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Abstract

Procuring an innovation involves motivating a research effort to generate a new

idea and then implementing that idea efficiently. If research efforts are unverifiable

and implementation costs are private information, a trade-off arises between the two

objectives. The optimal mechanism resolves the trade-off via two instruments: a mon-

etary prize and a contract to implement the project. The optimal mechanism favors

the innovator in contract allocation when the value of the innovation is above a certain

threshold and handicaps the innovator in contract allocation when the value of the

innovation is below that threshold. A monetary prize is employed as an additional

incentive but only when the value of innovation is sufficiently high.
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1 Introduction

It is widely known that markets provide insufficient innovation incentives.1 One policy rem-

edy is to create demand for innovation via public procurement. Public buyers can use their

large purchasing power as a lever to spur innovation and boost the generation and diffusion

of new knowledge.2 Not surprisingly, governments devote substantial resources to procuring

innovative goods and services. In 2015, the US government spent approximately 21 billion

dollars on public R&D contracts and 19 billion dollars on defense R&D contracts. European

countries spent approximately 2.6 billion euros in 2011 for non-defense R&D procurement

alone (European Commission, EC 2014).3 Indeed, history is rich with examples in which

public procurement has had a major effect on the development and diffusion of innovations

such as supercomputers, large passenger jets, semi-conductors and the Internet.4

Procuring innovation presents a special challenge that is absent in the procurement of

standard products. The value of innovation is typically realized through a follow-on good or

service that embodies that innovation. Therefore, for procurement to be successful, not only

should there be a sufficient incentive for innovation ex ante but the selection of a supplier of

the follow-on project should also be efficient ex post. These two goals often conflict with each

other as the innovator need not be most adept at performing the follow-on project. Hence,

awarding the follow-on contract, say, to the most efficient supplier may not adequately

motivate the innovator. One solution is to shift the assignment of the follow-on contract so

as to favor or disfavor the innovator depending on the outcome of innovation. An alternative

is to award a cash prize to a successful innovator. Common wisdom suggests that a cash

prize would be a better instrument for incentivizing innovation as this mechanism does not

distort the assignment of the follow-on contract.

However, this simple wisdom is not borne out in practice as there is mixed the use of the

two instruments. Cash prizes are often offered in research contests and R&D procurements

but are less frequent for “unsolicited” innovation proposals, even though governments do

consider them and occasionally implement them. Procurement practices also vary in the

treatment of innovators in the follow-on projects. For unsolicited proposals, some countries

do not treat innovators differently at the follow-on contract stage, but other countries, such

as Chile, Korea, Italy, and Taiwan, give an advantage to the proposer/innovator at the

1Private incentives for innovation are insufficient because innovative activities often generate knowledge

that has significant positive externalities and is by nature difficult to protect via intellectual property.
2Public procurement is a significant part of economic activity; for instance, it accounts for approximately

12% of GDP in OECD countries (OECD, 2017).
3In parallel, the European Commission has adopted new directives (Directives 2014/24 and 2014/25)

that modernize the legislative framework on public procurement in order to incentivize public demand for

innovative goods and services.
4See, e.g., Cabral et al. (2006) and Geroski (1990) for references.
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contract award stage. Further, the degree to which the innovator is favored varies across

cases, presumably depending on the value of the proposed innovation. Even when a cash

prize is awarded to a successful innovator, this award does not preclude special treatment

of the innovator at the contract stage. For instance, R&D procurement is often bundled

with the procurement of a follow-on product, in which case, the winner of the R&D stage is

guaranteed to win the production contract. A case in point is EC’s “Innovation Partnerships”

model, under which research and production are procured through one single tender, with

the innovator also obtaining the contract for the production of the innovative project.5

The purpose of this paper is to study how the alternative instruments should be combined

to optimize the conflicting goals of innovation. We analyze this question by identifying an

optimal procurement mechanism in an environment where the procurer faces a moral hazard

problem ex ante and an adverse selection problem ex post. The risk-neutral innovator(s) first

undertake costly effort to innovate and then a supplier is selected to perform the project that

implements the chosen innovation. An innovator’s effort stochastically increases the value

of project, but this effort is unobserved by outsiders. Coupled with limited liability, this

gives rise to a non-trivial moral hazard problem. The value of innovation is realized before

a follow-on project is performed, and there are multiple suppliers, including the innovator,

who can perform this project. The cost of performing the project is private information,

which gives rise to an adverse selection problem. The value of innovation is verifiable, which

is realistic in many procurement settings, as we motivate later. This feature allows the

procurer to reward the innovators with prizes as well as the contract for implementing a

chosen project as a function of the observed values of innovations.

We first consider the case of a single innovator. Not only does this baseline model make

our insights transparent but it is also often relevant as many innovative projects procured by

public agencies are unsolicited and arrive one at a time. We first find that in the absence of

adverse selection, i.e., when the cost of performing the project is observed by the procurer,

the common wisdom is indeed valid: the optimal mechanism relies solely on a cash prize and

does not distort the assignment of the follow-on contract. Specifically, the buyer awards a

prize to the innovator whenever the value of innovation is above a threshold, and she assigns

the contract ex post to the supplier with the lowest cost of realizing that value.

The result is quite different, however, in the presence of adverse selection, i.e., when the

suppliers have private information about the cost of performing the follow-on project. The

private information generates rents for the supplier who performs the project. Rents that

accrue to the innovator can work as additional incentive or disincentive depending on the

5EC has an alternative model, “pre-commercial procurement” (PCP), whereby the public author-

ity procures R&D activities from the solution exploration to prototyping and testing phases but re-

serves the right to tender the newly developed products or services competitively. See EC (2007) and

https://ec.europa.eu/digital-agenda/en/pre-commercial-procurement.
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value of innovation. Specifically, for a high enough value of innovation, the rents accruing

to the innovator constitute an incentive, thereby effectively reducing the shadow cost of

awarding the contract to the innovator relative to the other suppliers. Hence, the optimal

mechanism calls for biasing the assignment of the follow-on contract in favor of the innovator.

In contrast, for a low-value innovation, the rents accruing to the innovator constitute a

disincentive for innovation and thus raise the shadow cost of selecting the innovator for

the contract. In this case, the optimal mechanism calls for biasing the assignment of the

follow-on contract against the innovator.

Cash prizes can be part of the optimal mechanism but only as a supplementary tool.

Specifically, the optimal mechanism prescribes a cash prize to be awarded to the innovator

(only) when the value of innovation is so high that shifting the contract right is not sufficient

for fulfilling the incentive need. In a striking contrast to the common wisdom, therefore, a

contract right serves as a primary incentive tool, and a cash prize serves as a supplementary

tool (when the former does not meet the required incentive need).

Comparative statics reflect the same insights. When information rents are significant

(e.g., because costs are relatively heterogeneous or there are few potential suppliers), the op-

timal mechanism may rely solely on the contract right to incentivize innovation. In contrast,

when information rents are small (e.g., because costs are relatively homogeneous or there are

many potential contractors), or when the value of innovation is high compared with these

rents, the optimal mechanism involves a cash prize, again because a contract right alone is

not sufficient in that case.

We next extend the model to allow for multiple innovators. This situation is relevant for

R&D contests and procurements wherein the buyer has a clear sense about the desired type

of innovation and its feasibility. We show that the above insights carry over. First, contract

rights serve as a central tool for rewarding innovations. Specifically, the optimal mechanism

favors the proposer of a high-value project and disfavors the proposer of a low-value project

at the implementation stage. Second, as in the single innovator case, cash prizes serve as

a supplementary tool to be used only when an innovator’s project is particularly valuable

and/or when her research effort is particularly worth incentivizing. An interesting novel

finding is that when a cash prize is used, it is never split among multiple innovators. In this

sense, we establish a “winner-takes-all” principle for the allocation of a cash prize.

Our findings clarify several issues that are relevant to policy on public procurements.

First of all, as mentioned earlier, a longstanding question is whether contracting rights

should be allocated in such a way as to favor the innovator who originates the project.

Contrary to the received wisdom, we provide a clear rationale in the presence of moral

hazard and adverse selection for the use of contract right as an incentive for innovation.

Extreme examples of such situations are found in the bundling of the procurement of final

products with preceding R&D activities. The US Congress recently expanded the use of
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Other Transaction Authority (“OTA”).6 OTA allows a prototype project to transition to a

follow-on production contract. The Department of Defense may make such award without

the use of competitive procedures provided that (i) competitive procedures were used in

the initial prototype transaction award and (ii) the OTA contractor successfully completed

the prototype project. Likewise, as mentioned earlier, the “innovation partnerships” model

introduced by EC allows for a similar bundling. In 2016, this model was announced by

Transport for London for the development of a new composite conductor rail system to fit

constrained areas of the underground network and to improve the energy efficiency.7

Second, our analysis provides some insight into the specific way in which a contract right

should be allocated. Our theory rationalizes the use of contract right as an incentive for

innovation and suggests that the degree to which the innovator is favored at the contract

awarding stage should depend both on the value of her innovation and on the degree of

uncertainty with regard to the cost of implementing the project. In practice, this balance

could be achieved by giving the innovator a bidding credit in the form of additional points in

the score of the firm’s bid in the tendering procedure. Such a system is adopted in Chile and

Korea to incentivize unsolicited proposals. Further, there is some evidence that the procurer

adjusts the bonus points based on project-specific characteristics. For example, in a Chilean

procurement of airport concessions, the first two unsolicited proposals obtained a bidding

bonus of 20 percent points of the allowed score, while the third airport proposal received 10

percent points.8 Other methods of favoring the innovator include the best and final offer

and Swiss challenge systems, to be discussed in detail later. We further note that for very

valuable projects, our optimal mechanism can be implemented by making the innovator a

prime contractor: the innovator receives a fixed price equal to the value of the project and

freely chooses whether to deliver the project itself or to subcontract it to a different firm.

Finally, our analysis also clarifies the role of monetary prizes for promoting innovation and

their optimal design. Specifically, we identify their roles as supplementary to the contract

rights. This role explains the relative paucity/insignificance of explicit monetary reward

given to unsolicited projects. Even when monetary prizes are used, for example, in research

contests, the prizes are usually not split across multiple winners. This feature is in turn

consistent with the winner-take-all principle that we establish.

The paper is organized as follows. In Section 2, we study the case of a single innovator.

Section 2.1 introduces the model, Section 2.2 presents a number of benchmarks, and Section

2.3 develops the main analysis. In Section 3, we extend the analysis to the case of multiple

6Section 815 of the National Defense Authorization Act for Fiscal Year 2016, available at:

https://www.congress.gov/bill/114th-congress/house-bill/1735.
7London: Transport equipment and auxiliary products to transportation, periodic indicative notice –

utilities supplies, number 2016/S 217-395943.
8These projects pertained to the expansion of the airports of Puerto Montt (June 1995), Iquique (August

1995) and Calama (October 1997); see Hodges and Dellacha (2007).
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innovators. In Section 4, we discuss the insights that our analysis offers for the approaches

used in practice for unsolicited proposals and innovation procurement. In Section 5, we

discuss the related literature. In Section 6, we provide some concluding remarks.

2 Procurement with a Single Innovator

We consider here the case in which a single innovator may propose a project. This case serves

to explain the main results in a simple way, but it is also practically relevant for the case

with unsolicited proposals. The decision facing the buyer is whether to adopt the project

and, if so, how to select a contractor for its implementation.

2.1 Model

A buyer (e.g., a public agency) wishes to procure an innovative project in two stages: inno-

vation and implementation. In the first stage, an innovator, say firm 1, exerts effort e ≥ 0

to create a project. The effort e costs the innovator c(e) ≥ 0 but affects the value v of

the project stochastically. The innovation project is at least partly nonexcludable and non-

rivalrous, which makes the project non-commercializable. Hence, awarding an intellectual

property right is not an option.

We assume that c (·) is increasing, strictly convex, twice differentiable and such that

c′ (0) = 0. The value v is drawn from V := [v, v̄] according to a c.d.f. F (·|e), which admits

a twice-differentiable density f (·|e) in the interior. An increase in e shifts the distribution

F (·|e) in the sense of the monotone likelihood ratio property, that is:

f(v′|e′)
f(v|e′)

>
f(v′|e)
f(v|e)

, for any v′ > v and e′ > e. (MLRP )

The innovator’s effort e is unobservable. The project value v is instead publicly observable

and verifiable. The verifiability of v is a reasonable assumption in many procurement contexts

in which projects can be described using precise functional and performance terms. For

example, in the case of technological improvements for faster medical tests, transport units

with lower energy consumption, or for information and communication technology (ICT)

systems with interoperability characteristics, v may capture speed of the medical test, the

degree of energy efficiency of the transport unit, or the technical functionalities of the ICT

system verified in submitted prototypes, respectively. Later, we explore the case in which

the project value v is not contractible and discuss how our insights can be transposed to

such situations (see Section 4.2).

In the second stage, n potential firms, including the innovator, compete to implement

the project. Each firm i ∈ N := {1, ..., n} faces a cost θi, which is privately observed and
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drawn from Θ :=
[
θ, θ
]

according to a c.d.f. Gi(·), which admits density gi(·) in the interior.

We assume that θ < v and that Gi(θi)/gi(θi) is nondecreasing in θi for each i ∈ N .

If the project is not implemented, all parties obtain zero payoff. If instead the principal

pays t to procure the project of value v, then her welfare is given by:

v − t.

By the revelation principle, we can formulate the problem facing the principal as that of

choosing a direct revelation mechanism that is incentive-compatible. A direct mechanism is

denoted by (x, t) : V × Θn → ∆n × Rn, which specifies the probability xi (v, θ) that firm i

implements the project and the transfer payment ti (v, θ) that it receives when the project

proposed by firm 1 has value v and firms report types θ := (θ1, ..., θn). By construction,

the assignment probabilities must lie in ∆n := {(x1, ..., xn) ∈ [0, 1]n |
∑

i∈N xi ∈ [0, 1]}. The

dependence of the mechanism on the project value v reflects its verifiability, whereas the

absence of the argument e arises from its unobservability to the principal.

The timing of the game is as follows:

1. The principal offers a direct revelation mechanism specifying the allocation decision

(i.e., whether the project will be implemented and if so, by which firm) and a payment

to each firm as functions of firms’ reports on their costs.

2. The innovator chooses e, and the value v is realized and observed by all parties.

3. Firms observe their costs and decide whether to participate.

4. Participating firms report their costs; the project is implemented (or not), and transfers

are made according to the mechanism.

For each v ∈ V , let

ui(v, θ
′
i|θi) := Eθ−i [ti(v, (θ

′
i, θ−i))− θixi(v, (θ′i, θ−i))]

denote the interim expected profit that firm i could obtain by reporting a cost θ′i when it

actually faces a cost θi, and let

Ui(v, θi) := ui(v, θi|θi)

denote firm i’s expected payoff under truthful revelation of its type θi. The revelation

principle ensures that there is no loss in restricting attention to a direct mechanism (x, t)

that satisfies incentive compatibility:

Ui(v, θi) ≥ ui(v, θ
′
i|θi), ∀i ∈ N,∀v ∈ V, ∀ (θi, θ

′
i) ∈ Θ2. (IC)
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Note that the principal cannot force the firms to participate before the project is de-

veloped by the innovator as they decide whether to participate only after learning their

cost. This is a natural assumption in many settings. For example, in the case of unsolicited

proposals, the identities of the candidates capable of executing the project are unknown

until the nature of the project – its value and the costs of implementing it – is determined.

This makes it difficult for the principal to approach prospective suppliers for early buy-in.

