inf
θ∈R
{I1(θ)} = sup

θ∈R
{−I1(θ)} = I∗1 (0)

(2.198)
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with

I0(θ) = lim
`→∞

ln
(∑

u∈U` PU |H(u|H1)θPU |H(u|H0)1−θ)
`

(2.199)

and

I1(θ) = lim
`→∞

ln
(∑

u∈U` PU |H(u|H1)1+θPU |H(u|H0)−θ
)

`
(2.200)

we can straightforwardly prove the Chernoff information generalization
from the Gärtner-Ellis theorem. In particular, the Chernoff information
generalization is stated as follows.

Theorem II (Chernoff information generalization). Let U = [U1, . . . , U`]
T

be a sequence of ` random variables jointly distributed according PU |H(u|H0)
under H0 and according to PU |H(u|H1) under H1. Also let V1

` (τ) be an
acceptance region for hypothesis H1 such that the probabilities of error for
the hypothesis testing problem is Pe(`) = P (H0)PFA + (1− P (H0))PM with

P
FA

=
∑
u∈V1

`

PU |H(u|H0),
(2.201)

PM = 1−
∑
u∈V1

`

PU |H(u|H1)
(2.202)

and P (H0) denoting the prior probability of H0. Also define P ∗e = min
V1
` (τ)

Pe,

which is given by the optimal Bayes fusion rule. Then, the best exponential
rate of decay in P ∗e is given by

K = lim
`→∞
− 1

`
ln(P ∗e )

= − min
0≤θ≤1

lim
`→∞

ln
(∑

u∈U` PU |H(u|H1)θPU |H(u|H0)1−θ)
`

.

(2.203)

As it happens under the Bayesian set up, the Gärtner-Ellis theorem
admits a particularization to the Neyman-Pearson formulation. From (2.190)
we can verify that the Gärtner-Ellis theorem provides the error exponent for
the overall probability of misdetection by means of an optimization whose
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solution usually requires numerical methods as well as the integration of
the spectrum of the observation process. Most of the results following this
approach have derived the aforementioned error exponent when the log-
likelihood ratio test (LLRT) is based on a fixed threshold. This results in
rates of decay for PM that are functions of the threshold. However, for ergodic
cases the normalized log-likelihood ratio Λ`, defined in (2.185), converges to
a constant under the null hypothesis

l0 = lim
`→∞

1

`
ln

(
PU |H(u|H1)

PU |H(u|H0)

)
(a.s. in H0), (2.204)

provided that the previous limit exists and where the notation (a.s. in
H0) means that the limit has to be taken in the almost sure sense under
the distribution present under H0. Consequently, in this case the overall
probability of false alarm also decays exponentially for a fixed threshold.
This last fact entails that a detector with a fixed threshold is not optimal in
the Neyman-Pearson sense since it does not use the constraint of false alarm
fully. In particular, for the optimal Neyman-Pearson detector the threshold
is a function of the sample size, `, satisfying

lim
`→∞

τ` = lim
`→∞

τ

`
= l0 (2.205)

in order that PFA ≤ α ∈ (0, 1). If we now write PM as follows

PM = P (Λ` − τ` ≤ 0|H1) = P
(

Λ̃` ≤ 0
∣∣∣H1

)
(2.206)

where

Λ̃` = Λ` − τ` (2.207)

with Λ` defined in (2.185), the application of the Gärtner-Ellis theorem to

the sequence {Λ̃`} under H1 yields

K = lim
`→∞
− 1

`
ln(PM) = − inf

x∈∈(−∞,0]
I∗1 (x) = I∗1 (0)

= −inf
θ∈R
{I1(θ)}

(2.208)

with

I1(θ) = −θ l0 + lim
`→∞

ln
(∑

u∈U` PU |H(u|H1)1+θPU |H(u|H0)−θ
)

`
. (2.209)
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Under proper mathematical conditions we can verify that, when θ = −1, we
attain the unique solution of the optimization problem expressed in (2.208)
and (2.209). Since we still take full advantage of the constraint P

FA
≤ α ∈

(0, 1), when θ = −1 we obtain the particularization of the Gärtner-Ellis
theorem under the Neyman-Pearson formulation. This particularization is
the so-called Stein’s lemma generalization and is stated as follows.

Theorem III (Stein’s lemma generalization [Vajda, 1989]). Let U =
[U1, . . . , U`]

T be a sequence of ` random variables jointly distributed according
PU |H(u|H0) under H0 and according to PU |H(u|H1) under H1. Also let V1

` (τ)
be an acceptance region for hypothesis H1 such that the probability of false
alarm for the hypothesis testing problem is

P
FA

=
∑
u∈V1

`

PU |H(u|H0).
(2.210)

For 0 < α < 1, define

Pα
M = min

V1
` (τ)⊆U`; P

FA
≤α
{PM} (2.211)

then, the exponential rate of decay in Pα
M is given by the asymptotic Kullback-

Leibler rate

K = lim
`→∞
−1

`
log(Pα

M) = − lim
`→∞

1

`
ln

(
PU |H(u|H1)

PU |H(u|H0)

)
(a.s. H0). (2.212)

At this point, we want to remark that, under i.i.d. local decisions, we
can perform further simplifications of the implicit expressions of the error
exponents provided by both the Chernoff information generalization and
the Stein’s lemma generalization. On the one hand, under i.i.d. binary
local decisions and under the Bayesian set up the error exponent for the
probability of error of the optimal fusion rule, P ∗e , is given by the Chernoff
information [Cover and Thomas, 2006]

K = lim
`→∞
− 1

`
ln(P ∗e )

= − min
0≤θ≤1

ln

(
1∑

u1=0

PU1|H(u1|H1)θPU1|H(u1|H0)1−θ

)
.

(2.213)
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On the other hand, subject to P
FA
≤ α ∈ (0, 1) and under i.i.d. local

decisions, the Stein’s lemma generalization collapses to the Stein’s lemma
given in [Cover and Thomas, 2006], which gives the best error exponent for
the probability of misdetection of the optimal fusion rule, Pα

M , under the
Neyman-Pearson formulation

K = lim
`→∞
−1

`
log(Pα

M)

= D(PU1|H(u1|H0)||PU1|H(u1|H1)) = D(B(P
FA

(1))||B(PD(1)))
(2.214)

where D(PU1|H(u1|H0)||PU1|H(u1|H1)) denotes the Kullback-
Leibler divergence between PU1|H(u1|H0) and PU1|H(u1|H1) and where the
last equality follows because, when the binary local decisions are i.i.d under
Hk with k ∈ {0, 1},

PU1|H(u1|Hk) = PU1|H(u1|Hk) = B(P (U1 = 1|Hk)) (2.215)

with i ∈ {1, 2, . . . , `} and B(p) denoting a Bernoulli random variables
whose probability of success equals p. To conclude the subsection, do not
forget that, analyzing and tuning the performance of a parallel network,
under the assumption of conditionally i.i.d. local decisions, the saddlepoint
approximation is a more powerful tool than the error exponent. This is due to
the fact that, unlike the saddlepoint approximations, which are also easy to
compute, the error exponents are not approximations of the probabilities of
error at the fusion center. Nevertheless, under both non-i.i.d. local decisions
or i.i.d. local decisions they are an important measure of performance. Since
they give the exponential rate of decay for the error probabilities at the fusion
center, in an asymptotic regime where the number of observations approaches
infinity the error exponents give a rough estimate of the number of samples
required for a given detector performance. Consequently, realize that faster
decay rate implies that fewer samples are needed for a given probability
of misdetection or probability of error, or that better performance can be
obtained with a given number of samples.
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Chapter 3

Neyman-Pearson fusion of
dependent local decisions in a
1-D network

3.1 Introduction

Supported by different theoretical areas such as the information theory
and the large deviation theory, the latest results on distributed detection
systems with parallel architecture and dependent observations provide
tools that, by means of physical and design parameters, characterize
the detection performance of networks with optimal fusion rules and
dependent observations. Some works that followed this philosophy,
for instance [Sung et al., 2006] and [Chamberland and Veeravalli, 2006],
analyzed a scenario where the devices are equally spaced along a straight
line, the amplify-and-relay scheme is chosen as the local processing
strategy of the sensor observations, and the sensors send their locally
processed measures to the fusion center through a bank of independent
parallel channels. On the one hand, in the Bayesian set up the authors
in [Chamberland and Veeravalli, 2006] used the Gärtner-Ellis theorem
provided in [Dembo and Zeitouni, 1998] to study the impact of sensor density
on two detection problems: one consists in detecting two deterministic
signals in first-order Gauss-Markov noise, and the other is the detection
of a first-order Gauss-Markov signal in zero mean additive white Gaussian
noise (AWGN). On the other hand, [Sung et al., 2006] obtained a closed-
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form expression of the asymptotic Kullback-Leibler rate by means of
the innovations approach described in [Kailath et al., 2000] as well as the
connection between the asymptotic behaviour of the optimal Neyman-
Pearson detector and that of the Kalman filter (see [Helstrom, 1994]).
This closed-form expression allowed them to study the effect of sensor
spacing on the Neyman-Pearson detection of a first-order Gauss-Markov
process in AWGN. Later, [Li and Dai, 2007], [Sung et al., 2008b] and
[Misra and Tong, 2008] extended the work of [Sung et al., 2006] and
[Chamberland and Veeravalli, 2006] in order to give some insights into several
design matters related to 1-D sensor networks that perform a distributed
detection task. Under the same scenario as in [Sung et al., 2006], the authors
in [Li and Dai, 2007] utilized asymptotic properties of Toeplitz matrices
given in [Grenander and Szegö, 1984] in order to compare the detection
performance when the devices send their observations through a bank
of parallel independent channels, or through an unique multiple access
channel. [Sung et al., 2008b] extended their work in [Sung et al., 2006] in
order to study the optimal sensor configuration along the straight line where
the devices are deployed. For a 1-D sensor network where the devices are
randomly spaced and the distances between two neighbour nodes are known
by the fusion center, [Misra and Tong, 2008] derived a closed-form expression
of the Neyman-Pearson error exponent associated with the discrimination of
two first-order Gauss-Markov processes.

So far, there are very few works that characterize networks with
optimal fusion rules performed on dependent local decisions Some of
the most recent results regarding this problem are [Villard et al., 2010]
and [Villard and Bianchi, 2011]. Extending [Villard et al., 2010] the same
authors in [Villard and Bianchi, 2011] investigated the effect of quantization
on the performance of a Neyman-Pearson fusion rule undertaken in a scenario
where the sensor observations are dependent. More precisely, in a high-rate
quantization regime i.e., when the number of quantization levels tends to
infinity, the authors derived a compact expression of the error exponent loss
induced by quantization. Using this compact expression they showed that,
as the number of quantization levels tends to infinity, the error exponent for
quantized observations converges to the one associated with a scenario where
the fusion center receives unquantized measurements. However, no work
obtains analytically tractable expressions that allow to assess which kind
of trends of detection performance can appear with increasing dependency
in systems where the local quantizers have a finite number of quantization
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Figure 3.1: Block diagram of a 1-D parallel fusion network.

levels. Motivated by this last fact and taking into account the relevance
of the distributed detection systems with binary local processing schemes
in the literature of sensor networks, in this chapter we derive a closed-form
expression for the error exponent associated with the Neyman-Pearson fusion
rule performed in the 1-D sensor network of Figure 3.1. Firstly, this closed-
form expression is derived for a scenario where the devices are randomly
deployed along a straight line and where the data fusion center only knows
the common p.d.f. from which each sensor spacing is drawn independently.
After analyzing the different properties of the error exponent, this one is
simplified for specific cases of the p.d.f. that have already been assumed
in [Misra and Tong, 2008]. In particular, the cases that have been analyzed
are equispaced sensors with failure rate q and exponentially spaced sensors
with placement density λ and failure rate q. This way, we provide an
amenable tool that links the detection performance of a 1-D version of the
sensor network described in [Drakopoulos and Lee, 1991] with its physical
and design parameters.

The rest of this chapter is organized as follows. Section 3.2 is devoted to
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the problem statement. In Section 3.3 we perform a large system analysis
that firstly provides a closed-form expression for the error exponent for the
Neyman-Pearson fusion rule performed in the sensor network of Figure 3.1.
Afterwards, using a parameter that captures the mean correlation among
the random variables involved in the fusion rule, the analysis continues
investigating some properties of the aforementioned error exponent. For two
different models of the sensor spacing, Section 3.4 undertakes evaluations of
the derived error exponent as well as several numerical experiments in order
to study the effect of different physical and design parameters of the network
on its detection performance. Next, Section 3.5 summarizes the results of
this chapter. Finally, as a matter of organization style, we defer all proofs of
this chapter to a pair of appendices.

3.2 Problem statement

In this chapter, we consider the design of a sensor network as the one
shown in Figure 3.1. This network is formed by a data fusion center
that receives a large number, `, of binary local decisions from sensors
randomly deployed along a straight line according to a random sequence
of spacings, {di}`i=2, i.i.d. according to an arbitrary p.d.f., fD(d), defined
on D, which is known at the fusion center. With the aim of deciding what
state of the phenomenon is present, H0 or H1, the distributed detection
system undertakes the following steps. Firstly, each device performs a local
observation of the environment, yi. Secondly, it applies a binary detection
rule to it, γi(yi), not necessarily based on a LLRT. This way, each device
makes a local decision, ui = γi(yi), regarding the presence or absence of the
phenomenon we want to detect. Thirdly, the binary local quantizations of
the sensor observations are transmitted to the fusion center over error free
parallel access channels. Finally, based on the ` local decisions taken by the
devices of the network, the fusion center makes a global decision, u

FC
, under

the Neyman-Pearson formulation. In this detection process, we assume that
the correlation structure of the local decisions is hypothesis dependent and
modelled with a 1-D Markov random field (MRF) with nearest-neighbour
dependency and binary state space. This way, given the elements of the
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sequence {di}`i=2 whose joint p.d.f. is expressed as

fD(d) =
∏̀
i=2

fD(di) = fD(d)`−1, (3.1)

the subsequent inference problem is established at the fusion center under
the Neyman-Pearson formulation

Hk: U ∼ 1-D MRF with nearest-neighbour dependency
and non-homogeneous probabilities, {ptk(di, di+1,Pk)}`−1

i=2

}
(3.2)

where, for k ∈ {0, 1} and t ∈ {0, 1, 1p, 2},

• U = [U1, U2, . . . , U`]
T , defined on U ` with U = {0, 1}, denotes the `

binary decisions received at the fusion center and locally performed by
the devices that form the network.

• Pk are physical and design parameters of the network that, being
known by the data fusion center, are arguments of the conditional
probabilities, {ptk(di, di+1,Pk)}`−1

i=2 (e.g. the employed local decision
rules or the physical properties of the environment where the network
is deployed). However, in this chapter from now on we omit this
dependency in order to keep the notation simple.

• {ptk(di, di+1)}`−1
i=2 denotes the set that contains all the one-point

conditional probabilities of the MRF present under Hk. For each one
of the values of t its elements take the subsequent expressions

p0
k(di, di+1) = P (Ui = 1|Ui−1 = Ui+1 = 1, di, di+1, Hk), (3.3)

p1
k(di, di+1) = P (Ui = 1|Ui−1 = 1, Ui+1 = 0, di, di+1, Hk), (3.4)

p1p
k (di, di+1) = P (Ui = 1|Ui−1 = 0, Ui+1 = 1, di, di+1, Hk), (3.5)

p2
k(di, di+1) = P (Ui = 1|Ui−1 = 0, Ui+1 = 0, di, di+1, Hk) (3.6)

when i ∈ {2, 3, . . . , `− 1}. For a specific sensor i we consider that the
non-homogeneity of the previous probabilities is exclusively caused by
the spacings with the nearest neighbour nodes, i.e. di and di+1.
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Note that sensor spacings have the same distribution under each one of
the two hypothesis. Therefore, the distribution of U conditioned on {di}`i=2

under each hypothesis is relevant for inference. Taking into account that,
under both hypothesis, the data fusion center only knows the statistics of
the aforementioned distances, in order to ensure that P

FA
≤ α ∈ (0, 1) the

optimal fusion rule for (3.2) is given by the subsequent Neyman-Pearson
detector

u
FC

=


1 if ln

(
PU|H(u|H0)

PU|H(u|H1)

)
< τ,

γ if ln
(
PU|H(u|H0)

PU|H(u|H1)

)
= τ,

0 otherwise,

(3.7)

where, for k ∈ {0, 1} and defining the acceptance region for H1

V1
` (τ) =

{
u : ln

(
PU |H0(u|H0)

PU |H1(u|H1)

)
< τ

}
, (3.8)

we have that

PU |H(u|Hk) =

∫
D`−1

PU |D,H(u|d, Hk) · fD(d) · dd, (3.9)

τ is the smallest number such that

ς =
∑

u∈V1
` (τ)

PU |H(u|H0) ≤ α
(3.10)

and γ ∈ {0, 1} is a randomization function that takes on the value 1 with
the subsequent probability

ν =

{
1 if ϑ = 0,
α−ς
ϑ

otherwise
(3.11)

with

ϑ = P

(
ln

(
PU |H(u|H0)

PU |H(u|H1)

)
= τ

∣∣∣∣∣H0

)
. (3.12)

As it is stated in [Wainwright and Jordan, 2008], graphical models
provide the formalism to capture complex dependencies among random
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variables, and to represent them by means of different types of dependency
graphs where the nodes denote the involved random variables, and where
the edges capture the dependencies among them. Examples include Markov
models or Markov random fields. For directed acyclic graphical models,
such as a Markov chain, distributions of the random variables associated
with each one of the vertex of the graph can be factorized in terms of
the conditional distributions of each random variable given its parents, i.e.
given the random variables directly linked with its incoming edges in the
graph. For undirected graphical models, such as a MRF, distributions can
be factorized by a set of compatibility functions, each one defined over one
of the cliques of the graph. Taking into account that a clique is a subset
of random variables whose corresponding nodes are fully connected in the
graph, a compatibility function is a positive local quantity defined only for
elements within the clique and not necessarily expressed in terms of marginal
or conditional distributions, as it happens with the factorization terms of
directed graphs. Typically, for undirected graphical models the factorization
of the distributions is performed over the set of all maximal cliques of the
graph, which is the set of cliques that are not properly contained within any
other clique.

In Figure 3.2 we now show the dependency graph for the MRF of
hypothesis Hk. Since for this 1-D graph the set of maximal cliques is the set
consisting in all pairs of consecutive vertex, from the Hammersley-Clifford
theorem given in [Lauritzen, 1996] we have that

PU |H(u|Hk) =
1

Zk

∏̀
i=2

ψ(ui, ui−1|Hk) (3.13)

with k ∈ {0, 1}, Zk denoting a bounded constant chosen to ensure that the
distribution is normalized,

0 < Zk =
∑
U∈U`

∏̀
i=2

ψ(ui, ui−1|Hk) <∞, (3.14)

and

∏̀
i=2

ψ(ui, ui−1|Hk) =

∫
D`−1

∏̀
i=2

ψ(ui, ui−1|d, Hk) fD(d) dd (3.15)
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Figure 3.2: Dependency graph of the local decisions under the hypothesis Hk

with k ∈ {0, 1}.

where ψ(ui, ui−1|d, Hk) equals the compatibility function associated with the
i-th maximal clique that appears in the dependency graph of U given D and
Hk (see Figure 3.2).

3.3 Large system analysis

Here we provide tools that allow the design and analysis of sensor networks
as the one described in the previous section. Firstly, based on information
theoretic results we derive a design tool that links the detection performance
of (3.7) with different physical and design parameters of the network.
Secondly, paying special attention to the effect of the network density on
its detection performance, we obtain a single parameter that measures the
mean degree of correlation among the neighbour local decisions involved in
the inference problem of Section 3.2. Finally, we investigate some analytical
properties of the derived error exponent when the dependence among the
local decisions results in different boundary values of the aforementioned
correlation parameter.

3.3.1 Error exponent.

In order to characterize the detection performance of the Neyman-Pearson
test shown in (3.7), as it is explained in Subsection 2.8.3 the common
procedure is to derive a closed-form expression of its corresponding
probability of detection

PD =
∑

u∈V1
` (τ)

PU |H(u|H1) + ν · P

(
ln

(
PU |H(u|H0)

PU |H(u|H1)

)
= τ

∣∣∣∣∣H1

)
. (3.16)
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However, this kind of solution is not feasible because of several practical
considerations. Among them, we can remark that the evaluation of this
performance metric might need numerical computations that make the
derived tool be non-amenable when the available number of binary local
decisions, `, is very large. Thus, in this chapter our approach consists in
obtaining the mentioned tool by means of more easy-to-use measures of
performance related to PD. In particular, in the spirit of other publications
of the literature, focusing on the distributed detection problem of Section 3.2
our objective is to derive a closed-form expression of the exponential rate of
decay in PM = 1− PD as ` approaches infinity.

Given the problem statement of Section 3.2, the error exponent of the
Neyman-Pearson detector (3.7) equals the almost sure limit of the asymptotic
Kullback-Leibler rate under PU |H(u|H0) (see Section 2.8), i.e.,

K = lim
`→∞

1

`
ln

(
PU |H(u|H0)

PU |H(u|H1)

)
(a.s. in H0) (3.17)

provided that the limit exists and where the notation (a.s. in H0) means
that the limit has to be taken in the almost sure sense under the distribution
present under H0. When obtaining K, if we look at (3.13), we firstly
need to define the compatibility functions, ψ(ui, ui−1|Hk), through the
conditional probabilities associated with the dependence model assumed
under Hk. From (3.15) this problem results in writing ψ(ui, ui−1|d, Hk)
in terms of {ptk(di, di+1)}`−1

i=2 with t ∈ {0, 1, 1p, 2}. Using a straightforward
extension of the results derived by Spitzer in [Spitzer, 1971] for homogeneous
MRF, it can be easily proved that, in a 1-D scenario where the random
variables are defined on a binary state space, a non-homogeneous MRF
with nearest-neighbour dependency has a biunique correspondence with a
non-homogeneous first-order Markov chain. Consequently, if the transition
probabilities related to the i-th step of a non-homogeneous Markov chain are
denoted as

p
(0,1)
k (di) = P (Ui = 1|Ui−1 = 0, di, Hk) (3.18)

and

p
(1,0)
k (di) = P (Ui = 0|Ui−1 = 1, di, Hk), (3.19)

the conditional probabilities of the corresponding non-homogeneous MRF
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are

p0
k(di, di+1) =

(1− p(1,0)
k (di))(1− p(1,0)

k (di+1))

(1− p(1,0)
k (di))(1− p(1,0)

k (di+1)) + p
(1,0)
k (di)p

(0,1)
k (di+1)

, (3.20)

p1
k(di, di+1) =

(1− p(1,0)
k (di))p

(1,0)
k (di+1)

(1− p(1,0)
k (di))p

(1,0)
k (di+1) + p

(1,0)
k (di)(1− p(0,1)

k (di+1))
, (3.21)

p1p
k (di, di+1) =

p
(0,1)
k (di)(1− p(1,0)

k (di+1))

p
(0,1)
k (di)(1− p(1,0)

k (di+1)) + (1− p(0,1)
k (di))p

(0,1)
k (di+1)

(3.22)

and

p2
k(di, di+1) =

p
(0,1)
k (di)p

(1,0)
k (di+1)

p
(0,1)
k (di)p

(1,0)
k (di+1) + (1− p(0,1)

k (di))(1− p(0,1)
k (di+1))

(3.23)

for i ∈ {2, 3, . . . , `− 1}. Hence, besides the p.m.f. of the first local decision,
PU1|H(u1|Hk), as long as ` ≥ 2 the MRF associated with the hypothesis

Hk is uniquely determined by {p(0,1)
k (di), p

(1,0)
k (di)}`i=2, or equivalently by

p1p
k (d2, d3), p2

k(d2, d3) and {ptk(di, di+1)}`−1
i=2 with t ∈ {0, 1}. Note that the rest

of the conditional probabilities, i.e. {ptk(di, di+1)}`−1
i=3 with t ∈ {1p, 2}, can

be obtained through (3.67) and (3.68) shown in Appendix 3.A and obtained
after performing some algebraic manipulations on (3.20)-(3.23). At the same
time, as a result of the previous biunique correspondence, for i ∈ {2, 3, . . . , `}
we have that ψ(ui, ui−1|d, Hk) matches the conditional p.m.f. of Ui given D
and Ui−1 in a non-homogenous Markov chain with transition probabilities
satisfying (3.20)-(3.23), i.e.

