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This paper proposes bootstrap assisted specification tests for the autoregressive frac-
tionally integrated moving average model based on the Bartlett 7)-process with
estimated parameters whose limiting distribution under the null depends on the esti-
mated model and the estimation method employed. The computation of the asymp-
totic critical values is not easy if at all possible under these circumstances. To
circumvent this problem Delgado, Hidalgo, and Velasco (2005, Annals of Statistics
33,2568-2609) proposed an asymptotically pivotal transformation of the 7),-process
with estimated parameters. The aim of this paper is twofold. First, to examine alter-
native methods based on bootstrap algorithms for estimating the distribution of the
test under the null, showing its validity. And second, to study the finite-sample per-
formance of the different alternative procedures via Monte Carlo simulation.

1. INTRODUCTION

A parametric time series linear process is correctly specified when the correspond-
ing innovations of the model are uncorrelated. In this context, Bartlett (1954)
introduced two alternative omnibus tests based on estimates of the spectral dis-
tribution function. One of these alternatives was based on functionals of the U,-
process, which compares the empirical spectral distribution function with that
obtained under the restricted null hypothesis. This procedure resembles the stan-
dard empirical process when testing the correct specification of a particular prob-
ability distribution function. The second alternative is based on the T),-process,
which is a standardized estimator of the spectral distribution function of the inno-
vations of the model under consideration. Unlike the U,-process, the T),-process
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converges in distribution to the standard Brownian bridge under a simple null
without unknown parameters. See, for instance, Anderson (1993). However, when
the model depends on a set of unknown parameters, the 7),-process has a limiting
distribution that depends on the true parameter values and also on the estimation
method employed. One consequence of the latter is that the implementation of
the test is difficult if at all possible. To circumvent this drawback, two alternative
procedures are discussed and examined in the literature. One of them is based on
bootstrap methods, whereas a second one is based on a martingale transformation
of the T),-process in a spirit similar to Khmaladze (1981).

Among the bootstrap methods, Chen and Romano (1999) proposed approxi-
mating the distribution of the test statistics based on the Uj,-process with esti-
mated parameters using a resample of the residuals. On the other hand, extending
an idea of Hidalgo (2003), Hidalgo and Kreiss (2006) proposed a bootstrap test
for the T),-process using a wild resample specifically designed for this problem.
Hidalgo and Kreiss (2006) pointed out that, when we allow for long memory
dependence, the T),-process becomes more suitable than the U,-process for spec-
ification testing.

Delgado, Hidalgo, and Velasco (2005) (DHV henceforth), rather than using
bootstrap assisted tests, proposed an asymptotically distribution-free transforma-
tion of the T),-process, which entails isolating the martingale component of the
process. One advantage of the latter method is that the resulting test has a known
and tabulated asymptotic distribution function. The transformation resembles in
spirit the cumulative sum (CUSUM) process based on recursive least squares
residuals for testing stability of the parameters in a linear regression model, as
proposed by Brown, Durbin, and Evans (1975).

The aim of this paper is twofold. On the one hand, we present and examine
alternative bootstrap tests, showing their validity for both the T),-process and
its martingale transformation. Following ideas in Hall (1992) and applying the
asymptotic expansions for the asymptotic pivotal statistics, as in Gotze (1979,
1984), we should expect some size accuracy gains when applying the bootstrap
methods to the statistics based on the transformed 7),-process. And second, be-
cause several (bootstrap) methods are available to perform valid tests for the null
hypothesis, the question of practical interest is which alternative method performs
better in finite samples. We explore the latter issue by means of a Monte Carlo
experiment.

In addition, we compare the performance of the T),-process against the Box—
Pierce statistic (Box and Pierce, 1970), which is based on the sum of the first
m squared sample autocorrelations of the residuals. This is a particular case of
the portmanteau tests considered by Hong (1996). The latter proposes a weighted
sum of all the squared sample autocorrelations of the residuals, where the weights
can be identified by a kernel function with bandwidth parameter of order m~!.
In fact, the Box—Pierce statistic corresponds to the choice of the uniform kernel
in Hong’s approach. When m diverges with n at a suitable rate, the statistic is
asymptotically distribution free and is able to detect alternatives converging to



the null at the rate m"*/n'2. However, whereas a relatively large m is required
to obtain a good accuracy level for the test (typically m ~ n'/? is considered a
good choice), it is also the case that for a good power performance m needs to
be chosen relatively smaller. This is in contrast with the tests put forward in this
paper, which are able to detect alternatives at the parametric rate n~ /% without
resorting to the choice of a bandwidth or a kernel function.

The reminder of the paper is organized as follows. In the next section, we intro-
duce the basic notation and the testing problem, and we describe the test based on
the T),-process and its asymptotically distribution-free transformation. Section 3
describes the bootstrap tests under two alternative resampling schemes, and it jus-
tifies their validity for the 7,-process and its martingale transformation. Section 4
presents a Monte Carlo experiment to shed some light on the performance of
the different approaches to test for the null hypothesis. Section 5 gives a series of
lemmas that are employed to prove the main results of Section 3 in the last section
of the paper.

2. TIME SERIES SPECIFICATION TESTS BASED ON THE
T,-PROCESS

Let f be the spectral density function of a covariance stationary time series pro-
cess {x;};e7 with mean u and covariance function given by the relation

T
Cov(x,,xo)z/ f (A)cos (A1) d4; t=0,%1,42,....
—T

We assume that {x;},c7 admits a Wold representation in terms of a transfer func-
tion A (z) = X2, ajz’. Thatis,

xr=u+AL)é&, 1 €Z, 2.1

for some sequence {g;},.z satisfying E (¢,) = 0 and E (¢0&;) = 021 (r = 0), 1 (")
denoting the indicator function, and where L is the lag operator. Under (2.1) and
denoting i (1) = ’A(e““) 2, f () can be factorized as

0.2
f)y=-—=h), 4 € [0, z].
2w

Statistical inferences on {x;};c7 are usually based on a parametric specifica-
tion of A (2), Ay (z). Among practitioners, the most popular specification is the
fractional autoregressive moving average (ARFIMA) model, where

1 /
M@= 8@y, 0= (v'.d.9"), 22)

with E (z; v, 9) = (I);1 (z) ¥y (z) and where ¥, (z) and @, (z) are, respec-
tively, the moving average and autoregressive polynomials. The dimensionality



of the parameters y and ¢ is, respectively, p1 and p», whereas d € (—%, %) is

known as the long memory parameter. In addition, we shall assume that the pa-
rameters y and ¢ are such that ¥, (z) and @, (z) have no common roots and they
are all lying outside the unit circle. From (2.2) we have that zg(1) = |Ag(e'?)|?
becomes

2
1

|1 —eii‘zd

¥y (eM)

s @, ()

, Ael0,x].

Denote by C = {Ay : 6 € ®} the family of stationary and invertible ARFIMA
transfer functions in (2.2), where ® C R” denotes the parameter space. We are
interested in testing the hypothesis

Hy: AeC

with the alternative hypothesis, H|, being the negation of the null. That is, we
are interested in omnibus tests capable of detecting nonparametric alternatives,
in the sense that it might not be possible to describe them by a finite number of
parameters. It is worth mentioning that, although we shall explicitly focus on the
ARFIMA model, this is only the case for notational simplicity and because of
its ubiquity in applications. The ARFIMA model was examined by Granger and
Joyeux (1980) and Hosking (1981) as a compromise between the stationary au-
toregressive moving average (ARMA) and the nonstationary autoregressive inte-
grated moving average models, offering greater flexibility to model the long-run
dependence by means of a sole extra parameter. Although most economic time
series are nonstationary and do require differencing of some sort, it is not neces-
sarily true that after taking first differences, the correct specification of the time
series is an ARMA model. In fact, for instance, Robinson (1994b) advocated the
use of the Bloomfield (1973) exponential model to describe short-run dynamics.
However the latter type of models, which are specified in the frequency domain,
require some modification of our bootstrap algorithms; see Section 3 for a ref-
erence and some comments. In addition, models that may exhibit long-memory
dependence are naturally justified in economics when aggregating cross-sectional
observations to construct macro time series (see, e.g2., Robinson, 1978; Granger,
1980). For some overviews of the long-memory literature, see, for instance, Beran
(1998) or Robinson (1994a).

We can alternatively write Hp in terms of the spectral density function of
{eor} ez, Where

eor =0y (L) (i —p), 1€l
That is, we can write H as

FO)
hey ) 21 4 el0, 7l

0 -



for some Oy = (w(’), do, q)(/))/ € 0. As usual, a subscript 0 in a parameter indicates
its true value. Notice that f (1) /hg (1) is the spectral density function of {eg;},c7,
and, under Ho, eg,r = &;.