More generally, procurers are reluctant to enter firms into loss-making contracts as this ac-

tion would typically discourage the participation of risk-averse or small firms and also cause

severe service disruptions when a firm chooses to default rather than honor the contract.

Limited liability on the firm’s side is therefore reasonable in public procurement settings.

This feature requires the direct mechanism (x, t) to satisfy individual rationality :

Ui(v, θi) ≥ 0, ∀i ∈ N,∀v ∈ V, ∀θi ∈ Θ, (IR)

As we shall see, together with (IC), this requirement will cause the principal to leave infor-

mation rents to the selected supplier.9

We also assume that the principal must at least break even for each realized value v of

the project. In other words, a feasible mechanism (x, t) must satisfy limited liability :

Eθ [w (v, θ)] ≥ 0, ∀v ∈ V, (LL)

where

w (v, θ) :=
∑
i∈N

[xi (v, θ) v − ti (v, θ)]

denotes the principal’s surplus upon realizing the value v of the project. Limited liability

may arise from political constraints. Public projects are scrutinized by various stakeholders

such as legislative bodies, project evaluation authorities, consumer advocacy groups, and the

media, who might reject projects that are likely to incur a loss. We note however that it is

not crucial that the constraint is of the particular form assumed in (LL); the general thrust

of our analysis carries through as long as there is some cap on either the maximum loss that

the principal can sustain or the maximum payment that she can make to the firm.10 Indeed,

public agencies and local authorities tend to operate within the boundaries of well-defined

budgets. Procurement tenders typically include a contract value that specifies the maximum

payment allowed for the supplier.

9In the absence of this individual rationality constraint, the principal could leave no rents to the firms

by requiring them to “buy-in” to a contract via an upfront fee. As a result, the first-best outcome could be

achieved at the implementation stage, and there would be no gain from using contract rights to reward the

innovator; monetary prizes would indeed be preferable.
10Without any such constraint, the optimal mechanism would not be well defined: the principal would

find it desirable to pay an arbitrarily large bonus to the innovator only for a vanishingly small set of projects

with values close to v. Such a scheme may be of theoretical interest but is unreasonable and unrealistic.
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Finally, as the innovator chooses effort e in her best interest, the mechanism must also

satisfy the following moral hazard condition:

e ∈ arg max
ẽ
{Ev,θ [U1(v, θ1) | ẽ]− c(ẽ)} . (MH)

The principal’s problem is to choose an optimal mechanism satisfying these constraints.

More formally, she solves the problem:

[P ] max
x,t,e

Ev,θ [w (v, θ) | e] ,

subject to (IR), (IC), (LL) and (MH)

2.2 Benchmarks

Before solving [P ], it is useful to begin with two benchmarks.

No adverse selection ex post. In this benchmark, we shut off the adverse selection

problem by assuming that the principal observes the firms’ implementation costs. Formally,

the principal’s problem is the same as [P ], except that the constraint (IC) is now absent.

We label such a relaxed problem [P − FB], where “FB” refers to the first-best outcome. In

this problem, once the principal approves the project, she can implement it by paying the

true cost θi to firm i without giving up any information rent.

We show that incentivizing the research effort with contract rights is suboptimal in this

case. In line with conventional wisdom, cash prizes are then the best instrument as they

do not distort the selection of a supplier whereas contract rights do. Thus, the solution to

[P − FB] is characterized as follows:

Proposition 1. (First-Best) There exist λFB > 0 and eFB > 0 such that the optimal

mechanism solving [P − FB] awards firm i a contract to implement the project with the

following probability:

xFBi (v, θ) :=

{
1 if θi < min {v,minj 6=i θj} ,

0 otherwise,

with a transfer that simply compensates the winning firm’s cost, except that firm 1 is paid

additionally a monetary prize equal to

ρFB(v) :=

{
Eθ
[∑

i∈N x
FB
i (v, θ) (v − θi)

]
> 0 if v > v̂FB,

0 if v < v̂FB,

where v̂FB is such v < v̂FB < v̄ and solves βFB(v) = 1, where

βFB(v) := λFB
fe(v|eFB)

f(v|eFB)
,
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and eFB satisfies (MH).

Proof. See Appendix A. �

The contract right is assigned efficiently to the firm with the lowest cost as long as it is

less than the value v of the project. Incentive for innovation is provided solely by the cash

prize in a manner familiar from the moral hazard literature (e.g., Mirrlees (1975); Holmstrom

(1979)). The realized project value v is an informative signal about the innovator’s effort,

and paying an additional dollar to the innovator for a project with value v relaxes (MH)

by fe(v|eFB)
f(v|eFB)

. Multiplied by the shadow value λFB of relaxing (MH), βFB (v) = λFB fe(v|eFB)
f(v|eFB)

measures the incentive benefit of paying an additional dollar to the innovator. The optimal

mechanism calls for awarding the maximal feasible prize to the innovator whenever the

project value v is high enough to indicate that the incentive benefit exceeds the cost (i.e.,

βFB (v) > 1) and awarding no prize otherwise. In the former case, (LL) must bind, so

the maximal feasible prize is given to the innovator from the net surplus that the project

generates after reimbursing the efficient firm for its cost of implementation.

In sum, the innovator’s incentive payment has a bang-bang structure: there exists a

threshold value such that the innovator obtains no prize when the value of project falls

short of that threshold, and a prize equal to the entire value of the project when it exceeds

that threshold.11 Importantly, absent adverse selection, the principal never uses contracting

rights to motivate the innovating firm.

No moral hazard ex ante. In this benchmark, we shut off the moral hazard problem

by assuming that the project value follows some exogenous distribution F (v) that does

not depend on effort. Formally, the problem facing the principal in this benchmark is the

same as [P ], except that the moral hazard constraint (MH) is absent and the distribution

function F (v|e) is replaced by the exogenous distribution F (v). The resulting problem,

labeled [P − SB], conforms to the standard optimal auction design problem, except for

the (LL) constraint. Ignoring the latter, the optimal auction is the standard “second-best

mechanism” familiar from Myerson (1981). One can easily see that this mechanism satisfies

(LL) and thus constitutes a solution to [P − SB] as well. As the associated analysis is

standard, we provide the characterization of the solution without a proof.

Proposition 2. (Myerson) The optimal mechanism solving [P−SB] is the standard second-

best mechanism, which awards firm i the contract to implement the project with probability:

xSBi (v, θi) :=

{
1 if Ji(θi) ≤ min {v,minj 6=i Jj(θj)} ,

0 otherwise,

where Ji(θi) := θi + Gi(θi)
gi(θi)

is firm i’s virtual cost.
11This feature of the bang-bang solution is reminiscent of the results of several well-known works, such

as Mirrlees (1975) and Innes (1990).
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2.3 Optimal Mechanism

We now consider problem [P ], in which the principal faces ex post adverse selection with

respect to firms’ implementation costs as well as ex ante moral hazard with respect to the

innovator’s effort. Throughout the analysis, we assume that an optimal mechanism that

induces an interior effort level e∗ exists. The following Proposition characterizes this optimal

mechanism:

Proposition 3. There exists λ∗ > 0 such that the optimal mechanism solving [P ] is char-

acterized as follows:

(i) The mechanism assigns a contract to firm i = 1, ..., n to implement the project with

probability

x∗i (v, θ) =

{
1 if K∗i (v, θi) ≤ min

{
v,minj 6=iK

∗
j (v, θj)

}
,

0 otherwise,

where

K∗i (v, θi) :=

{
Ji (θi)−min {β∗ (v) , 1} Gi(θi)

gi(θi)
if i = 1

Ji (θi) if i 6= 1
, and β∗ (v) := λ∗

fe(v|e∗)
f(v|e∗)

.

(ii) The mechanism awards firm i an expected transfer, T ∗i (v, θi) = Eθ−i [t∗i (v, θ)], equal to:

T ∗i (v, θi) := θiX
∗
i (v, θi) +

∫ θ

θi

X∗i (v, s)ds+ ρ∗i (v),

where:

– the first term represents the expected cost of implementing the project by i,

– the second term corresponds to the information rent generated by the contract

assignment, and

– the third term corresponds to a “cash prize,” which is zero for a non-innovator

(i.e., ρ∗i (v) := 0 for i 6= 1) and, for the innovator (i = 1), is equal to

ρ∗1(v) :=

{
Eθ
[∑

i∈N x
∗
i (v, θ) [v − Ji(θi)]

]
> 0 if β∗ (v) > 1,

0 if β∗ (v) < 1.

(iii) The effort e∗ satisfies e∗ > 0 and∫
v

∫
θ

[
ρ∗1(v) +

G1(θ)

g1(θ)
x∗1(v, θ)

]
g(θ)dθfe(v|e∗)dv = c′(e∗).
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Proof. See Appendix B. �

To gain more intuition about this characterization, it is useful to decompose the prin-

cipal’s payment to each firm (net of its cost) into two components. The first component

is the information rent that must be paid to elicit the firm’s private information about its

cost. By a standard envelope theorem argument, this component is uniquely tied to – and

should therefore be interpreted as being necessitated by – the awarding of the contract to

the firm. We can thus call this component the contract payment. The second component is

a constant amount paid to the firm regardless of its cost. As this component is not related

to the contract assignment, we call it the cash prize and denote it by ρ∗i (v). Obviously, the

principal would never pay any cash prize to a non-innovating firm (i.e., i 6= 1). For the

innovating firm (i.e., i = 1), however, a cash prize may be necessary. The question is how

the principal should combine these two types of payments to encourage innovation.

The key observation in answering this question hinges on the incentive benefit β∗(v) =

λ∗ fe(v|e
∗)

f(v|e∗)
. As explained earlier, this term represents the value of paying a dollar to the

innovator for developing a project worth v – more precisely, the effect fe(v|e∗)
f(v|e∗)

of relaxing

(MH) multiplied by its worth λ∗ to the principal. If moral hazard were not a concern, we

would have λ∗ = 0 and thus β∗ (v) = 0, and the optimal mechanism would reduce to the

second-best auction mechanism described in Proposition 2. But, in this second-best solution,

the innovator does not fully internalize the surplus that her effort generates for the buyer.12

Hence, (MH) binds at the optimum, implying that the optimal mechanism prescribes a

stronger incentive for effort than the second-best mechanism.

Given λ∗ > 0, the incentive benefit β∗(·) is nonzero, and the optimal mechanism departs

from the second-best mechanism. In particular, the contract assignment now depends on the

realized value of the project, through the shadow cost K∗i (v, θi). For a non-innovating firm

(i.e., i 6= 1), the shadow cost is the same as its virtual cost, Ji(θi), just as in the second-best

benchmark. Instead, for the innovator (i.e., i = 1), the shadow cost differs from its virtual

cost by a term, β∗(v)G1(θ1)
g1(θ1)

, which reflects the need to incentivize its research effort.13

Intuitively, rewarding the innovator for a low-value project (evidence of low effort) weak-

ens the innovation incentives, whereas rewarding the innovator for a high-value project (evi-

dence of high effort) strengthens them. Indeed, by (MLRP ), β∗ (v) = λ∗ fe(v|e
∗)

f(v|e∗)
increases in

v, and there exists a unique ṽ ∈ (v, v) such that β∗ (ṽ) = 0. Thus, β∗ (v) < 0 when v < ṽ, so

rewarding the innovator indeed weakens the innovation incentives. Awarding a cash prize to

the innovator is never optimal in this case. For the same reason, each dollar paid as informa-

12The innovator does have some incentives as her rents increase with effort. However, the resulting

incentives are not sufficient as these rents understate the surplus accruing to the buyer.
13Awarding the contract to the innovator with type θ1 with an additional probability unit necessitates

giving information rent of a dollar to types below θ1—so G1(θ1)
g1(θ1)

ex ante —and each dollar paid to the

innovator yields the incentive benefit of β∗(v).
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tion rents weakens the innovator’s incentive, causing the shadow cost K∗1(v; θ1) of assigning

the contract to the innovator to exceed its virtual cost J1(θ1) by −β∗ (v)G1(θ1)/g1(θ1) (> 0).

Hence, compared with the second-best mechanism, when v < ṽ, the optimal mechanism calls

for biasing the contract allocation against the innovator.

When instead v > ṽ, there are two possibilities. If v < v̂ := sup {v ∈ V | β∗ (v) ≤ 1},
the incentive benefit β∗ (v) of paying a dollar to the innovator is positive but less than a

dollar. In this case, it is still optimal not to award a cash prize as this award would entail a

net loss for the principal. However, a fraction β∗ (v) of the information rent accruing to the

innovator goes toward its innovation incentive, which reduces the shadow cost K∗1(v, θ1) of

assigning the contract to the innovator below its virtual cost J1(θ1) by β∗ (v)G1(θ1)/g1(θ1).

Compared with the second-best benchmark, the optimal mechanism distorts the allocation

of the contract in favor of the innovator.

If v > v̂,14 a dollar payment to the innovator yields more than a dollar incentive benefit.

A cash prize is then beneficial, which is why ρ∗1(v) > 0. Hence, the principal transfers any

surplus she collects, either through the cash prize or through the information rent; that is,

(LL) is binding. Furthermore, any increase in information rents for the innovator simply

crowds out the cash prize by an equal amount. It follows that the incentive benefit of the

information rent paid to the innovator is at most one 1 (and not β∗ (v) > 1), and the

shadow cost K∗1(v, θ1) reduces to the actual production cost θ1. Compared with the second-

best mechanism, the optimal mechanism distorts the allocation of the contract in favor of

the innovator to the same extent that the principal would treat an “in-house” supplier. Any

further distortion in favor of the innovator is suboptimal because it decreases the total “pie,”

and thus the cash prize to the innovator, more than it increases the information rent to that

firm.

We can state these observations more formally as follows:

Corollary 1. There exist ṽ and v̂ with v < ṽ < v̂ ≤ v such that the optimal mechanism

has the following characteristics:

• If v < ṽ, then no prize is awarded, and x∗1(v, θ) ≤ xSB1 (v, θ), whereas x∗i (v, θ) ≥
xSBi (v, θ) for all i 6= 1;

• If ṽ < v < v̂, then no prize is awarded, but x∗1(v, θ) ≥ xSB1 (v, θ), whereas x∗i (v, θ) ≤
xSBi (v, θ) for all i 6= 1;

• If v > v̂ (which only occurs if v̂ < v̄), then a prize is awarded to the innovator and

x∗1(v, θ) ≥ xSB1 (v, θ), whereas x∗i (v, θ) ≤ xSBi (v, θ) for all i 6= 1.

14This case occurs only when β∗ (v̄) > 1 so that v̂ < v̄.
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Whether it is optimal to award a monetary prize (i.e., v̂ < v̄) depends on how much effort

needs to be elicited from the innovator and on how much incentive could be provided by

the information rents under a standard second-best auction. We show in Online Appendix A

that awarding a prize can be optimal when the support of project values is large and when

there is either little cost heterogeneity or a large number of firms. The former indicates that

the moral hazard problem is significant, whereas the latter implies that the procurement

auction does not generate much in information rents.

Corollary 1 shows that the optimal mechanism departs from a standard second-best

auction in different ways for high-value and low-value projects. In fact, this mechanism can

be easily implemented as a variant of common procurement designs.

• v > ṽ: Bidding credit. In this range, the contract allocation is biased in favor of

the innovator, who may be selected to implement the project even when it is not the

most efficient firm. In practice, this result could be achieved by giving the innovator a

bidding credit in the tendering procedure. Bidding credits can take many forms, but

most commonly, they consist of additional points in the score of the firm’s bid. Such

a system is adopted in Chile and Korea to incentivize unsolicited proposals.