ψ(ui, ui−1|d, Hk) = PUi|Ui−1,D,H(ui|ui−1,d, Hk) = PUi|Ui−1,Di,H(ui|ui−1, di, Hk)

= p
(0,1)
k (di)δ[ui − 1]δ[ui−1] + p

(1,0)
k (di)δ[ui]δ[ui−1 − 1]

+ (1− p(1,0)
k (di))δ[ui − 1]δ[ui−1 − 1]

+ (1− p(0,1)
k (di))δ[ui]δ[ui−1]

(3.24)

with i ∈ {2, 3, . . . , `}, k ∈ {0, 1} and δ[n] denoting the discrete time
Kronecker delta function. Due to the fact that the local decision Ui is
conditionally independent of the rest of the sensor spacings given Di and
Ui−1, the compatibility function ψ(ui, ui−1|d, Hk) only depends on Di, Ui−1
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and Hk. From (3.14) and (3.15), (3.24) implies that Zk = 1. Additionally,
taking into account that the sensor spacing are i.i.d. according to fD(d),
substituting (3.24) in (3.15) yields

ψ(ui, ui−1|Hk) =

∫
D
PUi|Ui−1,Di,H(ui|ui−1, di, Hk) fD(di) ddi

= (1− bk)δ[ui − 1]δ[ui−1 − 1] + (1− ak)δ[ui]δ[ui−1]

+ akδ[ui − 1]δ[ui−1] + bkδ[ui]δ[ui−1 − 1]

(3.25)

where

ak = P (Ui = 1|Ui−1 = 0, Hk) =

∫
D
p

(0,1)
k (di) fD(di) ddi, (3.26)

bk = P (Ui = 0|Ui−1 = 1, Hk) =

∫
D
p

(1,0)
k (di) fD(di) ddi (3.27)

are parameters linked with the conditional probabilities responsible for
the correlation structure of the local decisions under the hypothesis Hk.
Therefore, as a consequence of assuming that the non-homogeneity of the
random field associated with PU |D,H(u|d, Hk) is exclusively caused by the
set of distances {di}`i=2, from (3.13) we have that PU |H(u|Hk) is the joint
p.m.f. of a homogeneous 1-D MRF uniquely determined by the conditional
probabilities

p 0
k = P (Ui = 1|Ui−1 = Ui+1 = 1, Hk), (3.28)

p1
k = P (Ui = 1|Ui−1 = 1, Ui+1 = 0, Hk). (3.29)

In this way, we are able to arrive at the following theorem.

Theorem 1. Suppose that, with k ∈ {0, 1},

• PU1|H(u1|H0) is absolutely continuous w.r.t. PU1|H(u1|H1), i.e.,

PU1|H(u1|H0)� PU1|H(u1|H1).

• 0 < ptk(di, di+1) < 1 for t ∈ {0, 1} and i ∈ {2, 3, . . . , `}.

• 0 < ptk(d2, d3) < 1 for t ∈ {1p, 2}.
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Then, given a fixed constraint P
FA
≤ α ∈ (0, 1), and a discrete or

continuous arbitrary p.d.f., fD(d), defined on D, the best Neyman-Pearson
error exponent for the distributed detection problem given by (3.7) is

K = µ0(0) a0 ln

(
a0

a1

)
+ (1− µ0(0)) (1− b0) ln

(
1− b0

1− b1

)
+ µ0(0)(1− a0) ln

(
1− a0

1− a1

)
+ (1− µ0(0)) b0 ln

(
b0

b1

)
= D(P (ui|ui−1, H0)||P (ui|ui−1, H1))

(3.30)

where

• ak and bk are obtained through (3.26) and (3.27) respectively.

• p(0,1)
k (di) and p

(1,0)
k (di) satisfy (3.20)-(3.23).

• µ0(0) is defined as

µ0(0) = P (U = 0|H0) =
b0

b0 + a0

(3.31)

and denotes the unique stationary probability of deciding the null
hypothesis when the MRF associated with H0 is present.

• D(P (ui|ui−1, H0)||P (ui|ui−1, H1)) corresponds with the
conditional Kullback-Leibler divergence between PUi|Ui−1,H(ui|ui−1, H0)

and PUi|Ui−1,H(ui|ui−1, H1) in the stationary regime.

Proof. See the Appendix 3.A.

3.3.2 Correlation parameter.

Among the different physical and design parameters of the network we are
specially interested in studying the detection performance of the network
versus the dependence among the local quantizations performed by the
sensors of the network. However, there is not any single index that
measures the dependence among the random variables that form a MRF.
Motivated by this last fact, we firstly develop the correlation index defined
in [Drakopoulos and Lee, 1991] for the case of two binary local decisions,
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Ui−1 and Ui, corresponding to the steps i− 1 and i of a homogeneous binary
MRF where the joint p.m.f. is characterized through (3.13) and (3.25)-(3.27)

ρ i−1,i
k =

ED{EUi,Ui−1|D,Hk{UiUi−1}}
ED{EUi−1|D,Hk{Ui−1}}

(
1− ED{EUi|D,Hk{Ui}}

)
−

ED{EUi|D,Hk{Ui}} · ED{EUj |D,Hk{Uj}}
ED{EUi−1|D,Hk{Ui−1}}

(
1− ED{EUi|D,Hk{Ui}}

)
=

(1− bk) · PUi−1|H(ui−1 = 1|Hk)

PUi−1|H(ui−1 = 1|Hk) ·
(
1− PUi|H(ui = 1|Hk)

)
−

PUi−1|H(ui−1 = 1|Hk) · PUi|H(ui = 1|Hk)

PUi−1|H(ui−1 = 1|Hk) ·
(
1− PUi|H(ui = 1|Hk)

)
=

(1− bk)− PUi|H(ui = 1|Hk)

1− PUi|H(ui = 1|Hk)
.

(3.32)

Now, we use ρ i−1,i
k in order to derive a parameter that captures the

mean correlation strength among the neighbour local decisions involved in
the distributed detection problem (3.7). In particular, considering that the
local decisions might be dependent under both hypothesis, that their joint
p.m.f. under Hk is equal to PU |H(u|Hk), and that the number of sensors
that form the network is very large, we obtain

ρ =


P (H0)ρ0 + P (H1)ρ1 When the local decisions

are dependent under H0 and H1.
ρk When the local decisions

are only dependent under Hk.

(3.33)

where, for k ∈ {0, 1}, P (Hk) ∈ (0, 1) equals the prior probability of
hypothesis Hk, and ρk is the mean correlation between the binary local
decisions of two consecutive sensors under Hk

ρk = lim
`→∞

1

`

∑̀
i=2

ρ i−1,i
k = lim

`→∞

1

`

∑̀
i=2

(1− bk)− PUi|H(ui = 1|Hk)

1− PUi|H(ui = 1|Hk)

(a)
= lim

`→∞

1

`

i0∑
i=2

(1− bk)− PUi|H(ui = 1|Hk)

1− PUi|H(ui = 1|Hk)

+ lim
`→∞

`− i0
`

(1− bk) + µk(0)− 1

µk(0)
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(b)
=

(1− bk) + µk(0)− 1

µk(0)
= 1− ak − bk ∈ [0, 1]. (3.34)

In the previous equation (a) follows since the marginal p.m.f. of the i-th local
decision conditioned on Hk, PUi|H(ui|Hk), matches the unique and stationary
p.m.f. of the underlying MRF as long as it is regular and i > i0 for some
bounded i0 < ∞ (see [Kemeny and Snell, 1976]). Moreover, taking into
account that i0 < ∞ as well as the regularity of the corresponding MRF,
we have that

i0∑
i=2

(1− bk)− PUi|H(ui = 1|Hk)

1− PUi|H(ui = 1|Hk)
<∞. (3.35)

Thus, (b) occurs because the first term in the r.h.s. of (a) vanishes as ` goes
to infinity.

Before concluding the subsection, it is worth noting that the parameters
ρk, and consequently ρ, satisfy some important properties given in the
definition of a correlation coefficient. On the one hand, we have that ρk equals
zero if and only if the random variables involved in (3.7) are independent
under Hk, i.e.

PU |H(u|Hk) =
∏̀
i=1

PUi|H(ui|Hk). (3.36)

On the other hand, ρk is equal to one if and only if the random variables
involved in (3.7) are maximally dependent under Hk, i.e., as the definition
provided in [Drakopoulos and Lee, 1991]

P (Ui = 1|Uj = 1, Hk) = 1 (3.37)

and

P (Uj = 0|Ui = 0, Hk) = 1 (3.38)

for every pair of index i, j ∈ {1, 2, . . . , `} with P (Uj = 1|Hk) ≤ P (Ui = 1|Hk)
without loss of generality. Both statements can be verified in one of the
directions if we substitute in (3.34) the constraints that, under the different
scenarios of dependence, have to be satisfied by ak and bk with k ∈ {0, 1}. In
the case of independent local decisions under Hk, (3.36) results in ak = 1−bk
if we take into account (3.25). For maximally dependent local decisions
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under Hk, the aforementioned constraints are ak = bk = 0 if we take (3.26)
and (3.27) together with (3.37) and (3.38). Meanwhile, the converse direction
is shown by noting that the constraints imposed on ak and bk when ρk = 0 or
ρk = 1 are the same as the ones obtained when (3.36) occurs or (3.37)-(3.38)
hold, respectively.

3.3.3 Properties of the error exponent.

In this subsection we examine the closed-form error exponent, K, when some
particular situations, related to the dependence among the local decisions,
happen. Specifically, through Corollary 1 we provide the behaviour of
K when the dependence among the local decisions corresponds with the
boundary values ρ = 0, ρ = 1, and ρ1 = 1 s.t. ρ0 = 0.

Corollary 1. For a continuous or discrete arbitrary p.d.f. fD(d), the error
exponent K has the following properties.

1) When the local decisions are independent under both hypothesis, K
is equal to the Kullback-Leibler divergence D(B(ξ0)||B(ξ1)) where, for
k ∈ {0, 1}, B(ξk) denotes a Bernoulli random variable with probability
of success ξk = P (Ui = 1|Hk) ∈ (0, 1),

K(ρ = 0) = (1− ξ0)ln

(
1− ξ0

1− ξ1

)
+ ξ0ln

(
ξ0

ξ1

)
= D(B(ξ0)||B(ξ1)).

(3.39)

2) When the local decisions tend to be maximally dependent under H0 and
H1, K converges to zero,

lim
ρ→1

K = 0. (3.40)

3) When the local decisions tend to be maximally dependent under H1

at the same time as they are conditionally independent given H0, K
diverges,

lim
ρ1→1

K =∞ s.t. ρ0 = 0. (3.41)

Proof. See the Appendix 3.B.
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The proof of each claim of the corollary follows from computing the
corresponding limit or closed-form expression of K through the constraints
that, under each dependence scenario, are imposed on the parameters ak
and bk with k ∈ {0, 1}. Furthermore, analyzing each claim we can remark
several aspects. If the local decisions are independent under each one of the
two hypothesis, the derived error exponent, K, collapses to D(B(ξ0)||B(ξ1)),
i.e. the Neyman-Pearson error exponent stated by the Stein’s Lemma
detailed in [Cover and Thomas, 2006] when the involved random variables
are i.i.d. under H0 and H1. This result is consistent because, as it can be
seen in (3.88), when the local decisions {Ui}`i=1 are independent under the
hypothesis Hk, i.e. ρk = 0, they are identically distributed according to a
Bernoulli random variable, B(ξk), where the probability of success equals
ξk. An explanation to the result obtained in the second claim is obvious
if we note that, for maximally dependent binary local quantizations under
both hypothesis, the conditional joint p.m.f. of the local decisions given
U1 are identical under both hypothesis. On the contrary, the divergence of
K shown in the third claim is less intuitive. Note that, when the local
decisions are maximally dependent under H1, from the results obtained
in [Drakopoulos and Lee, 1991] the support of PU |H(u|H1) only consists of
the events where all the devices decide the same hypothesis. However, under
conditional independence given the hypothesis H0, in addition to those events
the support of PU |H(u|H0) is formed by the rest of the 2` binary `-tuples.
Hence, PU |H(u|H1)� PU |H(u|H0) holds, and therefore, the existence of K
can not be ensured although PU1|H(u1|H0)� PU1|H(u1|H1) happens.

3.4 Simulation results

For two different models of the sensor spacing, equispaced sensors with
failures and exponentially spaced devices with failures, we now study the
change of the detection performance of the network described in Section 3.2
when some of its physical and design parameters vary. In order to do that,
under each one of the distributions of the sensor spacings we analyze the effect
of these parameters on evaluations of K at the same time as we corroborate
our asymptotic conclusions by means of several numerical simulations.

For both the evaluations and the numerical experiments performed in this
section we have considered the subsequent isotropic exponential model for
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the correlation structure among the local decisions given the hypothesis Hk

p
(0,1)
k (di) = ξk(1−mke

−γkdi) (3.42)

p
(1,0)
k (di) = (1− ξk)(1−mke

−γkdi) (3.43)

where, for k ∈ {0, 1} and i ∈ {2, 3, . . . , `},
• ξk is the false alarm probability or detection probability of the local

detectors when independence among the local decisions is assumed
under H0 or H1 respectively.

• γk is a strictly positive constant that indicates the exponential rate
of growth of the transition probabilities p

(0,1)
k (di) and p

(1,0)
k (di) as di

increases.

• mk is a strictly positive constant that, taking on values less than one,
controls the correlation between Ui−1 and Ui when the distance between
the corresponding devices is zero, i.e. di = 0.

Note that the physical model considered for p
(0,1)
k (di) and p

(1,0)
k (di) fulfills

some regularity conditions that typically appear in a detection scenario.
On the one hand, there is a correlation strength decay as the devices
become farther apart. In particular, due to the fact that p

(0,1)
k (di) and

p
(1,0)
k (di) are monotonically concave increasing functions of di, the larger is

the mean distance among the devices that form the network, the smaller
is the value that ρ takes on. On the other hand we have that, through
mk ∈ (0, 1), (3.42) and (3.43) model the well-known nugget effect described
in [Misra and Tong, 2008]. As imposing a minimum distance between

two neighbour devices, due to the nugget effect p
(0,1)
k (di = 0) > 0 and

p
(1,0)
k (di = 0) > 0 occur for all i ∈ {2, 3, . . . , `}. In this way, bearing in

mind (3.37), (3.38) as well as the behaviour of p
(0,1)
k (di) and p

(1,0)
k (di) w.r.t. di,

the local decisions, Ui−1 and Ui, are never going to be maximally dependent
when mk < 1, and equivalently ρ < 1 always holds.

In addition to the regularity conditions mentioned in the previous
paragraph, we can realize that, given (3.42) and (3.43), the local decisions
Ui and Ui−1 are only independent under Hk when the distance between the

corresponding nodes equals infinity, di = ∞. More precisely, when p
(0,1)
k (di)

and p
(1,0)
k (di) follow (3.42) and (3.43) respectively, for di =∞ and k ∈ {0, 1}

PUi|Ui−1,H(ui|ui−1, Hk) = PUi|H(ui|Hk) = (1− ξk) δ[ui] + ξk δ[ui − 1] (3.44)
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happens, and therefore, ρ i−1,i
k = 0 since p

(0,1)
k (∞) = 1− p(1,0)

k (∞). Moreover,
before evaluating (3.30) for each one of the distributions considered for
the sensor spacing, realize that the initial assumptions of Theorem 1 hold
when mild conditions are imposed on the correlation model described
in (3.42) and (3.43). By means of (3.20)-(3.23), those conditions result

in 0 < p
(0,1)
k (di), p

(1,0)
k (di) < 1 for all k ∈ {0, 1} and i ∈ {2, . . . , `} (see

Appendix 3.A). As said before, the lower bound is satisfied as long as
the aforementioned regularity conditions of a detection scenario appear.
Meanwhile, taking into account that p

(0,1)
k (di) and p

(1,0)
k (di) are monotonically

concave increasing functions of di, the upper bound only requires that the
devices do not have perfect detection features in the sense of ξk ∈ (0, 1) for
all k ∈ {0, 1}.

3.4.1 Equispaced sensors with failures

In this case, we consider that the devices are equally spaced and that the
distance d between two neighbour sensors is known by the data fusion
center. We also assume that the local decision performed by a sensor
may not be received by the fusion center with probability q ∈ [0, 1)
independently from sensor to sensor. In this way, as the terminology used
in [Misra and Tong, 2008], there are two kinds of devices in the network. One
class is formed by the operational devices, in other words, those sensors whose
local decisions have been successfully received by the fusion center (in our
scenario, the ` sensors whose decisions are available at the fusion center).
The other class includes the devices that are in failure, in other words,
those sensors whose local decisions have not been received by the fusion
center. Note that the failure of a specific device can have different causes.
One of them could be the malfunction or battery depletion at the sensor.
Other reason could be lost transmissions due to errors in the communication
established between the sensor and the fusion center. Another cause could
even be the use of probabilistic censoring schemes in which the devices
perform and send their local decisions according to a probability chosen in
order to satisfy some criteria, e.g. minimize the overall energy consumption
s.t. a minimum detection performance.

Taking into account that the fusion rule (3.7) is only evaluated for the
` local decisions that have been successfully received, the p.d.f. fD(di)
describes the spacing among the corresponding operational devices, and
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consequently takes the expression

fD(di) = fD(d) =

{
(1− q) qn−1 d = n d

0 d 6= n d
(3.45)

where n ∈ {1, 2, . . .} and i ∈ {2, 3, . . . , `}. Note that the devices are
deterministically equispaced when q = 0, and therefore

fD(di) = fD(d) = δ[d− d]. (3.46)

Now, if we characterize the error exponent given in (3.30) when the devices
are equispaced and each one of them has a failure rate q, for a specific
k ∈ {0, 1} we obtain

ak = ξk

[
1− e−γkd (q (1−mk) +mk)

1− q e−γkd

]
(3.47)

and

bk = (1− ξk)

[
1− e−γkd (q (1−mk) +mk)

1− q e−γkd

]
(3.48)

as a result of substituting (3.42), (3.43) and (3.45) in (3.26) and (3.27)
respectively. Thus, the evaluation of (3.34) for (3.47) and (3.48) yields the
mean correlation strength

ρk =
(1− q)mke

−γkd

1− q e−γkd
. (3.49)

Based on the characterization of K through (3.47)-(3.48) Figure 3.3 plots
how the Neyman-Pearson error exponent behaves when the mean correlation
strength expressed in (3.49) is varied. In this figure, theoretical curves are
generated when q = 0.3, ξ1 takes on the values {0.7, 0.8, 0.9}, and the local
decisions are only dependent under hypothesis H1, i.e. ρ = ρ1. As it can be
seen, for all the represented values of ξ1, K initially decreases as ρ increases,
and after a specific value ρ

∗
, it increases as ρ approaches one. On the one

hand, the initial decreasing behaviour is due to the fact that there is a loss
of discrimination between H0 and H1 when the information provided by
each sensor is more and more correlated without an improvement in the
detection performance of the sensors. On the other hand, the increase of K
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Figure 3.3: For a 1-D parallel network, Neyman-Pearson optimal error
exponent, K, as a function of the mean correlation strength among neighbour
binary decisions, ρ, when they are only dependent under H1, ξ1 =
{0.7, 0.8, 0.9} and the corresponding devices are equally spaced with d equal to
the distance between two neighbour nodes. Parameters: ξ0 = 0.25, γ1 = 0.9,
q = 0.3, and m1 = 1− 10−4.

in ρ happens because, if ρ goes to one, under H1 all local detectors tend to
decide the same hypothesis with an increasing probability. Meanwhile, due
to the fact that ρ0 = 0, when H0 is present each sensor performs its decision
independently of the rest of the network. Thus, discriminating H1 against
H0 is easier (see [Drakopoulos and Lee, 1991]).

In order to find a closed-form expression for the mean correlation strength,
ρ
∗
, at which K achieves a minimum in a specific curve of Figure 3.3, we

have performed a study of the monotonicity of K when ρ = ρ1. After
straightforward algebraic manipulations, the analysis of the monotonicity
of K reveals that the derivative of the error exponent vanishes for two values
of ρ. However, at most one of these two points belongs to the domain where
ρ is defined (see (3.34)). In the case of existing one point of ρ that belongs
to the close interval [0, 1], that point matches ρ

∗
and satisfies

ρ
∗

= 1− a
∗
1

ξ1

(3.50)
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Figure 3.4: For a 1-D parallel network, Neyman-Pearson optimal error
exponent, K, as a function of the mean correlation strength among the
neighbour binary decisions, ρ, when they are dependent under H1 and H0,
ξ1 = {0.7, 0.8, 0.9} and the corresponding devices are equally spaced with d
equal to the distance between two neighbour nodes. Parameters: ξ0 = 0.25,
γ0 = 2, γ1 = 0.9, q = 0.3, P (Hk) = 0.5 and mk = 1− 10−4 with k ∈ {0, 1}.

where, given the following definition,

ϕ(ξ0, ξ1) , ξ4
0 − 4 (1− ξ1) ξ3

0 + 2 (2− ξ1 − 2 ξ2
1) ξ2

0 − 4 ξ1 (1− ξ1) ξ0 + ξ2
1 ,

(3.51)

after simple calculations a
∗
1 is expressed as

a
∗

1 =
2 ξ0 (1− ξ1) + ξ1 − ξ2

0 −
√
ϕ(ξ0, ξ1)

2 (1− ξ1)
. (3.52)

From (3.50)-(3.52) we can observe that ρ
∗

only depends on the detection
features of the devices when their observations are mutually independent
under both hypothesis. What is more, explaining other characteristic of the
behaviour of K as a function of ρ it can be proved that ρ

∗
is shifted closer

to one as the ratio ξ1/ξ0 increases.
Concluding the analysis of Figure 3.3, we can check that the results

obtained in two of the three claims of Corollary 1 occur. In particular, for all
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Figure 3.5: For a 1-D parallel network, Neyman-Pearson optimal error
exponent, K, as a function of the mean correlation strength among the
neighbour binary decisions, ρ, when they are dependent under H1 and H0,
γ1 = {2 · 10−3, 2, 20} and the corresponding devices are equally spaced with d
equal to the distance between two neighbour nodes. Parameters: ξ0 = 0.25,
ξ1 = 0.7, γ0 = 2, q = 0.3, P (Hk) = 0.5 and mk = 1− 10−4 with k ∈ {0, 1}.

the plotted values of ξ1, in Figure 3.3 the derived error exponent collapses to
the Kullback-Leibler divergence, D(B(ξ0)||B(ξ1)), when the local decisions
are independent under both hypothesis. Furthermore, as the third claim of
Corollary 1 asserts, in Figure 3.3 we can note that K diverges when the local
decisions are independent under H0 and tend to be maximally dependent
under H1.

In Figure 3.4 we make the same analysis as in Figure 3.3 with the
proviso that the local decisions are also dependent under H0. For each
one of the curves plotted in Figure 3.4 we can observe that K decreases
as the correlation strength, ρ, increases from the case of independent local
decisions, ρ = 0, to the case of maximally dependent local decisions, ρ = 1. In
addition, it can be seen that the amount of decrease in K becomes smaller
as ρ increases. Nevertheless, the previous behaviour of K w.r.t. ρ is not
common to all the possible set of values that can take the parameters involved
in (3.47) and (3.48). This can be checked in Figure 3.5 where K achieves
different number of maximums and minimums depending on the value that
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γ1 takes on. To be more precise, when the local decisions are dependent
under both hypothesis, ξ0 = 0.25, ξ1 = 0.7, γ0 = 2, q = 0.3, P (Hk) = 0.5
and mk = 1− 10−4 with k ∈ {0, 1}, the derivative of K can be vanished for
two, one or zero values of ρ if γ1 is equal to 0.002, 20 or 2 respectively.

