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Using a collective-coordinate approach, we study kink propagation along nonlinear systems with 
local, randomly distributed inhomogeneities. We develop a general method to compute dynamical 
variable statistics which can be generalized to a number of soli ton-bearing systems, and we apply it 
to the sine-Gordon equation as an example. 
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I. INTRODUCTION 

Wave propagation in nonlinear disordered media has 
become an extensively studied subject in recent years 
[1]. In linear systems, disorder generally gives rise to An­
derson localization, a phenomenon that is experienced 
also by a number of different waves, such as phonons, 
acoustic, and electromagnetic waves, etc. (see, e.g., Ref. 
[2]). Localization means that the transmission coeffiCient 
of a wave decays exponentially with'the system length 
L, i.e., a positive number exists, the so-called localiza­
tion length, A(k), k being the wave number, so that for 
L :> A(k) very little transmission is allowed (see, e.g., 
[3]). Nonlinearity changes the features of wave scatter­
ing in disordered systems, bringing about qualitatively 
different effects. In stationary nonlinear problems, weak 
nonlinearity acting against disorder induces variations of 
the length dependence of the transmission coefficient: it 
still goes to zero as the system size increases, but accord­
ing to a power law [4,5] instead of the exponential one 
proper to the linear case. Nonlinearity may also produce 
multistability in the wave transmission through a disor­
dered slab [4-6]. In nonstationary problems, nonlinearity 
may lead to modulational instability, which is enhanced 
by disorder [7,8]. The modulational instability is impor­
tant because it is the factor that causes the formation of 
envelope solitons instead of linear waves. 
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The most remarkable manifestation of the influence of 
nonlineariti on disordered systems is related to the fact 
that many nonlinear models are able to support undis­
torted propagation of localized waves, i.e., solitons. Non­
linearity yields a sufficient improvement of the transmis­
sion through the disordered medium only when it con­
tributes to create soliton pulses [9-11]. Solitons are far 
more robust than linear waves, and that is the reason 
why their st~ucture aCts against localization. Therefore, 
soli tons have to give a nonzero contribution to the total 
transmission coefficient. As is well known, there are soli­
tons of three general types: dynamical solitons, envelope 
solitons, and (topological) kinks. The amplitude of a dy­
namical soliton is proportional to its velocity, and, when 
propagating along a disordered system, their scattering 
is similar to that of a linear wave packet [9]. Envelope 
soli tons are two-parametrical ones, and they exhibit a 
quite more complicated behavior. As was shown by the 
authors [11] for envelope solitons, localization effects van­
ish drastically above a certain threshold in the strength 
of the nonlinearity. As we stated above, this property 
means that such soli tons will provide a nonzero wave 

-transmission coefficient, even for distances much longer 
than the localization length. The last type of solitary 
waves is that of topological kinks, which exist only in 
nonlinear systems with two or more equivalent ground 
states, i.e., when nonlinearity is not small. In many 
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cases, kink dynamics can be described in the framework 
of a collective-coordinate approach, when the evolution 
of the kink parameters is similar to the evolution of an 
effective particle (see (12-16] and references therein), the 
particle coordinate being the kink cent er position. Such 
a simplification holds because of an exponentially small 
radiative loss of the kink in the spatially inhomogeneous 
medium (see, e.g., [14]); under this condition, one can 
use the collective-coordinate formalism with high accu­
racy (see [17] for an example). However, this technique 
is no longer reliable if the medium parameters are non­
stationary: then, perturbation-induced emission is not at 
all small in this case. 

The present paper is aimed to study kink propa­
gation in a disordered medium using the sine-Gord{Hl 
(SG) model as an example. Starting from the standard 
collective-coordinate treatment, we reduce the model to 
a simple equation for the kink coordinate that includes 
an effective random potential. To deal with the so­
obtained equation, we elaborate a statistical method to 
compute directly the mean values of the kink parame­
ters. This procedure is rather general, and it may be 
useful in other similar problems, such as, e.g., propaga­
tion ofkinks along spatially disordered rp4 [18], double-SG 
(19], or generalized-SG [20] models, as well as for other 
nonlinear systems supporting topological. kinks. Thus. 
the paper is organiz~d as follows: in Sec. IIwe present 
the model and derive the equation for the kink collective 
coordinate, with an effective random potential account­
ing for the effects of disorder. Section III is devoted to 
the statistical procedure, developed to describe the kink 
propagation in the system by obtaining exact formulas 
for the mean kink parameters. In Sec. IV we numerical­
lly evaluate these formulas for some cases and discuss the 
validity and interest of our results in view of the outcome. 
Finally, Sec. V collects our results and conclusions. 