The estimator of the spectral distribution function of {g;};c7,

f (%)
hy (1)

forms the basis for testing Hy. For a generic sequence {v;};_;, let us denote its
periodogram by

dz, 2 el0,x],

Fg(,a)zz/(f

I, (2) := |w, (’1)|27

where w, (1) = Qzn)~'/? py e’ is the discrete Fourier transform of the
sequence. Then, for a given record of data {x,};_,, we estimate Fy by Fy , where

én is a n!/2-consistent estimator of 6y and
2 /zl § ().

Fon() ==Y "(’), Ael0, ],
nooi=1 e (%)

with 1; = 2xj/n being the Fourier frequencies. Herewith, 7 = [n/2] with |z]
being the integer part of z. A natural candidate to estimate the parameters 6y is
the Whittle estimator defined as

A

6, = arg }}éié‘ Fy, (1), 2.3)

which, under Assumptions A1-A3 stated in Section 3, is known to be nl/2.
consistent. See, for instance, Velasco and Robinson (2000), among others. Set
N ~ ~ /
6, = (1//,/1, d,, (/3;1) . Notice that under Hy, 002 = Fy, (r) = mingep Fy (7), and
so we define 62 = Fy , (@).

We now define the Bartlett’s T),-process as %j where

- Fo, (1) A
_ 172 4 _ =
agn (A) =n [Fen ) n], 2 el0,x].

Notice that the empirical process ag;, is a random function with realizations in the
functional space D [0, 7 ]. For a definition see, for instance, Billingsley (1968).
Under the null hypothesis and Assumptions A1-A3, DHV showed that

G B = g 2) =7 (0 = 00) g0, 2) + 0, (1, 24)

where the term o), (1) is uniform in 4 € [0, 7 | and

b0 (3) = < 1oghy ().



Contrary to agy, ag , does not converge in distribution to the standard
Brownian bridge on [0, n] In fact, as was shown by DHYV, @, converges to
a Gaussian process whose covariance structure depends on the model under the
null hypothesis and the specific method employed to estimate the parameters 6.
More specifically, DHV showed that, under Hy and suitable regularity conditions,
ap,, converges to agyco, Where

e () £ 8'0) = (2785 () a2) 27" @) [0 ()" (@)
Ae [0, ],
where 4 means equal distributions,
1 /4 NN =
S0 ()=~ /0 ¢o (1) ¢ (7) d2, 2.5)

and B! is the standard Brownian bridge in [0, 7 ].
Notice that, under Hy, the Whittle estimator 8, in (2.3) satisfies the linear
expansion

, b
Oy =0 — 22" 4o, (n_l/z), (2.6)
9 n

where 0,, denotes, henceforth, the sample mean of any generic sequence {v;};",
and

o — (z b0 (1) % w)) S

=

with ug (2;) = I (4;) / ho (%;). Hence, a; , can be asymptotically represented
as a CUSUM of least squares residuals. Indeed combining (2.4) and (2.6), under
the null hypothesis Hy and Assumptions A1-A3 given in Section 3, DHV showed
that the 7),-process satisfies the expansion

| i) ) / ]
S D)= G2 Z {(way (47) = digyi) = Doy (d0 () = bavi) }
+op (1)
| lid/a] /
- igyii'/? P (ugy (45) = copnvo (45)) +0p (1), 2.7)

uniformly in 4 € [0, ], where y9 (4;) = (1, ¢} (4 ))/ and

con = (aons by,) = (07 — VpuPois Vpn)’



are the least squares coefficients of the projection of {ug (/lj)}ﬁ

j=1 on
{70(4;) };_,- Observe that
1 lid/m]
agyn (A) = i > (ua, (47) — itgyn) + 0p(1)
Honn j=]
as Fyp, (r) = 2mug;. It is also worth mentioning that in the first equality of

(2.7), we have employed the fact that ¢g; = o (1) because JZ. ¢ (A)di =0and
Lemma I in DHV.

From here, and following ideas of Brown et al. (1975), it is expected that the
corresponding CUSUM of recursive residuals will be asymptotically distribution
free. In our context, the CUSUM of (forward) recursive residuals is given by
&énn (1), where

1 [nl/x]
Gon (1) = 7175 > (uo (A7) = v4 (45) é0 (). 2.8)

j=1
withi =7 — p— 1,
TP
G ()= A5, ()= 3 v0Q)us (o),
=it

and

n

A (D=7 3 30 ()7 ().

r=j+1

assuming that Ag,, (77) is nonsingular. In fact, DHV showed that a a, , converges
in distribution to the standard Brownian motion in [0, 7 ], denoted by B.

The transformed process “enn in (2.8) is related to the martingale transfor-
mation of the standard empirical process with estimated parameters proposed
by Khmaladze (1981), which has been subsequently extended to other specifi-
cation testing problems by Koul and Stute (1999), Koenker and Xiao (2002), and
Delgado and Stute (2008) among others.

We have then that the test statistics are functionals of the T),-process ay , or its

transformation &9nn' Given a continuous functional on D [0, 7], : D[0, 7] —
R™, we have that under Hy, (aénﬂ) —an (0(9000) and that » (&énn) —4 1 (B).
The most popular functionals are the Kolmogorov—Smirnov 7 (g) = sup;c(o ]
|g (1)] and the Cramér-von Mises 5 (g) = 7! Iy g (1)? d 4. However, as the
critical values of 7 (agooo) are difficult to tabulate, if at all possible, an alterna-
tive approach to the martingale transformation—based tests 7 (& 9nn) entails using
bootstrap assisted algorithms. This is the topic of the next section.



BOOTSTRAP TESTS

The purpose of this section is to provide and justify a bootstrap method for esti-
mating the finite-sample distributions of 5 (aé n) and 7 (&é n) The motivation
to bootstrap the asymptotically pivotal statistic is that, as in many other problems,

we can expect that bootstrap methods improve the level of accuracy of the test
when they are compared to tests based on the asymptotic critical values. Now

consider, for example, &, = 75 (aénn) and let G, be the asymptotic probability

distribution function of &,. Denote by & the bootstrap analogue of &, and denote
its bootstrap (conditional) distribution function given the sample X, = {x;}}_,
by G;,. We say that the bootstrap is valid if the resampling method employed to
compute &, satisfies that, under Hy,

G5 G 3.1)

at each continuity point of G. Then it is said that & converges in distribution
in probability to a random variable £, with probability distribution function G «,

.. . d* . - . .
and it is written as &, — ¢ (in probability). See Giné and Zinn (1990) for some
discussion. Moreover, the bootstrap test will be consistent if the bootstrapped
p-value converges to zero under the alternative; that is, under Hj,

G:(E) S 1. (3.2)

The resampling method must guarantee that (3.1) and (3.2) are satisfied, which is
sometimes referred to as that the bootstrap test is valid to test Hy in the direction
of Hj.

We now describe the bootstrap algorithm. To that end, we denote the coeffi-
cients in the series expansion of (1 — z)~% by

I'(j+d)

VO TarGn

ji=0,1,...,

where I' (+) is the gamma function.

Step 1. Compute
r—1 R
b= X by (=d)ximjs t=1n
j=0
Then, with the initial conditions & = & = 0 for t < 0, compute

P1 P2
& =8 — 2 @né’ét—f - Z l//nqg‘t—q-
=1 g=1



Step 2. For some m large enough, let {e;‘ }?Lm be a random sample of size
n + m from the empirical distribution function of {Et }:l: |» Where e =& —
n=!3"_ &, and compute

Pl P2
é;k:gf+z¢nfé:_f+2§”nq€:_q, t=1,...,n+m,
=1 q=1

with initial conditions & = ¢; = 0 for ¢ < 0. Next, compute
-1 A

Fo=E+ Y b (d,,)é;‘_j, t=1,....,n+m.
j=1

Then our bootstrap sample is X} = {ff+m}?:1 = {x,*}:zzl.

Remark 1. Notice that we could generate more or less bootstrapped residuals,
but at least n. However, it seems convenient to initialize the sample using some
additional observations, as it is expected that the effect of the initial conditions
on {5?,* }”+m would not be relevant after choosing m large enough. This is in a

t=m+1
spirit similar to when the practitioner simulates an AR(1) model.

Denote by Fy;, the bootstrap analogue of Fp,; that is,

(==Y

j=l ho (’lj) ’

Step 3. Compute the bootstrap analogue of the Whittle estimate (2.3) as

2 AR ()
i « (%) Jelo,rl. (3.3)
n

= -1
N H 1< / 1 0 *
0r =0, — (il; s, (1) ¢, (z,-)) &72@%"" (). (34

Then, we compute the bootstrap test as 77, = 7 (a;‘*n), where

Fon )5

af, W) =a? | — - 2|,
Fé;n(”) T

din Ael0,x].