• v < ṽ: Handicap. In this range, the contract allocation is biased against the innovator,

who may not be selected to implement the project despite being the most efficient firm.

We are not aware of the use of such a bias for procuring innovative projects; however,

handicap systems are used, for example, when governments want to favor domestic

industries.15 We discuss this further below (see section 4.1).

We note further that in the region where a cash prize is optimal, the mechanism can be

implemented in a very familiar and simple manner:

• v > v̂: Full delegation. In this range, the innovator is awarded a monetary prize

ρ∗1 (v) equal to the full value of the project (net of the cost and the information rents)

and obtains the contract if θ1 < min {v,mini 6=1 Ji(θi)}. This result can be achieved

by delegating the procurement to the innovator for a fixed price equal to the value

of the project. Indeed, suppose that the principal offers a payment v to the innova-

tor to deliver the project either by itself or by subcontracting it to a different firm.

The innovator then acts as a prime contractor with the authority to assign produc-

tion. Under this regime, facing the price v > v̂ and given θ1, the innovator chooses

15Under “preferential price margins”, purchasing entities accept bids from domestic suppliers over foreign

suppliers as long as the difference in price does not exceed a specific margin of preference. The price preference

margin can result from an explicit “buy local policy,” e.g., the “Buy America Act.”
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(x(v, ·), t(v, ·)) : Θn → ∆× Rn−1 so as to solve:

max
x,t

Eθ−1

[
(v − θ1)x1(v, θ1, θ−1) +

∑
i 6=1 {vxi(v, θ1, θ−1)− ti(v, θ1, θ−1)}

]
,

subject to (IR) and (IC)

The standard procedure of using the envelope theorem and changing the order of

integration results in the optimal allocation x solving

max
x,t

Eθ−1

[
(v − θ1)x1(v, θ1, θ−1) +

∑
i 6=1

[v − Ji(θi)]xi(v, θ1, θ−1)

]
,

which is exactly the allocation x∗ for the case of v > v̂.

The above results also have implications for project adoption itself. For instance, when

only the innovator can implement the project (n = 1), our results simplify to:

Corollary 2. For n = 1, we have:

• If v < ṽ, then K(v, θ) > J(θ) (> θ): Compared with the first-best mechanism, there

is a downward distortion – under-implementation of the project – that is even more

severe than that in the standard second-best mechanism.

• If ṽ < v < v̂, then J(θ) < K(v, θ) < θ: There is still a downward distortion compared

with the first-best mechanism, but it is less severe than in the standard second-best

mechanism.

• If v ≥ v̂, then J(θ) < K(v, θ) = θ: There is no distortion anymore; the project is

implemented whenever it should be from a first-best standpoint.

Illustration. To illustrate the above insights, consider the following example: (i) imple-

mentation costs are uniformly distributed over Θ = [0, 1]; (ii) the innovator can exert an

effort e ∈ [0, 1] at cost c (e) = γe; and (iii) the value v is distributed on [0, 1] according to

the density f (v|e) = e+ (1− e) 2 (1− v): exerting effort increases value in the MLRP sense

from a triangular density peaked at v = 0 for e = 0 (in particular, f (1|0) = 0) to a better (in

fact, the uniform) distribution for e = 1. Note that fe (v|e) = 2v − 1 ≷ 0⇐⇒ v ≷ ṽ = 1/2.

The linearity of the cost and benefits ensures that it is optimal to induce maximal effort

(e∗ = 1) as long as the unit cost γ is not too high. Conversely, as long as e∗ = 1, the

Lagrangian multiplier λ∗ increases with the cost γ. For exposition purposes, we will use

different values of λ∗ (reflecting different values of γ) to illustrate the role of innovation

incentives.
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Figure 1 – Project implementation under different values of λ.

Consider first the case in which only the innovator can implement its project (i.e., n = 1).

Figure 1 depicts the range of the firm’s costs for which the project is implemented under

the optimal contract for different project values v. Figure 1-(a) depicts the case of λ∗ = 0.8,

where v̂ = v, implying that a monetary prize is never awarded, whereas Figure 1-(b) shows

the case of λ∗ = 4, where 0 = v < ṽ < v̂ = 5/8 < v = 1. As the cost is uniformly

distributed, the highest cost for which the project is implemented also equals the probability

of the project being implemented, p∗ (v) := Eθ [x∗1(v, θ)]. Compared with the second-best

mechanism, depicted by the dashed line, the optimal mechanism implements the project for

a smaller range of costs (thus with a lower probability) when the project has a low value

(v < ṽ = 1/2) but implements the project for a larger range of costs (and thus, with a

higher probability) when the project has a high value (v > ṽ). When λ∗ = 4 (Figure 1-(b)),

stronger innovation incentives are required for large project values: there is a range of values

v > v̂ for which (LL) is binding such that the principal exhausts the use of contract rights

as an incentive for innovation and begins offering a cash prize. As noted, in such a case, the

optimal assignment coincides with the first-best mechanism, depicted by the 45-degree line.

Focusing on the case λ∗ = 4, Figure 2 illustrates the case of n = 2 when the cost of each

firm is distributed uniformly over Θ = [0, 1]):

• For v < ṽ (see Figure 2-(a), where v = 1/4): Compared with the first-best or the

standard second-best mechanisms, it is again optimal to bias the allocation of the

contract against the innovator. This result is now achieved in two ways. As before, the

project is implemented less often than in the second-best (and thus, a fortiori, in the

first-best) mechanism: the optimal mechanism shifts the vertical boundary of project
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Figure 2 – Contract assignment under different values of λ.

implementation to the left of the second-best mechanism (depicted by the dashed

line). In addition, however, when the project is implemented, the innovator obtains

the contract less often than in the first-best or the standard second-best mechanisms,

where the more efficient supplier would be selected; graphically, this bias is represented

by the triangular shaded area.

• For ṽ < v < v̂ (see Figure 2-(b), where v = 7/12): Compared with the standard

second-best mechanism (depicted by the dashed lines), it is now optimal to reward the

innovator both by implementing the project more often (rectangular shaded area) and

by favoring the innovator in the competition with their rival (triangular shaded area).

• Finally, for v ≥ v̂ (see Figure 2-(c), where v = 4/5), the innovator’s shadow cost reduces

to its actual cost. The allocation of the contract thus favors the innovator even more,

and the project is implemented substantially more often than in the standard second-

best mechanism (specifically, it is now implemented whenever θ1 < v), although it

is implemented less often than in the first-best mechanism (e.g., when θ2 < v < θ1

and J (θ2) = 2θ2). Graphically, the rectangular and triangular shaded areas further

expand.

3 Procurement with Multiple Innovators

We now assume that several firms may innovate and propose projects as well as implement

them. This case captures the problem of a buyer who wishes to procure innovative projects,
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products or services that several firms are capable of developing. The buyer has a clear sense

of what she needs, but an innovation is necessary to fulfill her demand. Examples include

the Norwegian Department of Energy procuring a new technology for carbon capture and

storage;16 or the Scottish Government procuring low-cost, safe and effective methods of

locating, securing and protecting electrical array cables in Scottish sea conditions.17 In both

instances, the public authority called for projects by means of requests for proposals (RFP)

with detailed specifications, and multiple firms responded by submitting different projects.

For the sake of exposition, we will suppose from now on that each firm k = 1, ..., n

can develop a project of value vk, which is publicly observable and distributed over V ac-

cording to a c.d.f. F k(vk|ek) with density fk(vk|ek), where ek denotes firm k’s innovation

effort.18 As before, effort ek costs firm k ck(ek), where ck(·) is increasing, strictly convex,

twice differentiable and such that ck′ (0) = 0. We assume that firms decide on these efforts

simultaneously, and we denote by e = (e1, ..., en) the profile of efforts chosen by them. The

alternative projects correspond to competing ways of fulfilling the same need, so they are

substitutes in the sense that the buyer will choose at most one project. The previous setting

corresponds to the special case where F k is concentrated on v for all k 6= 1.

In practice, a firm’s cost of implementing a project may depend on the nature of inno-

vation, including the identity of the innovator. In some cases, the innovator may have cost

advantages in implementing the project, for example, because of its superior knowledge of

the proposed solution. In other cases, the innovator may have cost disadvantages, for ex-

ample, because it is specialized in R&D and lacks the manufacturing capabilities necessary

to implement the developed prototype. To accommodate such an interdependency between

innovation and implementation, we assume that firm i’s cost of implementing project k is

given by θi + ψki , where:

• as before, θi is an idiosyncratic shock that is privately observed by firm i and distributed

according to the c.d.f. Gi;

• ψki represents an additional cost, potentially both project- and firm-specific, which for

simplicity is supposed to be common knowledge.

Without loss of generality, we consider a direct revelation mechanism that specifies an

allocation and a payment to each firm as a function of realized project values, v = (v1, ..., vn),

16Contract notice n. 2011/S 129-214787, ”NO-Porsgrunn: services related to the oil and gas industry”,

Supplement of the Official Journal of the European Union.
17Contract notice n. 2013/S 249-436615, ”United Kingdom-Glasgow: Marine research services”, Supple-

ment of the Official Journal of the European Union.
18While formally, all implementors are also innovators, the case of “pure contractors” can be accommo-

dated by setting the density to zero for v > v.
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and of reported costs. Note that an allocation involves a decision as to which project is

selected as well as who implements that project.

A mechanism is thus of the form (x, t) : V n × Θn → ∆n2 × Rn. The objective of the

principal can now be expressed as:

max
x,t,e

Ev,θ [w (v, θ) | e] ,

where the ex post net surplus is now equal to

w (v, θ) =
∑
i∈N

[∑
k∈N

vkxki (v, θ)− ti (v, θ)

]
.

The individual rationality and incentive compatibility constraints become

Ui(v, θi) ≥ 0, ∀i ∈ N,∀v ∈ V n,∀θi ∈ Θ,

Ui(v, θi) ≥ ui(v, θ
′
i|θi), ∀i ∈ N,∀v ∈ V n,∀ (θi, θ

′
i) ∈ Θ2,

where firm i’s interim expected profits when lying and when reporting the truth are respec-

tively given by:

ui(v, θ
′
i|θi) = Eθ−i [ti(v, θ′i, θ−i)−

∑
k∈N

(θi + ψki )xki (v, θ
′
i, θ−i)] and Ui(v, θi) = ui(v, θi|θi).

Finally, the buyer’s limited liability and firms’ moral hazard constraints can be expressed as:

Eθ [w (v, θ) | e] ≥ 0, ∀v ∈ V n,

ei ∈ arg max
ẽi

Ev,θ

[
Ui(v, θi) | ẽi, e−i

]
− ci(ẽi), ∀i ∈ N.

As in the previous section, we assume that an optimal mechanism exists that induces

an interior profile of efforts ek(given our assumptions on the cost functions). The following

Proposition then partially characterizes this optimal mechanism:

Proposition 4. There exists λ∗ = (λ1∗, ..., λn∗) ≥ 0 such that the optimal mechanism solving

[P ]:

• selects firm i to implement project k with probability

xk∗i (v, θ) =

{
1 if vk −K∗i (v, θi)− ψki ≥ max

{
0,max(l,j)6=(k,i) v

l −K∗j (v, θj)− ψlj
}

,

0 otherwise,

where

K∗i (v, θi) := Ji(θi)−
(

βi(vi)

max{maxk βk(vk), 1}

)(
Gi(θi)

gi(θi)

)
, and βi∗(vi) := λi∗

f ie(v
i|ei∗)

f i(vi|ei∗)
.
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• awards each firm i an expected transfer

T ∗i (v, θi) := ρ∗i (v) +
∑
k∈N

(
ψki + θi

)
Xk∗
i (v, θi) +

∫ θ

θi

∑
k∈N

Xk∗
i (v, s)ds,

where Xk∗
i (v, θi) = Eθ−i [xk∗i (v, θi, θ−i)]; and the transfer includes a cash prize

ρ∗i (v) := Eθ

[∑
k,j∈N

xk∗j (v, θ)
{
vk − ψkj − Jj(θj)

}]
,

which is positive only if βi∗(vi) > max {maxj∈N β
j(vj), 1}.

Proof. See Online Appendix B. �

To interpret this characterization, consider first the case in which known differences in im-

plementation cost are additively separable across suppliers and projects: ψki = ψi+ψ
k for all i

and k. Then, the project selection is simply based on the “net values” of the projects, vk−ψk
without regard for who implements the chosen project.19 While the selection of project is

largely independent of the identity of the supplier who would implement the chosen project,

the selection of project does depend on the realized values of the project. Specifically, the

K∗i (v, θi) depend on all realized values, including those of unselected projects.20 In particu-

lar, a higher vk calls for increasing not only the probability that project k is selected, but

also the probability that firm k obtains the contract to implement the chosen project even

when project k is not selected.

If the separability condition is not satisfied, the choices of the project and of the supplier

are more closely linked. For instance, suppose that ψkk = 0 < ψki = ψ̄ for all k and i 6= k;

that is, each firm has a cost advantage of ψ̄ for the project it proposes. If two firms i and

j are such that vi > vj, but θj is significantly lower than θi, the desire to exploit this cost

advantage may lead the principal to choose project j over project i.

A few other observations are worth making. First, as intuition suggests, the optimal

allocation xk∗i (v, θ) is nondecreasing in (vi, θ−i) and nonincreasing in (v−i, θi). In addition,

as all firms are now potential innovators, each virtual cost K∗i (v, θi) is characterized by two

cutoffs, ṽi and v̂i, which are defined as in the previous section but with somewhat different

implications. As before, each innovator is favored by a bias at the implementation stage

when vi > ṽi := β−1
i (0) and is instead handicapped when vi < ṽi. To what extent a firm will

19To see this fact, note that the difference in surplus when a contractor i implements project k or project

l is given by (
vk −Ki − ψk − ψi

)
−
(
vl −Ki − ψl − ψi

)
=
(
vk − ψk

)
−
(
vl − ψl

)
,

and thus does not depend on which contractor i is selected.
20Note that for a “pure contractor,” Ki (v, θi) = Ji (θi), as in a standard second-best auction.
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be favored or handicapped depends on the relative magnitude of the shadow values βi(vi)

across firms and thus on the values of the other projects, v−i.

Second, a “winner-takes-all” principle holds in the sense that at most one firm is awarded

a cash prize. As in the case of a single innovator, a cash prize is worth giving only when

the incentive benefit βi (vi) exceeds one. However, with multiple innovators, there may be

several firms i for which βi (vi) > 1. Due to the limited liability of the buyer, an additional

dollar paid to a firm is one less dollar available to reward another firm. As the incentive

benefit of a dollar is proportional to βi (vi), the marginal benefit of the prize is maximized

by giving the prize only to the firm with the highest βi (vi). Splitting the available cash

across firms is never optimal for the same reason that it was never optimal to give less than

the maximal prize to the innovator in the single innovator case.

Third, in case a prize is used, it should be given to the firm the effort of which was worth

incentivizing most, that is, to firm ı̂ := argmaxi∈N {βi (vi)}. Furthermore, only that firm

will face undistorted virtual cost K∗i (v, θi) = θi; the others will face a distorted virtual cost

equal to

K∗i (v, θi) = θi +

[
1− βi (vi)

β ı̂ (v ı̂)

]
Gi (θi)

gi (θi)
> θi.