H. MODEL: EFFECTIVE EQUATION 
FOR THE KINK COORDINATE 

Let us consider a kink-bearing system in the presence 
of a disordered lattice of impurities. To be specific, and 
to make calculations simpler, let us choose the SG model 
as a particular realization of this problem, described by 
the following equation for the wave field rp(x, t): 

rptt - rp",,,, + sin rp = - f(x) sin rp, (2.1) 

where the subscripts t and x stand for partial derivatives 
in time and spatial coordinates, respectively, and units 
are such that the equation is already in dimensionless 
form. In the simplest model of a disordered system, the 
function f( x) may be taken to be a sum of 0 functions, 

(2.2) 
n 

where the numbers fn and an are randomly chosen. We 
shall assume further that the distances bn = an+l-an are 
identically distributed random variables with probability 
density ." 

p(b) = bOl exp( -bjbo), (2.3) 

and, for simplicity, we shall consider only the case when 
the strength of all the impurities is the same, although 
the method can be straightforwardly generalized to treat 
more general perturbations. 

In the absence of any inhomogeneity, Eq. (2.1) has a 
topologically stable solution in the form of a kink given 
by 

rpk(X,t) = 4tan-1 exp [u ~] 
1- V 2 ' 

(2.4) 

·where X = Vt - Xo is the kink coordinate V is its 
velocity, and u is the kink polarity, which can t~ke one of 

. the two values ±1 corresponding, respectively, to a kink 
or an antikink. Furthermqre, the SG equation then has 
a conserved momentum, 

P == _100 dx rpt rp",. 
-00 

(2.5) 

For the particular solution (2.4), Eq. (2.5) is cast into the 
well-known relativistic expression P = 8Vj-v1 - V:2. 

Once we have mentioned the features of the unper­
turbed model which will be used later, we shall move to 
the disordered case. We shall study it by means of the 
collective-coordinate approach for the kink. This means 
that our main assumption is to suppose that the kink pa­
rameters are slowly varying functions of time, so that the 
~sential properties of the kink dynamics can be analyzed 
III the framework of a set of ordinary differential equa­
tions for these parameters. Other degrees of freedom of 
the SG system, such as those related to the emission of 
linear waves generated by the perturbation, are assumed 
to have negligible variations with respect to that of the 
kink collective coordinate. 

The easiest way to derive the equations for the kink 
collective coordina~~ is to use conservation laws. Having 
in mind the definition (2.5) and the boundary conditions 
rp -> 0 (mod 211"), rp", -> 0 when Ixl -> 00, it is straight­
forward to sho1w. that in the presence of impurities the 
momentum P changes according to 

dP 100 dt=-f~ -00 dx6(x-an)(cosrp)",. (2.6) 

If the perturbation strength f is small, only kinks with 
momentum P ,.., £ will be affected by the impurity lattice, 
and hence we can restrict ourselves to the so-called non­
relativistic limit, V 2 « 1. In this limit, using Eq. (2.4) 
it is not difficult to obtain from Eq. (2.6) the following 
expression for the kink coordinate X: 

d2X d 
dt2 = - dX U(X), (2.7) 

where 

n 

(2.8) 

u(X) == f:2' 
4cosh X 
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Here we have assumed P ~ 8V ~ 8dX/ dt, which is valid 
for V2 « 1. Thus, in the collective-coordinate frame­
work, the motion of the SG kink can be interpreted M 
the motion of a nonrelativistic particle with unit mass in 
an effective, random potential defined by Eq. (2.8). Of 
course, this result is similar to others coming out from 
the study of regular perturb at ions [12,14,21]. 