Remark 2. We can replace our estimator é,f in (3.4) by

0* = argmin F}, ().
0e®

However, we have preferred to employ (3.4) for computational simplicity; see
Shao and Tu (1995, pp. 228, 336).



Remark 3. Because E[e,*| X,] = 0 and E[e,*z‘ x| = 62, we have that
E [xt*| X,] = 0, and the (conditional on X},) spectral density function of {x; };’:1
is

A2
n

Jon (B) i= 5=hy (A, (3.5)

2 n

where hon (A) = |S}_ be (d) €' yz =2 (A; w, @) for 1 € [0, 7).

The foregoing bootstrap differs from others in similar problems. In particular it
differs from the wild bootstrap proposed by Hidalgo (2003) and improved in our
context by Hidalgo and Kreiss (2006). Hidalgo and Kreiss considered a naive re-

n

sample {x,T }121 from the empirical distribution function of {x;};'_,. Then, using

o LiA/x] hé” (/Ij)

)y L (%)

£, () = o
4911() = hg (/Ij) X

7

instead of F, (4) given in (3.3), the bootstrap analogue of # (a@m) is given by

n|at |, where
Oxn

B

0(? (/1):771/2 e - 1> /16[0571-]7
0 x
@ w

with

G* = argmin F}, ()
0e®

or the analogue of (3.4); that is,

The major difference with the bootstrap in steps 1-3 is that in the former we
are able to approximate the transfer function A (ei ’1), and therefore higher order
moments, whereas with the Hidalgo and Kreiss (2006) bootstrap we only approx-
imate its modulus, that is, | A (e“) |.

Let us introduce our regularity conditions.

A1. The innovation process {¢;};c7 satisfies that E (el’ ] .7-',_1) = u, with u,
constant (1«1 = 0 and u» = 002) forr =1,...,4andallt =0, %1, ..., where
Fi is the sigma algebra generated by {&;, s < }.

10



A2. Ag,n () is nonsingular for all n large enough.

It is convenient for future reference to observe that the ARFIMA model satisfies
Assumptions A2, A3, and A6 of DHV. That is,

. h is a positive and continuously differentiable function on (0, 7 |;

. lologh(2) /oAl = O (A7) as 2 — 0+;

. ¢g,(4) is a continuously differentiable function on (0, 7 ;

. ||8¢90 ) /81” = O (1/2) as A = 0+; and for some 0 < ¢ < 1 and all
A € (0, 7], there exists a K < oo such that

5. supyg.o—aoli<iy 190 (DIl < K [log 4] ;

- 1 hoy (3)
0:10-60l<i/2) 10 — 0ol | he (2)

SN =

K
< 7 log2 R

1+ ¢p, () (0 = o)

and

6. Xy, := Zg, (m) given in (2.5) is positive definite.
7. Forsome 0 <1 < 1 andall 2 € (0, ], there exists a constant K < oo such
that
sup b (2) = oy () =~y (1) (0 — )| < K llog
P E— 0 — b, - <., Po — 00 =
0:10-60l1<1) 16 — 601> ! 00" "™

and ¢y (1) /00 satisfies 3-5.

All these properties will be denoted as Assumption A3 in what follows. Denote
by Op+, 0p+, and E* the usual stochastic orders of magnitude and expectation,
respectively, referred to as the bootstrap law given A}, Pr*.

PROPOSITION 1. Assuming that AI-A3 hold true, under Hy, or under Hj
but assuming that ii'/? (én - 91) = 0, (1) for some 0; € © and that A2 and A3
hold with 6y replaced by 61, we have that

_ -1 .
12 (e _p 1< / 2r
(i) n (0” _0”) —\i Z¢9n (47) & (4) <212 Z¢é,, (4;)
n j=1 n O-nn =
I+ (47) + 0pe (1),
(i) /2 (é,j —én> =0, (1).
Proof. The proof of this and other results will be given in Section 6. |

The following theorem provides the consistency of the bootstrap test given in
steps 1-3.

THEOREM 1. If AI-A3 hold, we have that, under H,

5

ap, = Ogoo in probability,
n

11



and under Hy, assuming that al/2 (9,, — 01) = 0, (1) for some 0, € © and that
A2 and A3 hold with 0y replaced by 0,

*

d* . .
%y, > Gfoo in probability.
n

We now have the following corollary.

COROLLARY 1. Let 5 be a continuous mapping in R*. Under the conditions
of Theorem I and H,

My =1 (a;f*n) 4 1 (agyoo)  in probability,
and under H;

Ak * dr . -
M, =1 (aé*n) -7 (ae,oo) in probability.

Proof. The proof of the corollary is standard by Theorem 1 and the continuous
mapping theorem, and thus it is omitted. |

Corollary 1 justifies the consistency of the bootstrap test as the previous corol-
lary indicates that under the alternative the power converges to one, that is,
Pr* {ﬁ,’; <n <aé n)} — 1, as the distribution of the bootstrap statistic con-

verges to that of (agloo) and 7 (aé,,n) diverges with n. However because of the

difficulty in computing the critical values of the bootstrap distribution, they are
approximated by Monte Carlo simulations as accurately as desired, as we now

P
describe. For that purpose, let {X,T © }[ be c resamples generated as step 2 and

{ *(0) }[ their corresponding bootstrap statistics as given in step 3. Then z;,,
where Pr* [17,, > zng] = ¢, is approximated by z,¢ defined from the relation

‘ 1 :
zzgzinf{ EZ (*“)zz)gg}.

We now describe the bootstrap for the transformation &;1 v which only differs
from that given in steps 1-3 in the last one. Indeed,
Steps 1 and 2. As before.
Step 3. Compute the bootstrap analog of the Whittle estimate (2.3) as in (3.4).
Then, we compute the bootstrap test as 77, = 7 (aA ) where

9*
A 1 (ni/x | -
W (D= e X (6 (5) =& Dy (), Aetonl,
n j=

12



with uj (1) = I (37) /o (45) and uj (1) = ' () o () being

the recursive residuals in the linear projection of {uj (}L])};1 on

=1
{ye (xlj) };.1:1. Recall that 2z ug; = Fy,, () so that the bootstrap analogue
becomes 2z uy; = Fy, (7).

THEOREM 2. Under the conditions of Proposition 1, under both Hy and H

&;f:n LB in probability.

Interestingly, unlike in Theorem 1, the limiting distribution under Hy and the
limiting distribution under H; are identical. Therefore, power comparisons of
resulting tests based on transformed and nontransformed spectral empirical
processes are even more involved. As with Theorem 1 we obtain the following
corollary.

COROLLARY 2. Let 5 be a continuous mapping in R*. Under the assump-
tions of Theorem 2, and both Hy and H1, we have that

n (&5*,1) L n(B)  in probability.

Proof. The proof of the corollary is standard by Theorem 2 and the continuous
mapping theorem. [ |

The results of Corollary 2 indicate that the conclusions obtained from Corol-
lary 1 apply to this bootstrap-based test also. For models defined in the frequency
domain, such as the Bloomfield (1973) exponential model, steps 1 and 2 are more
involved. Indeed, to implement the previous bootstrap, we need first to obtain the
coefficients of the AR (c0) representation of the Bloomfield (1973) model, which
in general have no closed form. So, to avoid this problem, we envisage two pro-
cedures. One is based on the use of the wild bootstrap, as we present in the next
section. A second method is the route followed by Hidalgo (2009).

4. MONTE CARLO EXPERIMENT

The purpose of this section is to examine and shed some light on the finite-sample
performance of the different alternatives or approaches discussed in previous sec-
tions to perform valid tests for the null hypothesis Hy. In addition, we are inter-
ested in examining whether bootstrap assisted tests for the transformed 7),-process
perform better in finite samples than those obtained using the asymptotic criti-
cal values. This is motivated from the belief that the bootstrap provides a better

approximation to the actual distribution/critical values of # (&é*n) than those ob-

tained from the asymptotic distribution of # (B). The latter comes from the obser-
vation that the distribution of # (B) is pivotal; see Hall (1992). Although a formal

13



proof of this statement could be obtained using arguments in Gotze (1979, 1984)
for second-order expansions of the Cramér—von Mises criterion, this is beyond
the scope of this paper.