Note that the recipient of the prize need not be the firm with the best project (i.e., the

highest vi). In the same vein, the recipient of the prize is not necessarily the firm to which the

selected project belongs. For instance, if innovators have the advantage of implementing their

own projects, but firms are otherwise ex ante symmetric (so that βi (·) = β (·)), then the firm

with the best project may receive a prize (if the value of its projects exceeds v̂ = β−1 (1)),

and yet cost considerations may lead the principal to select another project.21

Finally, Proposition 4 does not explicitly characterize the set of firms that are induced to

innovate. Since losing projects are never implemented, innovation efforts are “duplicated.” If

there is little uncertainty in the outcome of innovation (e.g., the fi’s are highly concentrated

on narrow supports), then it may be optimal to induce only one firm to exert efforts. This is

entirely consistent with Proposition 4: λi
∗

will be strictly positive for only one firm i in that

case. An asymmetric treatment of firms may arise even when firms are ex ante symmetric

(i.e., ψki = ψ and fk (·) = f (·)), since λ∗ = (λ1∗, ..., λn∗), and thus, β = (β1, ..., βn) could be

asymmetric endogenously. In this case, the mechanism would call for treating even ex ante

symmetric firms asymmetrically.

In practice, however, there are a couple of reasons why multiple firms may be induced to

innovate. First, if the outcomes of innovation efforts are sufficiently uncertain and stochastic,

then there is a “sampling” benefit from inducing multiple firms to make efforts and generate

21Consider for example the case n = 2, and suppose that ψ1
1 = ψ2

2 = 0 < ψ1
2 = ψ2

1 = +∞ (that is, a firm

can only implement its own project). In this case, if v1 > max
{
v2, v̂

}
but θ1 < θ2, firm 1 receives a prize,

but firm 2’s project is selected if the cost difference is large enough.
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favorable draws. Second, a procurer, particularly in the public sector, is often prohibited

from discriminating against firms, especially when they are ex ante symmetric. Proposition

4 is valid even for this case, and we will have λ1∗ = ... = λn∗. In that case, the best project

is selected, and from MLRP, the highest βi (vi) corresponds to the highest vi; hence, only

that project can ever be awarded a cash prize.

Remark 1 (Self-serving innovation strategies). We have so far assumed that firms’ R&D

efforts affect only the values of their projects. In practice, an innovator may choose from

a range of projects that differ in terms of the relative cost advantage the innovator would

enjoy vis-a-vis the other firms. In that case, the innovator may have an incentive to target

an innovation project that they will be best positioned to implement. For instance, a firm

may entrench itself by pursuing an innovation project that no other firm can implement.

Such a targeting possibility would further reinforce the main thrust of our results. While the

second-best auction would actually encourage such self-serving innovation strategies, favoring

innovators with high-value projects, as prescribed by our optimal mechanism, would mitigate

these incentives and encourage instead the adoption of more valuable innovation strategies.]

4 Discussion

In this section, we discuss how our insights relate to the mechanisms used in practice. We first

consider some feasibility issues with respect to handicaps (Section 4.1) and the verifiability

of the value of proposals (Section 4.2). We then discuss the implications of our analysis

for current practice in the management of unsolicited proposals (Section 4.3) and in the

procurement of innovation (Section 4.4).

4.1 On the feasibility of handicaps

The optimal mechanism relies on a “stick and carrot” approach, rewarding good proposals

by conferring an advantage in the procurement auction (possibly together with a monetary

prize) and punishing weak proposals with a handicap in the procurement auction. In practice,

many innovation procurement mechanisms employ cash prizes and/or favorable contract

assignments as incentives, but handicaps for weak projects do not appear to be used. The

lack of handicaps may stem from the risk of manipulation: an innovator with a low-value

project may, for instance, get around the handicapping by setting up a separate corporate

entity to participate in the implementation tender.

To gain some sense of how the mechanism would need to be adjusted if handicaps were

explicitly ruled out, in Online Appendix C, we extend our baseline model by assuming that
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the innovator cannot be left worse off than under the standard second-best mechanism.22

That is, the mechanism must take into account the additional constraint:

x1(v, θ) ≥ xSB1 (v, θ).

We show that when keeping constant the multiplier λ for the innovator’s incentive constant,

ruling out handicaps has no impact on the contract right for high-value projects (namely,

those with v ≥ ṽ), as x∗1(v, θ) > xSB1 (v, θ) in this case. In contrast, for low-value projects (i.e.,

those with v < ṽ), the no-handicap constraint is binding, and the innovator’s probability of

obtaining the contract is increased from x∗1(v, θ) to xSB1 (v, θ). Interestingly, the no-handicap

constraint does not affect the size of the prize. Of course, removing the “stick” raises the cost

of providing innovation incentives, and thus, we would expect an increase in the multiplier

of the incentive constraint λ (implying that the favorable bias for a high-value project is

larger and that the monetary prize is more often awarded) and a reduction in the optimal

innovation effort.

4.2 Robust mechanisms with respect to v

The optimal mechanism allocates the project on the basis of its value. In practice, this

value may be difficult to measure objectively or may be costly to verify, which in turn calls

for more robust rules. Even in this case, biasing the implementation tender still provides

an effective way of incentivizing innovators. To see this fact, in Online Appendix D, we

consider a variant of our baseline model in which: (i) the buyer, having observed the value

of the project, remains free to decide whether to implement the project or not; and (ii) the

implementation tender cannot depend on the value of the project (that is, x (v, θ) = x (θ) and

ρ (v) = ρ for all v). Obviously, the innovator has no incentive to exert any research effort

when the project is never implemented or when it is always implemented (in this latter

case, the innovator gets the same expected information rent, regardless of the value of its

proposal). However, if the project is implemented only when it is sufficiently valuable, then

it is always optimal to bias the tender in favor of the innovator.23 Interestingly, handicaps

are never optimal in this case. In addition, as long as the principal observes the value of the

project, such mechanism can be used regardless of whether this value is also observed by the

firms or can be verified by third parties such as courts.

22It can be checked that this mechanism indeed ensures that the innovator is never worse off than a pure

contractor – see Online Appendix C.
23Specifically, the shadow costs are of the form K1 (θ1) < J1 (θ1) and Ki (θi) = Ji (θi) for i > 1.
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4.3 Current practice on unsolicited proposals

Public authorities are sometimes approached directly by private companies with proposals for

developing projects even without any formal solicitation. To allow the contracting authority

to make a proper evaluation of the technical and economic feasibility of the project and

to determine whether the project is likely to be successfully implemented, the proposer

must typically submit a technical and economic feasibility study, an environmental impact

study and satisfactory information regarding the concept or technology contemplated in the

proposal. Despite the often significant cost involved in these submissions, some countries

do not allow public authorities to directly reward these unsolicited proposals. Our analysis

suggests instead that it can be optimal to reward valuable proposals through contract rights

and possibly through monetary prizes. Hodges and Dellacha (2007) describe three alternative

ways that are used in practice:

◦ Bonus system. The system gives the original project proponent a bonus in the tendering

procedure. A bonus can take many forms but most commonly involves additional points in

the score of the original proponent’s technical or financial offer. This system is, for example,

adopted in Chile and Korea. In the former, the bonus points are linked to the value of the

proposed project.

◦ Swiss challenge system. The Swiss challenge system gives the original project proponent

the right to counter-match any better offers. This system is most common in the Philippines

and is also used in Guam, India, Italy, and Taiwan. Under this procedure, the original

proposer will counter-match the lowest rival bid and win the contract whenever its cost is

less than that bid. Anticipating this, rival bidders will respond by shading their bids but

still bid above their costs. Hence, the system distorts the contract allocation in favor of the

proposer (who wins the contract for sure when its cost is less than the rivals’ costs but may

also win when its cost is above theirs).24

◦ Best and final offer system. Here, the key element is multiple rounds of tendering, in

which the original proponent is given the advantage of automatically participating in the

final round. This system is used in Argentina and South Africa.

Our analysis suggests that these mechanisms have some merit as biasing the implemen-

tation stage in favor of the innovator may indeed promote innovation. The bonus system

has the additional merit of allowing the advantage to be linked to the value of the proposed

project. Furthermore, as discussed in Section 4.2, the unconditional advantage granted to

the innovator under the Swiss challenge system and the best and final offer system can be

rationalized when the value of the project is difficult to verify. None of these systems involve

explicit handicapping.

24See Burguet and Perry (2009) for the formal analysis of the right of first refusal in a procurement

context. Their model does not involve ex ante investment, however.
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4.4 On the Optimality of Bundling R&D and Implementation

In the practice of innovation procurement, we observe two polar approaches.

The first approach is pure bundling, wherein the firm whose project is selected also im-

plements it. This approach was, for instance, followed in US defense procurement in the

1980s, where the winner of the technical competition for the best prototype was virtually as-

sured of being awarded the follow-on defense contract (see Lichtenberg, 1990; and Rogerson,

1994). More recently, the European Procurement Directive 2014/24/EU has introduced the

so-called “innovation partnerships” for the joint procurement of R&D services and large-scale

production. As mentioned in the Introduction, in the US the National Defense Authorization

Act for 2016 recently expanded the use of Other Transaction Authority, thereby enhancing

the possibility of direct assigning the production contract to the firm that was awarded the

contract for the R&D services.

The second approach is unbundling, in which the selection of the project and its imple-

mentation are kept entirely separate; therefore, the firm to which the selected project belongs

is treated exactly in the same way as any other firm at the implementation stage. Exam-

ples of this approach include research contests, the European Pre-commercial Procurement

(PCP) model,25 and the standard approach to R&D procurement under the US federal laws

and regulations that apply to government procurement contracts.26 In these cases, firms

compete for innovative solutions at the R&D stage, and the best solution(s) may receive a

prize. The procurer does not commit itself to acquiring the resulting innovations.

Our analysis identifies specific circumstances in which the two extreme cases can be

optimal.

Corollary 3. 1. Pure bundling is optimal if, for each i, k ∈ N , ψkk = 0 and ψki =∞ if

i 6= k.

2. Unbundling is optimal if there exists N1, N2 ⊂ N with N1 ∪N2 = N and N1 ∩N2 = ∅
such that for each i, k ∈ N , ψki = 0 if k ∈ N1 and i ∈ N2 and ψki = ∞ otherwise. In

this case, the optimal mechanism selects the project k from N1 with the highest value vk

and awards the implementation contract to the firm i ∈ N2 with the lowest virtual cost

Ji(θi), provided that maxk∈N1 v
k ≥ mini∈N2 Ji(θi); in addition, it rewards the innovator

h ∈ N1 with the highest βh(vh), provided that it exceeds 1.

Pure bundling can be optimal when there are large economies of scope between R&D

and } {implementation, as in the case described by the condition in Corollary 3-(1). For

example, in the procurement of complex IT systems, the knowledge acquired by the software

25See EC (2007) and https://ec.europa.eu/digital-agenda/en/pre-commercial-procurement.
26Part 35, Federal Acquisition Regulation (FAR), https://www.acquisition.gov/browsefar.
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developer typically confers a considerable cost advantage for the management and upgrading

of the software. In this case, selecting the same firm for both R&D and implementation is

likely to be better. However, even in that case, our analysis suggests that the selection of

the project should be based on both value and cost considerations.

By contrast, unbundling is optimal when firms specialize in either innovation or in im-

plementation (e.g., manufacturing or construction). Corollary 3-(2) describes such a case:

firms are partitioned into two groups so that one specializes in innovation and the other

specializes in implementation.27 In this case, the optimal mechanism selects the project and

rewards the innovator from the former group according to the first-best scheme in Proposi-

tion 1 and awards the implementation contract to a firm in the second group according to

the second-best scheme in Proposition 2.

Unbundling is sometimes prescribed as an affirmative action policy toward small and

medium enterprises (SMEs). In both Europe and the US, procurement programs aimed

at stimulating R&D investment from SMEs provide for separation between the R&D stage

and the implementation stage. Funding is provided based on firms’ project proposals. The

Small Business Innovation Research (SBIR) program in the US and the Small Business

Research Initiative (SBRI) in the UK are characterized by this separation between project

selection and implementation.28 Such a policy can be justified based on Corollary 3-(2) on

the grounds that small or medium R&D firms often lack manufacturing capabilities and thus

would be at a clear disadvantage when the R&D competition is bundled with the contract

implementation. For instance, if SMEs constitute group N1 and non-SMEs constitute N2,

it is then desirable to promote research effort specifically from SMEs and ban non-SMEs

from proposing a project (as under SBIR and SBRI). Indeed, a study commissioned by the

European Commission29 finds empirical evidence that PCP (i.e., unbundling) increases both

participation by and awarding to SMEs compared to conventional joint procurement of R&D

services and supply (i.e., bundling).

A similar reasoning suggests that when base university research plays a key role in R&D

activities, separation between selection and implementation may help to promote universities’

participation. When instead innovators are also likely to play a role at the implementation

stage, unbundling is never optimal.

27While Corollary 3-(2) portrays pure implementors (firms j ∈ N2) in terms of high R&D costs, a similar

insight applies when they are productive in research (e.g., if F j is concentrated on v).
28See, respectively, http://www.sbir.gov/ and https://sbri.innovateuk.org.
29See Bedin, Decarolis and Iossa (2015).
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5 Related Literature

Prizes versus property rights to motivate innovation. The issue of prizes vs. contracts

is reminiscent of the well-known debate on the effectiveness of the patent system as a source

of incentive for innovation (see Maurer and Scotchmer, 2004; and Cabral et al., 2006) for

reviews. Just as in our model, the patent system involves ex post distortion (in terms of both

too little quantity and foreclosure of competing firms), making prizes apparently preferable

(see, e.g., Kremer, 1998). However, the literature has shown that as in this paper, ex post

distortion can be an optimal way to motivate ex ante innovation. The difference lies in the

motivation for the ex post distortion. In the case of Weyl and Tirole (2012), for instance, the

supplier has private information at the ex ante (innovation) stage; the awarding of property

rights—a source of inefficiency—serves to reveal the value of innovation. In our case, private

information in the ex post implementation stage, coupled with limited liability, forces the

buyer to leave rents to the winning supplier. These rents can be harnessed as incentives for

innovation but only when the allocation of the contract rights is shifted in favor or against

the innovator as a function of the value of innovation. That is, the distortion in the allocation

of contracts rights arises as a way to incentivize innovation.

Bundling sequential tasks. Our analysis is related to the literature on whether two

tasks should be allocated to the same agent (“bundling”) or to two different agents (“un-

bundling”). The existing literature finds that this choice can be driven by problems of adverse

selection (see, e.g., Armendariz and Gollier, 1998; Ghatak, 2000), monitoring (Besley and

Coate, 1995; Armendariz, 1999; Rai and Sjöström, 2004), moral hazard (Stiglitz, 1990; Var-

ian 1990; Holmstrom and Milgrom, 1991; Itoh, 1993), or agents’ limited liability (Laffont

and Rey, 2003). A second strand of the literature has focused specifically on sequential

tasks. Our paper is specifically related to Riordan and Sappington (1989), who highlighted

how sole sourcing (bundling) can serve as commitment device to incentivize R&D effort, by

raising the prospect of a lucrative follow-on contract. In their context, the buyer suffers from

limited commitment power and the value of the project is non-verifiable. Like them, we show

that contract rights can provide incentive for R&D effort, but we consider verifiable project

values and full commitment, thus extending the buyer’s options to the possibility that his

choice depends on the realized project value or that he commits ex ante to a given bias.

Other more recent papers have studied the role of externalities across tasks (Bennett

and Iossa, 2006), budget constraints (Schmitz, 2013), information on the ex post value of

the second task (Tamada and Tsai, 2007) or on the future cost of improving the service

provision (Hoppe and Schmitz, 2013) or competition among agents (Li and Yu, 2015). Our

paper contributes to this literature by showing that the implementation decision should

depend on the value of the proposed project(s) as well as on the supplier’s characteristics.