Ill. STATISTICAL ANALYSIS 
OF THE KINK PROPAGATION 

To simplify the computation of the kink statistics, let 
us consider the potential U(X) a:> ':\ finite one, of wiqth 
A, i.e., we introduce the cutoff " 

U(X) :::: 0 if Ixl > ~. (3.1) 

Now, we assume that the distanc~ [see Fig. l(a)] 

Vn == bn - A = an+1 - an - A > 0 (3.2) 

are identically distributed random values with probabil­
ity density [cf. Eq. (2.3)J " 

p(v) :::: Vo 1 exp( -V/VD), (3.3) 

Here VD represents the mean length of empty intervals 
between effective scatterer potentials (3.1). From the rig­
orous point of view, this probability distribution is not 
the exact one which follows from Eq. (2.3). But in the 
dilute-lattice limit, Yo » A, this difference is negligible if 
one is not interested in the effects induced by overlapping 
of the potentials U(X). Notice also that in this limit the 
relation Uo ~ bo is valid too. 

Our goal will be the calculation of the mean values 

(a) 

y 

• 
o 111 113 A ... 

Spatial picture 

(b) 

.. 

Time picture 

FIG. 1. The effective IJotential U(x) corresponding to a 
disordered lattice of point impurities (a), and its representa­
tion in the time scale (b). In (a), scatterers are represented 
by the curveS above the line; in (b). scatterers are shown as 
black intervals. 

(and their dispersions) of the kink parameters, namely 
the mean coordinate and velocity of the kink at each time 
instant t. To this end, we found it much more convenient 
to describe the process in terms of the time distribution 
of the scatterers instead of their spatial one; i.e., more 
strictly speaking, we study the problem by means of the 
time intervals Tn elapsed when the kink is between the 
nth and (n + l)th scatterers (n = 1,2, ... ). Each one of 
these intervals will be separated by equal times in which 
the kink travels through an impurity with variable veloc­
ity, whose value is 

j A/2 dX lA/2 dX 

to = -A/2 X(X) == -A/2 JV02 _ 2U(X) , , "(3.4) 

X(X) == dXjdt being the local kink velocity, and Vo be­
ing the velocity of the kink in the scatterer-free regions. 
With respect to the time intervals rn, they are equal to 
Yn/Vo, and subsequently they are governed by the prob­
ability density 

per) = To1exp(-T/'io), (3.5) 

where TO == yo/Vo, and T E [0,00]. Therefore, instead 
of the succession of the random spatial intervals of the 
form Yl, A, Yz, A, Us, ... , A, Yn, A, Yn+1, ... ,we 
shall consider the corresponding succession T1, to, 'T'z, to, 
T3, .•. , to, 'in, to. Tn +1 • .... This is graphically de-
picted in Figs. l(a) and l(b). " 

The next point to take into account is that there are 
configurations of scatterers of two di,fferent types. Con­
figurations of the first kind (referred to as configurations 
I) are defined as "those in which the interval [0, t] includes 
n empty intervals T1, ••• , 'in, so that at the moment t the 
kink moves in the region where the potential is zero, i.e., 
freely [see Fig. 2(a)1. The probability Pn(t) of finding 

(a) 

"' I 
o 

Configuration I 
J 

(b) 

t 
1""1\ 1""1\ f: 1""1\ PI! III 

o '11 to 72 to Tn-l to Tn t' 

Configuration II 

FIG. 2. Different configurations of scatteters: configura­
tion I (a) and configuration II (b) (see details in the text). 
The instant t is the current time. Scatterers are shown in 
black as in Fig. 1. Notice that in (b), the last scatterer is 
not completely contained in the interval. The kink travels 
through it during a time tt. " 
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lattice configurations I can be calculated as 

Pn(t) == (6(T') 6(Tn+1 - Tr»)~ 

with 
n 

1'1 == t - nto - l: Ti, 
i=1 

(3.6) 

(3.7) 