In the Monte Carlo experiment, we have considered four alternative specifica-
tions: AR (1), MA (1), ARFIMA (0, d, 0), and ARFIMA (1, d, 0) using sample
sizes n = 100 and n = 500 and D = 50,000 Gaussian Monte Carlo samples.
However, to simplify and speed the computations, in this Monte Carlo experi-
ment we have approximated the distribution of G, using the Warp algorithm of
Giacomini, Politis, and White (2007). The Warp algorithm permits us to approx-
imate the Monte Carlo distribution of the bootstrap test generating only one ad-
ditional bootstrap replication for each Monte Carlo sample, X ;’(;), b=1,...,D.
Then the bootstrap critical values are obtained via the empirical distribution func-
tion of the D Monte Carlo samples employed in the experiment in the usual way.
The significance level employed has been o = 0.05.

As we mentioned at the end of the previous section, we shall also employ the
“wild bootstrap” approach defined as

1 lni/m]
’ ~
712 21 Ui — 7, (41) o, (’1./')) Vi,
]=

instead of a7 den’ where {V } is a sequence of zero mean independent identi-

cally distributed random Varlables with variance one and mutually independent of

{et)iez-
We only present the results for the Cramér—von Mises type statistics

1 l 2 A 2
Con =205, (%) and G, = 8, (A7),
as the performance for the Kolmogorov—Smirnov functional was very similar.

=1 J
More specifically, in the tables that follow we present the results for the following
test statistics:

S| =
ME:

1

. asymptotic test based on é ,» denoted Cp;

. naive bootstrap version of C denoted C o
. naive bootstrap version of C denoted Crs

. wild bootstrap version of C denoted C**
. Hidalgo—KTreiss bootstrap vers1on of C; ,» denoted C;*.

DN A W =

We also report results for the Ljung and Box (1978) test,
A2 .
m ps(J)
A gn
Qm,rzzn(n+2)2‘ & s
j=1 " —1J

based on critical values obtained from an asymptotic ;(31_ , distribution, where
P4 ,(J) is the jth residual sample autocorrelations, and its bootstrap analogue
n

14



Q;kn,n using the naive bootstrap procedure described in Section 3. We report the
proportion of rejections choosing m = n'/?, which is the common choice for the
asymptotic test, and both m = n'/? and m = 3 for the bootstrap version, the latter
being expected to perform much better in terms of power.

Tables 1 and 2 present the proportion of rejections under the null hypothe-
sis for sample sizes of n = 100 and n = 500, respectively. In the first three
blocks of these tables we consider single parameter models. The performance of
the popular Box—Ljung test depends very much on the choice of the smoothing
parameter m, and, as is well known, its size accuracy is appropriate when we
choose m = n'/? for any specification considered. Interestingly, the bootstrap
version of the Box—Ljung test does not perform much better than the asymp-
totic counterpart when m = n'/2. The accuracy level for the bootstrap tests
based on the transformed 7),-process is excellent using either the naive or wild
bootstrap methods, even for the smallest sample size with any model and
parameter combinations, such as MA(1) with 6y = 0.8. However, the wild boot-
strap performs slightly worse than the naive one. The latter confirms our com-
ment that as the wild bootstrap only approximates |A (1)| rather than A (1), as
the naive bootstrap does, then the finite-sample performance of the former may
be worse than that of the naive bootstrap tests. Also, it is interesting to observe
that the bootstrap assisted test for the transformed 7),-process shows better finite-
sample performance than that using the asymptotic critical values. This appears
to corroborate the comments made earlier with regard to bootstrapping pivotal
tests.

The second three blocks in Tables 1 and 2 consider the two parameter model
ARFIMA(1, d, 0) for all previous value combinations. For the smaller sample
size, n = 100, we observe that only the wild bootstrap is able to report good
size for all cases, whereas for n = 500 the naive bootstrap provides accurate size
for two parameter models only if applied to pivotal statistics. The Hidalgo—Kreiss
test produces similar results to the naive bootstrap test C,;, whereas the asymptotic
tests perform worse than their bootstrap counterparts.

We now investigate power properties for the previous tests. Tables 3 and 4 re-
port the proportion of rejections when testing two null specifications with data
generated according to the different models under the alternative. In particular
we test the null of an AR(1) model against MA(1) and I(d) data and the null
of MA(1) or I (d) model specifications against AR(1) data. We confirm the well-
known property of the Box—Ljung test exhibiting better power behavior in general
by choosing m small. The T),-process tests have better power in general, but the
differences among alternative versions are small, and no one is always superior
to the other. The most relevant information that we extract from these tables is
that there is not a clear advantage in terms of power by using the bootstrap al-
gorithm for the 7T),-process and its transformation. However, it appears that, in
general, both naive and wild bootstrap tests based on the transformation of the
T,-process have slightly less power than asymptotic tests, though the latter ones
tend to control the size less accurately.
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TABLE 1. Proportion of rejections under Hy, n = 100

% Chn C;: C; C;* C;* Q;,n Q:uz’n in/Z,n
AR (1)

—-0.8 5.29 5.14 3.39 4.65 4.47 4.01 4.33 5.27

—-0.5 5.70 5.14 3.25 4.63 4.26 4.59 4.57 4.82
0.0 7.24 5.03 3.93 5.00 4.26 5.05 4.77 4.57
0.5 9.30 5.10 4.55 5.41 4.43 5.02 4.86 4.77
0.8 11.66 5.17 4.68 5.27 4.44 4.75 4.68 4.70

MA (1)

—-0.8 4.73 4.75 2.27 3.96 4.61 3.94 4.25 6.75

—0.5 5.57 4.90 2.86 4.27 4.50 4.37 4.38 4.83
0.0 7.32 4.95 3.70 4.85 4.23 4.60 4.62 4.45
0.5 9.74 4.96 4.30 5.38 3.27 4.37 4.38 4.57
0.8 16.58 7.82 0.07 5.71 3.22 0.04 0.81 10.49

1(d)
0.0 8.41 4.86 3.59 4.67 2.84 4.84 4.86 4.83
0.2 8.38 4.93 3.62 4.66 2.81 4.80 4.80 4.82
0.4 8.46 5.05 3.65 4.73 2.81 4.77 4.82 4.77
ARFIMA (1, dy = 0.0, 0)

—-0.8 8.54 5.41 1.20 3.53 2.16 3.75 4.12 3.27

—-0.5 11.77 5.20 1.30 4.36 2.22 4.06 4.30 2.78
0.0 17.41 3.33 0.08 4.94 0.89 0.69 1.14 2.40
0.5 17.02 0.06 0.00 4.28 1.45 0.00 0.00 4.17
0.8 17.69 0.99 0.00 4.90 0.80 0.00 0.00 3.42

ARFIMA (1,dy = 0.2,0)

—-0.8 8.57 5.50 1.26 3.56 2.11 3.83 4.14 3.19
0.5 11.85 5.21 1.28 4.33 2.21 4.15 4.29 2.76
0.0 17.32 3.40 0.16 4.87 1.01 0.88 1.36 2.36
0.5 17.08 0.07 0.00 4.29 1.37 0.00 0.00 4.15
0.8 17.89 1.01 0.00 4.95 0.87 0.00 0.00 3.50

ARFIMA (1,dy = 0.4, 0)

—-0.8 8.60 5.49 1.27 3.71 2.08 3.77 4.09 3.10

—0.5 11.77 5.18 1.29 4.38 2.24 4.16 4.33 2.63
0.0 17.45 3.55 0.21 498 1.04 1.05 1.43 2.33
0.5 17.08 0.08 0.00 431 1.34 0.00 0.00 4.03
0.8 17.31 0.84 0.00 4.82 0.54 0.00 0.00 3.98

5. TECHNICAL LEMMAS

We shall first introduce some notation used in this and the next sections. We shall
denote (p (1) = ¢ (4;60) : (0,7] x ® — RP a function satisfying the same
conditions of ¢ in A3 and abbreviate (4, (4) by ¢ (4) and &, (A1) by ¢ (4). Also,



TABLE 2. Proportion of rejections under Hy, n = 500

bo C, Cy ¢, arooor 03, Qnp,  Quiry
AR (1)
—08 532 516 463 518 519 473 485 5.24
—05 543 516 467 511 513 5.10 4.99 5.11
00 546 499 487 496 4.84 5.20 5.04 5.08
05 592 507 508 516 504 5.26 5.10 5.17
08 642 511 505 525 507 5.09 5.04 522
MA (1)
—0.8 517 514 443 485 491 5.00 4.65 551
—05 537 514 460 500  4.99 5.01 481 5.08
00 549 492 478 503  4.86 5.06 483 5.07
05 596 513 509 526 492 5.07 478 483
08 645 504 498 503 536 4.99 474 5.14
1 (d)
00 581 509 474 497 435 5.20 493 5.25
02 581 513 477 501 424 5.16 4.94 493
04 585 514 473 513 432 5.23 5.20 5.20
ARFIMA (1, dy = 0.0, 0)
—08 584 527 360 473 403 4.82 453 3.49
—05 679 542 381 557 401 5.23 451 3.45
00 821 470 443 514 454 4.88 4.50 3.30
05 725 479 307 443 400 3.04 272 3.69
08 839 517 166 449 210 3.59 3.28 4.13
ARFIMA (1, dy = 0.2, 0)
—08 577 512 360 478  4.10 472 446 3.47
—05 679 544 366 562  3.96 5.23 448 3.42
00 819 489 437 533 452 473 453 3.25
05 723 475 299 447 381 3.12 2.72 3.73
08 858 544 148 447 148 3.60 3.22 4.20
ARFIMA (1, dy = 0.4, 0)
—08 58 515 385 470 408 487 443 3.45
—05 689 554 393 561  4.09 5.36 435 337
00 814 441 447 502 384 5.07 453 3.35
05 720 469 288 471 324 3.8 272 3.80
08 820 524 180 496 031 4.69 3.25 445

for a generic function g (1), we shall abbreviate g (/1 j) by g;. We shall abbreviate

by (do) and b, (c?n), respectively, by b, and 13,,. Finally, henceforth, z®) denotes
the kth element of a p x 1 vector z and K a finite positive constant.



