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This paper proposes bootstrap assisted specification tests for the autoregressive frac-
tionally integrated moving average model based on the Bartlett Tp-process with
estimated parameters whose limiting distribution under the null depends on the esti-
mated model and the estimation method employed. The computation of the asymp-
totic critical values is not easy if at all possible under these circumstances. To
circumvent this problem Delgado, Hidalgo, and Velasco (2005, Annals of Statistics
33, 2568–2609) proposed an asymptotically pivotal transformation of the Tp-process
with estimated parameters. The aim of this paper is twofold. First, to examine alter-
native methods based on bootstrap algorithms for estimating the distribution of the
test under the null, showing its validity. And second, to study the finite-sample per-
formance of the different alternative procedures via Monte Carlo simulation.

1. INTRODUCTION

A parametric time series linear process is correctly specified when the correspond-
ing innovations of the model are uncorrelated. In this context, Bartlett (1954)
introduced two alternative omnibus tests based on estimates of the spectral dis-
tribution function. One of these alternatives was based on functionals of the Up-
process, which compares the empirical spectral distribution function with that
obtained under the restricted null hypothesis. This procedure resembles the stan-
dard empirical process when testing the correct specification of a particular prob-
ability distribution function. The second alternative is based on the Tp-process,
which is a standardized estimator of the spectral distribution function of the inno-
vations of the model under consideration. Unlike the Up-process, the Tp-process
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converges in distribution to the standard Brownian bridge under a simple null
without unknown parameters. See, for instance, Anderson (1993). However, when
the model depends on a set of unknown parameters, the Tp-process has a limiting
distribution that depends on the true parameter values and also on the estimation
method employed. One consequence of the latter is that the implementation of
the test is difficult if at all possible. To circumvent this drawback, two alternative
procedures are discussed and examined in the literature. One of them is based on
bootstrap methods, whereas a second one is based on a martingale transformation
of the Tp-process in a spirit similar to Khmaladze (1981).

Among the bootstrap methods, Chen and Romano (1999) proposed approxi-
mating the distribution of the test statistics based on the Up-process with esti-
mated parameters using a resample of the residuals. On the other hand, extending
an idea of Hidalgo (2003), Hidalgo and Kreiss (2006) proposed a bootstrap test
for the Tp-process using a wild resample specifically designed for this problem.
Hidalgo and Kreiss (2006) pointed out that, when we allow for long memory
dependence, the Tp-process becomes more suitable than the Up-process for spec-
ification testing.

Delgado, Hidalgo, and Velasco (2005) (DHV henceforth), rather than using
bootstrap assisted tests, proposed an asymptotically distribution-free transforma-
tion of the Tp-process, which entails isolating the martingale component of the
process. One advantage of the latter method is that the resulting test has a known
and tabulated asymptotic distribution function. The transformation resembles in
spirit the cumulative sum (CUSUM) process based on recursive least squares
residuals for testing stability of the parameters in a linear regression model, as
proposed by Brown, Durbin, and Evans (1975).

The aim of this paper is twofold. On the one hand, we present and examine
alternative bootstrap tests, showing their validity for both the Tp-process and
its martingale transformation. Following ideas in Hall (1992) and applying the
asymptotic expansions for the asymptotic pivotal statistics, as in Götze (1979,
1984), we should expect some size accuracy gains when applying the bootstrap
methods to the statistics based on the transformed Tp-process. And second, be-
cause several (bootstrap) methods are available to perform valid tests for the null
hypothesis, the question of practical interest is which alternative method performs
better in finite samples. We explore the latter issue by means of a Monte Carlo
experiment.

In addition, we compare the performance of the Tp-process against the Box–
Pierce statistic (Box and Pierce, 1970), which is based on the sum of the first
m squared sample autocorrelations of the residuals. This is a particular case of
the portmanteau tests considered by Hong (1996). The latter proposes a weighted
sum of all the squared sample autocorrelations of the residuals, where the weights
can be identified by a kernel function with bandwidth parameter of order m−1.
In fact, the Box–Pierce statistic corresponds to the choice of the uniform kernel
in Hong’s approach. When m diverges with n at a suitable rate, the statistic is
asymptotically distribution free and is able to detect alternatives converging to
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the null at the rate m1/4/n1/2. However, whereas a relatively large m is required
to obtain a good accuracy level for the test (typically m � n1/2 is considered a
good choice), it is also the case that for a good power performance m needs to
be chosen relatively smaller. This is in contrast with the tests put forward in this
paper, which are able to detect alternatives at the parametric rate n−1/2 without
resorting to the choice of a bandwidth or a kernel function.

The reminder of the paper is organized as follows. In the next section, we intro-
duce the basic notation and the testing problem, and we describe the test based on
the Tp-process and its asymptotically distribution-free transformation. Section 3
describes the bootstrap tests under two alternative resampling schemes, and it jus-
tifies their validity for the Tp-process and its martingale transformation. Section 4
presents a Monte Carlo experiment to shed some light on the performance of
the different approaches to test for the null hypothesis. Section 5 gives a series of
lemmas that are employed to prove the main results of Section 3 in the last section
of the paper.

2. TIME SERIES SPECIFICATION TESTS BASED ON THE
Tp-PROCESS

Let f be the spectral density function of a covariance stationary time series pro-
cess {xt }t∈Z with mean μ and covariance function given by the relation

Cov (xt, x0) =
∫ π

−π
f (λ) cos (λt) dλ; t = 0,±1,±2, . . . .

We assume that {xt }t∈Z admits a Wold representation in terms of a transfer func-
tion �(z) = ∑∞

j=0 aj z j . That is,

xt = μ+�(L) εt , t ∈ Z, (2.1)

for some sequence {εt }t∈Z satisfying E (εt ) = 0 and E (ε0εt ) = σ 2
I (t = 0), I (·)

denoting the indicator function, and where L is the lag operator. Under (2.1) and

denoting h (λ) = ∣∣�(eiλ)
∣∣2, f (λ) can be factorized as

f (λ) = σ 2

2π
h (λ) , λ ∈ [0, π].

Statistical inferences on {xt }t∈Z are usually based on a parametric specifica-
tion of �(z), �θ (z). Among practitioners, the most popular specification is the
fractional autoregressive moving average (ARFIMA) model, where

�θ (z) = 1

(1 − z)d
�(z; ψ, ϕ), θ = (

ψ ′, d, ϕ′)′, (2.2)

with �(z; ψ, ϕ) = �−1
ϕ (z)�ψ (z) and where �ψ (z) and �ϕ (z) are, respec-

tively, the moving average and autoregressive polynomials. The dimensionality
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of the parameters ψ and ϕ is, respectively, p1 and p2, whereas d ∈
(
− 1

2 ,
1
2

)
is

known as the long memory parameter. In addition, we shall assume that the pa-
rameters ψ and ϕ are such that �ψ (z) and �ϕ (z) have no common roots and they
are all lying outside the unit circle. From (2.2) we have that hθ (λ) = |�θ(eiλ)|2
becomes

hθ (λ) = 1∣∣1 − eiλ
∣∣2d

∣∣∣∣∣�ψ

(
eiλ
)

�ϕ

(
eiλ
) ∣∣∣∣∣

2

, λ ∈ [0, π ].

Denote by C = {�θ : θ ∈ 
} the family of stationary and invertible ARFIMA
transfer functions in (2.2), where 
 ⊂ R

p denotes the parameter space. We are
interested in testing the hypothesis

H0 : � ∈ C
with the alternative hypothesis, H1, being the negation of the null. That is, we
are interested in omnibus tests capable of detecting nonparametric alternatives,
in the sense that it might not be possible to describe them by a finite number of
parameters. It is worth mentioning that, although we shall explicitly focus on the
ARFIMA model, this is only the case for notational simplicity and because of
its ubiquity in applications. The ARFIMA model was examined by Granger and
Joyeux (1980) and Hosking (1981) as a compromise between the stationary au-
toregressive moving average (ARMA) and the nonstationary autoregressive inte-
grated moving average models, offering greater flexibility to model the long-run
dependence by means of a sole extra parameter. Although most economic time
series are nonstationary and do require differencing of some sort, it is not neces-
sarily true that after taking first differences, the correct specification of the time
series is an ARMA model. In fact, for instance, Robinson (1994b) advocated the
use of the Bloomfield (1973) exponential model to describe short-run dynamics.
However the latter type of models, which are specified in the frequency domain,
require some modification of our bootstrap algorithms; see Section 3 for a ref-
erence and some comments. In addition, models that may exhibit long-memory
dependence are naturally justified in economics when aggregating cross-sectional
observations to construct macro time series (see, e.g., Robinson, 1978; Granger,
1980). For some overviews of the long-memory literature, see, for instance, Beran
(1998) or Robinson (1994a).

We can alternatively write H0 in terms of the spectral density function of
{εθ t }t∈Z, where

εθ t = �−1
θ (L) (xt − μ) , t ∈ Z.

That is, we can write H0 as

H0 :
f (λ)

hθ0 (λ)
= σ 2

0

2π
, λ ∈ [0, π ],
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for some θ0 = (
ψ ′

0, d0, ϕ
′
0

)′ ∈ 
. As usual, a subscript 0 in a parameter indicates
its true value. Notice that f (λ) /hθ (λ) is the spectral density function of {εθ t }t∈Z
and, under H0, εθ0t = εt .

The estimator of the spectral distribution function of {εθ t }t∈Z,

Fθ (λ) = 2
∫ λ

0

f
(
λ̄
)

hθ
(
λ̄
)dλ̄, λ ∈ [0, π ],

forms the basis for testing H0. For a generic sequence {vt }n
t=1, let us denote its

periodogram by

Iv (λ) := |wv (λ)|2,

where wv (λ) = (2πn)−1/2 ∑n
t=1 vt ei tλ is the discrete Fourier transform of the

sequence. Then, for a given record of data {xt }n
t=1, we estimate Fθ by Fθ̂nn , where

θ̂n is a n1/2-consistent estimator of θ0 and

Fθn (λ) = 2π

ñ

�ñλ/π	
∑
j=1

Ix
(
λj
)

hθ
(
λj
) , λ ∈ [0, π ],

with λj = 2π j/n being the Fourier frequencies. Herewith, ñ = �n/2	 with �z	
being the integer part of z. A natural candidate to estimate the parameters θ0 is
the Whittle estimator defined as

θ̂n = arg min
θ∈
 Fθn (π), (2.3)

which, under Assumptions A1–A3 stated in Section 3, is known to be n1/2-
consistent. See, for instance, Velasco and Robinson (2000), among others. Set

θ̂n =
(
ψ̂ ′

n, d̂n, ϕ̂
′
n

)′
. Notice that under H0, σ 2

0 = Fθ0 (π) = minθ∈
 Fθ (π), and

so we define σ̂ 2
n = Fθ̂nn (π).

We now define the Bartlett’s Tp-process as αθ̂nn , where

αθn (λ) = ñ1/2
[

Fθn (λ)

Fθn (π)
− λ

π

]
, λ ∈ [0, π ].