If the local decisions are dependent under H0 and H1, a study of the
monotonicity of K w.r.t. ρ is not analytically tractable. However, as
it happens in Figure 3.3, both in Figure 3.4 and Figure 3.5, when ρ is
equal to zero, K converges to the maximal error exponent derived in the
Stein’s Lemma for the i.i.d. case. Moreover, as it is expected from the
second claim of Corollary 1, in both figures K goes to zero as ρ approaches
one. An interpretation for this convergence of K can be found by realizing
that excessive dependence among the local decisions under both hypothesis
makes the reading of an extra device provide the fusion center with a lot of
redundant information when discriminating H1 against H0.

Before continuing with the analysis of more results, looking at Figures 3.3
and 3.4 it is of great value to note that, as it can be expected, the better is
the detection performance of the devices that form the network, the larger
is the error exponent. This behavior is consistent and can be expected if we
note that the overall detection performance of the network has to improve
when the probability of error of the local detectors is closer to zero under the
assumption of independent sensor observations.

Next, in order to verify the behavior of the probability of miss-detection
predicted by the previous evaluations of the error exponent, we provide some
numerical results. Under the sensor spacing distribution (3.45) we consider
scenarios where the local decisions are only dependent under H1, as well as
scenarios where a mechanism of correlation is also present under the null
hypothesis. For all the values of ρ considered in the different scenarios the
probability of false alarm, P

FA
, is set at 10−2 when q = 0.3, ξ1 = 0.7 and

ξ0 = 0.25.
Figure 3.6 shows the overall probability of miss-detection, PM , as a

function of the number, `, of local decisions successfully received by the
data fusion center. As it happened for the theoretical error exponent when
the local decisions are only dependent under H1, in Figure 3.6 the simulated
detection performance has an unimodal behaviour w.r.t. the mean correlation
strength, ρ. It can be seen that the slope for the probability of miss-detection
initially decreases as ρ increases from zero to a specific value at which the
system detection performance is minimum. At the same time, as long as the
mean correlation strength is greater than this value, it can be also observed
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Figure 3.6: For a 1-D parallel network, system probability of miss-detection,
PM , as a function of the number of local decisions, `, when they are
only dependent under H1, ρ ∈ {0, 0.3, 0.4, 0.6, 0.94, 0.97, 0.999}, and the
corresponding devices are equally spaced with q = 0.3. Parameters: ξ0 = 0.1,
ξ1 = 0.98, γ0 = 2, γ1 = 0.9, and m1 = 1 − 10−4 and P (Hk) = 0.5 with
k ∈ {0, 1}.

that the slope of log [PM ] increases as ρ approaches one. Not only note the
similar magnitude between the corresponding evaluation of ρ

∗
and the mean

correlation strength that makes the slope for the error decay be minimum
in Figure 3.6. In addition, as it can be predicted during the analysis of the
theoretical error exponent plotted in Figure 3.3 for ξ0 = 0.25 and ξ1 = 0.7,
realize that the slopes for the error decay are similar when ρ = 0.3 and
ρ = 0.6.

Finally, in Figure 3.7 we plot how the probability of miss-detection, PM ,
changes when the number of local decisions, `, increases in a scenario where
the local decisions are dependent under both hypothesis. If we look at
the slope shown by log [PM ] under each one of the values considered for
the mean correlation strength, ρ, we can again assert that the numerical
results are seen to coincide with the theoretical predictions based on K.
To be precise, being consistent with the third claim of Corollary 1, in
Figures 3.7(a) and 3.7(b) we can note that the probability of miss-detection
is sub-exponentially decaying when ρ equals one. In addition, we can observe
that, depending on the values that the ratio γ1/γ0 takes on, there can be a

92



!" #" $" %" &" '" ("
!"

!&

!"
!%

!"
!$

!"
!#

!"
!!

!"
"

Number of local decisions, !

P
M

(!
)

)

)

ρ = 0

ρ = 0.3

ρ = 0.6

ρ = 0.9

ρ = 1

(a)

!" #" $" %" &" '" ("
!"

!&

!"
!%

!"
!$

!"
!#

!"
!!

!"
"

Number of local decisions, !

P
M

(!
)

)

)

ρ = 0

ρ = 0.1

ρ = 0.2

ρ = 0.44

ρ = 0.5

ρ = 0.9

ρ = 1

(b)

Figure 3.7: For a 1-D parallel network, system probability of miss-detection,
PM , as a function of the number of local decisions, `, when they are dependent
under H0 and H1, the devices are equally spaced with q = 0.3, and ρ takes
on different values. Parameters: (a) α = 10−2, ξ0 = 0.25, ξ1 = 0.7, γ0 = 2,
γ1 = 0.9, m0 = m1 = 1 − 10−4, P (H0) = P (H1) = 0.5, (b) γ1 = 2 · 10−3 as
well as the rest of the parameters used for (a).
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different number of mean correlation strengths at which the slope of log [PM ]
achieves a maximum or a minimum. For instance, in Figure 3.7(a), when
γ0 = 2 and γ1 = 0.9, we can realize that the exponential decay of the
probability of miss-detection w.r.t. ` is maximized when ρ = 0, and that
the slope for the error decay is monotonically decreasing as ρ approaches
one. However, agreeing with analytical evaluations of K (see Figure 3.5),
the previous decreasing behaviour does not always happen in Figure 3.7(b)
when γ0 = 2 and γ1 = 2 ·10−3. In this case, besides a decrease of the slope of
log [PM ] as ρ increases from zero or as ρ approaches one, there is an interval of
mean correlation strengths where the detection performance of the network
improves as ρ rises. Due to this lack of monotonicity, the slope of log [PM ]
achieves a local minimum and a global maximum for two different values of ρ
whose magnitudes are again close to the ones predicted by the corresponding
evaluation of K.

3.4.2 Exponentially spaced sensors with failures

In this subsection we are going to undertake the deployment of the 1-D
network according to a Poisson distribution with rate λ sensors per unit of
space. This way, the probability that there are ` sensors in a 1-D space
(d0, d0 + ∆] is given by

P ((N(d0 + ∆)−N(d0)) = `) =
e−λ δ (λ δ)`

`!
(3.53)

where ` ∈ {0, 1, 2, . . .} and where N(d0 +∆)−N(d0) is the number of sensors
deployed in the 1-D space (d0, d0 + ∆]. This means that, if the sensors can
be in failure with probability q < 1 independently from sensor to sensor,
this time the sensor spacings are exponentially distributed with placement
density λ (1− q). Thus, with i ∈ {2, 3, . . . , `} and λ = 1/ED{d} = 1/d,

fD(di) = fD(d) = λ (1− q) eλ (1−q) d; d ≥ 0. (3.54)

For (3.54) and the correlation model expressed in (3.42) and (3.43),
using (3.26)-(3.27) and skipping the corresponding straightforward proofs,
the error exponent (3.30) is totally characterized through

ak = ξk

[
1− mk λ (1− q)

γk + λ (1− q)

]
(3.55)
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and

bk = (1− ξk)
[
1− mk λ (1− q)

γk + λ (1− q)

]
(3.56)

with k ∈ {0, 1}. Therefore, after substituting (3.55) and (3.56) in (3.34) we
get

ρk =
mk λ (1− q)
γk + λ (1− q)

. (3.57)

Centering on the sensor spacing model (3.54), Figure 3.8 shows how the
error exponent K changes when the mean correlation strength provided
in (3.57) varies. Theoretical curves of Figure 3.8(a) and (b) have been
generated when q is equal to {0, 0.3, 0.6}. Again, Figure 3.8(a) plots the error
exponent when the local decisions are only dependent under H1, whereas the
curves in Figure 3.8(b) have been obtained when a correlation structure is
present under both hypothesis. The first aspect we can remark regarding
Figure 3.8 is that all the plotted curves again confirm the results asserted by
the Corollary 1 when the dependence among the local decisions matches the
boundary values ρ = 0, ρ = 1, and ρ1 = 1 s.t. ρ0 = 0. Moreover, when we
study the monotonocity of K w.r.t. ρ, we obtain results that are similar to
the ones derived in the corresponding analysis of the preceding subsection.
In Figure 3.8(a), when the local decisions are only dependent under H1, the
error exponent achieves a minimum for a specific value, ρ

∗
, of the mean

correlation strength. Specifically, as it happened for the other sensor spacing
model, an analytic study reveals that the derivative of K w.r.t. ρ at most
vanishes for one point, ρ

∗
, belonging to the domain where ρ is defined and

whose closed-form expression is

ρ
∗

= 1− a∗1/ξ1 (3.58)

when

a
∗

1 = ξ1

3 ξ2
0 − 2 (1 + ξ1) ξ0 + ξ1 −

√
ϕ(ξ0, ξ1)

ξ2
0 − 2 (1− ξ1) ξ0 + ξ1 − 2 ξ2

1 −
√
ϕ(ξ0, ξ1)

(3.59)

and ϕ(ξ0, ξ1) is given by (3.51). Note that, although the definition of a
∗
1

differs from the one provided in (3.52), as we could notice for the previous
sensor spacing distribution, ρ

∗
only depends on the detection features ξ0

and ξ1. Regarding the evolution of K w.r.t. ρ when the local decisions are
dependent under both hypothesis, we again face with a problem that can
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Figure 3.8: For a 1-D parallel network, Neyman-Pearson optimal error
exponent, K, as a function of ρ when the devices are exponentially spaced
with a failure rate q ∈ {0, 0.3, 0.6}. In (a) a correlation structure is only
present under H1 whereas in (b) the dependence among the local decisions
appears in both H0 and H1. Parameters: (a) ξ0 = 0.25, ξ1 = 0.7, γ1 = 0.9,
m1 = 1− 10−4, P (H0) = P (H1) = 0.5, (b) γ0 = 2, m0 = 1− 10−4 as well as
the parameters used for (a). There are three curves in every figure, but all
of them overlap and appear as one.
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not be solved analytically. Only by means of numerical experiments and
simulations similar to the ones shown in Figures 3.8(b) and 3.9, we have
checked that, depending on the values taken by the parameters involved
in (3.55) and (3.56), there are several mean correlation strengths, ρ, at which
K achieves a maximum or a minimum.

Subsequently, we study the effect of the failure rate, q, on K when
the mean correlation strength, ρ, is held fixed. Looking at Figures 3.8(a)
and (b) we can observe that, given a specific mean correlation strength, ρ,
the derived error exponent, K, remains unaltered although the failure rate
varies. This happens because the parameters ak and bk, with k ∈ {0, 1},
do not depend on q when they are written in terms of ρ using the biunique
maps established between d and ρ through (3.33) and (3.57). At the same
time, we can conclude that, for the sensor spacing distribution (3.54), the
dependence of K on q and d can be expressed via the mean correlation
strength, ρ, achieved with those parameters. To put it differently, whenever
ρ remains unchanged and fD(d) equals (3.54), the detection performance
of the Neyman-Pearson fusion rule (3.7) can be the same for different pair
of values (d, q), or equivalently, for different design strategies. Considering
the Neyman-Pearson fusion rule (3.7), we can extend this result to other
sensor spacing distributions as well as other parameters that appear in
a specific correlation model. Nevertheless, not all the scenarios have an
associated ρ whose value describes the joint effect of several design and
physical parameters of the network on K. In that case, although two different
sets of physical and design parameters of the network result in the same mean
correlation strength, ρ, the error exponents of both scenarios do not have to
be necessarily identical.

In order to end this section, we confirm the previous results by means of
different numerical experiments. This time, as in [Misra and Tong, 2008] we
do so by plotting the empirical error exponent

K` = −1

`
ln (PM) (3.60)

as a function of the mean correlation strength, ρ. In particular, for the same
scenarios as in Figure 3.8, in Figure 3.9 we plot K` versus ρ when P

FA
= 10−2

and ` = {30, 40}. If we now analyze the numerically determined curves
in both Figure 3.9(a) and Figure 3.9(b), we can verify that the behaviour
predicted by K holds for K`. On the one hand, in a scenario where the
local decisions are only dependent under H1 the empirical error exponent K`

97



0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mean correlation strength, ρ

E
m

p
ir

ic
al

er
ro

r
ex

p
on

en
t,

K
!

 

 

q = 0

q = 0.3

q = 0.6

!
!"

!
#"

(a)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Mean correlation strength, ρ

E
m

p
ir

ic
al

er
ro

r
ex

p
on

en
t,

K
!

 

 

q = 0

q = 0.3

q = 0.6
!
!"

!
#"

(b)

Figure 3.9: For a 1-D parallel network, Neyman-Pearson empirical error
exponent, K`, as a function of ρ when the devices are exponentially spaced
with a failure rate q ∈ {0, 0.3, 0.6}. The numerically determined curves have
been plotted for a system where ` ∈ {30, 40}. In (a) a correlation structure
is only present under H1 whereas in (b) the dependence among the local
decisions appears in both H0 and H1. Parameters: (a) ξ0 = 0.25, ξ1 = 0.7,
γ1 = 0.9, m1 = 1− 10−4, P (H0) = P (H1) = 0.5, (b) γ0 = 2, m0 = 1− 10−4

as well as the parameters used for (a). In every figure there are three curves
for every value of ρ, but all of them overlap and appear as one.
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plotted in Figure 3.9(a) is seen to be unimodal in ρ independently of the
failure rate q. On the other hand, in Figure 3.9(b), when γ0 = 2, γ1 = 0.9,
q = {0, 0.3, 0.6}, and the local decisions have a correlation structure under
both hypothesis, K` is monotonically decreasing in ρ and converges to zero as
ρ approaches one. Looking at both figures, as predicted by our asymptotic
analysis, in Figures 3.9(a) and 3.9(b) we can also realize that K` remains
unaltered for different failures rates, q, as long as the resulting ρ is the same.
In addition, we are able to note that the magnitude of K and K` do not
coincide. However, as we can expect from the subsequent expression

lim
`→∞

K` = K, (3.61)

they are in relatively close agreement in both Figure 3.9(a) and Figure 3.9(b).
Despite this last fact, if we take into account the rest of the numerical results
as well as the ones obtained in similar simulations over a wide variety of
parameters, we can conclude that, even for the case where ` is finite, K
is useful when predicting the detection performance of the sensor network
described in Section 3.2.

3.5 Summary

In this chapter we characterized a distributed detection system with parallel
architecture and formed by a large number of devices as well as data
fusion center. With no kind of cooperation and from its own observation
each device performs a local decision for the underlying binary hypothesis
testing problem. Afterwards, over an error free parallel access channel each
sensor transmits its decision to a fusion center that makes a binary global
decision, u

FC
, under the Neyman-Pearson formulation. We also considered

that the devices are randomly deployed along a straight line, and that the
corresponding sensor spacings are drawn independently from a common p.d.f.
fD(d). Additionally, the local decisions were assumed to be dependent under
both hypothesis because of the correlation structure of the phenomenon
observed by the devices under each one of the two hypothesis. In particular,
under both hypothesis the dependence among the local decisions is modelled
by means of a 1-D MRF with nearest-neighbour dependency and binary state
space. For this scenario, we firstly derived a closed-form error exponent
for the Neyman-Pearson test performed at the fusion center when this one
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only knows fD(d) regarding the sensor spacings. Afterwards, based on a
single correlation index that captures the mean correlation strength among
neighbour local decisions, some analytical properties of the derived error
exponent were investigated. Finally, after choosing a physical model for
the conditional probabilities of the MRF present under each hypothesis,
we evaluated the derived error exponent for two different models of the
sensor spacing: i) equispaced sensors with failures, and ii) exponentially
spaced sensors with failures. In each model of the sensor spacing, by means
of the corresponding evaluations of the error exponent and supported by
several numerical experiments we analyzed how the error exponent behaves
as different physical and design parameters of the network vary.

3.A Proof of Theorem 1

Since the error exponent for the Neyman-Pearson detector with a fixed level
α ∈ (0, 1) is given in implicit form by the asymptotic Kullback-Leibler
rate (3.17), we focus on the calculation of this limit for the scenario described
in Section 3.2. Taking into account (3.13), the limit (3.17) can be rewritten
as follows

K = lim
`→∞

1

`
ln

(
Z1

Z0

)
+ lim

`→∞

1

`

∑̀
i=2

ln

(
ψ(ui, ui−1|H0)

ψ(ui, ui−1|H1)

)
(a.s. in H0). (3.62)

Using the characterization of ψ(ui, ui−1|Hk) provided in (3.25) for k ∈ {0, 1}
and valid as long as (3.20)-(3.23) hold, we have that

K = ln

(
a0

a1

)
lim
`→∞

N(0, 1|u, H0)

`

+ ln

(
b0

b1

)
lim
`→∞

N(1, 0|u, H0)

`
+ ln

(
(1− a0)

(1− a1)

)
lim
`→∞

N(0, 0|u, H0)

`

+ ln

(
(1− b0)

(1− b1)

)
lim
`→∞

N(1, 1|u, H0)

`
(a.s. in H0)

(3.63)

where

• ak and bk are obtained from (3.26) and (3.27) respectively.
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• N(ui−1, ui|u, H0) is the number of times that the pair of local decisions,
(ui−1, ui), occurs in the sequence u defined on U ` and drawn from
PU |H(u|H0).

Next, we focus on calculating an asymptotic closed-form expression for
the empirical joint probability of the pair, (ui−1, ui),

N(ui−1,ui|u,H0)
`

. For
this calculation, from [Spitzer, 1971] we firstly have to know that the
homogeneous MRF associated with PU |H(u|H0) has a one-to-one map onto

a homogeneous two-state Markov chain uniquely determined by a0 and b0.
From this result, it is straightforward to show that

lim
`→∞

N(ui−1, ui|u, H0)

`
= P (Ui|Ui−1, H0)µ0(ui−1) (3.64)

whenever the Markov chain associated with the MRF present under H0 is
regular with µ0(ui−1) equal to the unique and stationary probability of state
ui−1. Now, if we substitute (3.31) and (3.64) into (3.63) we get the closed-
form error exponent provided in Theorem 1.

Finally, besides guaranteeing the existence of the error exponent, K, we
have to show the regularity of the Markov chain that has a biunique map
with the MRF involved in the hypothesis H0 of the detection process (3.7).
On the one hand, the existence of K is ensured when

0 < ak, bk < 1 (3.65)

happens for k ∈ {0, 1}. On the other hand, the regularity of the
aforementioned Markov chain is held if

PU1|H(u1|H0)� PU1|H(u1|H1) (3.66)

and (3.65) occurs for k = 0 (see [Kemeny and Snell, 1976]). Hence, proving
that (3.65) holds for k ∈ {0, 1}, and that (3.66) occurs, we complete the
proof of Theorem 1. In this case, the initial assumptions of the theorem are
the starting point. Firstly, if we take into account that PU1|H(u1|Hk) =
PU1|H(u1|Hk) for k ∈ {0, 1}, assuming PU1|H(u1|H0) � PU1|H(u1|H1)
makes (3.66) hold. Secondly, given the two subsequent expressions obtained
from the classical probability theory

p1p
k (di+1, di+2) =

p0
k(di+1, di+2) p

1
k(di, di+1)

(
1− p0

k(di, di+1)
)

%k(di, di+1))
(3.67)
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p2
k(di+1, di+2) =

p1
k(di+1, di+2) p

1
k(di, di+1)

(
1− p0

k(di, di+1)
)

ϑ(di, di+1))
(3.68)

with

%k(di, di+1)) = p0
k(di, di+1)

(
1− p0

k(di+1, di+2)− p1
k(di, di+1)

)
+ p0

k(di+1, di+2) p1
k(di, di+1)

(3.69)

and

ϑ(di, di+1)) = p0
k(di, di+1)

(
1− p1

k(di+1, di+2)− p1
k(di, di+1)

)
+ p1

k(di+1, di+2) p1
k(di, di+1)

(3.70)

we are going to check that 0 < p1p
k (di+1, di+2), p2

k(di+1, di+2) < 1 if

0 < p0
k(di, di+1), p1

k(di, di+1) < 1

and
0 < p0

k(di+1, di+2), p1
k(di+1, di+2) < 1

happen for k ∈ {0, 1} and i ∈ {2, 3, . . . , ` − 3, ` − 2}. Now, we prove the
lower and upper bounds of p1p

k (di+1, di+2), while, for the sake of brevity, we
will omit the corresponding proofs for p2

k(di+1, di+2) since they require an
analogous development focused on (3.68). Before proceeding, note that the
term

A1 = p0
k(di+1, di+2) + p1

k(di, di+1)
(
1− p0

k(di+1, di+2)
)
< 1 (3.71)

since p0
k(di+1, di+2), p1

k(di, di+1) < 1, and because A1 is a strictly increasing
function of p1

k(di, di+1) when p0
k(di+1, di+2) is held fixed and vice versa, i.e.,

∂A1

∂ p1
k(di, di+1)

= 1− p0
k(di+1, di+2) > 0, (3.72)

∂A1

∂ p0
k(di+1, di+2)

= 1− p1
k(di, di+1) > 0 (3.73)

for p0
k(di+1, di+2), p1

k(dit, di+1) < 1. Additionally, we have that A1 is lower
bounded by 0 since p0

k(di+1, di+2), p1
k(di, di+1) > 0 and p0

k(di+1, di+2) < 1.
This way, multiplying by p0

k(di, di+1) > 0 both sides of (3.71) yields

p0
k(di, di+1) >p0

k(di, di+1)
[
p1
k(di, di+1)

(
1− p0

k(di+1, di+2)
)]

+ p0
k(di, di+1) p0

k(di+1, di+2)
(3.74)
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Summing the term p0
k(di+1, di+2) p1

k(di, di+1) in both sides of (3.74), after
some algebraic manipulations we are able to obtain

p0
k(di+1, di+2) p1

k(di, di+1) + p0
k(di, di+1)

(
1− p1

k(di, di+1)− p0
k(di+1, di+2)

)
> p0

k(di+1, di+2) p1
k(di, di+1)

(
1− p0

k(di, di+1)
)
.

(3.75)

From (3.75) together with (3.67) and (3.69) we can straightforwardly check
that p1p

k (di+1, di+2) < 1. Moreover, continuing the analysis of (3.67), it can
be verified that p1p

k (di+1, di+2) > 0 when

p0
k(di+1, di+2) p1

k(di, di+1)
(
1− p0

k(di, di+1)
)
> 0 (3.76)

and %k(di, di+1)) > 0. On the one hand, (3.76) is direct consequence of the
initial assumptions

p0
k(di, di+1), p0

k(di+1, di+2), p1
k(di, di+1) ∈ (0, 1).

On the other hand, we can show that %k(di, di+1)) > 0 by realizing that the
l.h.s. of (3.75) is equal to %k(di, di+1)) whereas the r.h.s. is greater than 0 as
long as p0

k(di+1, di+2) p1
k(di, di+1) > 0 and p0

k(di, di+1) < 1.
Last step consists in showing that 0 < ptk(di, di+1) < 1 implies that

0 < ak, bk < 1 for all i belonging to the set {2, 3, . . . , ` − 1}, k ∈ {0, 1}
and t ∈ {0, 1, 1p, 2}. If we use the inequalities obtained when imposing the
upper bounds ptk(di, di+1) < 1 on (3.20)-(3.23)

p
(1,0)
k (di)p

(0,1)
k (di+1) > 0, (3.77)

p
(1,0)
k (di)(1− p(0,1)

k (di+1)) > 0, (3.78)

(1− p(0,1)
k (di))p

(0,1)
k (di+1) > 0, (3.79)

(1− p(0,1)
k (di))(1− p(0,1)

k (di+1)) > 0, (3.80)

as well as some of the inequalities corresponding to the lower bounds,
ptk(di, di+1) > 0,

(1− p(1,0)
k (di))(1− p(1,0)

k (di+1)) > 0, (3.81)

(1− p(1,0)
k (di))p

(1,0)
k (di+1) > 0, (3.82)

p
(0,1)
k (di)(1− p(1,0)

k (di+1)) > 0, (3.83)
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p
(0,1)
k (di)p

(1,0)
k (di+1) > 0, (3.84)

we can straightforwardly prove that the bounds 0 < p
(0,1)
k (di), p

(1,0)
k (di) < 1

hold for i ∈ {1, 2, . . . , `}. In this way and concluding the proof, from (3.26)
and (3.27) we have that

0 < ak =

∫
D
p

(0,1)
k (di) fD(di) ddi <

∫
D

1 · fD(di) ddi = 1 (3.85)

and

0 < bk =

∫
D
p

(1,0)
k (di) fD(di) ddi <

∫
D

1 · fD(di) ddi = 1 (3.86)

when 0 < ptk(di, di+1), pvk(d2, d3) < 1 happens for t ∈ {0, 1}, i ∈ {2, 3, . . . , `−
1} and v ∈ {1p, 2}.