Full unbundling is therefore typically not optimal unless innovators and implementors form
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distinct groups, while pure bundling is optimal only under rather specific conditions – namely,

when the innovator is in a much better position to implement its project.

Discrimination and bidding parity in auctions. Our analysis is also related to the

literature on discrimination in auctions. This subset of the literature finds it optimal to

distort the allocation to reduce the information rents accruing to the bidders: discrimination

against efficient types helps level the playing field and elicit more aggressive bids from other-

wise stronger bidders (Myerson, 1981; McAfee and McMillan, 1985). In a similar vein, when

bidders can invest in cost reduction, an ex post bias in the auction design can help foster

bidders’ ex ante investment incentives (Bag 1997) or prevent the reinforcement of asymmetry

among market participants (Arozamena and Cantillon, 2004). Likewise, manipulating the

auction rules can help motivate investment in cost reduction by an incumbent firm (Laffont

and Tirole, 1988), incentivize monitoring effort by an auditor (Iossa and Legros, 2004) or

favor the adoption of an efficient technology by an inefficient firm (Branco, 2002). We con-

tribute to this literature by showing that when investment is “cooperative” (in the sense of

Che and Hausch, 1999) and directly benefits the buyer, both favoritism and handicapping

are optimal, depending on the value of the proposed project and on the bidders’ costs.

Contests. Finally, another large literature studies the provision of incentives through

contests or tournaments. Since the seminal contributions by Tullock (1967, 1980) and

Krueger (1974) on rent-seeking and of Becker (1983) on lobbying, the framework has been

applied to many other situations, including research contests.30 This literature typically as-

sumes that agents’ efforts affect the probability of winning the contest but not the associated

reward.31 In contrast, here, the principal can reward innovators with contract rights as well

as with a monetary prize, which enables her to influence how innovators’ efforts affect their

information rents. This, in turn, allows us to analyze the optimal composition of a prize.

Dynamic Contracting. The idea of using future “rents” an agent expects to earn to

motivate her earlier effort has been developed in the dynamic contracting literature. For

example, Board (2011), Andrews and Baron (2016), Calzolari and Spagnolo (2017) and

Calzolari et al. (2015) consider moral hazard models, showing that the optimal relational

contract rewards good behavior with loyalty. However, the relational models do not allow

for contingent prizes, as we do, and cannot therefore discuss the relative value of alternative

instruments. The idea that the principal can solve short-term moral hazard problem by

committing to a long-term and potentially inefficient allocation of business is also present

in Garrett and Pavan (2012), who consider repeated adverse selection and examine the

30See Corchón (2007), Konrad (2009) and Long (2013) for surveys of the literature on contests. For

research contests, see, e.g., Che and Gale (2003) and Piccione and Tan (1996) for an analysis of R&D

investment in cost reduction followed by standard procurement auctions.
31Some papers allow the reward to depend on agents’ efforts. For instance, in “winner-takes-all” races,

firms’ investments in cost reduction may affect not only the probability of winning the market, but also the

profit achieved in that case. However, this relation remains exogenously given.
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distortions in allocation that can occur over time. They consider both the design of retention

policy (analogous to the “contract rights” here) and the use of managerial compensations

(analogous to a “prize” here) and analyze how their use evolves over time. An important

distinction lies in the main concern of the principal, which is to minimize informational rents

in their paper and to incentivize innovation in ours.

6 Conclusion

Procuring innovative projects requires incentivizing research efforts from potential suppliers

as well as implementing the selected projects efficiently. We have shown how the procurer

may optimally address these objectives by combining cash prizes and contract rights as

alternative tools for rewarding innovators.

A number of issues are worth exploring further. First, for the most part we have focused

on situations in which the value of the proposals can be contracted upon. This is a plausi-

ble assumption when, for instance, the proposal involves a prototype or when performance

measures – operational or productivity indicators, energy consumption, emissions, etc. – are

available and can be used in tender documents or when the procurer can rely on impartial

evaluation committees. In other situations (e.g., base research), however, the difficulty of

describing the project and/or non-verifiability issues may make it impossible to contract ex

ante on the ex post value of the projects. Even in the latter case, if the values of projects are

observable to the relevant parties (i.e., procurer and firms), then the non-verifiability prob-

lem can be overcome for free as the values can be elicited through an incentive scheme (see

Maskin and Tirole (1999)). The situation is different when the value of the project is private

information (e.g., only the buyer observes it). Yet, the spirit of our insights carries over

when, for instance, the procurer must use the same auction rules whenever she decides to

implement the project (see the discussion in Section 4.2). Characterizing the optimal mech-

anism under private information is beyond the scope of this paper but clearly constitutes an

interesting avenue for future research.

Second, we have ignored the costs of participating in procurement tenders. In practice,

submitting a tender bid may require tender development costs (e.g., complex estimations and

legal advice) that involve significant economic resources, in which case biasing the tender in

favor of the innovator may discourage potential suppliers from participating in the tender.

It would therefore be worth endogenizing the participation in the tender and exploring how

the optimal mechanism should be adjusted to account for these development costs. More

generally, accounting for endogenous entry is a promising research avenue.32

32For recent work on the role of discrimination in auctions with endogenous entry, see, e.g., Jehiel and

Lamy (2015).
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Likewise, we have assumed that the procurer was benevolent. In practice, corruption

concerns and, more generally, institution design may matter, which may call for limiting the

discretion given to the procuring agency. Balancing this with the provision of innovation

incentives constitutes another promising research avenue.33

Finally, we have focused on a situation where the innovation is valuable to a single buyer

– and thus has no “market” value. An interesting extension would be to consider multiple

buyers so as to allow for the possibility that extra contractual incentives for research effort

arise from the commercialization of the innovation. Exploring the role of market forces would

also help to shed light on possible anti-competitive effects of alternative mechanisms for the

public procurement of innovation.34

33For recent work on the role of corruption in procurement auctions, see, e.g., Burguet (2015).
34See the 2014 European State Aid framework for research, development and innovation (EU 2014b).
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Appendix

A Proof of Proposition 1

To solve [P − FB], we focus on the relaxed problem:

[P ′ − FB] max
x,t

Ev,θ[v
∑
i∈N

xi(v, θ)− ti(v, θ)|e]

subject to (LL), (MH) and

Eθ[ti(v, θ)− θixi(v, θ)] ≥ 0, ∀v, i. (IR′)

This problem is a relaxation of [P − FB] since (IR′) requires (IR) to hold only on

average. At the same time, whenever a mechanism satisfies (IR′), one can construct at least

one mechanism that satisfies (IR), without affecting other constraints. Hence, there is no

loss in restricting attention to [P ′ − FB]. To solve [P ′ − FB], we first observe that for each

i 6= 1, the constraint (IR′) must bind. If not, one can always lower the expected payment

to increase the value of the objective without tightening any constraints. Next, define

ρ1(v) := Eθ[t1(v, θ)− θ1x1(v, θ)].

Then, we can weaken [P ′ − FB] further to:

[P ′′ − FB] max
x,t

Ev,θ[
∑
i∈N

(v − θi)xi(v, θ)− ρ1(v)|e]

subject to

ρ1(v) ≥ 0, ∀v, (IR′′)

Eθ[
∑
i∈N

(v − θi)xi(v, θ)] ≥ ρ1(v), ∀v, (LL′′)

∂

∂e
Ev [ρ1(v)|e] ≥ c′(e). (MH ′′)

Note that the weakening occurs with the moral hazard constraint: (MH ′′) is a first-order

necessary condition of (MH).

Let ν(v), µ(v), and λ denote the multipliers for constraints (IR′′), (LL′′) and (MH ′′),

respectively. Then, the Lagrangian (more precisely its integrand) is given by:

L(v, θ, e) := [1 + µ(v)]

{∑
i∈N

xi(v, θ) (v − θi)

}
− ρ1(v) [1 + µ(v)− ν(v)− β (v)]− λc′ (e) ,
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where

β (v) := λ
fe(v|e)
f(v|e)

.

The optimal solution (eFB, xFB (v, θ) , ρFB (v) , λFB, µFB (v) , νFB (v)) must satisfy the

following necessary conditions.

First, since the Lagrangian is linear in xi’s, the optimal solution xFBi (v, θ) is as defined

in Proposition 1. Next, the Lagrangian L is also linear in ρ1(v); hence, its coefficient must

be equal to zero:

1 + µ∗(v)− β∗ (v)− ν∗(v) = 0. (1)

Next, the optimal effort eFB must satisfy

∂

∂e
Ev,θ[L(v, θ, e)|e]

∣∣∣∣
e=eFB

= 0. (2)

Finally, complementary slackness implies that, for each v,

νFB(v)ρFB(v) = 0, (3)

µFB(v)

{
Eθ[
∑
i∈N

xFBi (v, θ) (v − θi)− ρFB1 (v)

}
= 0, (4)

and

λFB
[∫

v

ρFB(v)fe(v|eFB)dv − c′(eFB)

]
= 0. (5)

We first prove that λFB > 0. Suppose not. Then, βFB(v) = 0 for all v ∈ V . It then

follows from (1) that νFB(v) > 0 for all v ∈ V . By (3), this means that ρFB(v) ≡ 0. As

xi = xFBi , it then follows from (4) that for any v > θ, µFB(v) = 0. Collecting these facts

together, we conclude that

Eθ[L(v, θ, e)] = Eθ[max{0, v −min
i
{θi}],

which is increasing in v (and strictly so for a positive measure of v). By (MLRP ), this

means that
∂

∂e
Ev,θ[L(v, θ, e)|e] > 0,

a contradiction to (2). We thus conclude that λFB > 0.

If v < v̂FB, then βFB(v) < 1, and thus 1 + µFB(v) − βFB(v) > 0. Hence, by (1),

νFB(v) > 0 and, by (3), we have ρFB(v) = 0. It in turn follows from (4) that µFB(v) = 0

provided that v > θ.
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If instead v > v̂FB, then βFB(v) > 1, and thus 1− βFB(v)− νFB(v) < 0. Hence, by (1),

µFB(v) > 0. But then, by (4), we must have

ρFB(v) = Eθ

[∑
i∈N

xFBi (v, θ) (v − θi)

]
,

as claimed in Proposition 1.

Next, we show that v < v̂FB < v̄. First, by (MLRP ), βFB (v) is strictly increasing in v,

and there exists ṽ ∈ (v, v̄) such that βFB (ṽ) = 0 (< 1); it follows that v̂FB > ṽ (> v). Second,

we must have v > v̂FB with positive probability (i.e., λFB cannot be too small). Suppose to

the contrary that βFB(v) < 1 for all v ∈ V . Then, as argued above ρFB(v) = µFB(v) = 0

for all v ∈ V . In this case, by the convexity of c(·), we must have eFB = 0, or else we obtain

a contradiction to (5). But then, we get

L(v, θ, e) = max{0,max
θi

(v − θi)} − c′ (e) .

As the first term is increasing in v (and strictly so for a positive measure of v), and c′ (0) = 0,

we thus get a contradiction to (2).

Finally, we prove that eFB > 0. Given λFB > 0, it follows from (5) that∫
v

ρFB(v)fe(v|eFB)dv = c′(eFB).

As v > v̂FB for a positive measure of v, the left side is strictly positive. This implies that

eFB > 0, or else the right-hand side vanishes as c′(0) = 0.

B Proof of Proposition 3

To solve [P ], we first reformulate (IC) in terms of interim allocation and payment rules. For

each i ∈ N and for any v ∈ V and any θi ∈ Θi, let Xi(v, θi) :=
∫
θ−i

xi (v, θ) dG−i (θ−i) and

Ti(v, θi) :=
∫
θ−i

ti (v, θ) dG−i (θ−i) denote the interim allocation and payment for firm i and

Ui(v, θi) := Ti(v, θi)− θiXi(v, θi) (6)

denote firm i’s expected profit. For each i ∈ N , (IC) then can be stated as

Ti(v, θi)− θiXi(v, θi) ≥ Ti(v, θ
′
i)− θiXi(v, θ

′
i), ∀v, θi, θ′i.

The associated envelope condition then yields

Ui(v, θi) = ρi (v) +

∫ θ

θi

Xi(v, θ)dθ, (7)
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where

ρi (v) := Ui(v, θ)

is the rent enjoyed by firm i when its cost is highest. Using (7), we can express firm i’s

expected rent as∫
θi

Ui(v, θi)dGi (θi) =

∫
θi

[
ρi(v) +

∫ θ

θi

Xi(v, s)ds

]
dGi (θi)

= ρi(v) +

∫
θi

Xi(v, θi)
Gi (θi)

gi (θi)
dGi (θi) . (8)

For each i 6= 1, the rent ρi(v) does not help to relax any constraint and reduces the surplus

for the principal, so it is optimal to set ρi(v) = 0 for all v.

Using (6) and (8), the total expected transfer to the firms can be expressed as:∫
θ

∑
i∈N

ti (v, θ) dG (θ) =
∑
i∈N

∫
θi

Ti(v, θi)dGi (θi)

=
∑
i∈N

∫
θi

[Ui(v, θi) + θiXi(v, θi)] dGi (θi)

=
∑
i∈N

{
ρi(v) +

∫
θi

Xi(v, θi)Ji(θi)dGi (θi)

}
= ρ1(v) +

∫
θ

∑
i∈N

xi (v, θi) Ji(θi)dG (θ) , (9)

where Ji(θi) := θi + Gi(θi)
gi(θi)

denotes firm i’s virtual cost.

Substituting (9) into the principal’s objective function, we can rewrite (LL) as follows:

∀v ∈ V,
∫
θ

{∑
i∈N

xi(v, θ) [v − Ji(θi)]

}
dG(θ) ≥ ρ1(v). (L̂L)

Let µ(v) ≥ 0 denote the multiplier associated with this constraint.

The innovating firm’s individual rationality simplifies to

∀v ∈ V, ρ1(v) ≥ 0. (ÎR)

Let ν(v) ≥ 0 denote the multiplier associated with this constraint.

We next focus on the first-order condition for the effort constraint.∫
v

∫
θ

[
ρ1(v) +

G1(θ1)

g1(θ1)
x1(v, θ)

]
dG(θ)fe(v|e)dv ≥ c′(e). (M̂H)
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Note that we formulate the condition as a weak inequality to ensure the nonnegativity of

the multiplier. Let λ ≥ 0 be the associated multiplier.

Then, [P ] can more succinctly be reformulated as follows:

max
e,x(v,θ),ρ1(v)

∫
v

{∫
θ

[∑
i∈N xi(v, θ) [v − Ji(θi)]

]
dG(θ)− ρ1(v)

}
f(v|e)dv

subject to (L̂L), (ÎR) and (M̂H)

The integrand of the Lagrangian is given by:

L(v, θ, e) := [1 + µ(v)]


[
v − θ1 −

(
1− β (v)

1 + µ(v)

)
G1(θ1)

g1(θ1)

]
x1(v, θ) +

∑
j∈N
j 6=1

[v − Jj(θj)]xj(v, θ)


− ρ1(v) [1 + µ(v)− ν(v)− β (v)]− λc′ (e) ,

where

β (v) := λ
fe(v|e)
f(v|e)

.