Notice that the empirical process αθn is a random function with realizations in the
functional space D [0, π ]. For a definition see, for instance, Billingsley (1968).
Under the null hypothesis and Assumptions A1–A3, DHV showed that

αθ̂nn (λ) = αθ0n (λ)− ñ1/2
(
θ̂n − θ0

)′
φθ0 (λ)+ op (1), (2.4)

where the term op (1) is uniform in λ ∈ [0, π ] and

φθ (λ) = ∂

∂θ
log hθ (λ) .
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Contrary to αθ0n , αθ̂nn does not converge in distribution to the standard
Brownian bridge on [0, π ]. In fact, as was shown by DHV, αθ̂nn converges to
a Gaussian process whose covariance structure depends on the model under the
null hypothesis and the specific method employed to estimate the parameters θ0.
More specifically, DHV showed that, under H0 and suitable regularity conditions,
αθ̂nn converges to αθ0∞, where

αθ∞ (λ)
d= B1(λ) −

(
π−1

∫ λ

0
φ′
θ

(
λ̄
)

dλ̄

)
�−1
θ (π)

∫ π

0
φθ

(
λ̄
)

B1(dλ̄),
λ∈ [0, π ],

where
d= means equal distributions,

�θ (λ) = 1

π

∫ λ

0
φθ

(
λ̄
)
φ′
θ

(
λ̄
)

dλ̄, (2.5)

and B1 is the standard Brownian bridge in [0, π ].
Notice that, under H0, the Whittle estimator θ̂n in (2.3) satisfies the linear

expansion

θ̂n = θ0 − bθ0n

ūθ0ñ
+ op

(
n−1/2

)
, (2.6)

where v̄m denotes, henceforth, the sample mean of any generic sequence {vt }m
t=1

and

bθn =
(

ñ

∑
j=1

φθ
(
λj
)
φ′
θ

(
λj
))−1 ñ

∑
j=1

φθ
(
λj
)

uθ
(
λj
)

with uθ
(
λj
) = Ix

(
λj
)
/hθ

(
λj
)
. Hence, αθ̂nn can be asymptotically represented

as a CUSUM of least squares residuals. Indeed, combining (2.4) and (2.6), under
the null hypothesis H0 and Assumptions A1–A3 given in Section 3, DHV showed
that the Tp-process satisfies the expansion

αθ̂nn (λ)= 1

ūθ0ñ ñ1/2

�ñλ/π	
∑
j=1

{(
uθ0

(
λj
)− ūθ0ñ

)− b′
θ0n

(
φθ0

(
λj
)− φ̄θ0ñ

)}
+ op (1)

= 1

ūθ0ñ ñ1/2

�ñλ/π	
∑
j=1

(
uθ0

(
λj
)− c′

θ0nγθ0

(
λj
))+ op (1), (2.7)

uniformly in λ ∈ [0, π ], where γθ
(
λj
) = (

1, φ′
θ

(
λj
))′ and

cθn = (
aθn, b′

θn

)′ = (
ūθ ñ − b′

θnφ̄θ ñ, b′
θn

)′
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are the least squares coefficients of the projection of
{

uθ
(
λj
)}ñ

j=1 on{
γθ
(
λj
)}ñ

j=1. Observe that

αθ0n (λ) = 1

ūθ0ñ ñ1/2

�ñλ/π	
∑
j=1

(
uθ0

(
λj
)− ūθ0ñ

)+ op(1)

as Fθn (π) = 2π ūθ ñ . It is also worth mentioning that in the first equality of
(2.7), we have employed the fact that φ̄θ ñ = o (1) because

∫ π
−π φ (λ) dλ = 0 and

Lemma 1 in DHV.
From here, and following ideas of Brown et al. (1975), it is expected that the

corresponding CUSUM of recursive residuals will be asymptotically distribution
free. In our context, the CUSUM of (forward) recursive residuals is given by
α̂θ̂nn (λ), where

α̂θn (λ) = 1

ūθ ñ ñ1/2

�n̄λ/π	
∑
j=1

(
uθ

(
λj
)− γ ′

θ

(
λj
)

ĉθ ( j)
)
, (2.8)

with n̄ = ñ − p − 1,

ĉθ ( j) = A−1
θn ( j)

1

ñ

ñ

∑
�= j+1

γθ (λ�) uθ (λ�),

and

Aθn ( j) = 1

ñ

ñ

∑
k= j+1

γθ (λk) γ
′
θ (λk),

assuming that Aθ0n (n) is nonsingular. In fact, DHV showed that α̂θ̂nn converges
in distribution to the standard Brownian motion in [0, π ], denoted by B.

The transformed process α̂θ̂nn in (2.8) is related to the martingale transfor-
mation of the standard empirical process with estimated parameters proposed
by Khmaladze (1981), which has been subsequently extended to other specifi-
cation testing problems by Koul and Stute (1999), Koenker and Xiao (2002), and
Delgado and Stute (2008) among others.

We have then that the test statistics are functionals of the Tp-process αθ̂nn or its
transformation α̂θ̂nn . Given a continuous functional on D [0, π ], η : D [0, π ] →
R+, we have that under H0, η

(
αθ̂nn

)
→d η

(
αθ0∞

)
and that η

(
α̂θ̂nn

)
→d η (B).

The most popular functionals are the Kolmogorov–Smirnov η (g) = supλ∈[0,π ]

|g (λ)| and the Cramér–von Mises η (g) = π−1 ∫ π
0 g (λ)2 dλ. However, as the

critical values of η
(
αθ0∞

)
are difficult to tabulate, if at all possible, an alterna-

tive approach to the martingale transformation–based tests η
(
α̂θ̂nn

)
entails using

bootstrap assisted algorithms. This is the topic of the next section.
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BOOTSTRAP TESTS

The purpose of this section is to provide and justify a bootstrap method for esti-

mating the finite-sample distributions of η
(
αθ̂nn

)
and η

(
α̂θ̂nn

)
. The motivation

to bootstrap the asymptotically pivotal statistic is that, as in many other problems,
we can expect that bootstrap methods improve the level of accuracy of the test
when they are compared to tests based on the asymptotic critical values. Now

consider, for example, ξn = η
(
αθ̂nn

)
and let G∞ be the asymptotic probability

distribution function of ξn . Denote by ξ∗
n the bootstrap analogue of ξn and denote

its bootstrap (conditional) distribution function given the sample Xn = {xt }n
t=1

by G∗
n . We say that the bootstrap is valid if the resampling method employed to

compute ξ∗
n satisfies that, under H0,

G∗
n

P→ G∞ (3.1)

at each continuity point of G∞. Then it is said that ξ∗
n converges in distribution

in probability to a random variable ξ∞ with probability distribution function G∞,

and it is written as ξ∗
n

d∗→ ξ∞ (in probability). See Giné and Zinn (1990) for some
discussion. Moreover, the bootstrap test will be consistent if the bootstrapped
p-value converges to zero under the alternative; that is, under H1,

G∗
n (ξn)

P→ 1. (3.2)

The resampling method must guarantee that (3.1) and (3.2) are satisfied, which is
sometimes referred to as that the bootstrap test is valid to test H0 in the direction
of H1.

We now describe the bootstrap algorithm. To that end, we denote the coeffi-
cients in the series expansion of (1 − z)−d by

bj (d) = � ( j + d)

� (d) � ( j + 1)
, j = 0, 1, . . . ,

where � (·) is the gamma function.

Step 1. Compute

ε̈t =
t−1

∑
j=0

bj

(
−d̂n

)
xt− j , t = 1, . . . , n.

Then, with the initial conditions ε̈t = ε̂t = 0 for t ≤ 0, compute

ε̂t = ε̈t −
p1

∑
�=1

ϕ̂n�ε̈t−� −
p2

∑
q=1

ψ̂nq ε̂t−q .
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Step 2. For some m large enough, let
{
ε∗

t

}n+m
t=1 be a random sample of size

n + m from the empirical distribution function of
{
ε̃t
}n

t=1, where ε̃t = ε̂t −
n−1 ∑n

t=1 ε̂t , and compute

ε̈∗
t = ε∗

t +
p1

∑
�=1

ϕ̂n�ε̈
∗
t−� +

p2

∑
q=1

ψ̂nqε
∗
t−q , t = 1, . . . , n + m,

with initial conditions ε̈∗
t = ε∗

t = 0 for t ≤ 0. Next, compute

x̃∗
t = ε̈∗

t +
t−1

∑
j=1

bj

(
d̂n

)
ε̈∗

t− j , t = 1, . . . , n + m.

Then our bootstrap sample is X ∗
n = {

x̃∗
t+m

}n
t=1 = {

x∗
t

}n
t=1.

Remark 1. Notice that we could generate more or less bootstrapped residuals,
but at least n. However, it seems convenient to initialize the sample using some
additional observations, as it is expected that the effect of the initial conditions
on

{
x̃∗

t

}n+m
t=m+1 would not be relevant after choosing m large enough. This is in a

spirit similar to when the practitioner simulates an AR(1) model.

Denote by F∗
θn the bootstrap analogue of Fθn ; that is,

F∗
θn (λ) = 2π

ñ

�ñλ/π	
∑
j=1

Ix∗
(
λj
)

hθ
(
λj
) , λ ∈ [0, π ]. (3.3)

Step 3. Compute the bootstrap analogue of the Whittle estimate (2.3) as

θ̂∗
n = θ̂n −

(
1

ñ

ñ

∑
j=1

φθ̂n

(
λj
)
φ′
θ̂n

(
λj
))−1

1

σ̂ 2
n

∂

∂θ
F∗
θ̂nn

(π). (3.4)

Then, we compute the bootstrap test as η̂∗
n = η

(
α∗
θ̂∗

n n

)
, where

α∗
θ̂∗

n n
(λ) = ñ1/2

⎡⎣ F∗
θ̂∗

n n
(λ)

F∗
θ̂∗

n n
(π)

− λ

π

⎤⎦, λ ∈ [0, π ].

Remark 2. We can replace our estimator θ̂∗
n in (3.4) by

θ̂∗
n = arg min

θ∈

F∗
θn (π).

However, we have preferred to employ (3.4) for computational simplicity; see
Shao and Tu (1995, pp. 228, 336).
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Remark 3. Because E
[
ε∗

t

∣∣Xn
] = 0 and E

[
ε∗2

t

∣∣Xn
] = σ̂ 2

n , we have that
E
[

x∗
t

∣∣Xn
] = 0, and the (conditional on Xn) spectral density function of

{
x∗

t

}n
t=1

is

fθ̂nn (λ) := σ̂ 2
n

2π
h θ̂nn (λ), (3.5)

where hθn (λ) = ∣∣∑n
�=0 b� (d) ei�λ

∣∣2 �(λ; ψ, ϕ) for λ ∈ [0, π ].

The foregoing bootstrap differs from others in similar problems. In particular it
differs from the wild bootstrap proposed by Hidalgo (2003) and improved in our
context by Hidalgo and Kreiss (2006). Hidalgo and Kreiss considered a naive re-

sample
{

x†
t

}n

t=1
from the empirical distribution function of {xt }n

t=1. Then, using

F̊∗
θn (λ) = 2π

ñ

�ñλ/π	
∑
j=1

h θ̂n

(
λj
)

hθ
(
λj
) Ix†

(
λj
)

instead of F∗
θn (λ) given in (3.3), the bootstrap analogue of η

(
αθ̂nn

)
is given by

η

(
α∗

ˆ̊θ∗
n n

)
, where

α∗
ˆ̊θ∗
n n
(λ) = ñ1/2

⎡⎣ F̊∗
θ̂∗

n n
(λ)

F̊∗
θ̂∗

n n
(π)

− λ

π

⎤⎦ , λ ∈ [0, π ] ,

with

ˆ̊θ∗
n = arg min

θ∈

F̊∗
θn (π)

or the analogue of (3.4); that is,

ˆ̊θ∗
n = θ̂n −

(
1

ñ

ñ

∑
j=1

φθ̂n

(
λj
)
φ′
θ̂n

(
λj
))−1

1

σ̂ 2
n

∂

∂θ
F̊∗
θ̂nn

(π) .

The major difference with the bootstrap in steps 1–3 is that in the former we
are able to approximate the transfer function �

(
eiλ

)
, and therefore higher order

moments, whereas with the Hidalgo and Kreiss (2006) bootstrap we only approx-
imate its modulus, that is,

∣∣� (
eiλ

)∣∣.
Let us introduce our regularity conditions.

A1. The innovation process {εt }t∈Z satisfies that E
(
εr

t

∣∣Ft−1
) = μr with μr

constant (μ1 = 0 and μ2 = σ 2
0 ) for r = 1, . . . , 4 and all t = 0,±1, . . . , where

Ft is the sigma algebra generated by {εs, s ≤ t}.
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A2. Aθ0n (n) is nonsingular for all n large enough.