6( 1') being the Heaviside step function, and the angu~ 
lar brackets in Eq. (3.6) stand for the average over the 
n + 1 random variables 1'1, "', Tn+1' all of them having 
probability density (3.5). Equation (3.6) has a simple 
physical interpretation. The first 6 function means that 
n scatterers are contained in the interval [0, X], where 
X = XCi), and the second one accounts for the fact that 
there are no other scatterers in the interval. After some 
straightforward calculations using t4J3 probability density 
(3.5), we obtain for Pn(t) the exact result 

P.() .1 (t-nto)n (t-nto) n t = - ---. exp ---- , 
n! TO TO 

n == 0, 1, ... , N, (3.8) 

where N == [t/to] and (z] stands for the operation oftrun~ 
cating z to its integer part. 

Configurations of the second type (hereafter referred 
to as configuration 11) consist of n empty intervals and 
their corresponding impurities as in configuration I, plus 
one extra scatterer along which the kink travels during 
the interval tl < to, i.e., a time less than that neeeded for 
the kink to go through one scatterer [see Fig. 2(b)]. The 
probability density Pn(t/t') for such configurations, with 
fixed nand t', is giv~n by 

Pn(tlt') == (6(r' t l 
- Tn +l) 6(to t') 6(t'»), (3.9) 

where r' is the same as in Eq. (3.7). The appearance of 
the 6 function in this expression is connected with the fact 
that, at the moment t, the kink has moved during a time 
t' [it is important to realize that Pn(t/t l

) is a function oft' 
and t is a fixed parameter] under the influence of the last 
[the (n + 1 )thJ scatterer, whereas the Heaviside functions 
ensure that this time interval t' is positive and less than 
to. As above, after computing the corresponding integral, 
we obtain the result 

Pn(tlt') = _1_ (t - tl - nto) n 

TOn! 10 

( 
t - t' nto) xexp 

TO 
6(to - t') e(t'). 

(3.10) 

Finally, concerning the normalization of the probability 
(3.8) and the probability density (3.10), they have to 
verify the relationship 

N N-l to 

l: Pn(t) + l: 1 dtl Pn(tlt') 
n=O n=O 0 

ro{t/to} 

+ lo dt' PN(tlt') == 1, (3.11) 

where - [z] stands for the fractional part of x. 
It is easy to check, taking into account Eqs. (3.6), (3.8), 
(3.9), and (3.10), that condition (3.11) is fulfilled. 

Now, we address the next step. It is clear that, follow­
ing the same line of reasoning, any dynamical variable 
F(t) can be considered either as a function of n, i.e., 
Fn(t), for configuration I, or as a function of nand t', 
Fn(tlt'), for configuration n. For instance, the kink coor­
dinate X(t) can be expressed as 

Xn(t) Vot - ne-o for configuration I, 
Xn(tlt' ) = Vot - neo - e' for configuration Il, 

where we have introduced the notations 

f.' == Vot' - Xl, eo == Voto - .6., 

and t' is connected to x' by 

, _ j-A/2+rI:
1 

dX t _ .......--; 
-A/2 X(X) 

(3.12) 
(3.13) 

(3.14) 

(3.15) 

so that t'(x/) is the part of the last scatterer (in the tem­
poral scale) that is contained in the whole motion inter~ 
val [0, t], or equivalently [0, xCi)]. Analogously, the kink 
velocity at the time instant t may be written in the form 

Vn(t) = Vo for configuration I, (3.16) 

Vn (tit') :::: vet') == v[x'(t')] for configuration n. (3.17) 

We can now write the main result of this section. Re~ 
calling the probability (3.8) and the probability density 
(3.10) and writing time-dependent functions F(t) as ex~ 
plained above, we can compute their mean value accord­
ing to 

N 

< F(t) > = l: Fn(t)Pn(t) 
n=O 

N-l ro 

+ l: lo dt' Fn(t/t') Pn(t/t') 
n=O 0 

[to{ t/to} 
+ lo dt l FN(t/tl) PN(tlt'), (3.18) 

where N == N(t) = ft/to]. We shall subsequently apply 
this equa:Yon!q !ge_ problem we posed in Sec. n. 