TABLE 3. Proportion of rejections under Hy, n = 100

A (o Cy cy Cr Cr* ng,n Q:zl/z,n 0,112 p

Hy : AR (1) vs. H : MA (1)

—0.8 9956 9858 97.35  86.89  97.00  96.15 71.97 71.42

—-0.5  62.18  48.77 4945 3397 4799 44091 23.93 23.58
0.2 8.39 6.28 5.03 6.12 6.75 6.86 5.76 5.70
0.5 4345 3971 4138 3315 46.11 4523 24.35 25.05
0.8 86.07 8426 9342 6757 9225 95.62 70.56 71.73

Hy:MA (1) vs. Hy : AR(1)

—0.8 9992 99.79  99.68  98.86 99.50  99.77 98.72 98.92
05 66.13 5680 5495 5648 5129  50.25 30.60 30.07
0.2 8.52 6.59 431 6.19 5.78 4.93 4.68 4.59
0.5 4880 4650 4932 2783  55.65  44.88 27.35 27.85
08 99.10 99.09 9938 4121 99.62  99.51 97.92 98.18

Hy:1(d)vs. Hi : AR(1)

0.2 13.48 7.25 10.24 4.48 7.96 4.93 9.20 9.29
0.5 2283 13.79 2491 549 2099 2252 19.34 19.42
0.8 12.15 634  11.06 3.08 8.28  10.88 12.83 12.93
Hoy: AR (1) vs. Hy : I (d)
0.1 9.50 6.85 5.58 6.67 5.64 5.64 5.10 4.94
0.2 15.47 11.40 10.46 10.62 10.46 8.90 7.75 7.42
03 2339 1733 17.09 1595 17.09  13.77 12.09 11.80
04 3067 2290 2398 21.53 2398 17.54 15.59 15.35

LEMMA 1. Letd € (=4, 1). Then

2 2

1
=0 </11+dnl—d>

1
if 3 <A<,

n
b, (d) e'P*
p=0

(i)

o0 .
> by (d) P
p=0

Zzo(n“) if0 < A <%,11.

(ii) Z by (d) e'P*
p=0

Proof. We first show part (i). After standard algebra, the left side of the equality
in (1) is

f b, (d) e'P*

p=n+1

2
+ 2Re ( > by (d) e"ﬂ> <2 by (d) e—fﬂ> , (5.1

p=n+1 p=0

where Re (z) denotes the real part of a complex number z. Because ‘ZZ:O e'rt ‘ <

K2~ for 2 > 0, we obtain that by summation by parts, monotonicity of b, (d),



TABLE 4. Proportion of rejections under Hy, n = 500

b  Ca Ch G Grooar 03, Qhpn, Quny
Hy : AR (1) vs. Hi : MA (1)

—0.8 100 100 100 100 100 100 100 100

—05 9987  99.85  99.85 9959  99.61  99.61 8198  82.57

02 1329 12.29 13.43 12.40 12.14 12.14 6.73 7.14
0.5 98.67 98.64 99.77 97.95 97.95 99.63 82.64 83.39

0.8 100 100 100 100 100 100 100 100
Hy : MA (1) vs. Hy : AR (1)
—0.8 100 100 100 100 100 100 100 100

—-0.5 99.77 99.75 99.79 99.71 99.40 99.69 91.18 91.37
02 13.11 12.45 12.58 11.95 13.69 10.33 6.41 6.57
05 99.23 99.22 99.83 99.78 99.67 99.64 90.21 90.53
0.8 100 100 100 100 100 100 100 100

Hy:1(d)vs. H : AR(1)
0.2  40.00 37.29 58.32 29.50 54.03 4142 21.85 22.16

0.5 79.88 77.41 99.20 60.26 96.87 86.99 7.44 54.96
0.8 38091 35.54 83.55 22.65 81.03 48.18 54.77 5.23

Hy: AR (1) vs. Hy : I (d)
0.1 1841 17.28 20.04 16.23 20.01 17.49 12.42 12.60
0.2 53.83 51.88 60.72 45.17 59.21 54.19 45.05 45.21

03 84.11 82.94 87.93 71.64 86.68 81.55 78.31 78.58
04 9518 94.99 96.60 86.26 96.18 91.20 92.41 92.28

and because b, (d) = O (p?~"), the first term of (5.1) is bounded by
2

1 x 1
Kﬁ Z |b17 (d) = bp41 (d)| =0 (/12”2—211) :
p=n+1

Proceeding similarly, the second term of (5.1) is bounded in modulus by

1 1 1
0 (inl—d ) =0 (,12”2—2(1 + /11+dn1—d>

because
=) PR
N, by (d)e?”
p=n+1

n .
> b, (d) e
p=0

+

n
Y b, (d)e'P*| <
p=0

OO . By
Y by (d) P
p=0

and, by definition,

8]

b, (d)e?*| < K179
=0

p
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This concludes the proof of part (i).
Next we show part (ii). When d > 0 the proof is obvious because b, (d) =
O (p?~"). On the other hand, when d < 0, the proof follows using the last two

displayed inequalities. u
LEMMA 2. Assuming AI-A3,
2 2 P11 —2d, i
n n iA 0 iA do—1
) - ~ ool |1—e ‘ 10g|1—e | n
(i) p§1 bye'P*| — ]Z'l bpe'? =0, ( i +/11+d0
1
l'ff/ll <A<m,

n X 2 n N . 2 2 1

(i) | Y bpe?*| — | bye't*| =0, (ndo—l/z) if0 < A< 5,11,
p=1 p=1

where the orders of magnitude are uniformly in A.

Proof. We begin with part (i). By Lemma 1 and because the n!/?-consistency
of the Whittle estimator in (2.3) implies that n% =% — 1 = 0, (1), the left side of

the equality in (i) is

00 - 2 o© 2 ndo—l
Z bpelp 2 bpelp/L + Op m .
p=1 p=lI

Now the conclusion follows because the first and second terms of the last dis-
e")v |—2d

. . i71—2d '
played expression are, respectively, |1 — e”‘ % and ]1 - and because

the Whittle estimator is n!/2

-consistent. Part (ii) follows immediately proceed-
ing as in the proof of Lemma 1, after observing that ‘bp - Bp‘ = 0, (n7'?) b,
log p.

LEMMA 3. Let ¢y be such that for all 2 > 0and 0, ||o (W) ||+ (1) /00| <
K |logAl', € > 1, and |0¢y (1) /02N +]|6%¢o (1) /0004 < KA~! [log A1~ and
for some 0 <0 < 1,

2|k k 0 _(k -5
sup 110 =00l |5 () = ¢y () = =) () O = o) | < 27"
l6—boll<K /n!/?
Then, fork =1, ..., p,
1 lai/z ] ~ (k) 1 A (k) logfn 1
sup ||= G ——/ G W)dv||=0,| —— | + 0 ()
Ael0,z] || 1 JZ“I ! x Jo = "\ on " \nl2

) k
/A aég(o) )
X ——dv.
0 00
Proof. By Lemma 1 of DHYV, it suffices to show that

~ 1 N k
A/ ] NG ® 0 1 1 aCH(O) (v)d
p {d0-at|=0 oz [, ~—

S| =

sup
A€[0,7]
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But the latter holds true because ’4: i ¢ H((f]) (8/00")¢, g(fj) ( 90) =0 (n—l ,1?5)

and as in Lemma 1 of DHV, we conclude that 7! ZW/ ) 6C(k) /60
OoJ

—zl 7 (agg(’j) W) /ae) dv = 0 (n~"log’ n). -
Denote v* (1) = _1/2

(1) wy+ (), a the conjugate of the complex number a,

and ¢ (j) = min (J 1, jdo= 1) log j. Recall that w,« (4) is the discrete Fourier
transform of {x;}"_,.