It is convenient for future reference to observe that the ARFIMA model satisfies
Assumptions A2, A3, and A6 of DHV. That is,

1. h is a positive and continuously differentiable function on (0, π ];
2. |∂ log h (λ) /∂λ| = O

(
λ−1

)
as λ → 0+;

3. φθ0(λ) is a continuously differentiable function on (0, π ];
4.

∥∥∂φθ0 (λ) /∂λ
∥∥ = O (1/λ) as λ → 0+; and for some 0 < δ < 1 and all

λ ∈ (0, π ], there exists a K < ∞ such that
5. sup{θ :‖θ−θ0‖≤ı} ‖φθ (λ)‖ ≤ K |log λ| ;

sup
{θ :‖θ−θ0‖≤ı/2}

1

‖θ − θ0‖2

∣∣∣∣hθ0 (λ)

hθ (λ)
− 1 + φ′

θ0
(λ) (θ − θ0)

∣∣∣∣ ≤ K

λδ
log2 λ;

and
6. �θ0 := �θ0 (π) given in (2.5) is positive definite.
7. For some 0 < ı < 1 and all λ ∈ (0, π ], there exists a constant K < ∞ such

that

sup
{θ :‖θ−θ0‖≤ı}

1

‖θ − θ0‖2

∥∥∥∥φθ (λ)− φθ0 (λ)− ∂

∂θ ′φθ0 (λ) (θ − θ0)

∥∥∥∥ ≤ K |log λ|

and φθ (λ) /∂θ satisfies 3–5.

All these properties will be denoted as Assumption A3 in what follows. Denote
by Op∗ , op∗ , and E∗ the usual stochastic orders of magnitude and expectation,
respectively, referred to as the bootstrap law given Xn , Pr∗.

PROPOSITION 1. Assuming that A1–A3 hold true, under H0, or under H1

but assuming that ñ1/2
(
θ̂n − θ1

)
= Op (1) for some θ1 ∈ 
 and that A2 and A3

hold with θ0 replaced by θ1, we have that

(i) ñ1/2
(
θ̂∗

n − θ̂n

)
=
(

1

ñ

ñ

∑
j=1

φθ̂n

(
λj
)
φ′
θ̂n

(
λj
))−1

2π

σ̂ 2
n ñ1/2

ñ

∑
j=1

φθ̂n

(
λj
)

Iε∗
(
λj
)+ op∗ (1),

(ii) ñ1/2
(
θ̂∗

n − θ̂n

)
= Op∗ (1) .

Proof. The proof of this and other results will be given in Section 6. n

The following theorem provides the consistency of the bootstrap test given in
steps 1–3.

THEOREM 1. If A1–A3 hold, we have that, under H0,

α∗
θ̂∗

n n

d∗→ αθ0∞ in probability,
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and under H1, assuming that ñ1/2
(
θ̂n − θ1

)
= Op (1) for some θ1 ∈ 
 and that

A2 and A3 hold with θ0 replaced by θ1,

α∗
θ̂∗

n n

d∗→ αθ1∞ in probability.

We now have the following corollary.

COROLLARY 1. Let η be a continuous mapping inR+. Under the conditions
of Theorem 1 and H0,

η̂∗
n = η

(
α∗
θ̂∗

n n

)
d∗→ η

(
αθ0∞

)
in probability,

and under H1

η̂∗
n = η

(
α∗
θ̂∗

n n

)
d∗→ η

(
αθ1∞

)
in probability.

Proof. The proof of the corollary is standard by Theorem 1 and the continuous
mapping theorem, and thus it is omitted. n

Corollary 1 justifies the consistency of the bootstrap test as the previous corol-
lary indicates that under the alternative the power converges to one, that is,

Pr∗
{
η̂∗

n < η
(
αθ̂nn

)}
→ 1, as the distribution of the bootstrap statistic con-

verges to that of η
(
αθ1∞

)
and η

(
αθ̂nn

)
diverges with n. However because of the

difficulty in computing the critical values of the bootstrap distribution, they are
approximated by Monte Carlo simulations as accurately as desired, as we now

describe. For that purpose, let
{
X ∗(�)

n

}c

�=1
be c resamples generated as step 2 and{

η
∗(�)
n

}c

�=1
their corresponding bootstrap statistics as given in step 3. Then z∗

nς ,

where Pr∗
[
η̂∗

n ≥ z∗
nς

] = ς , is approximated by z∗c
nς defined from the relation

z∗c
nς = inf

{
z :

1

c

c

∑
j=1
I

(
η∗( j)

n ≥ z
)

≤ ς

}
.

We now describe the bootstrap for the transformation α̂∗
θ̂nn

, which only differs

from that given in steps 1–3 in the last one. Indeed,

Steps 1 and 2. As before.
Step 3. Compute the bootstrap analog of the Whittle estimate (2.3) as in (3.4).

Then, we compute the bootstrap test as η̂∗
n = η

(
α̂∗
θ̂∗

n n

)
, where

α̂∗
θn (λ) = 1

ū∗
θ ñ ñ1/2

�nλ/π	
∑
j=1

(
u∗
θ

(
λj
)− ĉ∗′

θ ( j) γθ
(
λj
))

, λ ∈ [0, π ] ,

12



with u∗
θ

(
λj
) = Ix∗

(
λj
)
/hθ

(
λj
)

and u∗
θ

(
λj
) − ĉ∗′

θ ( j) γθ
(
λj
)

being

the recursive residuals in the linear projection of
{

u∗
θ

(
λj
)}ñ

j=1 on{
γθ
(
λj
)}ñ

j=1. Recall that 2π ūθ ñ = Fθn (π) so that the bootstrap analogue
becomes 2π ū∗

θ ñ = F∗
θn (π).

THEOREM 2. Under the conditions of Proposition 1, under both H0 and H1

α̂∗
θ̂∗

n n

d∗→ B in probability.

Interestingly, unlike in Theorem 1, the limiting distribution under H0 and the
limiting distribution under H1 are identical. Therefore, power comparisons of
resulting tests based on transformed and nontransformed spectral empirical
processes are even more involved. As with Theorem 1 we obtain the following
corollary.

COROLLARY 2. Let η be a continuous mapping in R+. Under the assump-
tions of Theorem 2, and both H0 and H1, we have that

η
(
α̂∗
θ̂∗

n n

)
d∗→ η (B) in probability.

Proof. The proof of the corollary is standard by Theorem 2 and the continuous
mapping theorem. n

The results of Corollary 2 indicate that the conclusions obtained from Corol-
lary 1 apply to this bootstrap-based test also. For models defined in the frequency
domain, such as the Bloomfield (1973) exponential model, steps 1 and 2 are more
involved. Indeed, to implement the previous bootstrap, we need first to obtain the
coefficients of the AR (∞) representation of the Bloomfield (1973) model, which
in general have no closed form. So, to avoid this problem, we envisage two pro-
cedures. One is based on the use of the wild bootstrap, as we present in the next
section. A second method is the route followed by Hidalgo (2009).

4. MONTE CARLO EXPERIMENT

The purpose of this section is to examine and shed some light on the finite-sample
performance of the different alternatives or approaches discussed in previous sec-
tions to perform valid tests for the null hypothesis H0. In addition, we are inter-
ested in examining whether bootstrap assisted tests for the transformed Tp-process
perform better in finite samples than those obtained using the asymptotic criti-
cal values. This is motivated from the belief that the bootstrap provides a better

approximation to the actual distribution/critical values of η
(
α̂θ̂∗

n n

)
than those ob-

tained from the asymptotic distribution of η (B). The latter comes from the obser-
vation that the distribution of η (B) is pivotal; see Hall (1992). Although a formal

13



proof of this statement could be obtained using arguments in Götze (1979, 1984)
for second-order expansions of the Cramér–von Mises criterion, this is beyond
the scope of this paper.

In the Monte Carlo experiment, we have considered four alternative specifica-
tions: AR (1), MA (1), ARFIMA (0, d, 0), and ARFIMA (1, d, 0) using sample
sizes n = 100 and n = 500 and D = 50,000 Gaussian Monte Carlo samples.
However, to simplify and speed the computations, in this Monte Carlo experi-
ment we have approximated the distribution of G∗

n using the Warp algorithm of
Giacomini, Politis, and White (2007). The Warp algorithm permits us to approx-
imate the Monte Carlo distribution of the bootstrap test generating only one ad-
ditional bootstrap replication for each Monte Carlo sample, X∗(1)

n,b , b = 1, . . . , D.
Then the bootstrap critical values are obtained via the empirical distribution func-
tion of the D Monte Carlo samples employed in the experiment in the usual way.
The significance level employed has been α = 0.05.

As we mentioned at the end of the previous section, we shall also employ the
“wild bootstrap” approach defined as

1

ū θ̂n ñ ñ1/2

�n̄λ/π	
∑
j=1

(
u θ̂n j − γ ′

θ̂n

(
λj
)

ĉθ̂n

(
λj
))

Vj ,

instead of α̂∗
θ̂∗

n n
, where

{
Vj
}ñ

j=1 is a sequence of zero mean independent identi-

cally distributed random variables with variance one and mutually independent of
{εt }t∈Z.

We only present the results for the Cramér–von Mises type statistics

Cθ̂nn = 1

n

ñ

∑
j=1

α2
θ̂nn

(
λj
)

and Ĉθ̂nn = 1

n

ñ

∑
j=1

α̂2
θ̂nn

(
λj
)
,

as the performance for the Kolmogorov–Smirnov functional was very similar.
More specifically, in the tables that follow we present the results for the following
test statistics:

1. asymptotic test based on Ĉθ̂nn , denoted Ĉn ;

2. naive bootstrap version of Ĉθ̂nn , denoted Ĉ∗
n ;

3. naive bootstrap version of Cθ̂nn , denoted C∗
n ;

4. wild bootstrap version of Ĉθ̂nn , denoted Ĉ∗∗
n ;

5. Hidalgo–Kreiss bootstrap version of Cθ̂nn , denoted C∗∗
n .

We also report results for the Ljung and Box (1978) test,

Q̂m,n = n (n + 2)
m

∑
j=1

ρ̂2
θ̂nn

( j)

n − j
,

based on critical values obtained from an asymptotic χ2
m−p distribution, where

ρ̂θ̂nn( j) is the j th residual sample autocorrelations, and its bootstrap analogue
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Q̂∗
m,n using the naive bootstrap procedure described in Section 3. We report the

proportion of rejections choosing m = n1/2, which is the common choice for the
asymptotic test, and both m = n1/2 and m = 3 for the bootstrap version, the latter
being expected to perform much better in terms of power.

Tables 1 and 2 present the proportion of rejections under the null hypothe-
sis for sample sizes of n = 100 and n = 500, respectively. In the first three
blocks of these tables we consider single parameter models. The performance of
the popular Box–Ljung test depends very much on the choice of the smoothing
parameter m, and, as is well known, its size accuracy is appropriate when we
choose m = n1/2 for any specification considered. Interestingly, the bootstrap
version of the Box–Ljung test does not perform much better than the asymp-
totic counterpart when m = n1/2. The accuracy level for the bootstrap tests
based on the transformed Tp-process is excellent using either the naive or wild
bootstrap methods, even for the smallest sample size with any model and
parameter combinations, such as MA(1) with θ0 = 0.8. However, the wild boot-
strap performs slightly worse than the naive one. The latter confirms our com-
ment that as the wild bootstrap only approximates |�(λ)| rather than �(λ), as
the naive bootstrap does, then the finite-sample performance of the former may
be worse than that of the naive bootstrap tests. Also, it is interesting to observe
that the bootstrap assisted test for the transformed Tp-process shows better finite-
sample performance than that using the asymptotic critical values. This appears
to corroborate the comments made earlier with regard to bootstrapping pivotal
tests.