The optimal solution (e∗, x∗ (v, θ) , ρ∗1 (v) , λ∗, µ∗ (v) , ν∗ (v)) must satisfy the following nec-

essary conditions. First, observe that the Lagrangian L is linear in ρ1(v); hence, its coefficient

must be equal to zero:

1 + µ∗(v)− β∗ (v)− ν∗(v) = 0. (10)

The Lagrangian is also linear in xi’s, so the optimal allocation must satisfy, for every

i, v, θ:

x∗i (v, θ) =

{
1 if i ∈ arg minj

{
K̃j(v, θj)

}
and K̃i (v, θi) ≤ v,

0 otherwise,

where

K̃i(v, θi) :=

{
Ji (θi)− β∗(v)

1+µ∗(v)
Gi(θi)
gi(θi)

if i = 1,

Ji (θi) if i 6= 1,

where β∗ (v) = λ∗ fe(v|e
∗)

f(v|e∗)
.

Next, the optimal effort e∗ must satisfy

∂

∂e

∫
v

∫
θ

L(v, θ, e∗)f(v|e∗)dG (θ) dv = 0. (11)

Finally, complementary slackness implies that, for each v,

ν∗(v)ρ∗1(v) = 0, (12)

µ∗(v)

{∫
θ

∑
i∈N

x∗i (v, θ) [v − Ji(θi)] dG(θ)− ρ∗1(v)

}
= 0, (13)
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and

λ∗
[∫

v

∫
θ

[
ρ∗1(v) +

G1(θ1)

g1(θ1)
x∗1(v, θ)

]
dG (θ) fe(v|e∗)dv − c′(e∗)

]
= 0. (14)

We now provide the characterization. Consider first the case where v < θ. From (10),

K̃i(v, θi) ≥ θi, and thus K̃i(v, θi) and K∗i (v, θi) both yield x∗i (v, θ) = 0 for every i ∈ N ;

furthermore, (L̂L) and (ÎR) together imply

ρ∗1(v) = 0 =

∫
θ

∑
i∈N

x∗i (v, θ) [v − Ji(θi)] dG(θ).

Hence, the characterization of x∗i (v, θ) given in Proposition 3 is correct.

We now focus on the range v > θ. Again, there are two cases depending on the value of

v. Consider first the case v < v̂, where β∗ (v) < 1. Hence, 1+µ∗(v)−β∗ (v) > µ∗(v) ≥ 0, and

(10) thus implies ν∗(v) > 0. The complementary slackness condition (12) then yields ρ∗1(v) =

0. This, together with Lemma 4 (see Online Appendix B) and the complementary slackness

condition (13), implies that µ∗(v) = 0. Hence, K̃1(v, θ1) = J1 (θ1) − β∗ (v)G1(θ1)/g1(θ1) =

K∗1(v, θ1).

Let us now turn to the case v > v̂, where β∗ (v) > 1. Hence, 1− β∗ (v)− ν∗(v) < 0, and

(10) thus implies that µ∗(v) > 0; from the complementary slackness condition (13), we thus

have

ρ∗1(v) =

∫
θ

∑
i∈N

x∗i (v, θ) [v − Ji(θi)] dG(θ).

Suppose ν∗(v) > 0. Lemma 4 (of Online Appendix B) then implies ρ∗1(v) > 0, contradicting

the complementary slackness condition (12). Therefore, ν∗(v) = 0. It follows now from (10)

that 1 + µ∗(v) = β∗ (v). We therefore conclude that K̃1(v, θ1) = θ1 = K∗1(v, θ1).

The expected transfer payment T ∗i (v, θi) follows from (6) and (7), with ρ∗1(v) as described

above and ρ∗j(v) = 0 for all j 6= 1. The above characterization is valid only when the optimal

allocation is monotonic (another necessary condition from incentive compatibility). This

follows the assumption that Gi(θi)
gi(θi)

is nondecreasing in θi, which implies thatK∗i (v, θi) = Ji(θi),

for i 6= 1, and

K∗1(v, θ1) = J1 (θ1)−min {1, β (v)} G1(θ1)

g1(θ1)
= θ1 + max {0, 1− β (v)} G1(θ1)

g1(θ1)
,

are all nondecreasing in θi.

We next prove that λ∗ > 0. Suppose λ∗ = 0. Then, β∗(·) = 0, so (10) again implies that

ν∗(·) > 0 and µ∗(·) = ρ∗1(·) = 0. Hence,

L(v, θ, e∗) = max{0, v −min
i
Ji(θi)},
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which increases for a positive measure of v. It follows that

∂

∂e

∫ v

v

∫
θ

L(v, θ, e)dG(θ)f(v|e)dv
∣∣∣∣
e=e∗

=

∫ v

v

∫
θ

max{0, v −min
i
Ji(θi)}dG(θ)fe(v|e∗)dv > 0,

which contradicts (11).

Next, we show that e∗ > 0. It follows from (14) and λ∗ > 0 that∫
v

∫
θ

[
ρ1(v) +

G1(θ)

g1(θ)
x∗1(v, θ)

]
g(θ)dθfe(v|e)dv = c′(e).

The left-hand side is strictly positive, which implies that e∗ > 0, or else the right side vanishes

since c′(0) = 0.
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Online Appendix
Not for publication

A On the Optimality of Offering a Prize (v̂ < v̄)

As mentioned, whether it is optimal to award a monetary prize (i.e., v̂ < v̄) depends on how

much innovation incentives are required and on how much would already be provided by the

standard second-best auction. We show in this Online Appendix that a monetary prize is

optimal when: (i) there is either little cost heterogeneity (see Section A.1) or a large number

of firms (see Section A.2), as the procurement auction does not generate much information

rents, and thus provides little innovation incentives; or (ii) the range of project values is

large (see Section A.3), so that innovation incentives then matter a lot.

Throughout this Online Appendix, we start with an environment for which there ex-

ists an optimal mechanism with no monetary reward, and then consider variations of this

environment for which the optimal mechanism must involve a prize.

The baseline environment, for which there exists an optimal mechanism with no monetary

reward, consists of a distribution F (·|e) for the value v and a distribution Gi (·) for the cost

of each firm i ∈ N , such that ρ∗ (·) = 0, which amounts to v̂ > v̄, or

λ∗ < λ̄ :=
f (v̄|e∗)
fe (v̄|e∗)

, (15)

and implies that µ∗ (·) = 0. The optimal allocation is therefore such that x∗i (v, θ) = 0 for

any v ≤ θ and, for v > θ:

x∗1 (v, θ) =

{
1 if K∗1 (θ1) < min {v, J2 (θ2) , ..., Jn (θn)} ,
0 otherwise.

For further reference, it is useful to note that the objective of the principal, as a function of

e, can be expressed as:∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) [v − Ji (θi)] dG (θ) dF (v|e)

+ λ

{∫ v̄

v

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fe(v|e)dθ1dv − c′ (e)

}
,

where the innovator’s expected probability of obtaining the contract is given by:

X∗1 (v, θ1) =

∫
θ−1

x∗1 (v, θ) dG−1 (θ−1) .
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The first-order condition with respect to e yields:∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) [v − Ji (θi)] dG (θ) fe (v|e∗) dv

= λ

{
c′′ (e∗)−

∫ v̄

v

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fee(v|e∗)dθ1dv

}
. (16)

The optimal effort e∗ moreover satisfies the innovator’s incentive constraint c′ (e∗) = b (e∗),

where the innovator’s expected benefit is given by:

b (e) :=

∫ v̄

v

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fe(v|e)dθ1dv.

A.1 Reducing Cost Heterogeneity

Suppose first that costs become increasingly less heterogeneous: the cost of each firm i ∈ N
becomes distributed according to Gm

i (θi) over the range Θm
i =

[
θ, θ̄m = θ +

(
θ̄ − θ

)
/m
]
. For

each m ∈ N∗, we will denote by em, λm, Km
1 (θ1) and Xm

1 (v, θ1) the values associated with

the optimal mechanism. We now show that, for m large enough, this optimal mechanism

must include a monetary prize.

We first note that as m goes to infinity, the innovator’s effort tends to the lowest level, e:

Lemma 1. em tends to e as m goes to infinity.

Proof. The innovator’s expected benefit becomes

bm (e) :=

∫ v̄

v

∫ θ̄m

θ

Xm
1 (v, θ1)Gm

1 (θ1) fe(v|e)dθ1dv,

and satisfies:

|bm (e)| ≤
∫ v̄

v

∫ θ+ θ̄−θ
m

θ

dθ1 |fe(v|e)| dv =

(
θ̄ − θ

) ∫ v̄
v
|fe(v|e)| dv
m

.

Therefore, as m goes to infinity, the expected benefit bm (e) converges to 0, and the innova-

tor’s effort thus converges to the minimal effort, e. �

Furthermore:

Lemma 2. As m goes to infinity:

• The left-hand side of (16) tends to

B∞ :=

∫ v̄

v

(v − θ) fe (v|e) dv > 0.
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• In the right-hand side of (16), the terms within brackets tend to c′′ (e).

Proof. The left-hand side of (16) is of the form
∫ v̄
v
hm1 (v) dv, where

hm1 (v) := fe (v|em)

∫ θ̄m

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dGm (θ) .

Furthermore, for any v > θ, Ĵ (θ) := mini∈N {Ji (θi)} < v for m is large enough (namely, for

m such that θ̄m < v or m >
(
θ̄ − θ

)
/ (v − θ)), and so

hm1 (v) = fe (v|em)

∫ θ̄m

θ

[
v − Ĵ (θ)

]
dGm (θ) ,

which is bounded:

|hm1 (v)| <
∣∣∣max

e
fe (v|e)

∣∣∣max {v − θ, 0} ,

and converges to

lim
m−→∞

hm1 (v) = (v − θ) fe (v|e) .

Using Lebesgue’s dominated convergence theorem, we then have:

lim
m−→∞

∫ v̄

v

hm1 (v) dv =

∫ v̄

v

lim
m−→∞

hm1 (v) dv = B∞.

We now turn to the right-hand side (16). The terms within brackets are

c′′ (em)−
∫ v̄

v

∫ θ̄m

θ

Xm
1 (v, θ1)Gm

1 (θ1) fee(v|em)dθ1dv,

where the first term tends to c′′ (e) and the second term is of the form
∫ v̄
v
hm2 (v) dv, where

hm2 (v) = fee (v|em)

∫ θ̄m

θ

Xm
1 (v, θ1)Gm

1 (θ1) dθ1

satisfies:

|hm2 (v)| < max
e
|fee (v|e)|

∫ θ̄m

θ

dθ1 =

(
θ̄ − θ

)
maxe |fee (v|e)|
m

and thus tends to 0 as m goes to infinity. �

To conclude the argument, suppose that the optimal mechanism never involves a prize.

Condition (16) should thus hold for any m, and in addition, the Lagrangian multiplier λm

should satisfy the boundary condition (15). We should thus have:∫ v̄

v

∫ θ̄m

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dG (θ) fe (v|em) dv

<
f (v̄|em)

fe (v̄|em)

{
c′′ (em)−

∫ v̄

v

∫ θ̄m

θ

Xm
1 (v, θ1)G1 (θ1) fee(v|em)dθ1dv

}
.
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Taking the limit as m goes to infinity, this implies:

B∞ =

∫ v̄

v

(v − θ) fe (v|e) dv < f (v̄|e)
fe (v̄|e)

c′′ (e) ,

which is obviously violated when the return on effort is sufficiently high (e.g., c′′ (e) is low

enough).

A.2 Increasing the Number of Firms

Let us now keep the cost distributions fixed, and suppose instead that m additional firms are

introduced in the environment with the same cost distribution as the innovator: Gk (θk) =

G1 (θk) for k = n+ 1, ..., n+m. Letting again denote by em, λm, Km
1 (θ1) and Xm

1 (v, θ1) the

values associated with the optimal mechanism, we now show that the optimal mechanism

must involve a prize for m large enough.

By construction, Km
1 (θ1) (> θ1) > θ for any θ1 > θ, whereas the lowest Jj (θj) becomes

arbitrarily close to J1 (θ) = θ as m increases; it follows that the probability of selecting the

innovator, Xm
1 (v, θ1), tends to 0 as m goes to infinity:

Lemma 3. Xm
1 (v, θ1) tends to 0 as m goes to infinity.

Proof. The probability of selecting the innovator satisfies:

Xm
1 (v, θ1) ≤ Pr

[
Km

1 (θ1) ≤ min
j=n+1,...,n+m

{J1 (θj)}
]

≤ Pr

[
θ1 ≤ min

j=n+1,...,n+m
{J1 (θj)}

]
=

[
1−G1

(
J−1

1 (θ1)
)]m

, (17)

where the second inequality stems from Km
1 (θ1) ≥ θ1, and the last expression tends to 0

when m goes to infinity. �

It follows that Lemma 1 still holds, that is, the innovator’s effort tends to the lowest

level, e, as m goes to infinity. To see this, it suffices to note that the innovator’s expected

benefit, now equal to

bm (e) =

∫ v̄

v

∫ θ̄

θ

Xm
1 (v, θ1)G1 (θ1) fe(v|e)dθ1dv,

satisfies:

|bm (e)| ≤
∫ v̄

v

h (v) dv,
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where

h (v) := |fe(v|e)|
∫ θ̄

θ

Xm
1 (v, θ1) dθ1

is bounded (by
(
θ̄ − θ

)
maxv,e {|fe(v|e)|}) and, from the previous Lemma, tends to 0 as m

goes to infinity. Hence, as m goes to infinity, the expected benefit bm (e) converges to 0, and

the innovator’s effort thus tends to e.

Likewise, Lemma 2 also holds; that is,

• The left-hand side of (16) tends to B∞. To see this, it suffices to follow the same steps

as before, noting that hm1 (v), now given by

hm1 (v) =

∫ θ̄

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dG (θ) fe (v|em) ,

is still bounded:

|hm1 (v)| < max {v − θ, 0}
∣∣∣max

e
fe (v|e)

∣∣∣ ,
and tends to (v − θ) fe (v|e) for any v > θ:

– Ĵ (θ) = mini∈N {Ji (θi)} is almost always lower than v when m is large enough.

Indeed, for any ε > 0, we have:

Pr
[
Ĵ (θ) ≤ θ + ε

]
≥ Pr

[
min

i=n+1,...,n+m
{Ji (θi)} ≤ θ + ε

]
= Pr

[
min

i=n+1,...,n+m
{θi} ≤ J−1

1 (θ + ε)

]
= 1−

[
1−G1

(
J−1

1 (θ + ε)
)]m

,

where the last expression converges to 1 as m goes to infinity. Therefore, for any

ε > 0, there exists m̂1 (ε) such that for any m ≥ m̂1 (ε),

Pr
[
Ĵ (θ) ≤ θ + ε

]
≥ 1− ε.

– Hence, for m ≥ m̂1 (ε):

v − θ ≥
∫ θ̄

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dG (θ) ≥ (1− ε) (v − θ − ε) ,

where the right-hand side converges to v − θ as ε tends to 0.

The conclusion then follows again from Lebesgue’s dominated convergence theorem.
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• In the right-hand side of (16), the terms within brackets tend to c′′ (e). To see this, it

suffices to note that hm2 (v), now given by

hm2 (v) = fee (v|em)

∫ θ̄

θ

Xm
1 (v, θ1)G1 (θ1) dθ1

– is still bounded:

|hm2 (v)| < max
e
|fee (v|e)|

∫ θ̄

θ

Xm
1 (v, θ1) dθ1

≤ max
e
|fee (v|e)|

∫ θ̄

θ

[
1−G1

(
J−1

1 (θ1)
)]m

dθ1.

– and converges to 0: Indeed, for any ε > 0,

|hm2 (v)| < max
e
|fee (v|e)|

{∫ θ+ ε
2

θ

dθ1 +

∫ θ̄

θ+ ε
2

[
1−G1

(
J−1

1 (θ + ε)
)]m

dθ1

}
< max

e
|fee (v|e)|

{ε
2

+
(
θ̄ − θ

) [
1−G1

(
J−1

1 (θ + ε)
)]m}

.