3.B Proof of Corollary 1

When the local decisions are independent under hypothesis Hk

p0
k(di, di+1) = p1

k(di, di+1) = p1p

k (di, di+1) = p2
k(di, di+1) (3.87)

occurs with k ∈ {0, 1} and i ∈ {2, 3, . . . , ` − 1}. This means that, for
i ∈ {1, 2, . . . , `}, the i-th device performs its own local decision independently
of its nearest neighbour nodes. At the same time, the aforementioned
independence entails that the conditional probabilities, ptk(di, di+1) with
t ∈ {0, 1, 1p, 2}, do not depend on the pair of distances (di, di+1). Because
of this, using (3.20)-(3.23) and (3.26)-(3.27), the constraint obtained when
substituting (3.34) in the equality ρk = 0 can be written as follows

ak = 1− bk = P (Ui = 1|Hk) = ξk. (3.88)

Concluding the proof of the first claim, we can substitute (3.88) in (3.30) in
order to verify that the error exponent K equals D(B(ξ0)||B(ξ1)) when the
local decisions are independent, i.e. ρ = 0.

Next we focus on the second claim of Corollary 1. When the local
decisions are maximally dependent under Hk, for k ∈ {0, 1} and i ∈
{2, 3, . . . , `− 1} we have that

p0
k(di, di+1) = 1− p2

k(di, di+1) = 1, (3.89)
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or that p
(0,1)
k (di) = p

(1,0)
k (di) = 0 if we take (3.20) and (3.23). From (3.26)

and (3.27), (3.89) results in

ak = bk = 0, (3.90)

or equivalently ρk = 1 as the definition provided in (3.34). Hence, for all
k ∈ {0, 1}, the behaviour of K when the local decisions tend to be maximally
dependent is given through the limit

lim
ρ→1

K = lim
ak,bk→0

K
(a)
= lim

ak,bk→0

a0 b0

a0 + b0

ln

(
a0

a1

)
︸ ︷︷ ︸

,A1

+ lim
ak,bk→0

a0 b0

a0 + b0

ln

(
b0

b1

)
︸ ︷︷ ︸

,A2

+ lim
ak,bk→0

b0 − b0 a0

a0 + b0

ln

(
1− a0

1− a1

)
︸ ︷︷ ︸

,A3

+ lim
ak,bk→0

a0 − a0 b0

a0 + b0

ln

(
1− b0

1− b1

)
︸ ︷︷ ︸

,A4

(3.91)

where (a) follows from substituting (3.31) in (3.30). From the closed-form
error exponent provided in (3.30) we can easily show that K ≥ 0, and
consequently, we can assert that

lim
ρ→1

K = lim
ak,bk→0

K = A1 + A2 + A3 + A4 ≥ 0. (3.92)

Deriving an upper bound for (3.91) we firstly have

A1 = lim
ak,bk→0

a0 b0

a0 + b0

ln

(
a0

a1

)
= lim

ak,bk→0

a0 b0

a0 + b0

[ln (a0)− ln (a1)]

(a)

≤ − lim
ak,bk→0

a0 b0

a0 + b0

ln (a1)
(b)

≤ − lim
ak,bk→0

a0 b0

b0

ln (a1)

= − lim
(a0,a1)→(0,0)

a0 ln (a1)
(c)
= 0

(3.93)

where (a) and (b) follow since, whenever the local decisions are not maximally
dependent under both hypothesis, a0, b0 and a1 are strictly positive and
do not take on values greater than one, and (c) is easily shown if the limit
lim(a0,a1)→(0,0) a0 ln (a1) is calculated by applying l’Hôpital rule after changing
a0 and a1 to polar coordinates. In addition, if we make an analogous
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development we can prove that A2 ≤ 0. Now, considering the evaluation
of A3 we obtain

A3 = lim
ak,bk→0

b0 − b0 a0

a0 + b0

ln

(
1− a0

1− a1

)
= lim

ak,bk→0

b0 (1− a0)

a0 + b0

[ln (1− a0)− ln (1− a1)]

(a)

≤ − lim
ak,bk→0

b0 (1− a0)

a0 + b0

ln (1− a1)
(b)

≤ − lim
ak,bk→0

b0 (1− a0)

b0

ln (1− a1)

= − lim
(a0,a1)→(0,0)

(1− a0) ln (1− a1)
(c)
= −1 ln(1) = 0

(3.94)

where (a) and (b) follow because of the same reasons as (a) and (b) in (3.93),
and (c) is due to the fact that the function (1− a0) ln (1− a1) is continuous
at the point (0, 0). Again, using a reasoning similar to the previous one we
can prove that A4 ≤ 0. This way, the subsequent inequality is obtained

lim
ρ→1

K = lim
ak,bk→0

K = A1 + A2 + A3 + A4 ≤ 0. (3.95)

Therefore, we complete the proof of the second claim because (3.92)
and (3.95) yield

lim
ρ→1

K = lim
ak,bk→0

K = A1 + A2 + A3 + A4 = 0. (3.96)

Now, consider the last claim of the Corollary 1. If the binary local
quantizations are maximally dependent under H1 and independent under
H0, (3.88) holds for k = 0 whereas (3.90) happens for k = 1. Thus, in order
to know how K behaves when the local decisions are independent under
the null hypothesis and they tend to be maximally dependent under the
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alternative, we evaluate the limit

lim
ρ1→1

K(ρ0 = 0) = lim
(a1,b1)→(0,0)

K(a0 = 1− b0 = ξ0)
(a)
= lim

a1→0
ξ0 (1− ξ0) ln

(
ξ0

a1

)
︸ ︷︷ ︸

,B1

+ lim
b1→0

ξ0 (1− ξ0) ln

(
1− ξ0

b1

)
︸ ︷︷ ︸

,B2

+ lim
a1→0

(1− ξ0)2 ln

(
1− ξ0

1− a1

)
︸ ︷︷ ︸

,B3

+ lim
b1→0

ξ2
0 ln

(
ξ0

1− b1

)
︸ ︷︷ ︸

,B4

(3.97)

where (a) follows after using the definition of µ0(0) provided in (3.31). Due
to the fact that B1 = B2 =∞ and B3, B4 <∞ for ξ0 ∈ (0, 1), we are able to
assert that the limit (3.97) is equal to infinity. This ends the proof.
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Chapter 4

Neyman-Pearson fusion of
Markov local decisions in a 2-D
network

4.1 Introduction

As it happened under the assumption of conditionally independent sensor
observations, various works provided answers to different aspects that appear
when designing distributed detection systems with dependent observations.
To do that, as we commented in the introduction of the previous chapter,
considering a 1-D setting many of these works addressed aspects such
the impact of sensor density as well as the kind of channel between the
sensors and the fusion center on the detection performance of the network.
Some of these results can be found in [Chamberland and Veeravalli, 2006],
[Li and Dai, 2007] and [Plata-Chaves and Lázaro, 2011].

Although there are several results for 1-D sensor networks, the literature
that solves the cited problem in a 2-D setting is less extensive. Some of
the existing results are [Anandkumar et al., 2009] and [Sung et al., 2009].
Under the Neyman-Pearson formulation [Anandkumar et al., 2009] derived
a closed-form error exponent when a test for independence is considered, and
when the correlation structure of the sensor observations is given by a nearest-
neighbour Gauss-Markov random field (GMRF). In this way, the authors
characterized the detection performance of the employed Neyman-Pearson
fusion rule w.r.t. different design parameters of the network, e.g. the density
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of the deployment or the signal to noise ratio of the observations performed
by the devices. In [Sung et al., 2009] the authors investigated the amount of
information obtainable from a sensor network where the devices are located
on a 2-D lattice, and where under each one of the two hypothesis the
observations received by the fusion center are distributed according to a 2-D
hidden GMRF defined by a symmetric first-order conditional autoregression
model. Toward this goal, the authors used implicit expressions of the
Kullback-Leibler rate and the mutual information rate as the information
measures.

However, up to now no work obtains analytically tractable expressions
that allow the design of 2-D sensor networks where the devices are located
on a rectangular grid and where the Neyman-Pearson fusion rule is performed
on dependent quantized summaries of the sensor observations. Because of
this, in the spirit of [Chamberland and Veeravalli, 2006], [Li and Dai, 2007],
and [Anandkumar et al., 2009], we extend the results of the previous chapter
in order to derive a closed-form error exponent for the Neyman-Pearson
fusion rule performed by the fusion center of the parallel network shown in
Figure 4.1. This derivation is carried out when the correlation structure of the
local decisions is modelled with 2-D random fields defined on a discrete space.
Specifically, among the extremely few 2-D discrete fields that are analytically
tractable, we have considered a 2-D random process that, used as observation
model in different applications such as image processing and coding, is
constructed from a first-order binary Markov chain (see [Pickard, 1977],
[Champagnat et al., 1998] and [Justesen, 2005]). This way, in this part of
the dissertation, by means of the resulting closed-form expression of the error
exponent we provide an amenable tool that links the detection performance of
a 2-D version of the sensor network described in [Drakopoulos and Lee, 1991]
with some of its physical and design features.

This chapter is organized as follows. The problem is stated in Section 4.2.
In section 4.3, in the large deviation framework we present the derivation
of the closed-form error exponent of the Neyman-Pearson test performed
at the data fusion center of the network plotted in Figure 4.1. In order to
analyze how the detection performance behaves as the density of the network
changes, Section 4.4 shows several simulation results based on the derived
error exponent. Next, Section 4.5 gives a summary of the results of this
chapter. Finally, as a matter of organization style, we defer all proofs of this
chapter to a pair of appendices.
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Figure 4.1: Block diagram of a 2-D parallel fusion network.

4.2 Problem statement

We consider a network formed by a data fusion center and NL devices located
on a 2-D lattice IN,L where, as it is shown in Figure 4.1, the sensors belonging
to a specific row or column of the lattice are equally spaced. In order to decide
what state of the phenomenon is present, H0 or H1, the distributed system
undertakes the following steps. As it happened in the network considered in
Chapter 3, each device firstly performs a local observation of the environment,
yi,j. Secondly, it applies a binary detection rule to it, γi,j(yi,j), not necessarily
based on LLRT. This way, each device makes a local decision, ui,j = γi,j(yi,j),
regarding the state of the phenomenon of interest. Thirdly, the binary local
quantizations of the sensor observations are transmitted to the fusion center
over error free parallel access channels. Finally, based on the NL local
decisions taken by the devices of the network, the fusion center makes a
global decision, u

FC
, under the Neyman-Pearson formulation. Considering

that the correlation structure of the local decisions is hypothesis dependent
and modelled with a 2-D called Pickard field (see [Pickard, 1977]) where
the rows and columns are outcomes of the same first-order binary Markov
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chain, under the Neyman-Pearson formulation we have the following inference
problem at the fusion center

Hk: U ∼ 2-D process where the binary local quantizations
belonging to a specific row i ∈ {1, . . . , N} or column
j ∈ {1, . . . , L} form the same first-order Markov
chain, Mk, with transition matrix

Πk =

p(0,0)
k (d,Pk) p

(0,1)
k (d,Pk)

p
(1,0)
k (d,Pk) p

(1,1)
k (d,Pk)

T


(4.1)

where, for k ∈ {0, 1},

• U = [U1,1, U2,1, . . . , UN,1, . . . , U1,L, . . . , UN,L]T , defined on UNL with
U = {0, 1}, denotes the NL local decisions performed by the NL
devices that form the network.

• p(0,1)
k (d,Pk) and p

(1,0)
k (d,Pk) are the transition probabilities of the

Markov chain, Mk, that extends along the rows and columns of IN,L
under Hk, i.e. for um, um−1 ∈ {0, 1}

p
(um−1,um)
k (d,Pk) = P (Um = um|Um−1 = um−1, d,Pk, Hk). (4.2)

• d is the distance between two neighbour devices that belong to the
same row or column of the lattice IN,L.

• Pk is the set of physical and design parameters of the network that
being known by the data fusion center are arguments of the transition
probabilities associated with the Markov chain Mk (e.g. the employed
local decision rules or the physical properties of the environment where
the network is deployed).

Given the correlation structure assumed for U under both hypothesis
and according to [Drakopoulos and Lee, 1991], if the spacing between the
nearest neighbors, d, is known by the data fusion center, the optimal fusion
rule ensuring that P

FA
≤ α ∈ (0, 1) in (4.1) is given by the subsequent
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Neyman-Pearson detector

u
FC

=



1 if ln
(
PU|D,P,H(u|d,P0,H0)

PU|D,P,H(u|d,P1,H1)

)
< τ,

γ if ln
(
PU|D,P,H(u|d,P0,H0)

PU|D,P,H(u|d,P1,H1)

)
= τ,

0 otherwise,

(4.3)

where, for k ∈ {0, 1} and

V1
NL(τ) =

{
u : ln

(
PU |D,P,H(u|d,P0, H0)

PU |D,P,H(u|d,P1, H1)

)
< τ

}
, (4.4)

τ is the smallest number such that

ς =
∑

u∈V1
` (τ)

PU |D,P,H(u|d,P0, H0) ≤ α
(4.5)

and γ ∈ {0, 1} is a randomization function that takes on the value 1 with
the subsequent probability

ν =

{
1 if ϑ = 0,
α−ς
ϑ

otherwise
(4.6)

with

ϑ = P

(
ln

(
PU |D,P,H(u|d,P0, H0)

PU |D,P,H(u|d,P1, H1)

)
= τ

∣∣∣∣H0

)
. (4.7)

Note that, due to the causality of the correlation model assumed under
Hk, the local decision Ui,j is independent of the rest of the binary local
quantizations when some of the ones taken by the neighbour nodes are known.
Specifically, given the hypothesis Hk, with k ∈ {0, 1}, the local decisions
responsible for the aforementioned conditional independence are established
by the directions that the Markov chains Mk adopt when extending along
the rows and columns of the 2-D lattice, IN,L. For instance, as it happens
in [Justesen, 2005], if we assume that, under both hypothesis H0 and H1,
the Markov chains extend from left to right along the rows and from
top to bottom along the columns, in [Pickard, 1977] it was showed that
Ui,j is independent of the rest of the local decisions when Ui,j−1, Ui−1,j
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and Ui−1,j−1 are known. Nonetheless, under a more general definition of
the considered symmetric Pickard field (see [Champagnat et al., 1998]), the
author in [Justesen, 2005] used a stationarity condition associated with the
Markov chain Mk in order to prove that, under Hk with k ∈ {0, 1}, Ui,j is also
conditionally independent of the rest of the binary local quantizations when
Ui,j−1 and Ui+1,j are given. Without loss of generality and from now and
on, given the hypothesis Hk we are going to assume the previous conditional
independence as well as the corresponding direction in the flow of the Markov
chains present in each column and row of IN,L. Consequently, after omitting
whatever kind of dependency on Pk for the sake of simplicity, the joint p.m.f.
PU |D,H(u|d,Hk) involved in (4.3) can be factorized as follows

PU |D,H(u|d,Hk) =PU1,1|H(u1,1|Hk)×
N∏
i=2

PUi,1|Ui−1,1,D,H(ui,1|ui−1,1, d,Hk)

×
L∏
j=2

PUN,j |UN,j−1,D,H(u
N ,j|uN ,j−1, d,Hk)

×
N−1∏
i=1

L∏
j=2

PUi,j |Ui+1,j ,Ui,j−1,D,H(ui,j|ui+1,j, ui,j−1, d,Hk)

(4.8)

where, for k ∈ {0, 1}, PU1,1|H(u1,1|Hk) equals the p.m.f. of the initial state
associated with the 2-D random process present under Hk,

PUi,j |Ui−1,j ,D,H(ui,j|ui−1,j, d,Hk) =
∑

(r,s)∈U2

p
(s,r)
k (d)δ[r − ui,j]δ[s− ui−1,j] (4.9)

with i ∈ {2, 3, . . . , N} and j ∈ {1, 2, . . . , L},

PUi,j |Ui,j−1,D,H(ui,j|ui,j−1, d,Hk) =
∑

(r,s)∈U2

p
(s,r)
k (d)δ[r − ui,j]δ[s− ui,j−1]

(4.10)

with i ∈ {1, 2, . . . , N} and j ∈ {2, 3, . . . , L}, and

PUi,j |Ui+1,j ,Ui,j−1,D,H(ui,j|ui+1,j, ui,j−1, d,Hk)

=
∑

(t,r,s)∈U3

p
(t,r)
k (d) p

(r,s)
k (d)

p̂
(t,s)
k (d)

δ[t− ui,j−1]δ[s− ui+1,j]δ[r − ui,j]
(4.11)
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with i ∈ {1, 2, . . . , N − 1}, j ∈ {2, 3, . . . , L} and

p̂
(t,s)
k (d) =

1∑
v=0

p
(t,v)
k (d) p

(v,s)
k (d). (4.12)

4.3 Error exponent

Here we provide a tool that allows the design and analysis of a sensor
network as the one described in the previous section. To be specific, based on
information theoretic results we derive a design tool that links the detection
performance of the Neyman-Pearson test (4.3) with different physical and
design parameters of the network shown in Figure 4.1. In order to accomplish
this aim, we would want to characterize the overall probability of detection
of the network

PD =
∑

u∈V1
NL(τ)

PU |D,H(u|d,H1)

+ ν · P
(

ln

(
PU |D,H(u|d,H0)

PU |D,H(u|d,H1)

)
= τ

∣∣∣∣H1

) (4.13)

when a fixed constraint is imposed on the overall false alarm probability, i.e.
when P

FA
≤ α ∈ (0, 1). However, as it happened under the 1-D setting, the

derivation of a closed-form expression for (4.13) is not possible. Because of
this, our approach has focused on the analytic tools provided by the large
deviations theory corresponding with Neyman-Pearson hypothesis tests. In
particular, similarly to the previous chapter our objective is to derive a closed-
form expression of the exponential rate of decay in PM = 1−PD as N and L
approach infinity and when P

FA
≤ α ∈ (0, 1). As it is proved in [Vajda, 1989],

this problem results in calculating the almost-sure limit under H0 of the
asymptotic Kullback-Leibler rate

K , lim
N,L→∞

− 1

N · L
log (PM)

= lim
N,L→∞

1

N · L
ln

(
PU |D,H(u|d,H0)

PU |D,H(u|d,H1)

)
(a.s. in H0).

(4.14)

In this way, we arrive at the following theorem.
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Theorem 2. Suppose that 0 < p
(um−1,um)
k (d) < 1 for all um, um−1, k ∈ {0, 1}

and that the p.m.f. of the local decision U1,1 under H0 is absolutely continuous
w.r.t. the corresponding one under H1, PU1,1|H(u1,1|H0) � PU1,1|H(u1,1|H1).
Then, given a fixed constraint P

FA
≤ α ∈ (0, 1), the best Neyman-Pearson

error exponent for the distributed detection problem given by Equation (4.1)
is

K =
∑

(t,r,s)∈U3

π
(t)
0 (d) p

(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p

(t,r)
0 (d) p

(r,s)
0 (d) p̂

(t,s)
1 (d)

p
(t,r)
1 (d) p

(r,s)
1 (d) p̂

(t,s)
0 (d)

)
= D(P (ui,j|ui+1,j, ui,j−1, d,H0)||P (ui,j|ui+1,j, ui,j−1, d,H1))

(4.15)

where

• U3 equals the cartesian product of the set U = {0, 1} with itself, three
times.

• π(0)
0 (d) = 1 − π

(1)
0 (d) = P (u = 0|H0) =

p
(1,0)
0 (d)

p
(1,0)
0 (d)+p

(0,1)
0 (d)

is the unique

stationary probability of deciding H0 when the 2-D random process
constructed from the Markov chain, M0, is present.

• D(P (ui,j|ui+1,j, ui,j−1, d,H0)||P (ui,j|ui+1,j, ui,j−1, d,H1)) is the
conditional Kullback-Leibler divergence of

PUi,j |Ui+1,j ,Ui,j−1,D,H(ui,j|ui+1,j, ui,j−1, d,H0)

and

PUi,j |Ui+1,j ,Ui,j−1,D,H(ui,j|ui+1,j, ui,j−1, d,H1)

in the stationary regime.

Proof. See Appendix 4.A.

Next, as it occurred in Chapter 3, we are interested in investigating some
analytical properties of the derived error exponent when the dependence
among the local decisions takes on some specific values. To do that, as a
measure of the aforementioned dependence we use a particularization of the
correlation index derived in the previous chapter (see (3.34)). To be more
precise, capturing the mean correlation strength among the random variables
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corresponding with neighbour steps of a first-order Markov chain with binary
state space, the used index is defined as

ρ =


P (H0)ρ0 + P (H1)ρ1 When the local decisions are

dependent under H0 and H1.
ρk When the local decisions are only

dependent under Hk.

(4.16)

where, for all k ∈ {0, 1}, P (Hk) ∈ (0, 1) denotes the prior probability of
hypothesis Hk and

ρk = 1− p(0,1)
k (d)− p(1,0)

k (d) ∈ [0, 1]. (4.17)

Looking at (4.17), for some hypothesis, Hk, with k ∈ {0, 1}, we can easily see
that ρk is equal to zero when the local decisions taken by neighbour nodes are
conditionally independent and that ρk equals one when they are maximally
dependent according to the definition given in [Drakopoulos and Lee, 1991].
Precisely, combinations of these two correlation values under H0 and H1

describe the scenarios of interest considered in the study of K w.r.t. ρ carried
out in the subsequent corollary.

Corollary 2. The error exponent K derived in Theorem 2 satisfies the next
three claims.

1) When the local decisions are independent under H0 and H1, K is
equal to the Kullback-Leibler divergence D(B(ξ0)||B(ξ1)) where, for
k ∈ {0, 1}, B(ξk) denotes a Bernoulli random variable with probability
of success ξk = P (Ui = 1|Hk) ∈ (0, 1),

K(ρ = 0) = (1− ξ0)ln

(
1− ξ0

1− ξ1

)
+ ξ0ln

(
ξ0

ξ1

)
= D(B(ξ0)||B(ξ1)).

(4.18)

2) When the local decisions tend to be maximally dependent under H0 and
H1, K converges to zero,

lim
ρ→1

K = 0. (4.19)
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3) When the local decisions tend to be maximally dependent under H1 at
the same time as they are independent under H0, K diverges,

lim
ρ1→1

K =∞ s.t. ρ0 = 0. (4.20)

Proof. See Appendix 4.B.

Looking at the previous corollary we can remark that, in a 2-D parallel
network solving (4.1), the error exponent for the optimal Neyman-Pearson
rule has the same behaviour as the corresponding one provided in Theorem 1
under a 1-D setting. Specifically, focusing on the first claim we can realize
that, if the local decisions are independent under H0 and H1, the closed-
form expression, K, obtained in Theorem 2 is consistent with Stein’s Lemma
given in [Cover and Thomas, 2006]. Additionally from the second claim we
can see that the derived error exponent provided in (4.15) converges to zero
as the correlation strength among neighbor decisions approaches one. Again,
as we stated for a 1-D parallel network fusing Markov local decisions (see
Chapter 3), this behaviour is explained if we realize that, when the local
decisions are maximally dependent under both hypothesis

PU |D,H(u|d,H0) = PU |D,H(u|d,H1). (4.21)

Finally, we can note that, if the local decisions are maximally dependent
under the 2-D observation model given in (4.1) for Hk with k ∈ {0, 1},
according to the results obtained in [Drakopoulos and Lee, 1991] the support
of PU |D,H(u|d,Hk) only consists of the two possible events where all the NL
devices decide the same hypothesis. Taking into account that the support
of PU |D,H(u|d,Hk) is formed by all the 2N L binary N L-tuples when the
local decisions are conditionally independent under Hk, we can easily see
check that PU |D,H(u|d,H1)� PU |D,H(u|d,H0) when ρ0 = 0 and ρ1 = 1 with
ρk defined in (4.17). Although PU1,1|D,H(u1,1|d,H0) � PU1,1|D,H(u1,1|d,H1)
holds, concluding the current section this last fact explains the divergence of
the limit computed in the third claim of Corollary 2.