The second three blocks in Tables 1 and 2 consider the two parameter model
ARFIMA(1, d, 0) for all previous value combinations. For the smaller sample
size, n = 100, we observe that only the wild bootstrap is able to report good
size for all cases, whereas for n = 500 the naive bootstrap provides accurate size
for two parameter models only if applied to pivotal statistics. The Hidalgo–Kreiss
test produces similar results to the naive bootstrap test C∗

n , whereas the asymptotic
tests perform worse than their bootstrap counterparts.

We now investigate power properties for the previous tests. Tables 3 and 4 re-
port the proportion of rejections when testing two null specifications with data
generated according to the different models under the alternative. In particular
we test the null of an AR(1) model against MA(1) and I(d) data and the null
of MA(1) or I (d) model specifications against AR(1) data. We confirm the well-
known property of the Box–Ljung test exhibiting better power behavior in general
by choosing m small. The Tp-process tests have better power in general, but the
differences among alternative versions are small, and no one is always superior
to the other. The most relevant information that we extract from these tables is
that there is not a clear advantage in terms of power by using the bootstrap al-
gorithm for the Tp-process and its transformation. However, it appears that, in
general, both naive and wild bootstrap tests based on the transformation of the
Tp-process have slightly less power than asymptotic tests, though the latter ones
tend to control the size less accurately.
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TABLE 1. Proportion of rejections under H0, n = 100

θ0 Ĉn Ĉ∗
n C∗

n Ĉ∗∗
n C∗∗

n Q̃∗
3,n Q̃∗

n1/2,n
Q̃n1/2,n

AR (1)

−0.8 5.29 5.14 3.39 4.65 4.47 4.01 4.33 5.27
−0.5 5.70 5.14 3.25 4.63 4.26 4.59 4.57 4.82

0.0 7.24 5.03 3.93 5.00 4.26 5.05 4.77 4.57
0.5 9.30 5.10 4.55 5.41 4.43 5.02 4.86 4.77
0.8 11.66 5.17 4.68 5.27 4.44 4.75 4.68 4.70

MA (1)

−0.8 4.73 4.75 2.27 3.96 4.61 3.94 4.25 6.75
−0.5 5.57 4.90 2.86 4.27 4.50 4.37 4.38 4.83

0.0 7.32 4.95 3.70 4.85 4.23 4.60 4.62 4.45
0.5 9.74 4.96 4.30 5.38 3.27 4.37 4.38 4.57
0.8 16.58 7.82 0.07 5.71 3.22 0.04 0.81 10.49

I (d)

0.0 8.41 4.86 3.59 4.67 2.84 4.84 4.86 4.83
0.2 8.38 4.93 3.62 4.66 2.81 4.80 4.80 4.82
0.4 8.46 5.05 3.65 4.73 2.81 4.77 4.82 4.77

ARFIMA (1, d0 = 0.0, 0)

−0.8 8.54 5.41 1.20 3.53 2.16 3.75 4.12 3.27
−0.5 11.77 5.20 1.30 4.36 2.22 4.06 4.30 2.78

0.0 17.41 3.33 0.08 4.94 0.89 0.69 1.14 2.40
0.5 17.02 0.06 0.00 4.28 1.45 0.00 0.00 4.17
0.8 17.69 0.99 0.00 4.90 0.80 0.00 0.00 3.42

ARFIMA (1, d0 = 0.2, 0)

−0.8 8.57 5.50 1.26 3.56 2.11 3.83 4.14 3.19
0.5 11.85 5.21 1.28 4.33 2.21 4.15 4.29 2.76
0.0 17.32 3.40 0.16 4.87 1.01 0.88 1.36 2.36
0.5 17.08 0.07 0.00 4.29 1.37 0.00 0.00 4.15
0.8 17.89 1.01 0.00 4.95 0.87 0.00 0.00 3.50

ARFIMA (1, d0 = 0.4, 0)

−0.8 8.60 5.49 1.27 3.71 2.08 3.77 4.09 3.10
−0.5 11.77 5.18 1.29 4.38 2.24 4.16 4.33 2.63

0.0 17.45 3.55 0.21 4.98 1.04 1.05 1.43 2.33
0.5 17.08 0.08 0.00 4.31 1.34 0.00 0.00 4.03
0.8 17.31 0.84 0.00 4.82 0.54 0.00 0.00 3.98

5. TECHNICAL LEMMAS

We shall first introduce some notation used in this and the next sections. We shall
denote ζθ (λ) = ζ (λ; θ) : (0, π ] × 
 → R

p a function satisfying the same
conditions of φθ in A3 and abbreviate ζθ0 (λ) by ζ (λ) and ζθ̂n

(λ) by ζ̂ (λ). Also,
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TABLE 2. Proportion of rejections under H0, n = 500

θ0 Ĉn Ĉ∗
n C∗

n Ĉ∗∗
n C∗∗

n Q̃∗
3,n Q̃∗

n1/2,n
Q̃n1/2,n

AR (1)

−0.8 5.32 5.16 4.63 5.18 5.19 4.73 4.85 5.24
−0.5 5.43 5.16 4.67 5.11 5.13 5.10 4.99 5.11

0.0 5.46 4.99 4.87 4.96 4.84 5.20 5.04 5.08
0.5 5.92 5.07 5.08 5.16 5.04 5.26 5.10 5.17
0.8 6.42 5.11 5.05 5.25 5.07 5.09 5.04 5.22

MA (1)

−0.8 5.17 5.14 4.43 4.85 4.91 5.00 4.65 5.51
−0.5 5.37 5.14 4.60 5.00 4.99 5.01 4.81 5.08

0.0 5.49 4.92 4.78 5.03 4.86 5.06 4.83 5.07
0.5 5.96 5.13 5.09 5.26 4.92 5.07 4.78 4.83
0.8 6.45 5.04 4.98 5.03 5.36 4.99 4.74 5.14

I (d)

0.0 5.81 5.09 4.74 4.97 4.35 5.20 4.93 5.25
0.2 5.81 5.13 4.77 5.01 4.24 5.16 4.94 4.93
0.4 5.85 5.14 4.73 5.13 4.32 5.23 5.20 5.20

ARFIMA (1, d0 = 0.0, 0)

−0.8 5.84 5.27 3.60 4.73 4.03 4.82 4.53 3.49
−0.5 6.79 5.42 3.81 5.57 4.01 5.23 4.51 3.45

0.0 8.21 4.70 4.43 5.14 4.54 4.88 4.50 3.30
0.5 7.25 4.79 3.07 4.43 4.00 3.04 2.72 3.69
0.8 8.39 5.17 1.66 4.49 2.10 3.59 3.28 4.13

ARFIMA (1, d0 = 0.2, 0)

−0.8 5.77 5.12 3.60 4.78 4.10 4.72 4.46 3.47
−0.5 6.79 5.44 3.66 5.62 3.96 5.23 4.48 3.42

0.0 8.19 4.89 4.37 5.33 4.52 4.73 4.53 3.25
0.5 7.23 4.75 2.99 4.47 3.81 3.12 2.72 3.73
0.8 8.58 5.44 1.48 4.47 1.48 3.60 3.22 4.20

ARFIMA (1, d0 = 0.4, 0)

−0.8 5.85 5.15 3.85 4.70 4.08 4.87 4.43 3.45
−0.5 6.89 5.54 3.93 5.61 4.09 5.36 4.35 3.37

0.0 8.14 4.41 4.47 5.02 3.84 5.07 4.53 3.35
0.5 7.20 4.69 2.88 4.71 3.24 3.28 2.72 3.80
0.8 8.20 5.24 1.80 4.96 0.31 4.69 3.25 4.45

for a generic function g (λ), we shall abbreviate g
(
λj
)

by gj . We shall abbreviate

bp (d0) and bp

(
d̂n

)
, respectively, by bp and b̂p. Finally, henceforth, z(k) denotes

the kth element of a p × 1 vector z and K a finite positive constant.
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TABLE 3. Proportion of rejections under H1, n = 100

θ0 Ĉn Ĉ∗
n C∗

n Ĉ∗∗
n C∗∗

n Q̃∗
3,n Q̃∗

n1/2,n
Q̃n1/2,n

H0 : AR (1) vs. H1 : MA (1)

−0.8 99.56 98.58 97.35 86.89 97.00 96.15 71.97 71.42
−0.5 62.18 48.77 49.45 33.97 47.99 44.91 23.93 23.58

0.2 8.39 6.28 5.03 6.12 6.75 6.86 5.76 5.70
0.5 43.45 39.71 41.38 33.15 46.11 45.23 24.35 25.05
0.8 86.07 84.26 93.42 67.57 92.25 95.62 70.56 71.73

H0 : MA (1) vs. H1 : AR (1)

−0.8 99.92 99.79 99.68 98.86 99.50 99.77 98.72 98.92
0.5 66.13 56.80 54.95 56.48 51.29 50.25 30.60 30.07
0.2 8.52 6.59 4.31 6.19 5.78 4.93 4.68 4.59
0.5 48.80 46.50 49.32 27.83 55.65 44.88 27.35 27.85
0.8 99.10 99.09 99.38 41.21 99.62 99.51 97.92 98.18

H0 : I (d) vs. H1 : AR (1)

0.2 13.48 7.25 10.24 4.48 7.96 4.93 9.20 9.29
0.5 22.83 13.79 24.91 5.49 20.99 22.52 19.34 19.42
0.8 12.15 6.34 11.06 3.08 8.28 10.88 12.83 12.93

H0 : AR (1) vs. H1 : I (d)

0.1 9.50 6.85 5.58 6.67 5.64 5.64 5.10 4.94
0.2 15.47 11.40 10.46 10.62 10.46 8.90 7.75 7.42
0.3 23.39 17.33 17.09 15.95 17.09 13.77 12.09 11.80
0.4 30.67 22.90 23.98 21.53 23.98 17.54 15.59 15.35

LEMMA 1. Let d ∈
(
− 1

2 ,
1
2

)
. Then

(i)

∣∣∣∣∣∣
∣∣∣∣∣ ∞
∑
p=0

bp (d) eipλ

∣∣∣∣∣
2

−
∣∣∣∣∣ n

∑
p=0

bp (d) eipλ

∣∣∣∣∣
2
∣∣∣∣∣∣ = O

(
1

λ1+dn1−d

)
if

1

2
λ1 < λ ≤ π,

(ii)

∣∣∣∣∣ n

∑
p=0

bp (d) eipλ

∣∣∣∣∣
2

= O
(

n2d
)

if 0 ≤ λ <
1

2
λ1.