IV. RESULTS AND DISCUSSION 

In this section, we shall compute the mean position of a 
SG kink propagating along the inhomogeneous model we 
described above. To this end, and in accordance with the 
hypothesis (3.1) we have done at the beginning of Sec. Ill, 
we shall slightly modify the potential (2.8), truncating it 
to 

U(X) _ {(f/4)SeCh2X iflXI < .6./2, 
- 0 if IXI > .6./2. (4.1) 

Notice that this truncation is actually not very relevant, 
because the effective potential is an exponentialIy decay­
ing one. We are now ready to carry out the procedure we 
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developed in the preceding section in an explicit fashion; 
thus, we have 

t 2. h-1 (
2Vo • h fl.) o == -Vi sm . / 2 sm -2 ' o y4VO -e 

(4.2) 

t'( ') - .:Lt 1. h- 1 [2Vo inh (~ x - 2 0 - -V; sm . s -
o y4V02 -10 2 Xl) 1 ' 

(4.3) 

X'(t' ) = ! A -sinh-1 ( y'4;to - 10 sinh [Vo(!to - tl)]) . 

(4.4) 

It is now straightforward to use Eqs. (4.1) to (4.4) to 
compute the mean parameters of the kink moving in the 
disordered potential, substituting them in the main for~ 
mulas (3.8), (3.10), and (3.18). The so-derived expres~ 
sions are actually very cumbersome and we shall not 
write them down here. Instead, what we have done is 
to compute their values numerically for some parame­
ter (e, Vo) values, in order to understand their physical 
meaning. In this numerical calculation, we took the pa­
rameter A to be such that (10/4) sech2(~/2) < 16-4 , so 
that the finite length of the effective potential is a very 
good approximation of the real problem. All the integrals 
were computed up to the same precision using efficient 
standard routines [22]. 

Let us begin with the discussion of the numerical re­
sults by defining the magnitude L == (X) - Vast, which 
we shall call the asymptotic difference and where Vas is 
the asymptotic velocity of the kink, given by 

V. - r Vat - neo 
as = t2.~ t 

= Vo I'!!:.) eo = Vo -~ .. Voro + ~ ,.'-" (4.5) 
\ t TO + to TO + to. 

where the limit has to be taken having in mind the con­
dition nit - (nit) = (ro + to)-l when t (and of course 
n) go to infinity. The quantity L then measures how 
far the kink behavior is from the asymptotic one, and is 
thus a good magnitude to characterize the calculations 
we describe below. 

Our numerical results are summarized in Figs. 3-6. 
All of them show the asymptotic difference relative to 
the traveled distance XCi), in order to decide whether 
we have reached the limit value of Vas or not. The impu­
rity strength is always taken to be e::: 0.1. In Fig.3,cwe 
show the early stages of a typical kink trajectory through 
the disordered medium. We can see the very large initial 
deviation from the asymptotic behavior as predicted by 
Eq. (4.5), which happens for times less than that needed 
to cross one scatterer, to (with the parameters chosen for 
Fig. 3, to ::: 24.1). After that, the evolution of L be­
comes monotonic, steadily decreasing, at a scale which is 
not visible in the scale o(Fig. 3. This asymptotic behav­
ior is shown in Fig. 4, in which we plot the evolution lor 
a case with the same parameters of Fig. 3 but for much 
longer times. It is seen that at times around those needed 
to cross two impurities, L reaches very small (again, as 

100 

I....I..... ........ ..JI,\.......--.._ ................... ......J-......... ........JO 
o 25 50 75 100 

t 

FIG. 3. Asymptotic difference L as a percentage of the 
position X(t) vs time (i.e., 100 x L(t)/X(t)], when (; 0.1, 
Vc == 0.3 (which implies to == 24.1), and Tb ;;:= 3to. 

compared to the amount of space already traveled, X(t)] 
values and continues decreasing towards zero in a mono­
tonic fashion. As to the peaks and discontinuities ap­
pearing in Fig. 3 and also in subsequent ones, we believe 
that they come from the transient behavior of L before 
reaching the asymptotic regime, as well as from the res­
olution (usually around 100 points) of our calculation. 
However, they are not very relevant, because they arise 
when the kink has traveled over at most two scatterers, 
and we obviously do not expect our statistics to be use­
ful at that short time (and short number of scatterers 
crossed). 