But there exists m̂2 (ε) such that, for any m ≥ m̂2 (ε):(
θ̄ − θ

) [
1−G1

(
J−1

1 (θ1)
)]m ≤ ε

2
,

and thus

|hm2 (v)| < max
e
|fee (v|e)| ε.

– It follows that the second term converges again to 0:

lim
m−→∞

∫ v̄

θ

hm2 (v) dv =

∫ v̄

θ

lim
m−→∞

hm2 (v) dv = 0.

The conclusion follows, using the same reasoning as in Section A.1.

A.3 Increasing the Value of the Innovation

Let us now keep the supply side (number of firms and their cost distributions) fixed and

suppose instead that:

• v is initially distributed over V = [v, v̄]; for the sake of exposition, we assume v � θ̄,35

so that the innovation is always implemented.

35Namely, v > mini∈N
{
Ki

(
v, θ̄
)}

.

48



• For everym ∈ N∗, the value vm becomes distributed over V m = [v, v̄m = v +m (v̄ − v)],

according to the c.d.f. Fm (vm|e) = F (v + (vm − v) /m|e).

As before, letting em, λm, Km
1 (θ1), and Xm

1 (v, θ1) denote the values associated with the

optimal mechanism, we now show that this optimal mechanism must involve a prize for m

large enough.

We first note that the virtual costs remain invariant here: Km
i (vm, θi) = Ki (v, θi) =

Ji (θi) for i > 1 and, as

βm (vm) = λ
fme (vm|e)
fm(vm|e)

= λ
fe(v|e)
f(v|e)

,

we also have

Km
1 (vm, θ1) = J1 (θ1)−min {βm (vm) , 1} G1 (θ1)

g1 (θ1)

= J1 (θ1)−min {β (v) , 1} G1 (θ1)

g1 (θ1)

= K1 (v, θ1) .

As by assumption, the innovation is always implemented in this variant, the probability of

obtaining the contract only depends on these virtual costs and thus also remains invari-

ant: xmi (vm, θ) = x∗i (v, θ) for any i ∈ N . It follows that, in the right-hand side of (16),

the terms within brackets also remained unchanged: using Xm
1 (vm, θ1) = X∗1 (v, θ1) and

fmee (vm|e) dvm = fee (v|e) dv, we have:

c′′ (e)−
∫ v̄m

v

∫ θ̄

θ

Xm
1 (vm, θ1)G1 (θ1) fmee (vm|e) dθ1dv

m = Γ∗ (e) ,

where

Γ∗ (e) := c′′ (e)−
∫ v̄

v

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fee (v|e) dθ1dv.

By contrast, the left-hand side of (16) is unbounded asm goes to infinity: using
∑

i∈N x
∗
i (v, θ) =

1 (as by assumption, the innovation is always implemented here), fme (v|e) dvm = fe (v|e) dv
and

∫ v̄
v
fe (v|e) dv = 0, we have:

∫ v̄m

v

∫ θ̄

θ

∑
i∈N

xmi (vm, θ) [vm − Ji (θi)] dG (θ) fme (vm|e) dvm

=

∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) [v +m (v − v)− Ji (θi)] dG (θ) fe (v|e) dv

= mB∗ (e)− C∗ (e) ,
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where:

B∗ (e) =

∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) vdG (θ) fe (v|e) dv =

∫ v̄

v

vfe (v|e) dv,

C∗ (e) =

∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) Ji (θi) dG (θ) fe (v|e) dv.

To conclude the argument, suppose that the optimal mechanism never involves a prize.

Condition (16) should thus hold for any m, and in addition, the Lagrangian multiplier λm

should satisfy the boundary condition (15). We should thus have:

mB∗ (e) < C∗ (e) +
f (v̄|e)
fe (v̄|e)

Γ∗ (e) ,

which is obviously violated for a large enough m.

B Proof of Proposition 4

As earlier, the incentive compatibility constraint can be replaced by the envelope condition:

Ui(v, θi) = ρi(v) +

∫ θ

θi

Xi(v, s)ds, ∀(v, θi) ∈ V N ×Θ,∀i ∈ N, (18)

where

Xi(v, θi) = Eθ−i

[∑
k∈N

xki (v, θi, θ−i)

]
.

Using (18), firm i’s expected rent can be expressed as∫
θi

Ui(v, θi)dGi(θi) = ρi(v) +

∫
θi

Xi(v, θi)
Gi(θi)

gi(θi)
dGi(θi), (19)

Using this condition, we can rewrite the limited liability constraint as:

Eθ

[∑
k,i∈N

xki (v, θ)
{
vk − ψki − Ji(θi)

}]
≥
∑
i∈N

ρi(v), ∀v ∈ V n. (LL)

Let µ(v) ≥ 0 denote the multiplier associated with this constraint.

Also, from (18), individual rationality boils down to

ρi(v) ≥ 0, ∀v ∈ V n,∀i ∈ N. (IR)

Let νi(v) ≥ 0 denote the multiplier associated with this constraint.
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The moral hazard constraint can be replaced by the associated first-order condition,

which, using (19), can be expressed as:36

∫
v

∫
θ

(
ρi(v) +

Gi(θi)

gi(θi)

∑
k∈N

xki (v, θ)

)
dG (θ) f iei

(
vi|ei

)
f−i

(
v−i|e−i

)
dv ≥ c′(ei), ∀i ∈ N.

(MH)

We formulate again these conditions as weak inequalities to ensure the nonnegativity of the

associated multipliers, which we will denote by λ = (λ1, ..., λn).

The principal’s problem can then be more succinctly reformulated as follows:

[P ] max
x,(ρi),e

Ev,θ

[∑
k,i∈N x

k
i (v, θ)

(
vk − Ji(θi)− ψki

)
−
∑

i∈N ρi(v)
∣∣∣ e]

subject to (LL), (IR), and (MH).

The analysis of this problem follows the same steps as for the case of a single innovator,

and we only sketch them here. The integrand of the Lagrangian is now given by:

L(v, θ, e) := [1 + µ(v)]

{∑
k,i∈N

[
vk − θi −

(
1− βi(vi)

1 + µ(v)

)
Gi(θi)

gi(θi)
− ψki

]
xki (v, θ)

}
−
∑
i∈N

ρi(v)
[
1 + µ(v)− νi(v)− βi(vi)

]
−
∑
i∈N

λic′(ei),

where

βi(vi) := λi
f ie(v

i|e)
f(vi|e)

.

The first-order conditions for the monetary prize ρi(v) and for the probability xki (v, θ) yield,

respectively:

1 + µ∗(v)− ν∗i (v)− βi∗(vi) = 0, ∀v ∈ V n,∀i ∈ N, (20)

and

xk∗i (v, θ) =

{
1 if vk − K̃i(v, θi)− ψki ≥ max

{
max(l,j)6=(k,i) v

l − K̃j(v, θj)− ψlj, 0
}

,

0 otherwise,
(21)

where

K̃i (v, θi) := Ji(θi)−
βi∗(vi)

1 + µ∗(v)

Gi(θi)

gi(θi)
.

Note that K̃i (v, θi) can be expressed as

θi +

[
1− βi∗(vi)

1 + µ∗(v)

]
Gi(θi)

gi(θi)
,

36For simplicity, we normalize the firms’ efforts in such a way that firms face the same cost c(e); any

asymmetry can, however, be accommodated through the distributions F k(vk|e).
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where (20) and ν∗i (v) ≥ 0 together imply that the term within brackets is non-negative. It

follows that

K̃i (v, θi) ≥ θi (22)

and that K̃i (v, θi) increases with θi.

The complementary slackness associated with (LL) implies that for every v ∈ V n,

µ∗(v)

{
Eθ

[∑
k,i∈N

xk∗i (v, θ)
{
vk − ψki − Ji(θi)

}]
−
∑
i∈N

ρ∗i (v)

}
= 0, (23)

whereas the complementary slackness associated with (IR) implies that for every i ∈ N and

every v ∈ V n,

ν∗i (v)ρ∗i (v) = 0. (24)

We now prove the following result:

Lemma 4. Fix any v such that maxk,i
{
vk − ψki

}
> θ. We have

Eθ

[∑
k,i∈N

xk∗i (v, θ)
[
vk − ψki − Ji(θi)

]]
> 0, (25)

if either (i) n ≥ 2 or (ii) n = 1 and either v1 − ψ1
1 > θ or ν1 (v1) > 0.

Proof. We first focus on the case in which n ≥ 2. Fix any v such that vl − ψlj − θ > 0

for some l, j. Further, fix any k such that
∑

i x
k
i (v, θ) > 0 for a positive measure of θs (a

project that does not satisfy this property is never adopted with positive probability and

can be ignored).

Consider first the particular case in which project k is always implemented and allocated

to the same firm i: xki (v, .) = 1 (this can, for instance, happen when vk is large and ψkj is

prohibitively high for j 6= i). In that case:

Eθ

[∑
i∈N

xki (v, θ)
[
vk − ψki − Ji(θi)

]]

=

∫ θ

θ

[
vk − ψki − Ji(θi)

]
dGi(θi)

=vk − ψki − θ
>0,

where the inequality stems from (21), applied to θi = θ,37 and (22).

37Generically, this condition implies vk − ψki > K̃i

(
v, θ
)
; we ignore here the non-generic case vk − ψki =

K̃i

(
v, θ
)
.
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Let us now turn to the case in which no firm is selected with probability 1 to implement

project k (because project k is not always implemented and/or different firms are selected

to implement it). By (21), the optimal allocation rule is then such that

Xk
i (v, θi) := Eθ−i

[
xki (v, θi, θ−i)

]
is nonincreasing in θi for all θi ≤ vk − ψki and equals zero for any θi > vk − ψki . Further, it

is strictly decreasing in θi for a positive measure of θi if Xk
i (v, θi) > 0, and by the choice of

k, there is at least one such firm.

Now, for every i define

X̄k
i (v, θi) =

{
z̄ki if θi ≤ vk − ψki
0 if θi > vk − ψki ,

where z̄ki is a constant in (0, 1) chosen so that∫ θ

θ

X̄k
i (v, θi)dGi(θi) = z̄kiGi(v

k − ψki ) =

∫ θ

θ

Xk
i (v, θi)dGi(θi).

Clearly, z̄ki , and hence X̄k
i (v, ·), is well defined.

We have:

Eθ

[∑
i∈N

xki (v, θ)
[
vk − ψki − Ji(θi)

]]

=
∑
i

∫ θ

θ

Xk
i (v, θi)

[
vk − ψki − Ji(θi)

]
dGi(θi)

=
∑
i

∫ min{θ,vk−ψki }

θ

Xk
i (v, θi)

[
vk − ψki − Ji(θi)

]
dGi(θi)

>
∑
i

∫ min{θ,vk−ψki }

θ

X̄k
i (v, θi)

[
vk − ψki − Ji(θi)

]
dGi(θi)

=
∑
i

z̄ki

∫ min{θ,vk−ψki }

θ

[
vk − ψki − Ji(θi)

]
dGi(θi)

=
∑
i

z̄ki
(
max{vk − ψki − θ, 0}

)
≥0.

The second equality stems from the fact that Xk
i (v, θi) = 0 for θi > vk − ψki , and the strict

inequality follows from the fact that: (i) vk − ψki − Ji(θi) is strictly decreasing in θi; (ii) in

the relevant range
[
θ,min{θ, vk − ψki }

]
, Xk

i (v, θi) is nonincreasing in θi and, for some i, it is
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moreover strictly decreasing in θi for a positive measure of θi; (iii) X̄k
i (v, ·) is constant; and

(iv) ∫ min{θ,vk−ψki }

θ

X̄k
i (v, θi)dGi(θi) =

∫ min{θ,vk−ψki }

θ

Xk
i (v, θi)dGi(θi).

Summing the above string of inequalities over all k, we obtain the desired result.

Next consider the case in which n = 1. In this case, X1
1 (v, θ1) = x1

1(v, θ1) = 1 for

K̃1(v1, θ1) ≤ v1 and zero otherwise. Because Xk
i (v, θi) is constant when it is strictly positive,

the strict inequality above does not follow from the above argument. But the strict inequality

does still hold if v1 − ψ1
1 > θ or if ν1 (v1) > 0.

In the former case, the last inequality above becomes strict, thus yielding the desired

result. To consider the latter case, assume without loss v1 − ψ1
1 ≤ θ. Because ν1 (v1) > 0,

we have β1(v1) < 1 + µ(v1), so K̃1 (v1, θ1) > θ1, which implies that there exists θ̃ < v1 − ψ1
1

such that x1
1(v, θ1) = 1 for θ1 < θ̃ and x1

1(v, θ1) = 0 for θ1 > θ̃. Let θ̌ := sup{θ ≤
θ|v1 − ψ1

1 − J1(θ) ≥ 0}. If θ̃ ≤ θ̌, then

Eθ
[
x1

1(v, θ)
[
v1 − ψ1

1 − J1(θ1)
]]

=

∫ θ̃

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG(θ1) > 0.

If θ̃ > θ̌, the same result holds because

Eθ
[
x1

1(v, θ)
[
v1 − ψ1

1 − J1(θ1)
]]

=

∫ θ̃

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG(θ1)

>

∫ θ̃

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG1(θ1) +

∫ v1−ψ1
1

θ̃

[
v1 − ψ1

1 − J1(θ1)
]
dG1(θ1)

=

∫ v1−ψ1
1

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG1(θ1)

=0,

where the strict inequality holds because v1−ψ1
1 − J1(θ1) < 0 for θ1 ∈ (θ̃, v1−ψ1

1) (which in

turn holds because θ̌ < θ̃ < v1−ψ1
1), and the last equality follows from integration by parts.

�

Without loss of generality, assume n ≥ 2 (otherwise, there would be a single innovator,

a case studied earlier). There are two cases. Consider first the case in which βi(vi) < 1 for

every i ∈ N . By (20), we must then have

ν∗i (v) = 1 + µ∗(v)− βi∗(vi) > 0,
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and the complementary slackness condition (24) thus yields ρ∗i (v) = 0 for every firm i ∈
N . This, together with (25) and the complementary slackness condition (23), implies that

µ∗(v) = 0, and thus

K̃i(v, θ1) = Ji(θi)− βi∗(vi)
Gi(θi)

gi(θi)
:= K∗i (v, θ1).

Consider next the case in which maxi∈N {βi∗(vi)} > 1. Let Î = arg maxi∈N {βi∗(vi)} for

the firms that have the highest βi∗(vi). Applying (20) to i ∈ Î then yields

µ∗(v) = ν∗i (v) + βi∗(vi)− 1 > ν∗ı̂ (v) ≥ 0, (26)

whereas applying (20) to firm j 6∈ Î yields

1 + µ∗(v)− ν∗i (v) = βi∗(vi) > βj∗(vj) = 1 + µ∗(v)− ν∗j (v).

It follows that ν∗j (v) > ν∗i (v) ≥ 0 for i ∈ Î , j 6∈ Î. Therefore, by complementary slackness

(24), ρ∗j(v) = 0, so that only firms i ∈ Î can receive a positive monetary prize: ρ∗j(v) = 0 for

j 6∈ Î. Finally, the complementary slackness condition (23) yields

∑
i∈Î

ρ∗i (v) =
∑
i∈N

ρ∗i (v) = Eθ

[∑
k,i∈N

xk∗i (v, θ)
{
vk − ψki − Ji(θi)

}]
.