Proof. We first show part (i). After standard algebra, the left side of the equality
in (i) is∣∣∣∣∣ ∞

∑
p=n+1

bp (d) eipλ

∣∣∣∣∣
2

+ 2Re

( ∞
∑

p=n+1
bp (d) eipλ

)(
n

∑
p=0

bp (d) e−i pλ

)
, (5.1)

where Re (z) denotes the real part of a complex number z. Because
∣∣∣∑n

p=0 eipλ
∣∣∣ <

Kλ−1 for λ > 0, we obtain that by summation by parts, monotonicity of bp (d),
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TABLE 4. Proportion of rejections under H1, n = 500

θ0 Ĉn Ĉ∗
n C∗

n Ĉ∗∗
n C∗∗

n Q̃∗
3,n Q̃∗

n1/2,n
Q̃n1/2,n

H0 : AR (1) vs. H1 : MA (1)

−0.8 100 100 100 100 100 100 100 100
−0.5 99.87 99.85 99.85 99.59 99.61 99.61 81.98 82.57

0.2 13.29 12.29 13.43 12.40 12.14 12.14 6.73 7.14
0.5 98.67 98.64 99.77 97.95 97.95 99.63 82.64 83.39
0.8 100 100 100 100 100 100 100 100

H0 : MA (1) vs. H1 : AR (1)

−0.8 100 100 100 100 100 100 100 100
−0.5 99.77 99.75 99.79 99.71 99.40 99.69 91.18 91.37

0.2 13.11 12.45 12.58 11.95 13.69 10.33 6.41 6.57
0.5 99.23 99.22 99.83 99.78 99.67 99.64 90.21 90.53
0.8 100 100 100 100 100 100 100 100

H0 : I (d) vs. H1 : AR (1)

0.2 40.00 37.29 58.32 29.50 54.03 41.42 21.85 22.16
0.5 79.88 77.41 99.20 60.26 96.87 86.99 7.44 54.96
0.8 38.91 35.54 83.55 22.65 81.03 48.18 54.77 5.23

H0 : AR (1) vs. H1 : I (d)

0.1 18.41 17.28 20.04 16.23 20.01 17.49 12.42 12.60
0.2 53.83 51.88 60.72 45.17 59.21 54.19 45.05 45.21
0.3 84.11 82.94 87.93 71.64 86.68 81.55 78.31 78.58
0.4 95.18 94.99 96.60 86.26 96.18 91.20 92.41 92.28

and because bp (d) = O
(

pd−1
)
, the first term of (5.1) is bounded by

K
1

λ2

∣∣∣∣∣ ∞
∑

p=n+1

∣∣bp (d)− bp+1 (d)
∣∣∣∣∣∣∣

2

= O

(
1

λ2n2−2d

)
.

Proceeding similarly, the second term of (5.1) is bounded in modulus by

O

(
1

λn1−d

∣∣∣∣∣ n

∑
p=0

bp (d) eipλ

∣∣∣∣∣
)

= O

(
1

λ2n2−2d
+ 1

λ1+dn1−d

)
because∣∣∣∣∣ n

∑
p=0

bp (d) eipλ

∣∣∣∣∣ ≤
∣∣∣∣∣ ∞
∑
p=0

bp (d) eipλ

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
p=n+1

bp (d) eipλ

∣∣∣∣∣
and, by definition,∣∣∣∣∣ ∞
∑
p=0

bp (d) eipλ

∣∣∣∣∣ ≤ Kλ−d .
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This concludes the proof of part (i).
Next we show part (ii). When d ≥ 0 the proof is obvious because bp (d) =

O
(

pd−1
)
. On the other hand, when d < 0, the proof follows using the last two

displayed inequalities. n

LEMMA 2. Assuming A1–A3,

(i)

∣∣∣∣∣ n

∑
p=1

bpeipλ

∣∣∣∣∣
2

−
∣∣∣∣∣ n

∑
p=1

b̂peipλ

∣∣∣∣∣
2

= Op

(∣∣1 − eiλ
∣∣−2d0 log

∣∣1 − eiλ
∣∣

n1/2 + nd0−1

λ1+d0

)
if

1

2
λ1 < λ ≤ π,

(ii)

∣∣∣∣∣ n

∑
p=1

bpeipλ

∣∣∣∣∣
2

−
∣∣∣∣∣ n

∑
p=1

b̂peipλ

∣∣∣∣∣
2

= Op

(
nd0−1/2

)
if 0 < λ ≤ 1

2
λ1,

where the orders of magnitude are uniformly in λ.

Proof. We begin with part (i). By Lemma 1 and because the n1/2-consistency

of the Whittle estimator in (2.3) implies that nd̂n−d0 − 1 = op (1), the left side of
the equality in (i) is∣∣∣∣∣ ∞
∑
p=1

bpeipλ

∣∣∣∣∣
2

−
∣∣∣∣∣ ∞
∑
p=1

b̂peipλ

∣∣∣∣∣
2

+ Op

(
nd0−1

λ1+d0

)
.

Now the conclusion follows because the first and second terms of the last dis-

played expression are, respectively,
∣∣1 − eiλ

∣∣−2d0 and
∣∣1 − eiλ

∣∣−2d̂n and because
the Whittle estimator is n1/2-consistent. Part (ii) follows immediately proceed-

ing as in the proof of Lemma 1, after observing that
∣∣∣bp − b̂p

∣∣∣ = Op
(
n−1/2

)
bp

log p. n

LEMMA 3. Let ζθ be such that for all λ > 0 and θ , ‖ζθ (λ)‖+‖∂ζθ (λ) /∂θ‖ ≤
K |log λ|�, � ≥ 1, and ‖∂ζθ (λ) /∂λ‖+∥∥∂2ζθ (λ) /∂θ∂λ

∥∥ ≤ Kλ−1 |log λ|�−1 and
for some 0 ≤ δ ≤ 1,

sup
‖θ−θ0‖≤K/n1/2

‖θ − θ0‖−2
∣∣∣∣ζ (k)θ (λ)− ζ

(k)
θ0

(λ)− ∂

∂θ ′ ζ
(k)
θ0

(λ) (θ − θ0)

∣∣∣∣ ≤ λ−δ .

Then, for k = 1, . . . , p,

sup
λ∈[0,π ]

∥∥∥∥∥1

ñ

�ñλ/π	
∑
j=1

ζ̂
(k)
j − 1

π

∫ λ

0
ζ
(k)
θ0

(ν) dν

∥∥∥∥∥= Op

(
log� n

n

)
+ Op

(
1

n1/2

)

×
∫ λ

0

∂ζ
(k)
θ0

(ν)

∂θ
dν.

Proof. By Lemma 1 of DHV, it suffices to show that

sup
λ∈[0,π ]

∥∥∥∥∥1

ñ

�ñλ/π	
∑
j=1

{
ζ̂
(k)
j − ζ

(k)
θ0 j

}∥∥∥∥∥ = Op

(
1

n1/2

)∫ λ

0

∂ζ
(k)
θ0

(ν)

∂θ
dν.
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But the latter holds true because
∣∣∣ζ̂ (k)j −ζ

(k)
θ0 j −(∂/∂θ ′)ζ (k)θ0 j

(
θ̂n − θ0

)∣∣∣=O
(
n−1λ−δ

j

)
,

and as in Lemma 1 of DHV, we conclude that ñ−1 ∑�ñλ/π	
j=1 ∂ζ

(k)
θ0 j/∂θ

−π−1 ∫ λ
0

(
∂ζ

(k)
θ0

(ν) /∂θ
)

dν = O
(
n−1 log� n

)
. n

Denote υ∗ (λ) = h−1/2
θ̂nn

(λ)wx∗ (λ), a the conjugate of the complex number a,

and ς ( j) = min
(

j−1, jd0−1
)

log j . Recall that wx∗ (λ) is the discrete Fourier
transform of

{
x∗

t

}n
t=1.

LEMMA 4. Assume A1–A3.

(i) For � ≤ k ≤ j ≤ ñ with �−1 = o (1),

E
∗ (υ∗

j υ
∗
k

)
− σ̂ 2

n

2π
I ( j = k)= Op (ς ( j)) , (5.2)

E
∗ (υ∗

j υ
∗
k

)
= Op (ς (k)) .

(ii) For fixed positive integers k ≤ j , E∗
(
υ∗

j υ
∗
k

)
= Op (ς (k)).

Proof. We shall begin with part (i). We shall prove only the case j = k, because
the case j �= k can be similarly handled. From the definition of h−1

θ̂nn

(
λj
)

in (3.5),

the left side of (5.2) is σ̂ 2
n h−1

θ̂nn

(
λj
)

times

∫ π

−π

(
h θ̂nn (λ)− h θ̂nn

(
λj
))F (

λ− λj
)

dλ, (5.3)

where F (λ) = (2πn)−1|D (λ) |2 denotes the Fèjer’s kernel, with D (λ) = ∑n
t=1

exp{i tλ}. So, it suffices to show that (5.3) is Op

(
λ

−2d0
j ς ( j)

)
, which proceeds

similarly as in Theorem 2 of Robinson (1995a). Indeed, we first notice that (5.3)
is({∫ −δ

−π
+
∫ π

δ

}
+
{∫ −1/2λj

−δ
+
∫ δ

2λj

}
+
∫ 2λj

1/2λj

+
∫ 1/2λj

−1/2λj

)
(5.4)

×
(

h θ̂nn (λ)− h θ̂nn

(
λj
))F (

λ− λj
)

dλ.

Because F (λ) ≤ Kλ−2n−1 forλ > 0, �(λ; ψ, ϕ) is twice continuously differ-
entiable, and Lemma 2 implies that hθ̂nn (λ) = hθ0n (λ)

(
1 + op (1)

)
, we obtain

that the contribution of
{∫−δ

−π + ∫ π
δ

}
into (5.4) is bounded by

K n−1
∫ π

δ

(
hθ0n (λ)+ hθ0n

(
λj
)) (

1 + op (1)
)

dλ = Op

(
j−1λ

−2d0
j

)
proceeding as in Lemma 1 and Theorem 2, part (a), in Robinson (1995a).
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Next, because F (λ) ≤ Kλ−2n−1 for λ > 0, the contribution due to
{∫−1/2λj

−δ
+ ∫ δ

2λj

}
into (5.4) is bounded by

K n−1
{∫ −1/2λj

−δ
+
∫ δ

2λj

} ∣∣∣h θ̂nn (λ)− h θ̂nn

(
λj
)∣∣∣ ∣∣λ− λj

∣∣−2
dλ

= K n−1
{∫ −1/2λj

−δ
+
∫ δ

2λj

} ∣∣hθ0 (λ)− hθ0

(
λj
)∣∣ ∣∣λ− λj

∣∣−2
dλ

+ Op

(
n2d0

j2+d0

)
by Lemmas 1 and 2, because �(λ; ψ, ϕ) is twice continuously differentiable and

θ̂n − θ0 = Op
(
n−1/2

)
implies that nd̂n−d0 − 1 = op (1). Now proceed as with

the proof of Theorem 2 of Robinson (1995a) to conclude that the right side of the

last displayed equality is Op

(
λ

−2d0
j j d0−1

)
. Next the contribution in (5.4) due to∫ 2λj

1/2λj
is bounded by

K sup
1/2λj ≤λ≤2λj

∣∣∣∣∂h θ̂nn (λ)

∂θ

∣∣∣∣ ∫ 2λj

1
2λj

∣∣λ− λj
∣∣F (

λ− λj
)

dλ. (5.5)

But by (3.5) and because �(λ; ψ, ϕ) is twice continuously differentiable and

Lemma 2,
∣∣∣∂h θ̂nn (λ)/∂θ

∣∣∣ =
∣∣∣∑n

p=1 pbpeipλ
∣∣∣ ∣∣∣∑n

p=1 bpeipλ
∣∣∣ (1 + op (1)

)
, which

by summation by parts is O
(
λ−d0

(
λ−1 ∑n

p=1

∣∣pbp − (p + 1) bp+1
∣∣+ nd0

))
.

Then, because by Robinson (1995a),
∫ 2λj

0

∣∣D (
λ− λj

)∣∣ dλ = O (log j) and

|λD (λ)| < K , we conclude that (5.5) is Op

(
max

(
jd0−1 + j−1

)
λ

−2d0
j log j

)
.