LEMMA 4. Assume AI-A3.

(i) Fort <k <j<nwitht ' =o0(1),

&2
E* (0]77) = 251G =0 = 0, (s (), (52)

E* (vj vk> =0, (k).
(ii) For fixed positive integers k < j, E* (u]’." v,f) = 0, (¢ (k)).

Proof. We shall begin with part (i). We shall prove only the case j = k, because
the case j # k can be similarly handled. From the definition of h;; (/lj) in (3.5),

the left side of (5.2) is 6n2hgln (4j) times

/_7; (iyn @) =t () F (2= 25) d2, (5.3)

where F (1) = 2zn)~'|D (1) |> denotes the Fejer’s kernel, with D (1) =

=1
exp{it4}. So, it suffices to show that (5.3) is O, ( J-_Zdog (])) which proceeds

similarly as in Theorem 2 of Robinson (1995a). Indeed, we first notice that (5.3)
is

(L Ly Ly L)

x (g ) = by (23)) F (2= 25) d2.

Because F (1) < KA 72n~! forl > 0, Z (1; y, ¢) is twice continuously differ-
entiable, and Lemma 2 implies that hé,,n (A) = hgyn (1) (1 +op (1)), we obtain

that the contribution of { 04+ r } into (5.4) is bounded by

Kn™! /: (hogn (2) + hogn (45)) (1 + 0, (1)) d4 = O, (j—lllj—zdo)

proceeding as in Lemma 1 and Theorem 2, part (a), in Robinson (1995a).
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Next, because F (1) < KA™2n~! for 2 > 0, the contribution due to {f 1/24;

+ /1]-} into (5.4) is bounded by

L[ [V 5 =y
Kn {/_() +/M} ’hﬁn () = hy,,, (2 )‘ |2 = 4]
J

[ Y s 2,
= Kn {/_5 —i—/ﬂj}’hgo(i)—hgo( 12 =4

n2d0
+ 01’ j 24dy

by Lemmas 1 and 2, because Z (4; y, ¢) is twice continuously differentiable and
O, — 00 = 0p (n_l/z) implies that n% =% — 1 = 0p (1). Now proceed as with
the proof of Theorem 2 of Robinson (1995a) to conclude that the right side of the

last displayed equality is O, (/1]._2"0 jd0—1>. Next the contribution in (5.4) due to

[ 12//12,'/{j is bounded by

K sup
1/22;<A<24;

p
(’"”()‘/ 4= 4| F (= 2)) do. (5.5

But by (3.5) and because = (4; v, ¢) is twice continuously differentiable and
on (/20| = [S5_, pyeir?| |Sn_, byei?*| (14 0, (1)), which
by summation by parts is O (/l_do </1_1 Z;’,Zl ‘pbp -+ 1)bp+1‘ + nd°)>.
Then, because by Robinson (1995a), foy'j |D (2= 4j)|di = O (logj) and
|AD (A)| < K, we conclude that (5.5) is O, (max (jo=t+ ;71 /1;2010 log j).

Lemma 2,

Finally, the contribution due to f_l/j';’;] into (5.4) is bounded by

o /1 /22 1/24; b a0 /1;2d° , /1]_—2510
- +/ 5 + ; = ;
(12>{ 0 12, } dn (1) P\ P\

by Lemma 1, because fl/zxj hy (A)di = (/ljl-_Zd”) and n2di=2d0 _ | =
0p (1). This completes the proof of part (i).
The proof of part (ii) proceeds similarly, and thus it is omitted. u

LEMMA 5. Assuming Al—A3,asn — oo, for1 <r <s<n k=1,...,p,

$ 07 (57 o7,

1 5, (log? (o=l
=0, <log (n )Z{ O%(Z))_FZ‘ <(22g‘2(‘2)+ jimd >}>

E*
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Proof. The proof follows in the same way as that of expression (4.8) of
Robinson (1995b, pp. 1648-1651), using Robinson’s Lemma 3 but using our
Lemma 4 instead of Theorems 1 and 2 of Robinson (1995a) where appropriate.
Notice that the proof of Lemma 4 indicates that the terms O (¢ (j)) are uni-
formly in j in the sense that the maximum in j of the left side normalized by
¢ (j)is 0, (1). 0

Define

. | Lid/x) 52
* . . . n
0, ()= 12 z G\ Le#j — E ’

j=1
) 1 \nd/m) . Lov: 6.2
~%( R X7J n
O S U A )
" A2 S T\, () 27

LEMMA 6. Under A1-A3, for some 0 < ¢ < 1/6, E*sup,(o 4] 525 )

—ox* )| = 0, (1),

Proof. The proof proceeds in the same way as that of Lemma 4 of DHV, and
thus it is omitted. u

lid/x ]
p=lipu/m]+1

For pu, e [0,z] let & (u, ) = 5%
Yo (u, 1) =77 [} g (0)dv.

LEMMA 7. ForO<u <l <v <m, asn— oo,

5,, cos (s/lp) and

n—1n—t
t; Y:z‘] 65 (,u; /1) E: (,uy U) = (T{(’ (ﬂa j-) — Té- (/1, /1) Té (lu, 1))) (] +0p (1)) .

Proof. We omit the proof as it proceeds in the same way as that of Lemma 5
of DHV. |

Let us introduce the following notation. For0 < 1} < 1 < 7,

| lidyml S1/2 A
E (A1, Ao) = ( > o ol |l—X (e;*z — a,’f‘) , (5.6)
M p=lith /7 |+1 noo
n t—1
& n (i, da) = Y &f Y, eséi—ys (A1, 42), (5.7)

=2 s=1

and H, (11, A2) denotes a generic sequence of O, (1) random variables.

LEMMA 8. Let 0 < Ay < A < Ay < m. Then, assuming AI-A3, for
k=1,...,pandsome > 0and0 <o < 1,
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Proof. We begin with j = 1. By Lemma 3 and because we can take 1~! <

*(k) (1, i)‘

o s -
W (2, 22)| ) = Hy (41, 42) (2 = 20,
j=1,2 (5.8)

1 % .
&0 - — A £® Wy dv| = Hy (1, 42) (g = 21) =
1

1
n

p=lnl/m]+1

because |ff (©/00)¢® (v) dv’ < K|A-— ,ull_‘s/z. Next, because by standard
arguments we have that

Ol YETRILE S Y W (5.9)
t t te .
i ni

for £ < 4, we can conclude that E* (3, (&} — Ar%))z = Op (n). So, using
that (A2 — ) (A — A1) < (A2 — A1)? and then the Cauchy—Schwarz inequality,
£ (|61 G, 0| |19 G, 22)|) = By (1, 42) G = 212,

To complete the proof, we examine that (5.8) holds for j = 2. Now

4 4
* *k Ak * *
E (52,(,,>(21Jz>) =16]] 3 &%, i i) E (sl . efel,)

j—11<sj<ti<n

Because the number of equal indexes in the set {¢{, 51, ..., t4, s4} does not exceed
4, it follows that [E* (¢} ¢f, ... ¢ e5,)| = O, (1) by (5. 9) Also, |E* (e} er ...
8t4 Y4) | # 0 can only hold if any ¢#;, s; are repeated in {t1, 51, ..., f4, 54} at least

twice. Hence by the Cauchy—Schwarz inequality, the left side of the last displayed
equality is

1)2
2 .
H, ul,b)l‘[( Y (6, G ) ) = Hy (1, 22) (G — 21)27°

J=1 \I<sj<tj<n

by Lemma 7 and ’fflz (C(k) (V))2 dv‘ < K (2 — 21)'792. We now conclude the

proof by choosing f = 2 in (5.8) and the Cauchy—Schwarz inequality. |
1)* 2)%
Let Rr(l ) 1) = ~1/2 ZLM/H Cj]p’ ,S 4 1) = ~1/2 2" lid/m |+1 ijp’
where
A2
* Oy
Jp =Ierp — o (5.10)

LEMMA 9. Assume AI-A3. Then, for some 0 < 6 < 1 and f > 0, we have
that forall0 < 11 < A <Ay <mandj=1,2,
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) ) B . . B
0 E (HRS,”* (2) = R ||| RO () = R G| )
= Hy (A1, A2) (A — 21)*™°. (5.11)
(ii) R* (2) 5 N (0,47264VU) (1)) in probability, (5.11)

where VW () = Yy (0, 2) + 1. X (0, ) YL (0, 2), VO (A) = Y (4, ) +
ke Xr (A, 7) Téﬁ (A, ) ... K, is the fourth cumulant of &;.