4.4 Characterization of the error exponent

Through synthetic experiments based on the evaluation of K for a specific
physical model of the transition probabilities, in this section we give
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some insights into the behaviour of K when different design and physical
parameters of the network vary. In particular, we will pay special attention
to the dependency of K w.r.t. the mean correlation strength among local
decisions taken by neighbour nodes (see (4.16) and (4.17)).To carry out this
study we have considered the following physical model for the transition
probabilities of the Markov chains, M0 and M1,

p
(0,1)
k (d) = 1− p(0,0)

k = ξk(1−mke
−γk d) (4.22)

and
p

(1,0)
k (d) = 1− p(1,1)

k = (1− ξk) (1−mke
−γk d) (4.23)

where, for k ∈ {0, 1},

• ξk is the probability of false alarm or detection probability of the local
detectors when independence among the local decisions is assumed
under H0 or H1 respectively.

• γk is a strictly positive constant that indicates the exponential rate
of growth of the transition probabilities p

(0,1)
k (d) and p

(1,0)
k (d) as d

increases.

• mk is a strictly positive constant that, taking on values less than one,
controls the correlation between the pair of local decisions (Ui−1,j, Ui,j)
and (Ui,j, Ui,j+1) when the distance between the devices involved in
each pair is zero, i.e d = 0.

Note that the physical model considered for p
(0,1)
k (d) and p

(1,0)
k (d) has been

taken from Section 3.4. Consequently, it fulfills the same regularity conditions
that typically appear in a detection scenario and that were explained in the
aforementioned section.

In Figure 4.2, we plot the error exponent of Equation (4.15) as a
function of the mean correlation strength provided through Equations (4.16)
and (4.17). Theoretical curves of this figure have been generated when
the local decisions are only dependent under H1 and ξ1 is equal to
{0.8, 0.98, 0.998}. As it is expected from the results obtained in a 1-D
setting (see Section 3.4), regardless the value of ξ1, K initially decreases
as ρ increases, and after a specific value ρ∗, it increases as ρ approaches one.
The explanation to this trend is the same as the one given in Section 3.4 for
both equispaced sensors and exponentially spaced sensors. On the one hand,
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Figure 4.2: For a 2-D parallel network, Neyman-Pearson optimal error
exponent, K, as a function of the mean correlation strength among neighbour
binary decisions, ρ, when they are only dependent under H1 and ξ1 =
{0.8, 0.98, 0.998}. Parameters: ξ0 = 0.1, γ0 = 2, γ1 = 0.9, and m1 =
1− 10−4.

similarly to a scenario where the sensors are deployed along a straight line, the
initial decrease of K in ρ occurs because discrimination between H0 and H1

can be more difficult when the information provided by each sensor is more
and more correlated without improving the detection performance of the
sensors. On the other hand, in order to explain the increasing behaviour of K
w.r.t. ρ we have to recall that the correlation among the local decisions might
be more informative than the independence when a correlation structure is
only present under one of the two hypothesis. Note that, given a specific
correlation model, the value of ρ∗, at which the dependence among the
local decisions is informative, is a function of other design parameters of
the network such as ξ0 and ξ1. For instance, as it can be checked from
simulations as well as a careful analysis, under the considered correlation
model the aforementioned value of ρ∗ is shifted closer to one as the ratio
ξ1/ξ0 increases.

At this point, we can check a pair of analytic results that have been
proved in Corollary 2 and can also be observed in Figure 4.2. Firstly, when
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Figure 4.3: For a 2-D parallel network, Neyman-Pearson optimal error
exponent, K, as a function of the mean correlation strength among neighbour
binary decisions, ρ, when they are dependent under H1 and H0, and ξ1 =
{0.8, 0.98, 0.998}. Parameters: ξ0 = 0.1, γ0 = 2, γ1 = 0.9, P (Hk) = 0.5 and
mk = 1− 10−4 with k ∈ {0, 1}.

ρ equals zero, we can realize that K collapses to the subsequent Kullback-
Leibler divergence, D(B(ξ0)||B(ξ1)), where B(ξk) denotes a Bernoulli random
variable with probability of success equal to ξk. This behaviour shows
the consistency of the error exponent derived in Theorem 2 with the
Neyman-Pearson error exponent stated by the Stein’s Lemma detailed
in [Cover and Thomas, 2006] under independent observations. Secondly, as
it occurred under the 1-D scenario analyzed in Chapter 3, we can conclude the
analysis of Figure 4.2 by noting that, regardless the value of ξ1, K diverges
when ρ approaches one. This behaviour corroborates the third claim provided
in Corollary 2.

Next, in Figure 4.3 we make the same analysis as in Figure 4.2.
Nonetheless, in this case the local decisions are also dependent under H0.
Looking at both Figures 4.2 and 4.3, we can firstly check that the derived
error exponent increases as the probability of error of the local detector
decreases when the rest of the physical and designed parameters of the
2-D network are held fixed. If we take into account that a larger error
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Figure 4.4: For a 2-D parallel network, Neyman-Pearson optimal error
exponent, K, as a function of the mean correlation strength among the
neighbour binary decisions, ρ, when they are dependent under H1 and H0,
γ1 = {2 · 10−3, 2, 20}. Parameters: ξ0 = 0.25, ξ1 = 0.7, γ0 = 2, P (Hk) = 0.5
and mk = 1− 10−4 with k ∈ {0, 1}.

exponent entails a better detection performance for a fixed number of sensor
observation, as we said in the Section 3.4 this last feature agrees with what
we can intuitively expect. Continuing with the analysis of Figure 4.3 we
also have that, for each one of the curves associated with a different value
of ξ1, we can again observe that K shows the same monotonocity behaviour
as the one seen under the 1-D setting. Specifically, for the considered set
of physical and design parameters, K is monotonically decreasing and its
rate of decay is slower as ρ increases. Nevertheless, unlike the case where
a correlation structure is only present under H1, the evolution of K w.r.t.
ρ does not have the previous features for all the possible values that can
take the parameters appearing in (4.22) and (4.23). This is corroborated by
performing simulations such as the one shown in Figure 4.4.

Finally, we analyze the convergence of K shown in Figure 4.3 and 4.4
for ρ = 0 and ρ = 1. As it can be observed in those figures when
ρ = 0, independently of the physical model the derived error exponent
reduces to D(B(ξ0)||B(ξ1)), i.e. the Stein’s Lemma. Meanwhile, as it is
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expected from the analytic studies undertaken in claim c) of Corollary 2, in
Figures 4.3 and 4.4, when ρ goes to one, K converges to zero independently
of the physical and design parameters involved in (4.22) and (4.23). As it
happens under the 1-D setting, note that, if the local decisions are maximally
dependent under both hypothesis, once the fusion center has read a device,
new readings do not provide additional information when discriminating H1

against H0.

4.5 Summary

Here, we characterized the performance associated with a 2-D version of the
two-stage distributed detection system studied in the previous chapter. In
particular, we considered that the sensors are located on a rectangular lattice
where the sensors belonging to a specific row or column are equally spaced.
Additionally, we assumed that there is no kind of cooperation among the
devices so that, from its own observation each device performs a local decision
regarding the underlying binary hypothesis testing problem. However, due
to the presence of a correlation source in the sensor observations we supposed
that the local decisions sent to the fusion center might be dependent under
both hypothesis. Given each one of the two possible hypothesis, this
dependency among the local decisions was modelled by means of a 2-D
causal field where the rows and columns are outcomes of the same first-
order binary Markov chain. Under this scenario and for an arbitrary physical
model that links the physical parameters of the network with the transition
probabilities of the aforementioned Markov chains, we firstly derived a closed-
form expression of the error exponent associated with the Neyman-Pearson
test performed at the fusion center. Finally, after studying some properties of
this closed-form error exponent w.r.t. the mean correlation strength among
local decisions taken by neighbor sensors, we evaluated the derived error
exponent under the physical model used in Chapter 3 for the transition
probabilities that define the Markov observation process associated with each
hypothesis. By means of this evaluation we analyzed the dependency between
the detection performance of the network and its different physical and design
parameters. Specially, we paid attention to the different trends of detection
performance that appear when the dependence among the local decisions
changes.
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4.A Proof of Theorem 2

Since the error exponent for the Neyman-Pearson detector with a fixed level
α ∈ (0, 1) is given in implicit form by (4.14), we focus on the calculation of
this limit for the scenario described in Section 4.2. Taking into account the
factorization of PU |H(u|Hk) given in (4.8) as well as the characterizations
provided in (4.9)-(4.12), Equation (4.14) can be written as follows

K = lim
N,L→∞

1

N · L
ln

(
PU1,1|H(u1,1|H0)

PU1,1|H(u1,1|H1)

)
(a.s in H0)︸ ︷︷ ︸

,D1

+
∑
r,s∈U2

ln

(
p

(s,r)
0 (d)

p
(s,r)
1 (d)

)
lim

N,L→∞

Nr(s, r|uN,12,1 )

N · L︸ ︷︷ ︸
,D2

+
∑
r,s∈U2

ln

(
p

(s,r)
0 (d)

p
(s,r)
1 (d)

)
lim

N,L→∞

Nc(s, r|uN,LN,2 )

N · L︸ ︷︷ ︸
,D3

+
∑

r,s,t∈U3

ln

(
p

(t,r)
0 (d) p

(r,s)
0 (d) p̂

(t,s)
1

p
(t,r)
1 (d) p

(r,s)
1 (d) p̂

(t,s)
0

)
lim

N,L→∞

N0(t, r, s, |uN−1,L
1,2 )

NL︸ ︷︷ ︸
,D4

(4.24)

where, for the sequence of local decisions ub,da,c = {ui,j : a ≤ i ≤ b, c ≤ j ≤ d},

• Nr(ui−1,j, ui,j|ub,da,c) equals the number of times that, under H0, the pair
(ui−1,j, ui,j) occurs in the sequence of local decisions ub,da,c performed by
the corresponding devices in the lattice.

• Nc(ui,j−1, ui,j|ub,da,c) equals the number of times that, under H0, the pair
(ui,j−1, ui,j) occurs in the sequence of local decisions ub,da,c performed by
the corresponding devices in the lattice.

• N0(ui,j−1, ui,j, ui+1,j|ub,da,c) equals the number of times that, under H0,
the triple (ui,j−1, ui,j, ui+1,j) occurs in the lattice of local decisions ub,da,c
performed by the corresponding devices.
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Starting from the assumptions that ensure the existence of K we calculate
each one of the terms that appear in the r.h.s. of K. In particular, we are
going to prove that Equation (4.24) yields (4.15) when PU1,1|H(u1,1|H0) �
PU1,1|H(u1,1|H1) and 0 < p

(um−1,um)
k < 1 holds for all um, um−1, k ∈ {0, 1}.

Firstly, if we take into account that PU1,1|H(u1,1|H0) � PU1,1|H(u1,1|H1) we
have that

ln

(
PU1,1|H(u1,1|H0)

PU1,1|H(u1,1|H1)

)
<∞ (4.25)

and therefore, we prove that D1 vanishes as N and L go to infinity. Secondly,
we derive the terms D2 and D3. Considering the assumptions that ensure
the existence of K, we guarantee the regularity of the Markov chain, Mk,
that extends along the rows and columns of IN,L under Hk with k ∈ {0, 1}
(see [Kemeny and Snell, 1976]). Consequently, given the hypothesis Hk and
knowing that the sequences uN,12,1 and uN,LN,2 are outcomes of the same first-
order binary Markov chain, M0, as it is proved in Theorem 1 under the same
initial assumptions, we obtain

∑
r,s∈U2

ln

(
p

(s,r)
0 (d)

p
(s,r)
1 (d)

)
lim
N→∞

Nr(s, r|uN,12,1 )

N

=
∑
r,s∈U2

ln

(
p

(s,r)
0 (d)

p
(s,r)
1 (d)

)
lim
L→∞

Nc(s, r|uN,LN,2 )

L

=
∑
r,s∈U2

π
(s)
0 (d) p

(s,r)
0 (d)ln

(
p

(s,r)
0 (d)

p
(s,r)
1 (d)

)
<∞

(4.26)

From (4.26) we can easily show that D2 and D3 are equal to zero. Finally,
we evaluate D4. For this calculation, we need to obtain an asymptotic
closed-form expression for the empirical joint probability of the triple,
(ui,j−1, ui,j, ui+1,j) ∈ U3 given the hypothesis H0 and the lattice uN−1,L

1,2 .
From the stationarity of the regular Markov chain, M0, regarding the type
of (ui,j−1, ui,j, ui+1,j) in uN−1,L

1,2 it is straightforward to prove that

lim
N,L→∞

N0(ui,j−1, ui,j, ui+1,j)|uN−1,L
1,2 )

N · L
= π

(ui,j−1)
0 (d) p

(ui,j−1,ui,j)
0 (d) p

(ui,j ,ui+1,j)
0 (d)

(4.27)
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if, as we assumed without loss of generality, M0 extends from left to right
and from top to bottom along the rows and columns of IN,L, respectively.
Lastly, a point-wise substitution of (4.27) into the definition of D4 results in
the closed-form error exponent provided in Theorem 2. This way we end the
proof.

4.B Proof of Corollary 2

The proof of each claim of the corollary is analogous to the one undertaken
for the same claim in Corollary 1. In particular, we simply have to evaluate
the limit or the closed-form expression of K at the constraints yielding the
values of ρ0 and ρ1 associated with each one of the considered scenarios of
dependence.

When the local decisions are independent under the hypothesis Hk

p
(0,1)
k (d) = 1− p(1,0)

k (d) (4.28)

occurs with k ∈ {0, 1}. This entails that, for i ∈ {1, 2, . . . , N} and
j ∈ {1, 2, . . . , L} and independently of the parameter d, the (i, j)-th device
takes its own local decision independently of its nearest neighbour nodes.
Thus, next step consists in substituting (4.28) in (4.15). As a result of that
substitution, we can straightforwardly check that, when the local decisions
are independent (ρ = 0), the error exponent K equals D(B(ξ0)||B(ξ1)) with

ξk = p
(0,1)
k (d) for k ∈ {0, 1}. This concludes the proof of the first claim.

Next we focus on the second claim of Corollary 1. When the local
decisions are maximally dependent under Hk, for all k ∈ {0, 1} we have
that

p
(0,1)
k (d) = p

(1,0)
k (d) = 0 (4.29)

Hence, for all k ∈ {0, 1}, taking into account (4.15) the behaviour of K when
the local decisions tend to be maximally dependent is given through the limit

lim
ρ→1

K = lim
p

(0,1)
k (d),p

(1,0)
k (d)→0

K (4.30)

with k ∈ {0, 1}. From the closed-form error exponent provided in (4.15) we
can easily show that K ≥ 0. This entails that

lim
ρ→1

K = lim
p

(0,1)
k (d),p

(1,0)
k (d)→0

K ≥ 0. (4.31)
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Equivalently, the proof of the second claim is concluded by showing that
the aforementioned limit is lower than or equal to zero. Toward this goal,
recalling the closed-form expression given in (4.15) we have to derive upper
bounds for the limits

E(t, r, s)

= lim
p

(0,1)
k (d),p

(1,0)
k (d)→0

π
(t)
0 (d) p

(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p

(t,r)
0 (d) p

(r,s)
0 (d) p̂

(t,s)
1 (d)

p
(t,r)
1 (d) p

(r,s)
1 (d) p̂

(t,s)
0 (d)

)
(4.32)

with (t, r, s) ∈ U3, p̂
(t,s)
k (d) is defined in (4.12) and

π
(0)
0 (d) = 1− π(1)

0 (d) =
p

(1,0)
0 (d)

p
(1,0)
0 (d) + p

(0,1)
0 (d)

. (4.33)

By noting that p
(um−1,um)
k (d) ∈ (0, 1) and that

p̂
(um−1,um)
k (d) ≥ p

(um−1,r)
k (d) p

(r,um)
k (d) (4.34)

for all um−1, um, r, k ∈ {0, 1}, we have the subsequent upper bound for
E(t, r, s)

E(t, r, s) ≤ −2 lim
p

(0,1)
k (d),p

(1,0)
k (d)→0

p
(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p

(t,r)
1 (d) p

(r,s)
1 (d)

)
= −2 lim

p
(0,1)
k (d),p

(1,0)
k (d)→0

p
(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p

(t,r)
1 (d)

)
− 2 lim

p
(0,1)
k (d),p

(1,0)
k (d)→0

p
(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p

(r,s)
1 (d)

)
≤ −2 lim

p
(0,1)
k (d),p

(1,0)
k (d)→0

p
(t,r)
0 (d) ln

(
p

(t,r)
1 (d)

)
− 2 lim

p
(0,1)
k (d),p

(1,0)
k (d)→0

p
(r,s)
0 (d) ln

(
p

(r,s)
1 (d)

)
(4.35)

for all (t, r, s) ∈ U3. At this point, we have to recall that

lim
x,y→0

x ln(y) = 0. (4.36)
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Using this limit, whose solutions is obtained by applying l’Hôpital rule after
changing x and y to polar coordinates, we can straightforwardly check that
E(t, r, s) ≤ 0 for all (t, r, s) ∈ U3. This last result together with (4.31) proves
the second claim of the corollary, i.e

lim
ρ→1

K = 0. (4.37)

Finally, we consider the last claim of the Corollary 2. If the binary local
quantizations are maximally dependent under H1 and independent under
H0, (4.28) holds for k = 0 whereas (4.29) happens for k = 1. i.e.

p
(0,1)
1 (d) = p

(1,0)
1 (d) = 0 (4.38)

and

p
(0,1)
0 (d) = 1− p(1,0)

0 (d) = ξ0. (4.39)

Thus, with the aim of proving the third claim of the considered corollary we
have to evaluate the limit

lim
ρ1→1

K(ρ0 = 0) = lim
(p

(0,1)
1 (d),p

(1,0)
1 (d))→(0,0)

K(p
(0,1)
0 (d) = 1− p(1,0)

0 (d) = ξ0)

=
∑

(t,r,s)∈U3

E(t, r, s).

(4.40)

where E(t, r, s) is given by (4.32). This time, using (4.12) the general
expression for each one of the eight possible evaluations of E(t, r, s) can
be rewritten as the sum of two different terms

E(t, r, s)

= lim
(p

(0,1)
1 (d),p

(1,0)
1 (d))→(0,0)

π
(t)
0 (d) p

(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p

(t,r)
0 (d) p

(r,s)
0 (d)

p̂
(t,s)
0 (d)

)

+ lim
(p

(0,1)
1 (d),p

(1,0)
1 (d))→(0,0)

π
(t)
0 (d) p

(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p̂

(t,s)
1 (d)

p
(t,r)
1 (d) p

(r,s)
1 (d)

)

= π
(t)
0 (d) p

(t,r)
0 (d) p

(r,s)
0 (d) ln

(
p

(t,r)
0 (d) p

(r,s)
0 (d)

p̂
(t,s)
0 (d)

)
︸ ︷︷ ︸

,E1(t,r,s)
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+ lim
(p

(0,1)
1 (d),p

(1,0)
1 (d))→(0,0)

π
(t)
0 (d) p

(t,r)
0 (d) p

(r,s)
0 (d) ln

(
1 +

1

p
(t,r)
1 (d) p

(r,s)
1 (d)

)
︸ ︷︷ ︸

,E2(t,r,s)

(4.41)

with p
(um−1,um)
0 (d) given by (4.39) for all um−1, um ∈ {0, 1},

π
(0)
0 (d) = 1− π(1)

0 (d) = 1− ξ0, (4.42)

p̂
(0,1)
0 (0) = 1− p̂(1,0)

0 (d) = ξ0 (4.43)

and

r =

{
0 if r = 1,
1 if r = 0.

(4.44)

Due to the fact that ξ0 ∈ (0, 1), from (4.39), (4.42) and (4.43) we can
easily realize that E1(t, r, s) < ∞ for all (t, r, s) ∈ U3. On the contrary,
a straightforward analysis reveals

E2(t, r, s) =

{
∞ if s = r or t = r,
E3 otherwise.

(4.45)

with E3 < ∞ and (t, r, s) ∈ U3. From this last expression we are able to
assert that the limit (4.41) is equal to infinity. This concludes the proof of
the corollary.
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Chapter 5

Neyman-Pearson detection in
tandem networks with
dependent observations

5.1 Introduction

Due to its reduced energy consumption and bandwidth requirements
for simultaneous transmission, the serial distributed configuration with
binary communication between the fusion units has been one of the
architectures generating more interest among researchers of several
disciplines. For instance, the one corresponding with the sequential
detection problem addressed in [Cover, 1969], [Hellman and Cover, 1970] and
[Koplowitz, 1975]. Note that a network where the binary global decision of
the system is performed sequentially by different data fusion units arranged in
tandem is equivalent to a single node with one bit of memory and performing
observations at different time periods.

Initially, under the assumption of independent sensor observations
the study of tandem networks has been based on the characterization
of their detection performance when they are implementing a set of
optimal decision rules. Firstly, due to the explosive combinatorial
complexity that appears in the analysis of these optimal systems, works
such as [Ekchian and Tenney, 1982] and [Reibman and Nolte, 1987] were
restricted to networks with a moderate size. Later, [Tang et al., 1991]
used optimal control theory in order to derive numerical algorithms that
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yield the optimal strategy under the Bayesian and the Neyman-Pearson
formulations. Since the complexity of the previous algorithms is linear in
the number of fusion units, for tandem networks with a larger size they were
able to study the best placement for a node in the system and how the
nodes should weigh and combine distributed data from multiple sources.
Afterwards, to further understand the effects of distribution of the data
processing, in [Papastavrou and Athans, 1992] and [Tay et al., 2008b] the
aforementioned characterizations and comparisons were undertaken in an
asymptotic regime where the number of sensors approached infinity. Under
a Bayesian set up, [Papastavrou and Athans, 1992] derived the necessary and
sufficient conditions for the error probability decrease to zero as the number
of fusion stages increases. Complementing these results and establishing
a long-standing conjecture, the authors in [Tay et al., 2008b] showed that
the rate of decay for the probability of error is always subexponential
when a Bayesian or a Neyman-Pearson decentralized binary hypothesis
test is performed by a sensor network with tandem architecture. This
suggests that the detection performance of the tandem configuration is
worse than the one associated with a parallel architecture where, as it
is shown in [Tsitsiklis, 1988], the probability of error decays exponentially
fast with the number of sensors. At the same time, the proof provided
in [Tay et al., 2008b] has motivated the use of the tandem configuration for
the study of more complicated tree architectures that reduce the energy
consumption of the parallel configuration and achieve an exponential rate
of decay for the probability of error. Some of the first results on this
issue are [Tay et al., 2008a] and [Tay et al., 2009]. In these works Tay et
al. performed a characterization of the asymptotic detection performance
of bounded height trees in order to show that, for both the Neyman-
Pearson formulation and the Bayesian set up, the error probabilities decay
exponentially fast with the number of observations.

Taking into account that in many real scenarios the independence
assumption among the sensor observations is violated, some researchers have
considered the design of such systems when the local sensor observations are
dependent given any hypothesis. So far, there are very few results regarding
the design of distributed detection systems with dependent observations and
a serial architecture. Under the Bayesian set up, in one of the works that
addresses the design of such systems, [Xiang and Wang, 2006] provided the
necessary conditions for optimal decision rules. As an extension of the results
obtained in [Blum, 1996] and [Yan and Blum, 2000], the aforementioned
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necessary conditions were also derived in [Yan and Blum, 2001] for a tandem
network performing a Neyman-Pearson test on dependent observations.
Unlike the scenario where the sensor observations are independent, the two
previous results showed that, for both the Bayesian and the Neyman-Pearson
formulations, the optimal fusion rules of tandem networks with dependent
observations are generally not likelihood ratio tests.