Finally, the contribution due to
∫ 1/2λj
−1/2λj

into (5.4) is bounded by

O

(
n

j2

){∫ 1/2λ1

0
+
∫ 1/2λj

1/2λ1

}
h θ̂nn (λ) dλ+ Op

(
λ

−2d0
j

j

)
= Op

(
λ

−2d0
j

j

)

by Lemma 1, because
∫ 1/2λj

1/2λ1
h θ̂n

(λ) dλ = Op

(
λ

1−2d̂n
j

)
and n2d̂n−2d0 − 1 =

op (1). This completes the proof of part (i).
The proof of part (ii) proceeds similarly, and thus it is omitted. n

LEMMA 5. Assuming A1−A3, as n → ∞, for 1 ≤ r < s ≤ ñ, k = 1, . . . , p,

E
∗
∣∣∣∣∣ s

∑
j=r

ζ
(k)
j υ∗

j

(
υ∗

j − w∗
ε∗ j

)∣∣∣∣∣
2

= Op

(
log2 (n)

s

∑
j=r

{
log (n)

j1−d0
+

s

∑
�=r

(
log2 (n)

�2−2d0
+ �d0−1/2

j1−d0

)})
.
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Proof. The proof follows in the same way as that of expression (4.8) of
Robinson (1995b, pp. 1648–1651), using Robinson’s Lemma 3 but using our
Lemma 4 instead of Theorems 1 and 2 of Robinson (1995a) where appropriate.
Notice that the proof of Lemma 4 indicates that the terms Op (ς ( j)) are uni-
formly in j in the sense that the maximum in j of the left side normalized by
ς ( j) is Op (1) . n

Define

�∗ζ
n (λ) := 1

ñ1/2

�ñλ/π	
∑
j=1

ζ̂j

(
Iε∗ j − σ̂ 2

n

2π

)
,

�̃∗ζ
n (λ) := 1

ñ1/2

�ñλ/π	
∑
j=1

ζ̂j

(
Ix∗ j

h θ̂nn

(
λj
) − σ̂ 2

n

2π

)
.

LEMMA 6. Under A1–A3, for some 0 < δ < 1/6, E∗ supλ∈[0,π ]

∥∥∥�̃∗ζ
n (λ)

−�∗ζ
n (λ)

∥∥∥ = Op
(
n−δ).

Proof. The proof proceeds in the same way as that of Lemma 4 of DHV, and
thus it is omitted. n

For μ, λ ∈ [0, π ], let ĉs (μ, λ) = 2
nñ1/2 ∑�ñλ/π	

p=�ñμ/π	+1 ζ̂p cos
(
sλp

)
and

ϒg (μ, λ) = π−1 ∫ λ
μ g (v) dv .

LEMMA 7. For 0 ≤ μ < λ ≤ υ ≤ π , as n → ∞,

n−1

∑
t=1

n−t

∑
s=1

ĉs (μ, λ) ĉ′
s (μ, υ) = (

ϒζζ ′ (μ, λ)−ϒζ (μ, λ)ϒ
′
ζ (μ, υ)

) (
1 + op (1)

)
.

Proof. We omit the proof as it proceeds in the same way as that of Lemma 5
of DHV. n

Let us introduce the following notation. For 0 ≤ λ1 < λ2 ≤ π ,

E∗
1,n (λ1, λ2) :=

(
1

ñ

�ñλ2/π	
∑

p=�ñλ1/π	+1

ζ̂p

)(
ñ1/2

n

n

∑
t=1

(
ε∗2

t − σ̂ 2
n

))
, (5.6)

E∗
2,n (λ1, λ2) :=

n

∑
t=2

ε∗
t

t−1

∑
s=1

ε∗
s ĉt−s (λ1, λ2) , (5.7)

and Hn (λ1, λ2) denotes a generic sequence of Op (1) random variables.

LEMMA 8. Let 0 ≤ λ1 < λ < λ2 ≤ π . Then, assuming A1–A3, for
k = 1, . . . , p and some β > 0 and 0 ≤ δ < 1,
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E
∗
(∣∣∣E∗(k)

j,n (λ1, λ)
∣∣∣β ∣∣∣E∗(k)

j,n (λ, λ2)
∣∣∣β) = Hn (λ1, λ2) (λ2 − λ1)

2−δ ,

j = 1, 2. (5.8)

Proof. We begin with j = 1. By Lemma 3 and because we can take ñ−1 ≤
(λ2 − λ1),∣∣∣∣∣1

ñ

�ñλ2/π	
∑

p=�ñλ1/π	+1

ζ̂ (k)p − 1

π

∫ λ2

λ1

ζ (k) (ν) dν

∣∣∣∣∣ = Hn (λ1, λ2) (λ2 − λ1)
1−δ/2

because
∣∣∫ μ
λ (∂/∂θ)ζ

(k) (ν) dν
∣∣ ≤ K |λ− μ|1−δ/2. Next, because by standard

arguments we have that

E
∗ 1

n

n

∑
t=1

ε∗�
t = 1

n

n

∑
t=1

ε̂�t
P→ Eε�t , (5.9)

for � ≤ 4, we can conclude that E∗ (∑n
t=1

(
ε∗2

t − σ̂ 2
n

))2 = Op (n). So, using
that (λ2 − λ) (λ− λ1) ≤ (λ2 − λ1)

2 and then the Cauchy–Schwarz inequality,

E
∗
(∣∣∣E∗(k)

1,n (λ1, λ)
∣∣∣ ∣∣∣E∗(k)

1,n (λ, λ2)
∣∣∣) = Hn (λ1, λ2) (λ2 − λ1)

2−δ .
To complete the proof, we examine that (5.8) holds for j = 2. Now

E
∗ (E∗(k)

2,n (λ1, λ2)
)4 = 16

4

∏
j−1

∑
1≤sj<tj ≤n

ĉ(k)tj −sj
(λ1, λ2)E

∗ (ε∗
t1ε

∗
s1
. . . ε∗

t4ε
∗
s4

)
.

Because the number of equal indexes in the set {t1, s1, . . . , t4, s4} does not exceed
4, it follows that

∣∣E∗ (ε∗
t1ε

∗
s1
. . . ε∗

t4ε
∗
s4

)∣∣ = Op (1) by (5.9). Also,
∣∣E∗ (ε∗

t1ε
∗
s1
. . .

ε∗
t4ε

∗
s4

)∣∣ �= 0 can only hold if any tj , sj are repeated in {t1, s1, . . . , t4, s4} at least
twice. Hence by the Cauchy–Schwarz inequality, the left side of the last displayed
equality is

Hn (λ1, λ2)
4

∏
j=1

(
∑

1≤sj<tj ≤n

(
ĉ(k)tj −sj

(λ1, λ2)
)2
)1/2

= Hn (λ1, λ2) (λ2 − λ1)
2−δ

by Lemma 7 and
∣∣∣∫ λ2
λ1

(
ζ (k) (ν)

)2
dν
∣∣∣ ≤ K (λ2 − λ1)

1−δ/2. We now conclude the

proof by choosing β = 2 in (5.8) and the Cauchy–Schwarz inequality. n

Let R(1)∗
n (λ) = 2π

ñ1/2 ∑�ñλ/π	
j=1 ζ̂jj

∗
p , R(2)∗

n (λ) = 2π
ñ1/2 ∑ñ

j=�ñλ/π	+1 ζ̂jj
∗
p ,

where

j∗
p = Iε∗ p − σ̂ 2

n

2π
. (5.10)

LEMMA 9. Assume A1–A3. Then, for some 0 ≤ δ < 1 and β > 0, we have
that for all 0 < λ1 < λ < λ2 ≤ π and j = 1, 2,
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(i) E
∗
(∥∥∥R( j)∗

n (λ2)− R( j)∗
n (λ)

∥∥∥β ∥∥∥R( j)∗
n (λ)− R( j)∗

n (λ1)
∥∥∥β)

= Hn (λ1, λ2) (λ2 − λ1)
2−δ . (5.11)

(ii) R( j)∗
n (λ)

d∗→ N (
0, 4π2σ 4V ( j) (λ)

)
in probability, (5.11)

where V (1) (λ) = ϒζζ ′ (0, λ) + κεϒζ (0, λ)ϒ ′
ζ (0, λ), V (2) (λ) = ϒζζ ′ (λ, π) +

κεϒζ (λ, π)ϒ
′
ζ (λ, π) . . . κε is the fourth cumulant of εt .

Proof. We begin with (i). The proof follows directly from Lemma 8 after
we notice that R(2)∗

n (λ) − R(2)∗
n (λ2) = E∗

1,n (λ, λ2) + E∗
2,n (λ, λ2). Regarding

part (ii), the proof proceeds very similarly to that of Propositions 6.4 and 6.5 of
Hidalgo and Kreiss (2006), and thus it is omitted. n

LEMMA 10. Under A1–A3, for some δ > 0,

E
∗ sup
λ∈[0,π ]

∥∥∥∥∥ 1

ñ1/2

�ñλ/π	
∑
j=1

ζ̂j

(
Ix∗ j

h θ̂n j

− Ix∗ j

h θ̂nn

(
λj
))∥∥∥∥∥ = Op

(
n−δ) .

Proof. By standard algebra, the left side is bounded by

E
∗ sup
λ∈[0,π ]

∥∥∥∥∥ 1

ñ1/2

�ñλ/π	
∑
j=1

ζ̂jξθ̂n j

(
Ix∗ j

h θ̂nn

(
λj
) − Iε∗ j

)∥∥∥∥∥
+E∗ sup

λ∈[0,π ]

∥∥∥∥∥ 1

ñ1/2

�ñλ/π	
∑
j=1

ζ̂jξθ̂n j

(
Iε∗ j − σ̂ 2

n

2π

)∥∥∥∥∥+ σ̂ 2
n

2π
sup

λ∈[0,π ]

∥∥∥∥∥ 1

ñ1/2

�ñλ/π	
∑
j=1

ζ̂jξθ̂n j

∥∥∥∥∥,

where ξθ j = h−1
θ j

(
hθn

(
λj
)− hθ j

)
. The first term of the last displayed expression

is Op
(
n−δ) by Lemma 6 as ζ̂jξθ̂n j satisfies the same conditions of ζ , whereas the

second term is Op
(
n−δ) by Lemma 9 and because Lemma 1 implies that

h θ̂nn

(
λj
)− h θ̂n

(
λj
) = Op

(
λ

−2d0
j j d0−1

)
(5.12)

as nd̂n−d0 − 1 = op (1) and that for ARFIMA models K −1λ−2d
j < hθ j < Kλ−2d

j .
The latter will also imply that the third term of the last displayed expression is

bounded by K σ̂ 2
n ñ−1/2 ∑ñ

j=1

∥∥∥ζ̂j j d0−1
∥∥∥ = Op

(
nd0−1/2

)
using (5.9) and Lemma

3. Now choose 2d0 − 1 = 2δ to conclude as d0 <
1
2 . n

Define

#∗
j = Ix∗ j

h θ̂∗
n j

− Iε∗ j , j = 1, ..., ñ. (5.13)

LEMMA 11. Assume A1–A3. Then, uniformly in λ ∈ [0, π ], for some 0<δ< 1
2 ,
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2π

ñ1/2

�ñλ/π	
∑
j=1

ζ̂j#
∗
j = −

(
σ̂ 2

n

ñ

�ñλ/π	
∑
j=1

ζ̂jφ
′
θ̂n j

)
ñ1/2

(
θ̂∗

n − θ̂n

)
+ Op∗

(
n−δ) . (5.14)

Proof. The left side of (5.14) is

2π

ñ1/2

�ñλ/π	
∑
j=1

ζ̂j
Ix∗ j

h θ̂n j

[
h θ̂n j

h θ̂∗
n j

− 1 + φ′
θ̂n j

(
θ̂∗

n − θ̂n

)]

+ 2π

ñ1/2

�ñλ/π	
∑
j=1

ζ̂j

(
Ix∗ j

h θ̂nn

(
λj
) − Iε∗ j

)
(5.15)

+ 2π

ñ1/2

�ñλ/π	
∑
j=1

ζ̂jξθ̂n j

Ix∗ j

h θ̂nn

(
λj
) − 2π

ñ1/2

�ñλ/π	
∑
j=1

ζ̂jφ
′
θ̂n j

Ix∗ j

h θ̂n j

(
θ̂∗

n − θ̂n

)
with ξθ j as defined in the proof of Lemma 10.