By Lemma 4, the total prize must be strictly positive for all v such that vk > ψki +θ for some

k, i. Given the atomlessness of Fi(·|e) for all e, Î is a singleton with probability one. Hence,

for any v such that vk > ψki + θ for some k, i, and maxi{βi∗(vi)} > 1, with probability one

only one firm receives the monetary prize.

Last, we derive the characterization of the optimal allocation rule and transfers. By the

above argument, there exists at least one firm i ∈ Î such that ρ∗i (v) > 0, and for that firm,

(24) yields ν∗i (v) = 0. However, then (20) applied to all j ∈ Î along with the fact that

βi∗(vi) = βj∗(vj) for i, j ∈ Î means that ν∗i (v) = 0 for all i ∈ Î. It then follows that

1 + µ∗(v) = max
i
{βi∗(vi)}.

We thus conclude that

K̃i(v, θ1) = Ji(θi)−
(

βi∗(vi)

maxk βk∗(vk)

)(
Gi(θi)

gi(θi)

)
:= K∗i (v, θ1).

Finally, the expected transfers to firm i, Ti (v, θi) , can be derived from (19) using the allo-

cation described above and Ui (v, θi) = Ti (v, θi)− Eθ−i
[∑
k

(
ψki + θi

)
xk∗i (v, θ)

]
.
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C Forbidding Handicaps

We explore here how the optimal mechanism is modified when handicaps are ruled out.

Specifically, we suppose that the innovator cannot be handicapped compared to the standard

second-best allocation. That is, for every v and θ:

x1(v, θ) ≥ xSB1 (v, θ), (NH)

where:

xSB1 (v, θ) :=

{
1 if J1(θ1) ≤ min {v,minj 6=1 Jj(θj)} ,

0 otherwise.

Letting α(v, θ) ≥ 0 be the multiplier of the no-handicap constraint (NH), the Lagrangian

becomes

L(v, e) := [1 + µ(v)]


[
v − J1 (θ1) +

β (v)

1 + µ (v)

G1(θ1)

g1(θ1)
+

α (v, θ)

1 + µ (v)

]
x1(v, θ) +

∑
j∈N
j 6=1

[v − Jj(θj)]xj(v, θ)


− ρ1(v) [1 + µ(v)− ν(v)− β (v)]− λc′ (e) + α(v, θ)[x1(v, θ)− xSB1 (v, θ)]

and the additional complementary slackness is

α(v, θ)
[
x1(v, θ)− xSB1 (v, θ)

]
= 0. (27)

The Lagrangian is still linear in xi’s, so the optimal allocation must satisfy, for every

i, v, θ:

x̄i(v, θ) =

{
1 if i ∈ arg minj

{
K̄j(v, θj)

}
and K̄i (v, θi) ≤ v,

0 otherwise,

where the shadow cost is now given by:

K̄i(v, θi) :=

{
Ji (θi)− β(v)

1+µ(v)
Gi(θi)
gi(θi)

− α(v,θ)
1+µ(v)

if i = 1,

Ji (θi) if i 6= 1,
with β (v) := λ

fe(v|e)
f(v|e)

.

When v > ṽ, K̄1(v, θ1) < J1 (θ1), and we can thus ignore the constraint (NH); hence

α(v, θ) = 0, implying K̄1(v, θ1) = K1(v, θ1) and x̄1(v, θ) = x∗1(v, θ). Let us now consider the

case v < ṽ. If α (v, θ) = 0, the above characterization yields again x̄1(v, θ) = x∗1(v, θ), and

v < ṽ then implies K̄1(v, θ1) > J1(θ1) and thus x̄1(v, θ) < xSB1 (v, θ) for at least some θs,

contradicting (NH); therefore, we must have α (v, θ) > 0, and the complementary slackness

condition (27) thus implies x̄1(v, θ) = xSB1 (v, θ), and thus K̄1(v, θ1) = J1(θ1).

The other constraints are unaffected; thus the optimal effort e must satisfy

∂

∂e

∫
v

∫
θ

L(v, θ, e)f(v|e)dvdG (θ) = 0,
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and complementary slackness implies that, for each v,

ν(v)ρ1(v) = 0,

µ(v)

{∫
θ

∑
i∈N

x̄i(v, θ) [v − Ji(θi)] dG(θ)− ρ1(v)

}
= 0,

and

e

[∫
v

∫
θ

[
ρ1(v) +

G1(θ)

g1(θ)
x̄1(v, θ)

]
g(θ)dθfe(v|e)dv − c′(e)

]
= 0.

Going through the same steps as before and summing up, we have:

• Ruling out handicaps implies that contract rights are allocated according to the stan-

dard second-best for low-value projects: For v < ṽ, α (v, θ) = −β (v)G1(θ1)/g1 (θ1) (> 0)

and K̄i(v, θi) = Ji(θi) for all i (and thus, x̄i(v, θ) = xSB (θ) for all i as well).

• Ruling out handicaps has instead no impact on optimal contract rights for high-value

projects: For v > ṽ, α (v, θ) = 0 and x̄i(v, θ) = x∗i (v, θ) for all i.

In addition, forbidding handicaps does not affect the size of the monetary prize when

such a prize is given:

• For v < v̂, ν (v) = 1− β (v) > 0 and thus ρ1 (v) = 0 and µ (v) = 0.

• For v > v̂, ν (v) = 0 and β (v) = 1 +µ (v), and thus K̄1(v, θ1) = θ1 and thus x̄1(v, θ) =

x∗1(v, θ), based on K1 (v, θ1) = θ1 and Ki (v, θi) = Ji (θi) for i 6= 1; it follows that

ρ1(v) =

∫
θ

∑
i∈N

x∗i (v, θ) [v − Ji(θi)] dG(θ) = ρ∗1 (v) .

Note however that ruling out handicaps can affect the conditions under which a prize

is given: banning handicaps alters the multiplier λ, which in turn affects the threshold v̂,

which is determined by the condition λfe (v|e) /f (v|e) = 1.

D Fixed allocation

We show here that our main insight carries over when the procurer is required to use the

same tender rules whenever she decides to implement the project. The optimal mechanism

relies on contract rights (possibly combined with monetary prizes) to induce the innovator

to exert effort. Indeed, as long as the project is not always implemented, it is optimal to
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bias the implementation auction in favor of the innovator (handicaps instead should never

be used).

Specifically, we consider a setup where, should the procurer wish to implement the

project, the mechanism (x, t) ∈ ∆n × Rn cannot depend on v. We can then simply de-

note by xi(θ) the probability that firm i implements the project and by ti(θ) the transfer

payment that it receives.

The timing of the game is now as follows:

1. The buyer offers a mechanism specifying the allocation x and a payment ti to each

firm i.

2. The innovator chooses e; the value v is then realized.

3. The buyer observes v and decides whether to implement the project, in which case

firms observe their costs and decide whether to participate.

4. Participating firms report their costs, the project is allocated (or not), and transfers

are made according to the mechanism (x, t).

If the procurer decides to implement the project, firm i’s expected profit no longer de-

pends on the project value v, and can thus be written as

Ui(θi) := Ti(θi)− θiXi(θi)

where Xi(θi) :=
∫
θ−i

xi (θ) dG−i (θ−i) and Ti(θi) :=
∫
θ−i

ti (θ) dG−i (θ−i). Using incentive

compatibility, this expected profit can be expressed as

Ui(θi) = ρi +

∫ θ

θi

Xi(θ)dθ,

where

ρi := Ui(θ).

is the rent enjoyed by firm i when its cost is highest. As before, it is optimal to set ρi = 0

for i 6= 1, and thus the total expected transfer to the firms is given by∫
θ

∑
i∈N

ti (θ) dG (θ) = ρ1 +

∫
θ

∑
i∈N

xi (θi) Ji(θi)dG (θ) ,

where Ji(θi) := θi + Gi(θi)
gi(θi)

denotes firm i’s virtual cost. It follows that the procurer chooses

to implement the project when:∫
θ

{∑
i∈N

xi(θ) [v − Ji(θi)]

}
dG(θ) ≥ ρ1.
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As the left-hand side strictly increases with v, there exists a unique v̌ ∈ [v, v̄] such that this

constraint is strictly satisfied if v > v̌, and violated if v < v̌.

Obviously, if v̌ = v̄, then the project is never implemented, and thus the innovator has

no incentive to provide any effort. The assumption that v̄ > θ guarantees that this is not

optimal. Conversely, if v̌ = v then the project is always implemented. This could be optimal

if even low-value projects were still sufficiently desirable, but implies again the innovator

has no incentive to provide any effort, as it obtains for sure the same information rents,

regardless of the realized value of the project. From now on, we will focus on the case where

the optimal threshold is interior, i.e., v̌ ∈ (v, v̄). Let µ ≥ 0 denote the multiplier associated

with the above constraint for v = v̌:∫
θ

{∑
i∈N

xi(θ) [v̌ − Ji(θi)]

}
dG(θ) ≥ ρ1. (LL)

The innovating firm’s individual rationality boils down here to

ρ1 ≥ 0. (IR)

Let ν ≥ 0 denote the multiplier associated with this constraint.

Finally, the first-order condition for the effort constraint becomes:∫
v≥v̌

∫
θ

[
ρ1 +

G1(θ1)

g1(θ1)
x1(θ)

]
dG(θ)fe(v|e)dv ≥ c′(e). (MH)

Let λ ≥ 0 be the associated multiplier.

The buyer’s problem can then be formulated as follows:

max
e,v̌,x(θ),ρ1

∫
v≥v̌

{∫
θ

[∑
i∈N xi(θ) [v − Ji(θi)]

]
dG(θ)− ρ1

}
f(v|e)dv

subject to (L̂L), (ÎR) and (M̂H)

The Lagrangian is given by:

L =

∫
v≥v̌

{∫
θ

[∑
i∈N

xi(θ) [v − Ji(θi)]

]
dG(θ)− ρ1

}
f(v|e)dv

+µ

[∫
θ

{∑
i∈N

xi(θ) [v̌ − Ji(θi)]

}
dG(θ)− ρ1

]

+νρ1 + λ

[∫
v≥v̌

∫
θ

[
ρ1 +

G1(θ1)

g1(θ1)
x1(θ)

]
dG(θ)fe(v|e)dv − c′(e)

]
.
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Re-arranging terms, it can be expressed as L =
∫
θ
L(θ, e, v̌)dG(θ), where

L(θ, e, v̌) := [1− F (v̌|e) + µ]


[
v̌e − J1(θ1) +

βe

1 + µ̌

G1(θ1)

g1(θ1)

]
x1(θ) +

∑
i∈N
i 6=1

[v̌e − Ji(θi)]xi(θ)


− [1− F (v̌|e)] ρ1 (1− βe + µ̌− ν̌)− λc′(e).

where:

µ̌ :=
µ

1− F (v̌|e)
and ν̌ :=

ν

1− F (v̌|e)
denote the weighted value of the Lagrangian multipliers µ and ν (weighted by the probability

of implementing the project), and:

βe := λ

∫
v≥v̌

fe(v|e)
1− F (v̌|e)

dv and v̌e :=
ve + µ̌v̌

1 + µ̌
,

where

ve :=

∫
v≥v̌

v
f(v|e)

1− F (v̌|e)
dv.

The optimal solution (e∗, v̌∗, x∗ (θ) , ρ∗1, λ
∗, µ∗, ν∗) must satisfy the following necessary

conditions. First, observe that the Lagrangian L is linear in ρ1(v); hence, its coefficient must

be equal to zero:

1− βe∗ + µ̌∗ − ν̌∗ = 0, (28)

where µ̌∗ and ν̌∗ denote the optimal values of the weighted multipliers, and

βe∗ :=
λ∗

1− F (v̌|e∗)

∫
v≥v̌

fe(v|e∗)dv.

The Lagrangian is also linear in xi’s, so the optimal allocation must satisfy, for every

i, v, θ:

x∗i (θ) =

{
1 if i ∈ arg minj

{
K̃j(θj)

}
and K̃i (θi) ≤ ve+µ̌∗v̌

1+µ̌∗
,

0 otherwise,

where

K̃i(θi) :=

{
Ji (θi)− βe∗

1+µ̌∗
Gi(θi)
gi(θi)

if i = 1,

Ji (θi) if i 6= 1.
(29)

We next prove that λ∗ > 0. Suppose λ∗ = 0, which implies βe∗ = 0. Together with (29)

and (28), this yields

L(θ, e, v̌∗) = [1− F (v̌∗|e) + µ∗]

∫
θ

max
{

0, v̌e∗ −min
i
Ji (θi)

}
dG (θ) ,
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and thus

∂

∂e

∫
θ

L(θ, e, v̌∗)dG(θ)

∣∣∣∣
e=e∗

= −Fe(v̌∗|e∗)
∫
θ

max
{

0, v̌e∗ −min
i
Ji (θi)

}
dG(θ), (30)

where, in the right-hand side:

• The first term, −Fe(v̌∗|e∗), as

− Fe(v̌|e) > 0. (31)

for any v̌∗ ∈ (v, v̄). To see this, note that

−Fe(v̌|e) =
∂

∂e
[1− F (v̌|e)] =

∫
v≥v̌

fe(v|e)dv,

where from (MLRP ), fe(v|e) > 0 for v > ṽ and fe(v|e) < 0 for v < ṽ. Therefore,

if v̌ ≥ ṽ, then
∫
v≥v̌ fe(v|e)dv > 0. If instead v̌ < ṽ, then

∫
v<v̌

fe(v|e)dv < 0; but by

construction, ∫
v≥v̌

fe(v|e)dv +

∫
v<v̌

fe(v|e)dv =
∂

∂e

∫
f(v|e)dv = 0,

implying again that
∫
v≥v̌ fe(v|e)dv > 0.∫

θ

∑
i∈N

xi(θ) [v̌ − Ji(θi)] dG(θ) ≥ ρ1

• The second term is also positive. Indeed, we have:∫
θ

max
{

0, v̌e∗ −min
i
Ji (θi)

}
dG(θ) >

∫
θ

max
{

0, v̌ −min
i
Ji (θi)

}
dG(θ)

≥
∫
θ

∑
i∈N

x∗i (θ) [v̌ − Ji(θi)] dG(θ)

≥ 0,

where the first inequality stems v̌e > v̌ for any v̌∗ < v̄, and the last one follows from

(LL) and (IR).

It follows that the right-hand side of (30) is positive, and thus

∂

∂e

∫
θ

L(θ, e, v̌∗)dG(θ)

∣∣∣∣
e=e∗

> 0,

which violates the optimality of e∗. We thus conclude that λ∗ > 0.
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Given λ∗ > 0, (31) implies βe∗ > 0. It then follows from (29) that the innovator benefits

from a favorable bias in the allocation of the contract rights.

Finally, complementary slackness implies that, for each v,

ν̌∗ρ∗1 = 0, (32)

µ̌∗

{∫
θ

∑
i∈N

x∗i (θ) [v − Ji(θi)] dG(θ)− ρ∗1

}
= 0, (33)

When (0 <) βe∗ < 1, we have:

1− βe∗ + µ̌∗ > µ̌∗ ≥ 0,

and (28) thus implies ν̌∗ > 0. The complementary slackness condition (32) then yields

ρ∗1 = 0.

When instead βe∗ > 1 we have:

1− βe∗ − ν̌∗ < 0,

and (28) thus implies that µ̌∗(v) > 0; from the complementary slackness condition (33), we

thus have

ρ∗1(v) =

∫
θ

∑
i∈N

x∗i (θ) [v̌∗ − Ji(θi)] dG(θ).
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