Proof. We begin with (i). The proof follows directly from Lemma 8§ after
we notice that R\ (1) — RO (12) = &, (4, 42) + &, (A, 42). Regarding
part (ii), the proof proceeds very similarly to that of Propoéitions 6.4 and 6.5 of
Hidalgo and Kreiss (2006), and thus it is omitted. u

LEMMA 10. Under AI-A3, for some 6 > 0,

| /) Lej Ix*]
— —=_ =0, (n>"?.
il’2 jzl G h By (4 p ()

= 6,, n

E* sup
A€[0,7]

Proof. By standard algebra, the left side is bounded by

LI Lo
E*sup ||=— Gy | ——F—~ —
sefor] nl/2 jgll J=6, j hé,,n . I+ J
1 [7d/m] a' 1 lad/x]
+E* sup ||= (f + — sup ||= (f
Jef0,x] a2 2 =0nj S o 27“60,{] il/z 2 =00 ]

where &; = he_Jl (hgn (/1 ) — hy ,) The first term of the last displayed expression
is Op (n ( ) by Lemma 6 as (J 59 satisfies the same conditions of (", whereas the
second termis O (n ( ) by Lemma 9 and because Lemma 1 implies that

—2dy .dy—1
hgn (A7) = hg, (47) = Op (i 0j~ ) (5.12)
as nan —do _ | = op (1) and that for ARFIMA models K_l/lj_zd < hgj < K,Ij_Zd,

The latter will also imply that the third term of the last displayed expression is
bounded by K62~ /2 3 Héjjd(’—l H = 0, (n=1/2) using (5.9) and Lemma

3. Now choose 2dy — 1 = 26 to conclude as dy < % u
Define
o Lej g =17 (5.13)
){J _hé ‘ 5*]’ ]— s eeey N .
i J

LEMMA 11. Assume A1-A3. Then, uniformlyin A € [0, ], for some 0 <0 < %,
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L Y 12 (e _h -5
Gy, |72 (0r =) + 0p (n70). (5.14)
=

J

31‘:1\:

o WMEL,
=iz Z Gxp =—
J

j=1
Proof. The left side of (5.14) is

2 lid/z] ]x*j hénj . R
R EDINY — 1445, (0~ 0n)

j
=R LY
og Lid/T) Lo
Dl e Y (5.15)
a2 o hn (47)
2 Lﬁi/nJA‘ L) 0 LA/ ] Leej (0 »
+ﬁ1/2 2 ijénjm_;llﬂ J énjhA (Hn—9n>
Jj=1 Gun \""J j=1 Onj

with {y; as defined in the proof of Lemma 10.
First, A3 implies that, uniformly in 4 € [0, 7], the norm of the first term of
(5.15) is bounded by

~1/2 || H 5 1% 1 L 2 p IX*f J
Ki2||0; =0 = X frog? ] G| 3L = 0pr (n70). (5.16)
Jj=1 On j

because by Proposition 1, 8 — 0, = 0, (n~1/2), and hence we can take 1 =
Kn~'2 in A3 so that 17" < K, and also because by Markov’s inequality and
Lemmas 6, 9, and 10,

1 Lﬁ%’” s el (e 62 (%)
sup | log A‘H(H ——— || =0, (n"?).
jel0,x] | 2] T hy; 2@ :

Notice that ¢ (1) log? / satisfies the same properties as ¢ (1).
The second term of (5.15) is O+ (n™°) by Lemma 6 and Markov’s inequality,
whereas Lemmas 6 and 9 imply that the third term is
62 i/ ]

ﬁll;z 241 é\l]éénj + Op* (n_é/z) = Op* (n_a)
J=

using (5.9) and (5.12). Next, proceeding similarly as in (5.16), because f(l)
¢>(’9 (1) satisfies the same conditions of ¢ (4) |log 4], the last term of (5.15) is the

first term on the right of (5.14) plus O+ (n_é) by Lemmas 6, 9, and 10. This
concludes the proof of the lemma. |

LEMMA 12. Assuming AI-A3, forany 0 < v < (1 —0) /4, with0 < J < 1,
we have that forallk =1, ..., p,
*(k x(k
oo ((Ei G m) & Go,m)

(r —41)° (r —22)"

2
) = H, (A1, 42) (G2 — 21)* 70720, (5.17)
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. (85‘,55’ G1.m) & Ga,7)

— . \2—0—4v
(m—7)" (n—lz)”> = H, (41, 42) (A2 — A1) (5.18)

forall0 < A1 < Ay < @ and where &, ( ) (21, A2) and 5*( ) (A1, A2) are given in
(5.6) and (5.7), respectively.

Proof. The proof proceeds in the same way as that of Lemma 9 of DHYV, but
instead of using their Lemmas 6 and 7, we use Lemmas 8 and 9. u

In what follows we shall abbreviate y,, g Agnl (q) by 30, (g) and recall the nota-
tion introduced in (5.10) and (5.13).
> s} =0.

(5.19)

LEMMA 13. Assuming AI-A3, for all ¢ > 0,

1S, )

n
DY szénj(}‘/“rfj*)

lim lim Pr*{ sup
nk=imig/m)+1 j=k+1

Ap—>mTNn—>00 Jo<Ai<m

Proof. Take 19 > 7 /2 without loss of generality. First we observe that

ni/m) 0 n (k)

i
5172 Z Vej(” +f/)

U=

sup
Ao<A<m

(5.20)

M k=17l |+1

5 3 -5

k= wo/nH]
—5/2
(1— é) i
n *
7

X sup — 6. %
[ho/7 | <k<m nl/2 j=k+1 ni

(1 k) —0/2 N
+  sup — E v i}
Ao/ | <k<i Az T

b}

for any 0 < 0 < 1. The first factor on the right of (5.20) is bounded by

1 ] k 51 s
=Y HyénkH (1—~) ~ o0, (|7r—/10|2),
I k=i7do/m | +1 n

using that

HAé_nL (k)H <K <1 - ;)_1 , (5.21)

K
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because || Ag, (4)|| = K~! (z — 1) by A3 and Lemma 3 imply that
Ajyn ® = Agy (K /)| = 0p (2172,

Next, by Lemma 12, the second term inside the braces on the right of (5.20) is
O, (1) for 6 > 0 small enough, whereas Lemma 11 and Proposition 1 imply that
the first term is bounded by

SUP 740 /7 | <k<i

—5/2 = i\ —=0/2
(1-%) < (1-5)
o = > v5 8 |+
g Lﬁﬂo/s;ljpgkgﬁ n j=k+]3’0n1¢9n/ 19

= Op (|7l' - /1()'6/2>

because n=! < 77! < inf72 /7 | <k<n (1 - k/ﬁ) and 0 < 0 < 1 and because of
an obvious extension of Lemma 3 with g: L= 78, (A ¢é (1) there. So, (5.20) is

Op+ (Im — 4|%?), which implies that (5.19) holds true because > 0. |
LEMMA 14. Assuming AI-A3,

1 n N N logn
s =z 3 (0,-,) (5 +07) | =0 (h5). G2

Ael0.x] j=lar/x |+1

Proof. The expression inside the norm on the left of (5.22) is

1 i o | . . o
712 by —¢y 1 (O =) + = > — ¢ gF(0F =6
nl/2 =i |+1 00 Onj”J (ﬂ n) nl/zj:Lﬁ)'/”J_’_l 00 OnjlJ (n n)

1 i 5 o o

N (%f =005~ 5% (0 —9'1)> (4 +7) . 523

j=|ni/m |+1

By A3 and then noting that [a — b| < (a —b) + 2b fora > O and b > 0, the
norm of the third term of (5.23) is bounded by
o =0, (= ;
n — Un a N S logn
K—3 {Z‘IOg(’lj)‘(”j +/j)+7:2‘l°g’lj‘}zop* (nl/Z)

Jj=1 Jj=1

by Proposition 1 and then using Lemmas 11 and 9 with f(i) = |log 4|, and
Lemma 3, respectively. So, uniformly in A the third term of (5.23) is o0+ (1).
Likewise, the first term of (5.23) is O+ (n_l/ 2) uniformly in 4 using Lemma 11
with c_? 1) = (8/69)¢én (4) there and Proposition 1. Observe that (8/80)(;5&” 1)
satisfies the same conditions of ¢ (4) in Lemma 10 by A3. Finally, the second
term of (5.23) is Op+ (n~"/2) by Lemma 9 with  (2) = (6/00)¢;, (2) there. M
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LEMMA 15. Assuming AI—A3, for all ¢ > 0,

; 2 Ve* (”; +fj*>

1 S ()

N k=|7do/7 | +1 n /

Ag—mTNn— 00 Jo<i<m

lim lim Pr*{ sup

} o

(5.24)