First, A3 implies that, uniformly in λ ∈ [0, π ], the norm of the first term of
(5.15) is bounded by

K ñ1/2
∥∥∥θ̂∗

n − θ̂n

∥∥∥2 1

ñ

�ñλ/π	
∑
j=1

∣∣∣log2 λj

∣∣∣ ∥∥∥ζ̂j

∥∥∥ Ix∗ j

h θ̂n j

= Op∗
(
n−δ) , (5.16)

because by Proposition 1, θ̂∗
n − θ̂n = Op∗

(
n−1/2

)
, and hence we can take ı =

K n−1/2 in A3 so that λ−ı
j < K , and also because by Markov’s inequality and

Lemmas 6, 9, and 10,

sup
λ∈[0,π ]

∣∣∣∣∣1

ñ

�ñλ/π	
∑
j=1

∣∣∣log2 λj

∣∣∣ ∥∥∥ζ̂j

∥∥∥( Ix∗ j

h θ̂n j

− σ̂ 2
n

2π

)∣∣∣∣∣ = Op∗
(
n−δ) .

Notice that ζ (λ) log2 λ satisfies the same properties as ζ (λ).
The second term of (5.15) is Op∗

(
n−δ) by Lemma 6 and Markov’s inequality,

whereas Lemmas 6 and 9 imply that the third term is

σ̂ 2
n

ñ1/2

�ñλ/π	
∑
j=1

ζ̂jξθ̂n j + Op∗
(

n−δ/2
)

= Op∗
(
n−δ)

using (5.9) and (5.12). Next, proceeding similarly as in (5.16), because ζ̂ (λ)
φ′
θ̂n
(λ) satisfies the same conditions of ζ̂ (λ) |log λ|, the last term of (5.15) is the

first term on the right of (5.14) plus Op∗
(
n−δ) by Lemmas 6, 9, and 10. This

concludes the proof of the lemma. n

LEMMA 12. Assuming A1–A3, for any 0 ≤ υ < (1 − δ) /4, with 0 ≤ δ < 1,
we have that for all k = 1, . . . , p,

E
∗
(
E∗(k)

1,n (λ1, π)

(π − λ1)
υ − E

∗(k)
1,n (λ2, π)

(π − λ2)
υ

)2

= Hn (λ1, λ2) (λ2 − λ1)
2−δ−2υ , (5.17)
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E
∗
(
E∗(k)

2,n (λ1, π)

(π − λ1)
υ − E

∗(k)
2,n (λ2, π)

(π − λ2)
υ

)4

= Hn (λ1, λ2) (λ2 − λ1)
2−δ−4υ (5.18)

for all 0 < λ1 < λ2 < π and where E∗(k)
1,n (λ1, λ2) and E∗(k)

2,n (λ1, λ2) are given in
(5.6) and (5.7), respectively.

Proof. The proof proceeds in the same way as that of Lemma 9 of DHV, but
instead of using their Lemmas 6 and 7, we use Lemmas 8 and 9. n

In what follows we shall abbreviate γ ′
θq A−1

θn (q) by �θn (q) and recall the nota-
tion introduced in (5.10) and (5.13).

LEMMA 13. Assuming A1–A3, for all ε > 0,

lim
λ0→π

lim
n→∞ Pr ∗

{
sup

λ0≤λ≤π

∣∣∣∣∣1

ñ

�nλ/π	
∑

k=�nλ0/π	+1

�θ̂nn (k)

ñ1/2

ñ

∑
j=k+1

γθ̂n j

(
#∗

j + j∗
j

)∣∣∣∣∣ > ε

}
= 0.

(5.19)

Proof. Take λ0 > π/2 without loss of generality. First we observe that

sup
λ0≤λ≤π

∣∣∣∣∣1

ñ

�nλ/π	
∑

k=�nλ0/π	+1

�θ̂nn (k)

ñ1/2

ñ

∑
j=k+1

γθ̂n j

(
#∗

j + j∗
j

)∣∣∣∣∣ (5.20)

≤ K

ñ

n

∑
k=�nλ0/π	+1

∥∥∥�θ̂nn (k)
∥∥∥(1 − k

ñ

)δ/2

×

⎧⎪⎨⎪⎩ sup
�nλ0/π	≤k≤n

∥∥∥∥∥∥∥
(

1− k
ñ

)−δ/2

ñ1/2

ñ

∑
j=k+1

γθ̂n j#
∗
j

∥∥∥∥∥∥∥
+ sup

�nλ0/π	≤k≤n

∥∥∥∥∥∥∥
(

1− k
ñ

)−δ/2

ñ1/2

ñ

∑
j=k+1

γθ̂n jj
∗
j

∥∥∥∥∥∥∥
⎫⎪⎬⎪⎭ ,

for any 0 < δ < 1. The first factor on the right of (5.20) is bounded by

K

∣∣∣∣∣1

ñ

n

∑
k=�nλ0/π	+1

∥∥∥γθ̂nk

∥∥∥(1 − k

ñ

) δ
2 −1

∣∣∣∣∣ = Op

(
|π − λ0| δ2

)
,

using that∥∥∥A−1
θ̂nn

(k)
∥∥∥ ≤ K

(
1 − k

ñ

)−1

, (5.21)
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because
∥∥Aθ0 (λ)

∥∥ ≥ K −1 (π − λ) by A3 and Lemma 3 imply that

sup�nλ0/π	≤k≤n

∥∥∥Aθ̂nn (k)− Aθ0

(⌊
kπ/ñ

⌋)∥∥∥ = Op
(
n−1/2

)
.

Next, by Lemma 12, the second term inside the braces on the right of (5.20) is
Op (1) for δ > 0 small enough, whereas Lemma 11 and Proposition 1 imply that
the first term is bounded by

Op

⎛⎝ sup
�nλ0/π	≤k≤n

⎧⎨⎩
∥∥∥∥∥∥
(
1 − k

ñ

)−δ/2

ñ

ñ

∑
j=k+1

γθ̂n jφ
′
θ̂n j

∥∥∥∥∥∥+
(
1 − k

ñ

)−δ/2

nδ

⎫⎬⎭
⎞⎠

= Op

(
|π − λ0|δ/2

)
because n−1 ≤ ñ−1 ≤ inf�nλ0/π	≤k≤n

(
1 − k/ñ

)
and 0 < δ < 1 and because of

an obvious extension of Lemma 3 with ζ̂ (λ) = γθ̂n
(λ) φ′

θ̂n
(λ) there. So, (5.20) is

Op∗
(|π − λ0|δ/2

)
, which implies that (5.19) holds true because δ > 0. n

LEMMA 14. Assuming A1–A3,

sup
λ∈[0,π ]

∥∥∥∥∥∥ 1

ñ1/2

ñ

∑
j=�ñλ/π	+1

(
φθ̂∗

n j − φθ̂n j

)(
#∗

j + j∗
j

)∥∥∥∥∥∥ = Op∗
(

log n

n1/2

)
. (5.22)

Proof. The expression inside the norm on the left of (5.22) is

1

ñ1/2

ñ

∑
j=�ñλ/π	+1

∂

∂θ
φθ̂n j#

∗
j

(
θ̂∗

n − θ̂n

)
+ 1

ñ1/2

ñ

∑
j=�ñλ/π	+1

∂

∂θ
φθ̂n jj

∗
j

(
θ̂∗

n − θ̂n

)

+ 1

ñ1/2

ñ

∑
j=�ñλ/π	+1

(
φθ̂∗

n j − φθ̂n j − ∂

∂θ
φθ̂n j

(
θ̂∗

n − θ̂n

))(
#∗

j + j∗
j

)
. (5.23)

By A3 and then noting that |a − b| ≤ (a − b) + 2b for a > 0 and b > 0, the
norm of the third term of (5.23) is bounded by

K

∥∥∥θ̂∗
n − θ̂n

∥∥∥2

ñ1/2

{
ñ

∑
j=1

∣∣log
(
λj
)∣∣ (#∗

j + j∗
j

)
+ σ̂ 2

n

π

ñ

∑
j=1

∣∣log λj
∣∣} = Op∗

(
log n

n1/2

)

by Proposition 1 and then using Lemmas 11 and 9 with ζ̂ (λ) = |log λ|, and
Lemma 3, respectively. So, uniformly in λ the third term of (5.23) is op∗ (1).
Likewise, the first term of (5.23) is Op∗

(
n−1/2

)
uniformly in λ using Lemma 11

with ζ̂ (λ) = (∂/∂θ)φθ̂n
(λ) there and Proposition 1. Observe that (∂/∂θ)φθ̂n

(λ)
satisfies the same conditions of ζ (λ) in Lemma 10 by A3. Finally, the second
term of (5.23) is Op∗

(
n−1/2

)
by Lemma 9 with ζ̂ (λ) = (∂/∂θ)φθ̂n

(λ) there. n

28



LEMMA 15. Assuming A1−A3, for all ε > 0,

lim
λ0→π

lim
n→∞ Pr ∗

{
sup

λ0≤λ≤π

∣∣∣∣∣1

ñ

�nλ/π	
∑

k=�nλ0/π	+1

�θ̂∗
n n (k)

ñ1/2

ñ

∑
j=k+1

γθ̂∗
n j

(
#∗

j + j∗
j

)∣∣∣∣∣ > ε

}
= 0.

(5.24)

Proof. Notice that Proposition 1 implies that it suffices to show (5.24) in the set{∥∥∥θ̂∗
n − θ̂n

∥∥∥ < K n−1/2m−1
n

}
, where mn + m−1

n n−1/2 → 0. On the other hand,

Lemma 11 implies that, uniformly in k,

1

ñ1/2

ñ

∑
j=k+1

γθ̂∗
n j#

∗
j =

(
σ̂ 2

n

ñ

ñ

∑
j=k+1

γθ̂n jφ
′
θ̂n j

)
ñ1/2

(
θ̂n − θ̂∗

n

)
+ Op∗

(
n−δ/2

)
,

1

ñ1/2

ñ

∑
j=k+1

γθ̂∗
n jj

∗
j = 1

ñ1/2

ñ

∑
j=k+1

γθ̂n jj
∗
j + Op∗

(
n−δ/2

)
(5.25)

proceeding as in the proof of (5.22) but with #∗
j +j∗

j replaced by j∗
j there. Observe

that we can take λ0 > π/2. Next, uniformly in k, A3 implies that

sup
�nλ0/π	≤k≤n

∥∥∥Aθ̂∗
n n (k)− Aθ̂nn (k)

∥∥∥ = (π − λ0) Op∗
(∥∥∥θ̂∗

n − θ̂n

∥∥∥),
which together with (5.21) implies that

∥∥∥A−1
θ̂∗

n n
(k)

∥∥∥ = Op

((
1 − k

ñ

)−1
)

.