Up to now, as far as the authors are concerned, research on the detection
performance of optimal tandem networks with dependent observations
has been lacking. Motivated by this last fact and following the trend
of publications such as [Tay et al., 2008a] and [Tay et al., 2009], in this
chapter we extend the results provided in [Papastavrou and Athans, 1992]
in order to characterize the detection performance of the tandem networks
with dependent observations. In particular, considering that the sensor
observations are conditionally dependent in a network as the one shown
in Figure 5.1, s.t. a given upper bound on the overall probability of false
alarm we derive necessary and sufficient conditions for the probability of
misdetection go to zero as the number of fusion stages increases. Afterwards
we extend these conditions under the Bayesian set up. In other words,
we derive the necessary and sufficient conditions that make the overall
probability of error go to zero as the number of fusion nodes approaches
infinity. Finally, complementing the previous results we provide several
practical scenarios where the aforementioned conditions are illustrated.

The rest of this chapter is organized as follows. Section 5.2 is devoted
to the problem statement. In Section 5.3 under the Neyman-Pearson
formulation we obtain necessary and sufficient conditions for the overall
probability of misdetection go to zero as the number of fusion stages increases.
Later, in the same section the previous result is extended to the Bayesian
set up. Next, using several practical scenarios Section 5.4 illustrates the
conditions obtained in the previous section. After these examples, Section 5.5
summarizes the work undertaken in this chapter. Finally, as a matter of
organization style, we defer two proofs of this chapter to a pair of appendices.

5.2 Problem statement

We consider the characterization of the detection performance achieved by
a sensor network with the serial configuration shown in Figure 5.1. This
network is formed by ` = N · L devices with N − 1 equal to the number of
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Figure 5.1: Block diagram of a distributed detection system with tandem
architecture.

sensor devices that directly transmit their measurements to one of the L ≥ 1
fusion units of the system. In order to decide what state of the phenomenon,
H0 or H1, is present the considered sensor network undertakes the following
steps. Firstly, a specific set of N − 1 devices performs observations of
the environment and transmits its measurements to a fusion sensor, S1,j,
over error free parallel access channels. Secondly, in order to make a
binary local decision, uj, regarding the presence or absence of the event
of interest, the aforementioned fusion sensor uses the local decision rule
γj(uj−1,yj) with u0 = ∅. Using this rule the j-th fusion unit fuses the
local decision uj−1 taken by its preceding fusion sensor S1,j−1, and the vector
formed by its own measurement as well as the N −1 received measurements,
yj = [y1,j, y2,j, . . . , yN,j]

T ∈ Yj,k where Yj,k equals to the set of all possible
values that the random variable Y j can take on under hypothesis Hk with
k ∈ {0, 1}. Finally, the resulting local decision is transmitted to the successor
of the considered fusion stage, i.e. S1,j+1. Thus, the final decision of the
distributed detection system matches the one made by the last fusion node
in the tandem architecture, in other words, S1,L in Figure 5.1.

For the previous sensor network we suppose that the sensor observations
may be dependent under both hypothesis. This can be a result of the presence
of correlation sources in signals such as the noise or the one associated
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with the event of interest in the detection problem. At the same time,
this implies that the local decisions performed at each fusion stage, Uj,
and the sensor observations, Yi,j, may be dependent under hypothesis Hk

with i = {1, 2, . . . , N}, j = {1, 2, . . . , L} and k ∈ {0, 1}. Nevertheless,
we have to remark that we consider a correlation scenario where, under
both hypothesis and according to the following definition, the number of
non-maximally dependent sensor observations is strictly increasing with the
number of fusion stages, L.

Definition 1. The observations, Y j and Y j′, received by two different
fusion stages with indices j and j′ are said to be maximally dependent under
hypothesis Hk only if they have the same cardinality,

tr
(
CY j |Y j′ ,Hk

)
= 0

and

tr
(
CY j′ |Y j ,Hk

)
= 0

where tr(·) denotes the trace operator and CY j |Y j′ ,Hk
is equal to covariance

matrix of Y j given Y j′ and hypothesis Hk with k ∈ {0, 1}, j 6= j′ and
j, j′ ∈ {1, 2, . . . , L}.

Intuitively, the previous definition states that two sensor observations
Y j and Y j′ , are maximally dependent only if there is no uncertainty in Y j

once Y j′ is known and vice-versa. Consequently, if we take into account
that many phenomena present micro-scale variations caused by the so-called
nugget effect (see [Møller, 2003]), we can easily realize that the major part
of the detection scenarios belong to the setting considered in this problem
statement.

Regarding the detection process of the network the probability of error
associated with the j-th fusion stage is

Pe(j) = P (H0) · P
FA

(j) + (1− P (H0)) · PM(j) (5.1)

with j ∈ {1, 2, . . . , L}, P (H0) ∈ (0, 1) equal to the prior probability of
hypothesis H0,

PM(j) = 1− PD(j) = P (Uj = 0|H1) (5.2)
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denoting the corresponding probability of misdetection (PD(j) being the
probability of detection) and

P
FA

(j) = P (Uj = 1|H0) (5.3)

equal to the probability of false alarm at the j-th fusion node. Under the
assumption that each sensor device knows its fusion node and that each fusion
node knows its successor, i.e. the fusion node receiving its local decision, we
suppose that the distributed detection system solves the following binary
hypothesis testing problem under a specific formulation

Hk: Y ∼ fY |H(y|Hk) (5.4)

where, for k ∈ {0, 1},

- Y = [Y T
1 , . . . ,Y

T
L−1,Y

T
L]T is the set of observations performed by the

devices that form the network.

- fY |H(y|Hk) is the joint p.d.f. of the sensor observations under
hypothesis Hk.

Therefore, given the definitions provided in (5.2) and (5.3), under the
Neyman-Pearson formulation this means that the tandem network applies
the set of local fusion rules,

ΓNP = {γNP
j (uj−1,yj)}Lj=1, (5.5)

that maximizes the probability of detection of the final decision of the system,
PD(L), when its corresponding probability of false alarm is lower than or
equal to a constant αL ∈ (0, 1), i.e.

P
FA

(L) = P (UL = 1|H0) ≤ αL ∈ (0, 1). (5.6)

On the contrary, if the tandem network solves (5.4) under the Bayesian set
up, the applied set of local fusion rules

ΓB = {γB
j (uj−1,yj)}Lj=1, (5.7)

minimizes the probability of error of the system, Pe(L), defined in (5.1) for
j = L.
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5.3 System analysis

The optimal strategies that, under dependent sensor observations, have to be
applied by a tandem network performing a Bayesian and a Neyman-Pearson
test are derived in [Xiang and Wang, 2006] and [Yan and Blum, 2001]
respectively. However, as far as the authors are concerned, little is known
about necessary and sufficient conditions that, under both formulations,
make the corresponding probability of error go to zero as the number of fusion
stages approaches infinity. The only results addressing this issue are obtained
in [Papastavrou and Athans, 1992] under the Bayesian formulation. In that
work the authors restricted to a scenario where the sensor observations are
i.i.d., Nj = 1 for all j ∈ {1, 2, . . . , L}, and all the fusion stages are identical
in terms of their receiving operating curve (ROC). Motivated by this last
fact, without the conditional independence assumption and under both the
Bayesian set up and the Neyman-Pearson formulation we derive necessary
and sufficient conditions for asymptotic perfect detection.

5.3.1 The Neyman-Pearson case

Under the Neyman-Pearson formulation the tandem network applies the
strategy defined in (5.5). Consequently, if we want to determine when
asymptotic perfect detection happens we have to derive conditions ensuring
that, for any arbitrary upper bound on the overall probability of false alarm,
the corresponding probability of misdetection goes to zero as the number of
fusion stages approaches infinity. Specifically, we do so by firstly defining the
following quantities

Λ (Y j) = ln

(
fY j |H(yj|H1)

fY j |H(yj|H0)

)
, (5.8)

Λ (Y j|uj−1)

{
Λ (Y 1) if j = 1,

ln
(
fY j |Uj−1,H

(yj |uj−1,H1)

fY j |Uj−1,H
(yj |uj−1,H0)

)
if j 6= 1,

(5.9)

tj(uj−1) =

{
τ1 if j = 1,

τj − ln
(
PUj−1|H(uj−1|H1)

PUj−1|H(uj−1|H0)

)
if j 6= 1

(5.10)
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and

F
(uj−1)
j (s|Hk) =

{
P (Λ (Y 1) < s|Hk) if j = 1,
P (Λ (Y j|uj−1) < s|Hk) if j 6= 1,

(5.11)

with j ∈ {1, 2, . . . , L}, u0 = ∅, τj denoting a bounded constant dependent on
the fusion stage and fY j |Uj−1,H(yj|uj−1, Hk) equal to the conditional p.d.f. of
the sensor observations Y j given the binary local decision Uj−1 under Hk.

Since u0 is equal to the empty set, note that the quantities defined
in (5.9)-(5.11) do not depend on the value of uj−1 when j = 1. In fact,
realize that t1 = τ1 and that the probability density functions fY 1|H(y1|Hk),
with k ∈ {0, 1}, are the only ones involved in (5.9) and (5.11). However,
bearing in mind this substantial difference in the definition, for the sake of
simplicity in the notation and from now on every quantity conditioned on
the preceding local decision will be equally denoted for every fusion stage
with index j ∈ {1, 2, . . . , L}. This way, we are now at the position to prove
the subsequent lemma.

Lemma 1. Consider an optimal tandem team that, as it is described in
Section 5.2, is formed by L fusion stages and performs a Neyman-Pearson
hypothesis test on dependent observations. Then, for any arbitrary constraint
P
FA

(L) ≤ αL ∈ (0, 1), the limit of the optimal probability of misdetection
as L goes to infinity does not converge to zero as long as the support of
fY L|UL−1,H(yL|uL−1, Hk) consists of two events, unambiguously indexed by
IL ∈ {0, 1}, and distributed as shown in Table 5.1 with

A(uL−1)(L) ∈
{

(0.5, 1) if uL−1 = 0,
(0.5, 1] if uL−1 = 1,

(5.12)

and

B(uL−1)(L) ∈
{

(0.5, 1] if uL−1 = 0,
(0.5, 1) if uL−1 = 1.

(5.13)

Proof. From classical detection theory detailed in [Poor, 1994, section
II.D] as well as the results obtained in [Viswanathan et al., 1988]
and [Yan and Blum, 2001, Section V] we can easily check that, in a tandem
network performing a Neyman-Pearson test, the last fusion stage applies the
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HHH
HHHH
Y L IL = 0 IL = 1

H0 A(uL−1)(L) 1− A(uL−1)(L)

H1 1−B(uL−1)(L) B(uL−1)(L)

Table 5.1: Special probability distribution of the NL observations taken by the
L-th fusion unit, Y L, when the preceding fusion node decides uL−1 ∈ {0, 1}.

subsequent LLRT

uL = γL (uL−1,yL) =


1 if ln

(
fY L,UL−1|H(yL,uL−1|H1)

fY L,UL−1|H(yL,uL−1|H0)

)
> τL,

γ if ln
(
fY L,UL−1|H(yL,uL−1|H1)

fY L,UL−1|H(yL,uL−1|H0)

)
= τL,

0 otherwise,

(5.14)

where, for k ∈ {0, 1},
- fY L,UL−1|H(yL, uL−1|Hk) denotes the joint p.d.f. of the sensor

observations Y L and the binary local decision UL−1 under Hk.

- τL is the smallest number such that ς ≤ αL ∈ (0, 1) with

ς = P

(
ln

(
fY L,UL−1|H(yL, uL−1|H1)

fY L,UL−1|H(yL, uL−1|H0)

)
> τL

∣∣∣∣H0

)
. (5.15)

- γ ∈ {0, 1} is a randomization function that takes on the value 1 with
the subsequent probability

ν =

{
1 if ϑ = 0,
αL−ς
ϑ

otherwise
(5.16)

with

ϑ = P

(
ln

(
fY L,UL−1|H(yL, uL−1|H1)

fY L,UL−1|H(yL, uL−1|H0)

)
= τL

∣∣∣∣H0

)
. (5.17)

If we now use the chain rule of probability detailed
in [Papoulis and Pillai, 2002]

ln

(
fY L,UL−1|H(yL, uL−1|H1)

fY L,UL−1|H(yL, uL−1|H0)

)
= Λ (Y L|uL−1) + ln

(
PUL−1|H(uL−1|H1)

PUL−1|H(uL−1|H0)

)
(5.18)
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notice that (5.14) is equivalent to

uL = γL (uL−1,yL) =


1 if Λ (Y L|uL−1) > tL(uL−1),
γ if Λ (Y L|uL−1) = tL(uL−1),
0 otherwise,

(5.19)

with tL(uL−1) defined in (5.10) when τL is equal to the minimum integer
ensuring that ς ≤ αL ∈ (0, 1). Consequently, under the set of conditional
observation models described by Table 5.1 together with (5.12) and (5.13),
taking into account the definitions given in (5.9)-(5.11), the conditional ROC
curve of the last fusion stage given the preceding local decision, ROCL(uL−1),
matches the plot shown in Figure 5.2 with

P
(uL−1)
D (L|tL(uL−1)) = P (UL = 1|uL−1, tL(uL−1), H1)

= 1− F (uL−1)
L (tL(uL−1)|H1)

(5.20)

and

P (uL−1)
FA

(L|tL(uL−1)) = P (UL = 1|uL−1, tL(uL−1), H0)

= 1− F (uL−1)
L (tL(uL−1)|H0)

(5.21)

for all uL−1 ∈ {0, 1}. In addition, taking into account that the two possible
values of yL can be unambiguously indexed by IL, we also have that the
last fusion stage of the considered tandem network can only apply six
different fusion rules, γL (uL−1, IL), satisfying the monotonicity property
given in [Varshney, 1997]. Next, using the expressions provided in Table 5.2
we can easily check that, even in the most optimistic scenario where the
penultimate fusion stage has zero probability of error, none of them but
one, γL (uL−1, IL) = uL−1, achieves zero probability of misdetection for any
arbitrary constraint on the corresponding probability of false alarm. To be
more precise, evaluating the expressions given in Table 5.2 at PD(L− 1) = 1
and P

FA
(L−1) = αL ∈ (0, 1), none of them but γL (uL−1, IL) = uL−1 achieves

PD(L) = 1− PM(L) = 1 at the same time as P
FA

(L) ≤ αL ∈ (0, 1).
We now know that, under the Neyman-Pearson formulation and under

the observation model considered in this lemma, an optimal tandem network
performing a Neyman-Pearson test can only achieve asymptotic perfect
detection in two cases. On the one hand, one of these two settings
would be a scenario where the first fusion stage achieves PM(1) = 0 for
P
FA

(1) ≤ αL ∈ (0, 1) and where γj (uj−1, Ij) = uj−1 for all j ∈ {2, . . . , L}.
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Nevertheless, we can realize that the deployment of a tandem network would
not be practical in that scenario. On the other hand, the second setting
occurs when γL (uL−1, IL) = uL−1 and when the penultimate fusion stage has
zero probability of misdetection with P

FA
(L − 1) ≤ αL ∈ (0, 1). However,

as long as the fusion stages transmit binary messages to their successors
this scenario cannot happen because, even in the most optimistic scenario,
the other five fusion rules cannot achieve zero probability of misdetection for
any arbitrary constraint on the corresponding probability of false alarm. This
means that, if the last fusion stage presents one of the conditional observation
models expressed in Table 5.1 together with (5.12) and (5.13), the optimal
probability of misdetection of the infinite tandem team does not converge
to zero for any arbitrary constraint on the overall probability of false alarm.
This way, we conclude the proof.

In Lemma 1 we have provided a set of conditional observation models
for which there is no asymptotic perfect detection in a tandem network
performing a Neyman-Pearson hypothesis test. Consequently, we have
proved the following corollary.

Corollary 3. Under the Neyman-Pearson formulation consider the tandem
network described in Section 5.2. Then, for any arbitrary constraint on the
overall probability of false alarm, the corresponding probability of misdetection
does not have to converge to zero as the number of fusion stages, L,
approaches infinity.

At this point, we have shown that the result of the previous corollary
happens when the last fusion stage of the tandem network has one of the
conditional observation models belonging to the set described in Table 5.1
and parametrized by (5.12) and (5.13). However, under the Neyman-Pearson
set up and dependent observations we still do not know necessary and
sufficient conditions ensuring asymptotic perfect detection. Due to this
last fact, in the subsequent theorem we initially derive necessary conditions
that have to be satisfied in a scenario where the optimal probability of
misdetection of an infinite tandem team goes to zero for an arbitrary upper
bound on the corresponding probability of false alarm.

Theorem 3. Under the Neyman-Pearson formulation consider the tandem

network described in Section 5.2. For L ≥ 2 define m
(uL−1)
0,L and m

(uL−1)
1,L
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as the initial and final slopes of the conditional ROC curve ROCL(uL−1)
respectively. Then, for any P

FA
(L) ≤ αL ∈ (0, 1), in order to achieve

lim
L→∞

PM(L) = 0

m
(0)
0,L =∞ or m

(1)
1,L = 0 are necessary conditions.

Proof. To prove the theorem assume that

m
(0)
0,L <∞, (5.22)

and that

m
(1)
1,L > 0. (5.23)

In addition, taking into account that, in an optimal tandem network
performing Neyman-Pearson test, the last fusion stage applies the LLRT
given in (5.19), we also have that the conditional ROC curve, ROCL(uL−1),
associated with the last fusion stage is concave downward for all uL−1 ∈
{0, 1}. Under these assumptions, we can easily note that the detection
performance of the last fusion stage is worse than or equal to the detection
performance of a tandem network where the conditional ROC curves of
the last fusion stage belong to the set characterized by Figure 5.2 together
with (5.12) and (5.13). At the same time, by Lemma 1 we already know
that, for this kind of tandem networks, the limit of the optimal probability
of misdetection as the number of fusion stages goes to infinity could stay
bounded away from zero under some upper bounds on the corresponding
probability of false alarm. Therefore, if an infinite tandem network with
dependent observations consists of fusion units whose conditional ROC curves
satisfy (5.22) and (5.23), it will never achieve zero probability of misdetection
for any arbitrary constraint on the overall probability of false alarm. This
concludes the proof of the theorem.

Using the necessary conditions provided in the previous theorem it can
be checked if a tandem network cannot achieve asymptotic perfect learning
under the Neyman-Pearson formulation. Note that, for either discrete or
continuous sensor observations, if (5.22) and (5.23) are satisfied, in an infinite
tandem team the overall probability of misdetection cannot converge to zero
for any arbitrary constraint on the overall probability of false alarm. On the
contrary, if either (5.22) or (5.23) is violated, asymptotic perfect detection
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Figure 5.2: Conditional ROC curve, ROCL(uL−1), associated with the last
fusion stage of an optimal tandem network performing a Neyman-Pearson
test and whose conditional observation model is given by Table 5.1 with
uL−1 ∈ {0, 1}.

cannot be guaranteed for an optimal tandem network performing a Neyman-
Pearson test. Indeed, in order to ensure this, we need to check the sufficient
conditions provided in the following theorem.

Theorem 4. Under the Neyman-Pearson formulation consider the tandem
network described in Section 5.2. Additionally, assume that, under H0

and H1, the p.d.f. of Λ (Y j|uj−1) contains no point masses for all j ∈
{1, 2, . . . , L} and uj−1 ∈ {0, 1}. For j ∈ {1, 2, . . . , L} and u0 = ∅ also

define m
(uj−1)
0,j and m

(uj−1)
1,j as the initial and final slopes of the conditional

ROC curve ROCj(uj−1) respectively. Then, for any P
FA

(L) ≤ αL ∈ (0, 1),
in order to achieve

lim
L→∞

PM(L) = 0

m
(0)
0,j =∞ or m

(1)
1,j = 0 for all j ∈ {1, 2, . . . , L} are sufficient conditions.

Proof. Basically, assuming that the sufficient conditions hold the proof of
this theorem results in proposing fusion rules so that, although they are
not necessarily optimal, the probability of misdetection of the resulting
tandem network asymptotically converges to zero under the Neyman-Pearson
formulation. Equivalently, we have to show that given any δ ∈ (0, 1) and any
constraint P

FA
(L) ≤ αL ∈ (0, 1), if the proposed decision rules are employed

and the sufficient conditions occur, the probability of misdetection of the
tandem team can be made less than δ, as L goes to infinity. This proof is
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γL (uL−1, IL) PFA(L) PD(L)

0 0 0

1 1 1

uL−1 PFA(L− 1) PD(L− 1)

IL (1− PFA(L− 1))
(
1−A(0)(L)

)
(1− PD(L− 1))B(0)(L)

+PFA(L− 1)
(
1−A(1)(L)

)
+PD(L− 1)B(1)(L)

OR(uL−1, IL) (1− PFA(L− 1))
(
1−A(0)(L)

)
(1− PD(L− 1))B(0)(L)

+PFA(L− 1) +PD(L− 1)

AND(uL−1, IL) PFA(L− 1)
(
1−A(1)(L)

)
PD(L− 1)B(1)(L)

Table 5.2: Probability of false alarm, P
FA

(L), and probability of detection,
PD(L) associated with each one of the local fusion rules that can be applied
by the last fusion stage belonging to an optimal tandem team performing a
Neyman-Pearson test and whose conditional observation model is described
in Table 5.1.

detailed in Appendix 5.A for m
(0)
0,j =∞ for all j ∈ {1, 2, . . . , L}. For the sake

of brevity, due to the fact that it requires an analogous development, we will
omit the proof for m

(1)
1,j = 0 for all j ∈ {1, 2, . . . , L}.

It can be straightforwardly checked that the sufficient conditions derived
in Theorem 4 are valid when, for all uj−1 ∈ {0, 1} and all j ∈ {1, 2, . . . , L},
Λ (Y j|uj−1) is a continuous scalar random variable whose p.d.f. does not
contain any point masses of probability under both hypothesis. Since the
selection of a specific strategy Γ, optimal or suboptimal, involves a partition
of the observation space we have that, for all j ∈ {2, . . . , L} and uj−1 ∈ {0, 1},

Λ (Y j|uj−1) =


Λ (Y 1) if j = 1,

Λ∗ (Y j) + C∗j (uj−1) if j ∈ {2, 3, . . . , L}
(5.24)

where

C∗j (uj−1) =


1−P

FA
(j−1)

1−PD(j−1)
if uj−1 = 0,

P
FA

(j−1)

PD(j−1)
if uj−1 = 1

(5.25)
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and

Λ∗ (Y j) = log

(∫
Y j−1∈Vj−1

uj−1
(Γ)
fY j |H(yj|H1) dyj−1∫

Y j−1∈Vj−1
uj−1

(Γ)
fY j |H(yj|H0) dyj−1

)
(5.26)

with

Y j = [Y T
1 , . . . ,Y

T
j ]T , (5.27)

Yj−1
k = Y1,k × Y2,k × . . .× Yj−1,k (5.28)

and Vj−1

k̂
(Γ) denoting the partition of the observation space Yj−1 = Yj−1

0 ∪
Yj−1

1 that yields uj−1 = k̂ ∈ {0, 1} under the strategy Γ, i.e.