From our numerical computation of (X(t)} and L us­
ing Eqs. (3.12), (3.13), and (3.18), we can conclude that 
our statistical procedure is very useful after the kink has 
crossed the first impurities, because at that time we are 
already in the asymptotic regime and the simple estima-

0.25 

0.20 

- 0.15 
~ 

S 0.10 

0.05 

0.00 
0 250 500 750 

t 

FIG. 4. Same as in Fig. 3. In this plot we show an en­
largement of the asymptotic part up to very long times. The 
value of L is seen to steadily decrease. 
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o 25 50 

t 

75 

100 

50 

o 
100 

FIG. 5. As in Fig. 3, but in this plot Vo 0.5 (and hence 
to := 14.02). We see that the asymptotic behavior starts al­
ways at a. point around to. 

tion of its position through the expression XCi) ~ Vas t 
gives fairly good results., The validity of the asymptotic 
formula depends on the time to to cross one impurity, 
as' can be seen from Fig. 5, wh~re. Vo 0.5 and then 
to = 14.02; in this plot it is again o.bserved .how large 
deviations happen only before to. On the other hand, 
the time for the evolution of L does not exhibit any in~ 
fluence of the mean empty interval, 1"0, as is appreciated 
from Fig. 6, which should be compared to Fig. S, whose 
parameters are the same except for TO' Thus, we are 
led to conclude that the important parameter to decide 
whether we have reached the asymptotic regime or not is 
the impurity potential length, while the influence of the 
other ones is not very noticeable. 

v. CONCLUSIONS 

We have studied analytically the problem of kink prop­
agation through a disordered medium, where disorder 
was modeled by a lattice of 8-like impurities with equal 
intensities but random positions. In the framework of the 
collectiv~variable approach, the equation for the kink co­
ordinate turns out to be that of an effective particle in 
an effective disordered potential. Because of this, the 
Fokker-Planck-equation methods cannot be straightfor­
wardly applied to our problem (notice that the poten­
tial is not a Markov one) and we have had to develop a 
more sophisticated statistical procedure to compute the 
mean features of kink propagation, This procedure has 
allowed us to obtain exact expressions for the SG model, 
although, due to their cumbersome form, we have investi­
gated them numerically. By this means, we have checked 
how the mean kink position evolves with time, and we 
have concluded that after a time of the order of the one 
needed to cross about two impurities, the asymptotic es­
timations for the kink velocity work very well, whatever 
the mean times between impurities corresponding to the 
initial velocity are. This is very important in order to 

." 

100 

.-, 
N - 50 

~~~l __ -.~~~~~~~ 0 

o 25 50 75 100 

t 

FIG. 6. As in Fig. 3, but now the mean time interval 
between impurities has been changed to be 1'0 := to. Notice 
that the asymptotic behavior starts at the same point as in 
Jig. a. 

give practical usefulness to our results. 
His clear that the procedure we have worked out to 

obtain the mean kink parameters is quite general, and 
likely to apply to a number of different soli ton-bearing 
systems, such as those we mentioned in the Introduction 
(<jJ4 [18], double SG [19], generalized SG [20]). The rea­
son is that they also allow for kink propagation and the 
collective-coordinate approximation is as good as in the 
SG equation; then, the single-scatterer effective potential 
can be computed and the formalism we present here ap­
plies inmediately. We would like to point out also that 
to present a global picture of kink propagation in disor­
dered media, it is necessary to compare the results we 
have obtained to numerical simulations of the ordinary 
differential equations for the kink collective coordinate 
(2;7) and (2.8), as well as to direct numerical simulations 
of the model as described by the corresponding partial 
differential equation (2.1) with the perturbation (2.2). 
This numerical work is currently in progress, and prelim­
inary results for the collective coordinate equations show 
good agreement with the predictions of this work. A de­
tailed comparison of the present results to simulations 
will be published elsewhere. 
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