So, we have that for some 0 < δ < 1
2 ,

sup
λ0≤λ≤π

∥∥∥∥∥1

ñ

�nλ/π	
∑

k=�nλ0/π	+1

�θ̂∗
n n (k)

ñ1/2

ñ

∑
j=k+1

γθ̂∗
n j

(
#∗

j + j∗
j

)∥∥∥∥∥ (5.26)

= Op∗ (1) sup
λ0≤λ≤π

∣∣∣∣∣1

ñ

�nλ/π	
∑

k=�nλ0/π	+1

∥∥∥γθ̂nk

∥∥∥(1 − k

ñ

)−1+δ/2
∣∣∣∣∣

×
{

sup
�nλ0/π	≤k≤n

∥∥∥∥∥
(

1 − k

ñ

)−δ/2 1

ñ1/2

ñ

∑
j=k+1

γθ̂n jj
∗
j

∥∥∥∥∥+ Op∗
(
|π − λ0|δ/2

)}
by (5.25) and because n−1 ≤ ñ−1 ≤ inf�nλ0/π	≤k≤n

(
1 − k/ñ

)
. But Lemma 12

implies that sup�nλ0/π	≤k≤n

∥∥∥(1 − k/ñ
)−δ/2

ñ−1/2 ∑ñ
j=k+1 γθ̂n jj

∗
j

∥∥∥ = Op∗ (1),

and Lemma 3 implies that

sup
λ0≤λ≤π

1

ñ

�nλ/π	
∑

k=�nλ0/π	+1

∥∥∥γθ̂nk

∥∥∥(1 − k

ñ

)−1+(δ/2)

= Op

(
|π − λ0|δ/2

)
,

and hence the left side of (5.26) is Op
(|π − λ0|δ/2

)
. Now, we conclude that

(5.24) holds true because δ > 0. n
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6. PROOFS

6.1. Proof of Proposition 1. The proof of part (i) follows by Lemma 6. Next
part (ii). First we notice that ∑ñ

j=1 φθ̂n j = O (log n) by Lemma 3 because∫ π
0 φθ (λ) dλ = 0 for all θ and A3 implies that φθ̂n

(λ) satisfies the same con-

ditions of ζ̂ (λ) in Lemma 3. So, ∑ñ
j=1 φθ̂n j Iε∗ j = ∑ñ

j=1 φθ̂n j

(
Iε∗ j − σ̂ 2

n /2π
)

+ op∗
(
ñ1/2

)
. From here we conclude the proof using Lemma 9. �

6.2. Proof of Theorem 1. From Lemma 11, we have that

F∗
θ̂∗

n n
(λ) = 2π

ñ

�ñλ/π	
∑
j=1

Iε∗ j −
(
σ̂ 2

n

ñ

�ñλ/π	
∑
j=1

φ′
θ̂n j

)(
θ̂∗

n − θ̂n

)
+ op∗ (1) .

On the other hand, because 2π ∑ñ
j=1 Iε∗ j = ∑n

t=1 ε
∗2
t = ∑n

t=1 ε̂
2
t + Op∗

(
n1/2

)
us-

ing (5.9) and because by Lemma 3, ∑[ñλ/π]
j=1 φθ̂n j = Op (log n), standard algebra

implies that

α∗
θ̂∗

n n
(λ) = 2π

σ̂ 2
n ñ1/2

�ñλ/π	
∑
j=1

j∗
j −

(
σ̂ 2

n

ñ

�ñλ/π	
∑
j=1

φ′
θ̂n j

)
ñ1/2

(
θ̂∗

n − θ̂n

)
+ op∗ (1) .

The proof now follows by Proposition 1 and Lemma 9 after we observe that

ñ1/2
(
θ̂∗

n − θ̂n

)
=
(

1

ñ

ñ

∑
j=1

φθ̂n jφ
′
θ̂n j

)−1
1

ñ1/2

ñ

∑
j=1

φ′
θ̂n j

j∗
j + op∗ (1) ,

where 0 < ñ−1 ∑ñ
j=1 φθ̂n jφ

′
θ̂n j

= Op (1) and (5.9) and Lemma 3 imply, re-

spectively, σ̂ 2
n →P σ 2 and ñ−1 ∑[ñλ/π]

j=1 φθ̂n j →P π−1 ∫ λ
0 φθ0 (v) dv under H0

and →P π−1 ∫ λ
0 φθ1 (v) dv under H1. �

6.3. Proof of Theorem 2. We shall only consider H0 in the proofs. For H1,
we just replace θ0 by θ1 in the expressions and in A2 and A3. The proof is done
in two steps. Step (a) shows that, in probability,

α̌∗
θ̂nn

(λ) = 2π

F∗
n (π)

1

ñ1/2

�nλ/π	
∑
j=1

{
Iε∗ j − γ ′

θ̂n j
b∗

n ( j)
}

d∗⇒ 1

π1/2 Bπ (λ) ,

where b∗
n ( j) = A−1

θ̂nn
( j) ñ−1 ∑ñ

k= j+1 γ
′
θ̂nk

Iε∗k , whereas step (b) will show that

sup
λ∈[0,π ]

∣∣∣α̂∗
θ̂∗

n n
(λ)− α̌∗

θ̂nn
(λ)

∣∣∣ = op∗ (1) .
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We begin with step (a). Using F∗
n (π) = σ̂ 2

n + op∗ (1) and recalling that
�θn ( j) = γ ′

θ j A−1
θn ( j), we obtain that uniformly in λ ∈ [0, π ],

α̌∗
θ̂nn

(λ) = 2π

σ̂ 2
n

1

ñ1/2

�nλ/π	
∑
j=1

j∗
j − 2π

σ̂ 2
n
$̂∗

n (λ)+ op∗ (1) , (6.1)

where $̂∗
n (λ) = ñ−1 ∑�nλ/π	

j=1 �θ̂nn ( j)
(

1
ñ1/2 ∑ñ

k= j+1 γθ̂nkj
∗
k

)
.

Suppose, to be shown later, that the convergence in [0, λ0] holds true for any
0 < λ0 < π . Then, because B (·) and the limit of the process ñ−1/2 ∑�nλ/π	

j=1 j∗
j

are continuous in [0, π ], Theorem 4.2 of Billingsley (1968) implies that it suffices
to show that for all ε > 0,

lim
λ0→π

lim
n→∞ Pr ∗

{
sup

λ0≤λ≤π

∣∣∣∣∣1

ñ

�nλ/π	
∑

j=�nλ0/π	+1

�θ̂nn ( j)

ñ1/2

ñ

∑
k= j+1

γθ̂nkj
∗
k

∣∣∣∣∣ > ε

}
= 0.

But the latter holds true by Lemma 13; cf. the second term on the right of (5.20).
So, to complete the proof of step (a) we need to show that, for any 0 <

λ0 < π , the first term on the right of (6.1) converges in bootstrap distribution
to π−1/2 B (λ) in [0, λ0] in probability. Fidi’s convergence follows by Lemma 9
part (ii) after we note that

$̂∗
n (λ) = 1

ñ1/2

ñ

∑
k=1

(
1

ñ

k∧�nλ/π	
∑
j=1

�θ̂nn ( j)

)
γθ̂nkj

∗
k

and
(

ñ−1 ∑k∧�nλ/π	
j=1 �θ̂nn ( j)

)
γθ̂nk satisfies the same conditions of Lemma 9 for

ζ̂ (λ). Then, we are left to prove tightness. Because ñ−1/2 ∑�nλ/π	
j=1 j∗

j is tight by

Lemma 8 (see also Lemma 9(i)), all we need to show is that $̂∗
n (λ) is tight.

By Theorem 15.6 of Billingsley (1968), it suffices to show that

E
∗ (∣∣∣$̂∗

n (ϑ)− $̂∗
n (μ)

∣∣∣ ∣∣∣$̂∗
n (λ)− $̂∗

n (ϑ)
∣∣∣) = Hn (λ, μ) |λ− μ|2δ

for all 0 ≤ μ < ϑ < λ ≤ π and some δ > 1
2 . Observe that we can take ñ−1 <

|λ− μ| because otherwise the last equality is trivial. Because (λ− ϑ) (ϑ − μ) <
(λ− μ)2, by the Cauchy–Schwarz inequality, it suffices to show that the last dis-

played equality holds for E∗
∣∣∣$̂∗

n (λ)− $̂∗
n (μ)

∣∣∣2 which is

1

ñ3

�nλ/π	
∑

j,k=�nμ/π	+1
�θ̂nn ( j)

{
ñ

∑
�1= j+1
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∑
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)}�′
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= Op (1)
1

ñ2
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∥∥∥
= Op (1)

(∥∥∥�̃ (λ, μ)
∥∥∥2 + |λ− μ|2δ

)
,
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where �̃ (λ, μ) :=π−1 ∫ λ
μ �θ0 (ν) dν and

∥∥∥ñ−1 ∑�nλ/π	
j=1+�nμ/π	 �θ̂nn ( j)−

�̃ (λ, μ)
∥∥∥ = Op

(|λ− μ|δ) by Lemma 3 for some δ > 1
2 . From here we conclude

the proof of part (a) by Theorem 15.6 of Billingsley (1968), because �̃ (λ, 0)

is a monotonic, continuous, and nondecreasing function such that
∣∣∣�̃ (λ, 0)−

�̃ (μ, 0)
∣∣∣ = |λ− μ|δ .

To show step (b), by definitions of α̂∗
θ̂∗

n n
(λ) and α̌∗

θ̂nn
(λ), it suffices to show that

∣∣∣∣∣ 1

ñ1/2
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{
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k − �θ̂nn (k)
1

ñ

ñ

∑
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γθ̂n j#
∗
j

}∣∣∣∣∣ (6.2)

and

1
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n n (π)

(
1

ñ
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∑
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�θ̂nn (k)
1

ñ1/2
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(
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2π
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− 1
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ñ
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1
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ñ
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γθ̂∗
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(
Ix∗ j
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n j

−
Fθ̂∗

n n (π)

2π

))
(6.3)

are op∗ (1) uniformly in λ ∈ [0, π ]. Indeed, expression (6.2) is op∗ (1) uniformly
in λ ∈ [0, π ] by Lemma 11 and because

φ′
θ̂nk

− �θ̂nn (k) ñ−1
ñ

∑
j=k+1

γθ̂n jφθ̂n j = 0.

Next we examine (6.3). Because by Lemma 11 and proceeding as in the proof
of Theorem 1, Fθ̂∗

n n (π)− σ̂ 2
n = Op∗

(
n−1/2

)
, it suffices to show that

1
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−
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(
#∗
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)}
(6.4)

converges to zero uniformly in λ ∈ [0, π ], after observing that for all λ ∈ [0, π ],

�nλ/π	
∑
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{
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ñ
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}
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First, we observe that Lemmas 11 and 13 imply that it suffices to show the
uniform convergence in λ ∈ [0, λ0] for any λ0 < π . But (6.4) is equal to

1

ñ

�nλ/π	
∑
k=1

�θ̂∗
n n (k)

1

ñ1/2

ñ

∑
j=k+1

(
γθ̂n j − γθ̂∗
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)(
#∗
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)
, (6.5)

+ 1

ñ

�nλ/π	
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(
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n n (k)
) 1

ñ1/2

ñ

∑
j=k+1

γθ̂n j

(
#∗

j + j∗
j

)
. (6.6)

So, the theorem follows if (6.5) and (6.6) are op∗(1) uniformly in λ ∈ [0, λ0].
To that end, we first observe that proceeding as in DHV but using Lemma 3

instead of their Lemma 1, we have that

sup
λ∈[0,π ]

1

ñ

�nλ/π	
∑
j=1

∥∥∥φθ̂n j − φθ̂∗
n j

∥∥∥= op∗ (1) , (6.7)

sup
λ∈[0,λ0]

∥∥∥A−1
θ̂nn

(λ)− A−1
θ̂n

(λ)
∥∥∥= op (1) , (6.8)

sup
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∥∥∥A−1
θ̂∗

n n
(λ)− A−1

θ̂nn
(λ)

∥∥∥= op∗ (1) . (6.9)

Next, uniformly in λ ∈ [0, λ0], (6.5) is op(1) by Lemma 14 and using (6.7)–

(6.9) after observing that
(
γ ′
θ̂n j

− γ ′
θ̂

∗
n j

)
=

(
0, φ′

θ̂n j
− φ′

θ̂
∗
n j

)
. Next that (6.6)

is also op(1), uniformly in λ ∈ [0, λ0], follows by (6.7) and (6.9) and because

supλ∈[0,π ]

∣∣∣ñ−1/2 ∑ñ
j=[ñλ/π]+1 γθ̂n j

(
#∗

j + j∗
j

)∣∣∣ = Op∗ (1) by Lemmas 7 and 8

with ζ̂ (λ) = γθ̂n
(λ) there and observing the results in Proposition 1. Also, recall

that, by Lemma 3, ñ−1 ∑ñ
j=[ñλ/π]+1γθ̂n jφ

′
θ̂n j

→ P
∫ π
λ γθ0 (ν) φ

′
θ0
(ν) dν. �
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