Vj−1

k̂
(Γ) =

{
Y j−1

∣∣uj−1(Γ) = k̂
}
. (5.29)

For the sake of clarity but only for this time, the dependency of uj−1 w.r.t.
Γ has been made explicit. By noting that C∗j (uj−1) is equal to a constant
once uj−1 equals zero or one, the expression provided in (5.24) means that
the aforementioned assumption is guaranteed when the partition Vj−1

uj−1
(Γ)

and the observation model make Λ (Y 1) and Λ∗ (Y j) not contain any point
masses under H0 and H1. In many dependence scenarios this partition
can be intricate. Nevertheless, we can check that, independently of the
partition, as it is illustrated in one example of Section 5.4, the probability
density functions of Λ (Y 1) and Λ∗ (Y j) do not contain point masses in many
practical scenarios where the sensor observations {Y j}Lj=1 are continuous
under both hypothesis. Thus, under these scenarios and under Neyman-
Pearson formulation Theorems 3 and 4 provide some convenient tests that
determine whether the probability of misdetection always goes to zero or not
in an infinite tandem team. It is clear that these tests are based on a set
of conditions given in terms of features associated with the conditional ROC
curves given the preceding local decision. However, taking full advantage
of the properties associated with continuous likelihood ratio tests these
conditions can also be expressed in the following equivalent form.

Corollary 4. Consider the tandem network of Theorem 4 where, for all
j ∈ {1, 2, . . . , L} and uj−1 ∈ {0, 1}, the p.d.f. of Λ (Y j|uj−1) does not
contains any point masses under H0 and H1. Also define

Λsup
j (0) = sup

Yj∈Y
(0)
j

{Λ (Y j| 0)} (5.30)
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and
Λinf
j (1) = inf

Yj∈Y
(1)
j

{Λ (Y j| 1)} (5.31)

where Y(uj−1)
j equals the set of possible values that Y j can take on when it is

distributed according to

fY j |Uj−1
(yj|uj−1) =fY j |Uj−1,H(yj|uj−1, H0) · P (H0)

+ fY j |Uj−1,H(yj|uj−1, H1) · (1− P (H0))
(5.32)

with P (H0) ∈ (0, 1) equal to prior probability of H0, u0 = ∅, and uj−1 ∈ {0, 1}
if j ∈ {1, 2, . . . , L}. Then, for any P

FA
(L) ≤ αL ∈ (0, 1), in order to achieve

lim
L→∞

PM(L) = 0

Λsup
L (0) =∞ or Λinf

L (1) = −∞ are necessary conditions and

Λsup
− (0) = min

j∈{1,...,L}

{
Λsup
j (0)

}
=∞ (5.33)

or
Λinf

+ (1) = max
j∈{1,...,L}

{
Λinf
j (1)

}
= −∞ (5.34)

are sufficient conditions.

Proof. In order to prove the corollary we firstly have to recall that the
suboptimal strategy employed in the proof of Theorem 4 is based on LLRT
of Λ(yj|uj−1) when Y j = yj and uj−1 = k̂ ∈ {0, 1}. Additionally, we
have to take into account that, under dependent sensor observations and
under the Neyman Pearson formulation, the optimal fusion rule applied
by the last fusion stage of a serial configuration matches the LLRT given
in (5.19) (see the properties given in [Poor, 1994, section II.D] as well as
the results obtained in [Viswanathan et al., 1988] and [Yan and Blum, 2001,
Section V]). Since the p.d.f. of Λ(yj|uj−1) does not contain any point masses
for all j ∈ {1, 2, . . . , L} and all uj−1 ∈ {0, 1}, the proof is completed by
showing that the conditions given in Theorems 3 and 4 occur if and only
if the conditions provided in the Corollary hold. In particular, consider the
following two expressions

P
(uj−1)
D (j|s) = 1− F (uj−1)

j (s|H1) (5.35)
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and
P (uj−1)
FA

(j|s) = 1− F (uj−1)
j (s|H0) (5.36)

with F
(uj−1)
j (s|Hk) defined in (5.11) and s ∈ (−∞,∞) denoting the threshold

used in a LLRT based on Λ (Y j|uj−1) for k ∈ {0, 1}, u0 = ∅ and uj−1 ∈ {0, 1}
when j ∈ {2, . . . , L}. Subsequently, if we use the well-known property

dP
(uj−1)
D (j|s)

dP
(uj−1)
FA (j|s)

= es (5.37)

with the corresponding evaluation of uj−1, we can easily check that, for any

j ∈ {1, 2, . . . , L}, m(0)
0,j =∞ if and only if Λsup

j (0) is not upper bounded by a
finite constant. Analogously, from the same property we can notice that, for
any j ∈ {1, 2, . . . , L}, m(1)

1,j = 0 if and only if Λinf
j (1) is not lower bounded by

a finite constant. At this point, in order to conclude the proof we only need
to realize that Λsup

− (0) and Λinf
+ (1) are not upper or lower bounded as long as

the involved terms, Λsup
j (0) and Λinf

j (1), are not upper or lower bounded for
all j ∈ {1, 2, . . . , L} respectively.

According to Corollary 4 and concluding the subsection we can easily
check a pair of aspects. First, we can realize that an optimal tandem network
performing a Neyman-Pearson test cannot achieve perfect detection as long
as there exists some finite constant, B > 0, such that

Λsup
L (0) < B (5.38)

and
Λinf
L (1) > −B (5.39)

for a specific observation model where, for all j ∈ {1, 2, . . . , L} and uj−1 ∈
{0, 1}, the conditional p.d.f. of Λ (Y j|uj−1) does not contains any point
masses given H0 and H1. To put it differently, if (5.38) and (5.39) are satisfied
under those kind of observation models, the distributed detection system with
tandem architecture will not discriminateH1 againstH0 with zero probability
of misdetection and any arbitrary upper bound on the overall probability of
false alarm. Furthermore, from the previous corollary we know that, under
the same kind of observation models, the addition of extra fusion stages can
make the system achieve any desired level of performance as long as Λsup

− (0)
is not upper bounded or Λinf

+ (1) is not lower bounded. It is of great value to
remark that, under the setting studied in [Papastavrou and Athans, 1992],
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these conditions result in the necessary and sufficient conditions derived
in that work. This shows that the results derived along this section are
consistent with previous related works.

5.3.2 The Bayesian case

In this case, in order to solve (5.4) we consider a scenario where the tandem
network applies the strategy (5.7) minimizing the probability of error of the
system. Consequently, if we want to determine when asymptotic perfect
detection happens, this time we have to derive conditions under which the
last fusion node converges in probability to deciding the right hypothesis
as the number of fusion stages becomes large. Although the formulation is
different from the one of the preceding subsection, we can straightforwardly
check that the necessary and sufficient conditions are the same. In particular,
we also have that the corresponding proofs are closely related to the ones used
in Theorems 3 and 4. Due to this last fact and for the sake of brevity they
have been omitted. Instead we will only comment the key aspects as well
as the minor modifications that have to be taken into account when the
conditions are derived under the Bayesian set up.

First of all, note that Lemma 1 can be straightforwardly extended to
the Bayesian set up. Similar to the proof carried out under the Neyman-
Pearson formulation, considering one of the conditional observation models
expressed in Table 5.1 together with (5.12) and (5.13), the key is that, even
in the most optimistic scenario where Pe(L − 1) = 0, none of the fusion
rules but one, γL (uL−1, IL) = uL−1, achieves perfect detection at the last
fusion stage. However, in order to check that, under any of the conditional
observation models expressed in Table 5.1 together with (5.12) and (5.13),
none of the fusion rules achieves Pe(L) = 0, in this case we have to evaluate
the expressions given in Table 5.2 at PM(L − 1) = P

FA
(L − 1) = 0. At

the same time this procedure automatically extends Corollary 3 under the
Bayesian set up.

Next, from the results of [Xiang and Wang, 2006] recall that, under the
Bayesian set up, the optimal fusion rule associated with the last fusion node
is given by the subsequent likelihood ratio test

uL = γL (uL−1,yL) =

{
1 if ln

(
fY L,UL−1|H(yL,uL−1|H1)

fY L,UL−1|H(yL,uL−1|H0)

)
≥ CF

CD
,

0 otherwise,
(5.40)
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where

CF = P (H0) (C10 − C00) > 0 (5.41)

and

CD = (1− P (H0)) (C01 − C11) > 0 (5.42)

with Cik, for i, k ∈ {0, 1}, denoting the cost of global decision being
Hi when Hk is present. Therefore, as it happened under the Neyman-
Pearson formulation, if we use (5.18) together with (5.9)-(5.11), we have
that the conditional ROC curve of the last fusion stage given the preceding
local decision, ROCL(uL−1), matches the plot shown in Figure 5.2 with

P
(uL−1)
D (L|tL(uL−1)) and P (uL−1)

FA
(L|tL(uL−1)) defined in (5.20) and (5.21)

respectively. At this point and after having extended the results provided
in Lemma 1, we can follow the proof of Theorem 3 in order to extend its
results under the Bayesian set up. In this way, we are able to show that the
necessary conditions for asymptotic detection derived in Theorem 3 still hold
under the Bayesian set up.

Looking at the proof of Theorem 4 we can verify that the sufficient
conditions for asymptotic perfect detection under the Neyman-Pearson
formulation also hold under the Bayesian set up. In order to show this,
we have to follow the same steps as in the proof of Theorem 4. In particular,
assuming that the sufficient conditions occur, we will use the suboptimal
fusion rules proposed in the proof of Theorem 4 in order to show that, given
any arbitrary δ ∈ (0, 1), the probability of error at the last fusion node of the
resulting tandem network is lower than an arbitrary δ ∈ (0, 1), i.e. Pe(L) < δ.
Consequently, in comparison with the proof followed in Theorem 4 under
the Neyman-Pearson formulation, if we take into account (5.1), the only
difference is that the parameter αL ∈ (0, 1) has to be replaced by δ in (5.87).

Finally, we focus on the extension of Corollary 4 under the Bayesian set
up. In this case note that the corresponding proof consists in showing that
the conditions given in Theorem 3 and 4 occur if and only if the conditions
provided in the Corollary hold. Toward this goal, recall that, under the
Neyman-Pearson formulation, we employed properties of the ROC curves
associated with LLRTs. Due to the fact that those properties are independent
of the considered formulation, Bayes or Neyman-Pearson, it is clear that,
once we have extended Theorems 3 and 4 under the Bayesian set up, we are
at the position to automatically extend Corollary 4 under the formulation
considered in this subsection.
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5.4 Illustrative examples

In Section 5.3 we have provided necessary and sufficient conditions that allow
us to determine if a tandem network can achieve asymptotic perfect detection
under some specific observation model. Next, we are going to analyze several
practical scenarios where the application of the aforementioned conditions is
shown.

Initially we consider a hypothesis testing problem involving the
distributed detection of a constant signal in correlated Gaussian noise. In
this problem, each fusion node performs one observation of the environment
according to the following observation model under each one of the two
possible hypothesis

H0 : yj = vj
H1 : yj = sj + vj

(5.43)

with j ∈ {1, 2, . . . , L}. For the previous observation model, the Gaussian
noise process {vj}Lj=1 has zero mean and covariance function

ρ(i, j) = E{vivj} = σ2ρ|i−j| (5.44)

with i, j ∈ {1, 2, . . . , L} and 0 ≤ ρ < 1. Additionally, the samples {sj}Lj=1

are drawn from an uniformly bounded deterministic signal, i.e., there exists
a constant Ca such that |sj| ≤ Ca for all j ∈ {1, 2, . . . , L}. Hence, if N (µ,Σ)
denotes a multivariate Gaussian distribution with mean µ and covariance
matrix Σ, the joint p.d.f. of the sensor observations under each one of the
two hypothesis is given by

H0 : y ∼ N (0,Σv)
H1 : y ∼ N (s,Σv)

(5.45)

where y = [y1, y2, . . . , yL]T and

Σv = σ2


1 ρ · · · ρL−1

ρ 1
. . .

...
...

. . . . . . ρ
ρL−1 · · · · · · 1

 . (5.46)

Precisely, from those joint probability density functions we will be able to
prove the subsequent corollary.

150



Corollary 5. For both the Bayesian set up and the Neyman-Pearson
formulation, an optimal tandem network can achieve asymptotic perfect
detection when solving the hypothesis testing problem provided in (5.45)
and (5.46).

Proof. As it can be expected from the theoretical results, for both the
Bayesian set up and the Neyman-Pearson formulation, we have to check
the same conditions in order to proof the corollary. Focusing on one of
those conditions, we firstly have to show that, given any strategy Γ, for all
uj−1 ∈ {0, 1} and all j ∈ {1, 2, . . . , L} the conditional p.d.f. of Λ (Y j|uj−1)
does not contain any point masses under both hypothesis, H0 and H1. For
j = 1 this can be easily seen since

Λ (Y1|u0) = Λ (Y1) = Y1
s1

σ2
+ Cb (5.47)

with

Cb = − s2
1

2σ2
. (5.48)

Given the marginal p.d.f. of Y1 under H0 and H1, from (5.47) and (5.48)
we can straightforwardly note that, for j = 1, the p.d.f. of Λ (Yj|u0) does
not contain any point masses under both hypothesis. On the contrary, when
we want to proof this for j > 1, we have to undertake a more elaborated
analysis.

Under any arbitrary but fixed strategy Γ as well as the observation model
described in (5.45) and (5.46), we initially have that, for uj−1, k̂ ∈ {0, 1} and
j ∈ {2, 3, . . . , L},

Λ
(
Yj|uj−1 = k̂

)
= Λ (Yj)− log

(
P (Uj−1 = k̂|H1)

)
+ log

(
P (Uj−1 = k̂|yj, H1)

)
= Yj

sj
σ2

+ Cc + log
(
P (Uj−1 = k̂|yj, H1)

) (5.49)

where

Cc = Cb − log
(
P (Uj−1 = k̂|H1)

)
(5.50)

151



and

P (Uj−1 = k̂|yj , H1)

=



∫
Y1,1

P (U1 = k̂|y1) fY1|Y2,H(y1|y2, H1)dy1 if j = 2∫
Yj−1,1

fYj−1|Yj ,H(yj−1|yj , H1)

×
[
P (Uj−1 = k̂|yj−1, uj−2 = 1)P (Uj−2 = 1|yjj−1)

+P (Uj−1 = k̂|yj−1, uj−2 = 0)P (Uj−2 = 0|yjj−1)
]
dyj−1 if j > 2

(5.51)

with yjj−1 = [yj−1, yj]. In the hypothesis testing problem expressed in (5.45)
and (5.46) if we assume that, for j ∈ {3, 4, . . . , L},

P (Uj−1 = 1|yj−1, uj−2 = 1) ≥ P (Uj−1 = 1|yj−1, uj−2 = 0), (5.52)

and that, for some yj−1 ∈ Yj−1,1 = (−∞,∞),

P (Uj−1 = 1|yj−1, uj−2 = 1) < 1 (5.53)

and

P (Uj−1 = 1|yj−1, uj−2 = 0) > 0, (5.54)

with j ∈ {2, 3, . . . , L} and u0 = ∅, from (5.51) and after some algebraic
manipulations we have that, for all yj ∈ Yj,1 = (−∞,∞) and all j ∈
{2, 3, . . . , L},

P (Uj−1 = k̂|yj, H1) ∈ (0, 1) (5.55)

with k̂ = 1. Realize that the assumptions given in (5.52)-(5.54) are not
restrictive under the considered observation model. On the one hand, as
it is stated in [Ekchian and Tenney, 1982], the first of them given in (5.52)
not only disambiguates two possible symmetric solutions when designing the
optimal fusion rules of an optimal tandem network under a specific set up.
It is also the natural way of modelling the effect of uj−2 on its successor, i.e.
the (j−1)− th fusion stage. On the other hand, if the assumptions provided
in (5.53) and (5.54) were not satisfied, independently of yj−1 the (j − 1)-th
fusion stage would make the same binary decision as its predecessor. This
kind of strategy would only make sense if

Pe(j − 2) = 0 (5.56)
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under Bayesian set up, or if, under the Neyman-Pearson formulation,

PM(j − 2) = 0 (5.57)

for P
FA

(j − 2) ≤ αL ∈ (0, 1). Nonetheless, considering the observation
model described in (5.45) and (5.46) this situation cannot happen under
both formulations. Realize that, for the aforementioned observation model,
a centralized system, whose detection performance is better than the one
achieved by a tandem network, cannot achieve zero probability of error or
zero probability of misdetection under the Bayesian set up or under the
Neyman-Pearson formulation respectively.

Next, by noting that Cc is equal to a constant when uj−1 is equal

to a specific value k̂ ∈ {0, 1}, (5.49) and (5.55) entail that, under both
hypothesis, the p.d.f. of Λ (Y j|uj−1) has the same support as Λ (Y j) with
j ∈ {2, 3, . . . , L}. At the same time this last fact implies that, under both
hypothesis and any j ∈ {2, 3, . . . , L}, the p.d.f. of Λ (Y j|uj−1) can only
contain point masses if and only if

P (Uj−1 = k̂|yj, H1) ∝ e(−Yj
sj

σ2 ) (5.58)

for several values of yj ∈ (a, b) with −∞ < a < b <∞. However, using (5.51)
and taking into that, for all j ∈ {2, 3, . . . , L},

fYj−1|Yj ,H(yj−1|yj, H1) = N
(
sj−1 + ρ (yj − sj), σ2 (1− ρ2)

)
, (5.59)

we can check that, given any strategy Γ,

P (Uj−1 = k̂|yj, H1) =
∑
i

CiQ(fi(yj)) (5.60)

where {fi(yj)}i=1 equals a sequence of an affine functions of yj, Ci ∈ Z and

Q(x0) =
1√
(2π)

∫ ∞
x0

e−
x2

2 dx (5.61)

with Z denoting the set of integers. Due to the fact that the linear
combination given in the r.h.s. of (5.60), cannot be proportional to the
r.h.s. of (5.59), by contradiction we show that, for any j ∈ {2, 3, . . . , L}
and any uj−1 ∈ {0, 1}, the p.d.f. of Λ (Y j|uj−1) does not contain any point
masses under H0 and H1.
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At this point, we only need to check if the sufficient conditions of
Corollary 4 are verified under the observation model characterized in (5.45)
and (5.46). In particular, we are going to show that Λinf

+ (1) is not lower
bounded. To do so, from (5.47) and (5.48) we initially check that, under
the observation model described by (5.45) and (5.46), the quantity Λinf

1 (1)
defined in (5.31) is not lower bounded. Consequently, recalling (5.34) we
conclude the proof as long as we show that Λinf

j (1) is not lower bounded for
all j ∈ {2, 3, . . . , L}.

When showing the aforementioned conditions, from (5.49) we firstly have
to realize that, under the observation model expressed in (5.45) and (5.46),

Λ (Yj| 1) ≤ −ln (PD(j − 1)) + Λ (Yj) (5.62)

with j ∈ {2, 3, . . . , L}. Subsequently, note that (5.62) yields

Λinf
j (1) ≤ −ln (PD(j − 1)) + inf

Yj∈Y
(1)
j

{Λ (Yj)} = −ln (PD(j − 1)) + Λinf
j

(5.63)

with Λinf
j (1) defined in (5.31). At the same time, taking into account that

the support of fYj |Uj−1,H(yj|1, H0), Y(1)
j,0 , equals R because

fYj |Uj−1,H(yj|uj−1, H0) = fYj |H(yj|H0) = N (0, σ2) (5.64)

is verified when uj−1 ∈ {0, 1}, from the evaluation of (5.32) at uj−1 = 1 we
also have that

Y(1)
j = Y(1)

j,0 ∪ Y
(1)
j,1 = R (5.65)

for all j ∈ {2, . . . , L} and independently of the support of fYj |Uj−1,H(yj|1, H1),

Y(1)
j,1 . Hence, due to the fact that PD(j − 1) > 0 when (5.55) holds for all

j ∈ {2, . . . , L}, and that

Λinf
j = inf

Yj∈Y
(1)
j

{Λ (Yj)} (5.66)

is not lower bounded when (5.65) occurs, (5.63) implies that Λinf
j (1) is not

lower bounded. Equivalently, if we recall the proof where we have already
shown that Λinf

1 (1) is not lower bounded, the previous statement means that,
under the observation model described in (5.45) and (5.46), the quantity
Λinf

+ (1), defined in (5.34), is not lower bounded. In this way the proof is
concluded.
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In the previous example we have provided a detection scenario where
the sufficient conditions of Corollary 4 occur. Next, we analyze a scenario
where the necessary conditions to achieve asymptotic perfection do not hold.
Specifically, in the next illustrative example we consider a tandem network
solving this hypothesis testing problem under the Bayesian set up or under
the Neyman-Pearson formulation

Hk : {yj}Lj=1are samples drawn from a first-order regular Markov chain, Ck,
with M -ary state space and transition probability matrix Πk.

(5.67)

where, for k ∈ {0, 1},

Πk(m,n) = P (yj = n|yj−1 = m,Hk) ∈ (0, 1) (5.68)

for all m,n ∈ {1, 2, . . . ,M}, k ∈ {0, 1} and j ∈ {2, 3, . . . , L}. Under this
observation model using the inequalities

PYj |Uj−1,H(n|uj−1Hk) ≥ min
m=1,2,...,M

{
PYj |Yj−1,H(n|m,Hk)

}
(5.69)

and

PYj |Uj−1,H(n|uj−1Hk) ≤ max
m=1,2,...,M

{
PYj |Yj−1,H(n|m,Hk)

}
(5.70)

we can easily see that

PYj |Uj−1,H(n|uj−1Hk) ∈ (0, 1) (5.71)

for all n ∈ {1, 2, . . . ,M}, uj−1 ∈ {0, 1} and j ∈ {2, 3, . . . , L}.
Recalling the optimal fusion rule applied by the last fusion stage of a
tandem network performing a Bayesian or a Neyman-Pearson test (see
[Xiang and Wang, 2006] and [Yan and Blum, 2001]), (5.71) implies that, for

both formulations, m
(0)
0,L < ∞ and m

(1)
1,L > 0. If we now realize that these

inequalities cannot happen when the necessary conditions for asymptotic
perfect detection hold, we automatically prove the following corollary.

Corollary 6. Under both the Bayesian set up and the Neyman-Pearson
formulation, an optimal tandem network can never achieve asymptotic perfect
detection when discriminating two first-order Markov chains defined on a M-
ary state space and whose transition probability matrices only have strictly
positive elements.
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The last illustrative example consists in the particularization of the
previous scenario for M = 2. With this simplified setting we are able to show
that, under both the Bayesian set up and the Neyman-Pearson formulation,
a tandem network could only achieve any desired level of performance if the
Markov chains present under both hypothesis are different and if at least one
of them is absorbing. This way, as it is stated in the subsequent corollary, we
generalize the result of Corollary 6 to all possible kinds of regular first-order
Markov chains defined on a binary state space.

Corollary 7. Under both the Bayesian set up and the Neyman-Pearson
formulation, an optimal tandem network can never achieve asymptotic perfect
detection when discriminating two first-order regular Markov chains defined
on a binary state space.

Proof. See Appendix 5.B.

Finally, we will complement the analysis of this last example by
considering a scenario where the Markov chain present under one of the
two hypothesis is not regular. In particular, we will assume that the Markov
chain present under H1, C1, is regular and has a transition probability matrix
characterized by

Π1(m,n) ∈ (0, 1) (5.72)

for all m,n ∈ {0, 1}. Additionally, we will consider that the Markov chain
associated with H0, C0 is absorbing with

Π0(0, 1) = 0 (5.73)

and
Π0(1, 0) ∈ (0, 1]. (5.74)

Assuming that the Markov chains, C0 and C1, are in their stationary
regime when they are observed by the tandem network, as a consequence
of (5.73), (5.74) and the subsequent expression

P (Yj = 1|H0) = 1− P (Yj = 0|H0) =
Π0(0, 1)

Π0(1, 0) + Π0(0, 1)
= 0 (5.75)

with j ∈ {1, 2, . . . , L}, we have that, for all j ∈ {1, 2, . . . , L},

PYj |Uj−1,H(1|0, H0) = (1−Π0(1, 0))PYj−1|Uj−1,H(1|0, H0) = 0. (5.76)
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Next, if we take into account that the last decision rule is given by (5.40)
and (5.19) under the Bayesian set up and the Neyman-Pearson formulation
respectively, from (5.9) and (5.18) we can see that (5.76), evaluated at

j = L, ensures m
(0)
0,L = ∞ under the observation model resulting from

the particularization of (5.67) for M = 2. It should be noted that this
result is consistent if we take into account that, in a tandem network whose
observation model matches the one expressed in (5.72)-(5.74), there exists a
straightforward strategy achieving perfect detection under both the Bayesian
set up and the Neyman-Pearson formulation.

5.5 Summary

In this chapter, we addressed the analysis of detection performance of a
distributed detection system with serial architecture. In order to solve
a distributed detection problem where the sensor observations might be
dependent under each one of the two possible hypothesis, each fusion stage
applies a binary local decision rule. For the previously described scenario
and under the Neyman-Pearson formulation, we initially derived necessary
and sufficient conditions for asymptotic perfect learning. In other words,
we were able to obtain necessary and sufficient conditions ensuring that,
for a specific constraint on the probability of false alarm of the system,
the corresponding probability of misdetection go to zero as the number of
fusion stages increases. Later, under the same scenario these conditions were
also extended to optimal tandem networks performing a Bayesian hypothesis
test on conditionally dependent observations. Finally, we provided some
illustrative examples where the application of the previous necessary and
sufficient conditions is shown.

5.A Proof of Theorem 4

Firstly choose some large value η∗ and consider a tandem network whose
fusion stages apply the following decision rules for some integer L∗. At the
first fusion node

u1 = γ1(y1) =

{
0 if Λ(y1) ≤ log (η∗) ,
1 if Λ(y1) > log (η∗)

(5.77)
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with

Λ(y1) = ln

(
fY 1|H(y1|H1)

fY 1|H(y1|H0)

)
. (5.78)

For the fusion units whose index j ∈ {2, 3, . . . , L∗}

uj = γj(yj, uj−1) =

{
0 if Λ(yj|0) ≤ log (η∗) and uj−1 = 0,
1 otherwise,

(5.79)

with Λ(yj|0) equal to the evaluation of Λ(Y j|uj−1) at Y j = yj and uj−1 = 0.
Finally, for the fusion stages with index j ∈ {L∗ + 1, L∗ + 2, . . .}

uj = γj(yj, uj−1) = uj−1. (5.80)

According to the previous strategy, only the first L∗ fusion stages influence
the final decision of the team. In particular, a decision uj = 0, with
j ∈ {1, 2, . . . , L∗}, is propagated through the following L− j fusion stages of
the team until some fusion node j∗, with j∗ ∈ {j+1, j+2, . . . , L∗}, performs
an observation yj∗ which makes it decide uj∗ = 1. In that case, the team
decision decision will be uL = 1; otherwise the team decision will be uL = 0.
To put it differently, under the proposed strategy, the final decision is only H0

when u1 = u2 = . . . = uL∗ = 0. Consequently, using the described strategy
the tandem network has the following probability of false alarm

P
FA

(L) = 1− P (UL = 0|H0) = 1−
L∗∏
j=1

(1− P (0)
FA

(j|η∗)) (5.81)

and the subsequent probability of detection

PD(L) = 1− P (UL = 0|H1) = 1−
L∗∏
j=1

(1− P (0)
D (j|η∗)) (5.82)

where, for all j ∈ {1, . . . , L∗},

P (0)
FA

(j|η∗) =

{
P (U1 = 1|η∗, H0) if j = 1
P (Uj = 1|Uj−1 = 0, η∗, H0) if j 6= 1

(5.83)

and

P
(0)
D (j|η∗) =

{
P (U1 = 1|η∗, H1) if j = 1
P (Uj = 1|Uj−1 = 0, η∗, H1) if j 6= 1

(5.84)
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denote the operating point for the j-th fusion stage.
From basic detection theory provided in [Van Trees, 2001, Section 2.2.2],

we can verify that, as long as m
(0)
0,j =∞ and the p.d.f. of Λ (Y j|uj−1) contains

no point masses for all j ∈ {1, 2, . . . , L}, the operating points{(
P (0)
FA

(j|η∗), P (0)
D (j|η∗)

)}L∗
j=1

(5.85)

can always be obtained regardless of how large the value η∗ is. At the same
time we can note that the probabilities defining the operating points are very
close to zero since η∗ is chosen sufficiently large. Actually, in the considered
strategy the probability P (0)

FA
(j|η∗) or P

(0)
D (j|η∗), with j ∈ {2, 3, . . . , L∗},

is only equal to zero when the observations Y j−1 and Y j are maximally
dependent under H0 or H1 according to Definition 1 respectively. In that
case, as it can be easily checked from (5.81) and (5.82), the corresponding
fusion stage does not have effect on the detection performance of the
network. Consequently, ignoring that kind of fusion stages and assuming
that the number of fusion nodes performing non-maximally dependent
observations under both hypothesis is strictly increasing w.r.t. L, without
loss of generality we can consider an equivalent network where P (0)

FA
(j|η∗),

P
(0)
D (j|η∗) > 0.

Next, from (5.81) and (5.82) check that the integer L∗ has to satisfy an
upper and a lower bound in order to achieve

PM(L) < δ ∈ (0, 1) (5.86)

for any upper bound
P
FA

(L) ≤ αL ∈ (0, 1). (5.87)

On the one hand, if we take into account that for all j ∈ {1, 2, . . . , L∗}

P
(0)
D (j|η∗)
P

(0)
FA (j|η∗)

> η∗ (5.88)

holds because conditional ROC curves, ROCj(0), are concave downward
when Λ (Y j|uj−1) does not contain any point masses of probability under
either hypothesis, from (5.83) we can check that (5.87) occurs as long as

L∗∑
j=1

log

(
1− P

(0)
D (j|η∗)
η∗

)
≥ log(1− α

L
). (5.89)
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On the other hand, knowing that PM(L) = 1−PD(L), (5.84) and (5.86) yield

L∗∑
j=1

log
(

1− P (0)
D (j|η∗)

)
≤ log(δ). (5.90)

Thus, for any of the constraints provided in (5.87) the probability of
misdetection of the system, PM(L), is less than an arbitrary δ ∈ (0, 1) as
long as an integer L∗ satisfying (5.89) and (5.90) indeed exists.

Finally, we conclude the proof by showing the existence of an integer L∗

satisfying both (5.89) and (5.90). Toward this goal, recall that

log(1 + x) ≈ x (5.91)

for x ≈ 0, and that P
(0)
D (jmin|η∗) is very closed to zero and greater than

zero if η∗ is chosen sufficiently large in the equivalent tandem network where
there are no fusion stages performing maximally dependent observations.
Therefore, considering that αL > δ without loss of generality, the inequalities
provided in (5.89) and (5.90) hold as long as

− log(1− δ) η∗∑L∗

j=1 P
(0)
D (j|η∗)

≥ 1 (5.92)

and

− log(δ)∑L∗

j=1 P
(0)
D (j|η∗)

≤ 1. (5.93)

If we multiply by L∗ both sides of the two previous inequalities, we can easily
check that they are satisfied when the subsequent expression occurs⌊

− log(δ)L∗∑L∗

j=1 P
(0)
D (j|η∗)

⌋
≥ L∗ ≥

⌈
− log(1− δ) η∗ L∗∑L∗

j=1 P
(0)
D (j|η∗)

⌉
(5.94)

with bxc equal to the integer part of x and dxe denoting the smallest integer
greater than or equal to x. Now, check that if

η∗ ≥ log(δ)

log(1− δ)
− 2

log(1− δ) (5.95)
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we have that

− log(1− δ) η∗ L∗∑L∗

j=1 P
(0)
D (j|η∗)

>
− log(δ)L∗∑L∗

j=1 P
(0)
D (j|η∗)

+
2L∗∑L∗

j=1 P
(0)
D (j|η∗)

≥ − log(δ)L∗∑L∗

j=1 P
(0)
D (j|η∗)

+ 2

(5.96)

where the last inequality follows since
∑L∗

j=1 P
(0)
D (j|η∗) ≤ L∗. Consequently,

from (5.96) it is straightforward to show that choosing η∗ sufficiently large,

which can be done because the m
(0)
0,j is assumed to be infinite for all

j ∈ {1, 2, . . . , L∗}, an integer satisfying both (5.89) and (5.90) can always
be obtained. At the same time, knowing that the detection performance of
the proposed strategy is worse than or equal to the detection performance
of the optimal strategy, we show that, for any of the constraints given
in (5.89), (5.90) also occurs in an optimal tandem network performing a
Neyman-Pearson test on dependent observations. In other words, for any
arbitrary constraint on the probability of false alarm of an infinite tandem
team, the optimal probability of misdetection always goes to zero as long
as m

(0)
0,j = ∞ and the p.d.f. of Λ (Y j|uj−1) contains no point masses under

either hypothes and for all j ∈ {1, 2, . . . , L∗}. This concludes the proof.

5.B Proof of Corollary 7

Taking into account the statement of Corollary 6 we need to show that
m

(0)
0,L < ∞ holds in two specific settings. On the one hand, in one of these

settings
Π0(0, 1) = 1, (5.97)

Π0(1, 0) ∈ (0, 1) (5.98)

and the Markov chain present under H1, C1, is not absorbing, i.e.

Π1(0, 1),Π1(1, 0) > 0. (5.99)

On the other hand, the second scenario is described by (5.99) as well as the
subsequent constraints

Π0(1, 0) = 1, (5.100)

Π0(0, 1) ∈ (0, 1]. (5.101)
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In order to prove that the necessary conditions derived in Section 5.3 do
not hold when the Markov chains, C0 and C1, are not absorbing we should
also analyze that m

(1)
1,L > 0 is verified under two additional sets of constraints.

However, this proof has been omitted since it is analogous to the one required
when showing that m

(0)
0,L < ∞ holds under the two sets considered in this

appendix.
To show that m

(0)
0,L <∞ holds in the setting characterized by (5.97)-(5.99)

we can employ the subsequent expression

PYj |Uj−1,H(1|uj−1, Hk)

=
1∑

yj−1=0

PYj |Yj−1,Uj−1,H(1|yj−1, uj−1, Hk)PYj−1|Uj−1,H(yj−1|uj−1, Hk)

= Πk(0, 1) + ρk PYj−1|Uj−1,H(1|uj−1, Hk)

= 1−Πk(1, 0)− ρk PYj−1|Uj−1,H(0|uj−1, Hk),

(5.102)

with k ∈ {0, 1} and

ρk = 1−Πk(1, 0)−Πk(0, 1). (5.103)

From (5.97), (5.98) and these last two expressions we can easily realize that
PYj |Uj−1,H(1|uj−1, H0) = 0 if

PYj−1|Uj−1,H(1|uj−1, Hk) =
1

Πk(1, 0)
> 1 (5.104)

with uj−1 ∈ {0, 1} and j ∈ {2, . . . , L}. However, this is not possible since
PYj−1|Uj−1,H(yj−1|uj−1, Hk) ≤ 1 by definition. Therefore, if we take into
account that the last decision rule is given by (5.40) and (5.19) under the
Bayesian set up and the Neyman-Pearson formulation respectively, from (5.9)

and (5.18) we can see that m
(0)
0,L < ∞ does not hold as long as (5.97)-(5.99)

occur.
Next, if we recall again the form of the optimal fusion rule applied by the

last fusion stage of a tandem network performing a Bayes test or a Neyman-
Pearson test, from (5.102) we can check that, for both formulations and under

the set of constraints given in (5.99)-(5.101), m
(0)
0,L =∞ holds only if

PYL−1|UL−1,H(1|0, H0) = Π0(0, 1)PYL−1|UL−1,H(0|0, H0) = 0. (5.105)
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Due to the fact that, under the considered observation model, Π0(0, 1) > 0,
the previous expression results into

PYL−1|UL−1,H(0|0, H0) = 0. (5.106)

Subsequently, we are going to analyze the implications associated with this
last constraint when the Markov chains present under both hypothesis are
in their stationary regime, i.e.

P (Yj = 0|Hk) = 1− P (Yj = 0|Hk) =
Πk(1, 0)

Πk(1, 0) + Πk(0, 1)
(5.107)

for all j ∈ {1, . . . , L} and k ∈ {0, 1}. In particular, if we initially consider
that P

FA
(L − 1) < 1, using (5.107) we can realize that, under the set of

constraints given in (5.99)-(5.101),

PYL−1|UL−1,H(0|0, H0) =
PUL−1|YL−1,H(0|0, H0)

1− PFA(L− 1)
P (YL−1 = 0|H0)

=
PUL−1|YL−1,H(0|0, H0)

(1− PFA(L− 1)) (1 + Π0(0, 1))

(5.108)

This last expression together with (5.106) implies that

PUL−1|YL−1,H(0|0, H0) = 0. (5.109)

At this point, if we recall the monotonicity property associated with fusion
rules whose inputs are binary, we can verify that (5.109) yields P

FA
(L−1) =

1. Nonetheless, note that this is contradictory with the initial assumption
P
FA

(L − 1) < 1. Consequently, under the considered observation model
and under the constraints given in (5.99)-(5.101), (5.105) cannot happen if
P
FA

(L− 1) > 0. On the contrary, if we assume that P
FA

(L− 1) = 1, from

PD(L) =PD(L− 1) ·
(

1− F (1)
L (tL(1)|H1)

)
+ (1− PD(L− 1)) ·

(
F

(0)
L (tL(0)|H1)

) (5.110)

and

P
FA

(L) =P
FA

(L− 1) ·
(

1− F (1)
L (tL(1)|H0)

)
+ (1− P

FA
(L− 1)) ·

(
1− F (0)

L (tL(0)|H0)
) (5.111)
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we can straightforwardly check that, even in the most optimistic situation
where PD(L−1) = 1, when (5.99) holds the last fusion stage cannot perform
binary fusion rules achieving any desired level of performance under the
Bayesian set up or under the Neyman-Pearson formulation. In this way,
we show that m

(0)
0,L <∞ as long as the constraints (5.99)-(5.101) occur.

Finally, we have to remark that all the constraints expressed
in (5.97), (5.98), (5.100) and (5.101) parametrize the set of all the possible
non-absorbing Markov chains, C0, present under H0. At this point, if we take
into account that (5.99) represents all the possible non-absorbing Markov

chains, C1, present under H1, this means that m
(0)
0,L <∞ and m

(1)
1,L > 0 hold

as long as none of the Markov chains, C0 and C1, is absorbing. To put it
differently, we have that, under both the Bayesian set up and the Neyman-
Pearson formulation, a tandem network can only achieve any desired level of
performance if at least one of the binary Markov chains present under one of
the two hypothesis is absorbing.

164



Chapter 6

Conclusions and future
research lines

In this dissertation we faced the design and analysis of distributed
detection systems with conditionally dependent sensor observations and
binary quantization rules at the sensors. In particular, under the Neyman-
Pearson formulation, we characterized the overall detection performance as a
function of different physical and design parameters associated with parallel
and tandem networks where the local processing scheme provides a binary
summary of the sensor observations.

Initially, we undertook the aforementioned characterization for parallel
distributed detection systems formed by a large number of binary local
detectors as well as a data fusion center. In this kind of system, based
on the observations of each device, the binary local decisions are taken
with no kind of cooperation and they are transmitted to the fusion center
over an error free bank of parallel access channels. Additionally, we also
considered that the devices are randomly deployed along a straight line
and that the corresponding sensor spacings are drawn independently from
a common p.d.f., fD(d). At the same time, we assumed that, under both
hypothesis H0 and H1, the dependence among the local decisions is modelled
by means of a 1-D MRF with nearest-neighbour dependency and binary state
space. Under this scenario, we firstly derived a closed-form error exponent
for the Neyman-Pearson test performed at the fusion center when this one
only knows the p.d.f. of the sensor spacings. After studying the analytical
properties and evaluating the derived error exponent for a specific physical
model associated with the conditional probabilities of the assumed MRF,
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we were able to study the dependency of the overall detection performance
w.r.t. different parameters of networks deployed with a different p.d.f. of
the sensor spacings, fD(d). Regarding the discrimination of two different
1-D Markov random fields defined on a binary state space and where the
involved random variables are not maximally dependent, the result of the
previous work yielded the subsequent conclusions for the considered network:

• When the binary local decisions are independent under H0 and H1, the
derived error exponent is always consistent with the Neyman-Pearson
error exponent stated by Stein’s Lemma.

• Independently of fD(d) and for any arbitrary constraint α ∈ (0, 1)
on the probability of false alarm of the system, the corresponding
probability of misdetection can be arbitrarily low as the number of
observations increases.

• Independently of the sensor spacing and the physical model followed by
the conditional probabilities of the MRF, the maximum discrimination
between the null and the alternative hypothesis is not always achieved
when the sensor observations are conditionally independent under
both hypothesis. In particular, the dependence among the local
decisions might be more informative than the conditional independence.
Actually, when a correlation structure is only present under one of
the two hypothesis, there will always be a range of mean correlation
strengths under which the detection performance of the network is
better than the one associated with conditionally independent sensor
observations. On the contrary, the existence of the aforementioned
range of values of the mean correlation strength cannot be ensured
in a scenario where, under both hypothesis, the local decisions are
dependent and are distributed according to a 1-D MRF. We showed
that this occurs since different trends of detection performance can
appear with increasing dependency if we assume different sets of
physical and design parameters of the network and if the local decisions
are dependent under H0 and H1.

• Under exponentially spaced sensors with failures, given a specific mean
correlation strength, the error exponent, K, for the Neyman-Pearson
fusion of the Markov local decisions remains unaltered although the
failure rate, q, of the devices varies. Consequently, there might be
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detection scenarios under which the error exponent, and therefore,
the asymptotic detection performance of the system, is completely
determined from the mean correlation strength between neighbour
local decisions. However, this does not hold for all the probability
density functions of the sensor spacings as well as all the scenarios
of dependence among the binary local decisions. Nevertheless, for
the cases where this is verified, the error exponent for the fusion
rule can be the same for two different sets of physical and design
parameters of the network that result in the same mean correlation
strength among neighbour nodes. Consequently, under this kind of
scenarios, important savings in the consumption of network resources
can be made. Toward this goal, among the sets of network parameters
that achieve a required level of asymptotic detection performance with
a specific mean correlation strength, it suffices to choose the one
minimizing the corresponding network resources.

Later, we characterized the performance associated with a 2-D version of
the previous distributed detection system. However, this time the devices
are located on a rectangular lattice so that sensors belonging to a specific
row or column are equally spaced. Additionally, for each hypothesis H0 and
H1, the correlation structure of the local decisions is modelled with a 2-D
causal field where the rows and columns are outcomes of the same first-order
binary Markov chain. Similarly to the 1-D setting, we derived, analyzed
and evaluated a closed-form error exponent for the Neyman-Pearson fusion
of the local decisions. As a result of those tasks, the characterization of the
detection performance associated with the previously described 1-D network,
and therefore, the previous results, are generalized to a 2-D scenario where
the devices are deterministically deployed,

Finally, we addressed the analysis of the detection performance of a serial
detection system formed by L fusion nodes. In order to solve a hypothesis
testing problem where the sensor observations might be dependent under
each one of the two possible hypothesis, the tandem network applies a
strategy based on binary decision rules at each one of the fusion stages.
Specifically, the binary local decision rule associated with each fusion stage
only depends on the result of fusing its own measurement, the measurements
received from the sensor nodes that directly communicate with it over error
free parallel access channels, and the local decision taken by the preceding
fusion node. Under the Neyman-Pearson strategy we were able to obtain
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necessary and sufficient conditions ensuring that, for a specific constraint on
the probability of false alarm of the system, the corresponding probability
of misdetection goes to zero as the number of fusion stages increases. Later,
under the same scenario these conditions were also extended to optimal
tandem networks performing a Bayesian hypothesis test on conditionally
dependent observation. If Λ (Y j|uj−1) denotes the likelihood ratio of the
sensor observations performed by the j-th fusion stage when the preceding
fusion node decides uj−1 ∈ {0, 1} with j ∈ {1, 2, . . . , L} and u0 = ∅, for
the considered tandem network, under both the Bayesian and the Neyman-
Pearson set ups, the analysis of the previous conditions as well as some
illustrative examples yield the following conclusions:

• The considered tandem network cannot achieve asymptotic perfect
detection if Λ (Y L| 0) is upper bounded and Λ (Y L| 1) is lower
bounded.

• The addition of extra fusion stages can make the considered tandem
network achieve any desired level of performance if, for all j ∈
{1, 2, . . . , L}, either Λ (Y j| 0) is not upper bounded or either Λ (Y j| 1)
is not lower bounded.

• The considered tandem network can achieve any desired level of
performance when detecting a deterministic signal in correlated
Gaussian noise.

• Asymptotic perfect detection cannot be achieved when the considered
tandem network wants to discriminate between two regular first-order
Markov chains satisfying some conditions. Specifically, if the Markov
chains associated with each hypothesis are defined on a M -ary state
space, the previous result holds when the corresponding transition
probability matrices only have strictly positive elements. In the case
that they were defined on binary state space, this result can be applied
to a detection problem where the Markov chains are regular under H0

and H1.

Next, we give a description of the possible future research lines
for the problems addressed in this thesis dissertation. Regarding the
characterization of the detection performance associated with two-stage
parallel distributed systems, an interesting future research direction would be
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the derivation of the Neyman-Pearson error exponent when the devices are
randomly located over a 2-D region. Furthermore, during this dissertation
we have assumed that the local decisions are noiselessly transmitted to the
fusion center. However, for both the 1-D and the 2-D deployments, an
appealing extension would be the characterization of the error exponent when
the data fusion center receives noisy observations of the binary quantizations
undertaken at the sensors. Moreover, it would be of great value to extend
all the previous research lines when the data fusion center performs a Bayes
hypothesis test.

As it happens for parallel networks with dependent observations and
binary quantization rules at the sensors, there is a big number of possible
future research lines when a tandem architecture is considered. Concluding
this section we will only mention a couple of them. For instance, for
the tandem network considered in the last part of this dissertation, an
interesting research line would be the study of conditions ensuring that
Neyman-Pearson tests at the fusion nodes maximize the overall probability
of detection s.t. a fixed constraint on the corresponding probability of
false alarm. Some results associated with this problem have already been
published in [Plata-Chaves et al., 2011b]. Additionally, in order to provide
more design guidelines for this kind of networks, an appealing extension
of [Tay et al., 2008b] would be the derivation of upper bounds on the best
rate of decay that, for an arbitrary upper bound on the overall probability
of false alarm, the corresponding probability of misdetection can achieve
when the aforementioned tandem network implements a myopic strategy
under the Neyman-Pearson formulation. The results of that task, which
have being gathered in [Plata-Chaves et al., 2012a], allow us to show that
the rate of decay for the overall probability of misdetection is always
subexponential although the correlation structure of the sensor observations
yields an exponential rate of decay under a parallel architecture. At the
same time, besides obtaining some design guidelines, from those bounds we
will also be able to quantify the performance of the network in terms of the
best subexponential rate of decay that the overall probability of misdetection
can achieve. Likewise, it would be of great interest to extend the previously
described future research lines as well as the results presented along this
thesis to tree architectures and/or a scenario where, for M > 2, the fusion
nodes perform M -ary quantizations of the available sensor observations.
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Appendix A

Acronyms and abbrevations

• 1-D: one-dimensional.

• 2-D: two-dimensional.

• AWGN: additive white Gaussian noise.

• CGF: cumulant generating function.

• GLRT: generalized likelihood ratio test.

• GMRF: Gauss-Markov random field.

• i.i.d.: independent and identically distributed.

• l.h.s.: left-hand side.

• LLRT: log-likelihood ratio test.

• MGF: moment generating function.

• MRF: Markov random field.

• PBPO: person-by-person optimization.

• p.d.f.: probability density function.

• p.m.f.: probability mass function.

• r.h.s.: right-hand side.
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• ROC: receiving operating curve.

• SPRT: sequential probability ratio test.

• s.t.: subject to.

• UMP: uniformly most powerful.

• w.r.t.: with respect to.
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(2007). Optimal sensor selection in heterogeneous sensor networks.
In IEEE International Conference on Acoustics, Speech and Signal
Processing, 2007. ICASSP 2007, pages 1017–1020.

[Artés-Rodŕıguez et al., 2005] Artés-Rodŕıguez, A., Lázaro, M., and
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