Proof. Notice that Proposition 1 implies that it suffices to show (5.24) in the set
{ An < Kn_l/zm,jl}, where m, + m,, 1,=1/2 5 0. On the other hand,
Lemma 11 implies that, uniformly in &,

1 d A2 d ~1/2 /) * —0/2
a2 ;13’(9;]'%/ ( - Z Venf%nj) : (9 9")+0”* (” /)’
j=k+

j=

A
n

1 L % 1 L * —0/2
a2 %1])931]1 e %1 Y,/ T O (n / ) (5:25)
J= J=

proceeding as in the proof of (5.22) but with » ;‘ +J j* replaced by j* there. Observe
that we can take 19 > 7 /2. Next, uniformly in k, A3 implies that

Aoy 0) = Ag, (k)H = (m — Z0) Op* ( n )

which together with (5.21) implies that HAg}n (k)H =0, ((1 - é)”).

sup — 0,
[nho/m ] <k<n

So, we have that for some 0 < 0 < %,

1 [7d/x ] 30* (k) =

= Y Tz Z 70* (’“‘;4'11'*)
; |72

k= n}.()/l +1
n < ])
/“()</1<7r k= nlo/ﬂ +1

K921 & .,
* 72 /S7:—ljp<k<ﬁ <1 B ﬁ) ~1/2 Z Vg jjj + Op- (|7z' — 2ol é
0 SK=>

by (5.25) and because n=! < 77! < infz1,/x Jgkg(l — k/n). But Lemma 12
N\ —0/2 ~_ i "
(1= k/) a2 S vg,007]| = Or O,

sup
Ao<A<m

‘ (5.26)

Lnl/ﬂj
=0p+ (1) sup

implies that sup s, /7 <k <m
and Lemma 3 implies that

| i) o\ —1+6/2) in
Joiga M p_\miom |+1 n

and hence the left side of (5.26) is O, (|7r — Aol 2). Now, we conclude that
(5.24) holds true because 6 > 0. u
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6. PROOFS

6.1. Proof of Proposition 1. The proof of part (i) follows by Lemma 6. Next
part (ii). First we notice that Z}lzl qﬁé" i = O (logn) by Lemma 3 because
Jo @0 (A)di = 0 for all  and A3 implies that ¢én (4) satisfies the same con-

ditions of ¢ (1) in Lemma 3. So, 3/_, g, ;1) = )y g, (Ij — 6, /2%)
+ 0p+ (ﬁl/ 2). From here we conclude the proof using Lemma 9. |

6.2. Proof of Theorem 1. From Lemma 11, we have that

2” [nd/x] 6’2 [nA/m] .
T @=% X = (7 X 4, (7 = 00) +op (1)
j=1

On the other hand, because 27 2’?_ Iy =Y e =3 824 0p (n'/?) us

ing (5.9) and because by Lemma 3, >, [nl/”] gba i = = O (logn), standard algebra
implies that

2 [nd/x] A2 |nd/x] 12 (A .
= 2 (B0 )9 ) o

The proof now follows by Proposition 1 and Lemma 9 after we observe that

~ -1 ~
R R 1 n 1 n
~1/2 * *
it (0 =) = (ft Zl%nj‘/’éﬂi) FY) Z’l%njfj +op (1),
j= j=

where 0 < 7! Z]"Ll qﬁé j¢éj = 0, (1) and (5.9) and Lemma 3 imply, re-

spectively, a —p o?and ! Zj[m/n] (/5@"]. —p ! fo’l @y, (v) dv under Hy
and > p 7~ fo ¢, (v) dv under Hj. [ |

6.3. Proof of Theorem 2. We shall only consider Hy in the proofs. For Hj,
we just replace 6p by 6 in the expressions and in A2 and A3. The proof is done
in two steps. Step (a) shows that, in probability,

. _ el 4 1
Yo D= Fr oA looj = 7,5 D} S i Be (),

J=1

where b, (j) = AeTln (Ha! ZZZHI Vé klg*k, whereas step (b) will show that

sup |z, (1) =5 (D) =op (1).
A€[0,7] n
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We begin with step (a). Using F,; (r) = &,,2 + o0p+ (1) and recalling that
Son (J) = yéjAgnl (j), we obtain that uniformly in 4 € [0, 7],

- 2 1 WUEL o op
G B = 57717 ng i = gz @+ o (). ©.1)

A ~_ ni . n
where Ay (1) =i S5 S5 () (7t S va0)-

Suppose, to be shown later, that the convergence in [0, 4o] holds true for any
0 < Ao < 7. Then, because B (-) and the limit of the process 71~ !/2 Z}n:;'l/ﬂ jj*
are continuous in [0, 7 ], Theorem 4.2 of Billingsley (1968) implies that it suffices
to show that for all ¢ > 0,
> 8} =0.

But the latter holds true by Lemma 13; cf. the second term on the right of (5.20).

So, to complete the proof of step (a) we need to show that, for any 0 <
Ao < m, the first term on the right of (6.1) converges in bootstrap distribution
to 7 ~Y/2B () in [0, A¢] in probability. Fidi’s convergence follows by Lemma 9
part (ii) after we note that

. 1 n kA7)
An (i) = ﬁ«]/z Z ﬁ Z Sé,,n (J) yénk]k

k=1 j=1

T
- A 2 Tl
Jj=lnio/m |+1 k=j+1

lim lim Pr*{ sup

Ag—mTNn—>00 Jo<i<m

and (ﬁ_l Z;‘Q]W/ ™) Sénn (G )) Y,k satisfies the same conditions of Lemma 9 for

Z‘ (1). Then, we are left to prove tightness. Because 71~ !/2 2]@1/ =] Jj* is tight by
Lemma 8 (see also Lemma 9(i)), all we need to show is that A;; (1) is tight.
By Theorem 15.6 of Billingsley (1968), it suffices to show that

B (|A; ) - As @ |A; @) = Ay @0)]) = Ha G ) 1 =

forall0 < 4 < ¥ < A < 7 and some ¢ > % Observe that we can take 1! <
|4 — u| because otherwise the last equality is trivial. Because (4 — ¢) (¥ — u) <
(A — u)?, by the Cauchy—Schwarz inequality, it suffices to show that the last dis-

N ~ 2
played equality holds for E* |A}; (A1) — A} (,u)‘ which is

1 [nA/m] n n
= Z Sp.0 () { 2 Y Vo,6,74, 0, (JZJEZ)}%M (k)
Jok=nu/m]+1 O1=j+1 (r=k+1
| Lyl
0z X %, 0 s, ®]

Jok=nu/m]+1

0, (1) (H§ (., ﬂ)H2 +14- ul2‘5> :
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where 3 (1, u) :=x"" f;Sgo (v)dv an H _IZJLM/EHW/”J 34,0 () —
3 (4, ,u)H =0, (M - ,ul‘;) by Lemma 3 for some § > 5. From here we conclude
the proof of part (a) by Theorem 15.6 of Billingsley (1968), because 3 4,0)

is a monotonic, continuous, and nondecreasing function such that 3 (4,0)—

3, 0)| = 12 = ul’

To show step (b), by definitions of &Z*n (4) and ;f (4), it suffices to show that

| wi/x)
=7 2 Sen(")~ Z V,i% (6.2)

k=1 Jj=k+1

and

1 | m/x) Lv; Fy., ()
Fyep () (n 2 Sin ) <172 ~1/2 2 V0i\ . T o

0rJ

1 1 Lej Fpen (@)
- (,T)< 2 Sozn (k)~1/2 Z RO (hA’ —27r>> (6.3)

are o+ (1) uniformly in 4 € [0,  |. Indeed, expression (6.2) is 0+ (1) uniformly
in 4 € [0, 7] by Lemma 11 and because

¢6 k 0 n (k) n_l Z yenj =0.
Jj=k+1

Next we examine (6.3). Because by Lemma 11 and proceeding as in the proof
of Theorem 1, Fy,, (7) — &,% = Op~ (n_l/z), it suffices to show that

1 (n/7] Sé n (k) n « * Sé*n k) & * *
= > G172 2 Vi ("j +Jj> T )y 6z j (”j +Jj>
j=kt1 =kt 1

(6.4)

converges to zero uniformly in 4 € [0, 7 ], after observing that for all 4 € [0, ],

[h/x | n
> { dzn () Z Vs i = Sgn ) > yé,,j}zo'

k=1 j=k+1 j=k+1
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First, we observe that Lemmas 11 and 13 imply that it suffices to show the
uniform convergence in 4 € [0, 1] for any 19 < 7. But (6.4) is equal to

n

| La/x) 1 o

ﬁ k; Sé,;‘n (k) Wj:%l (V@W - y@’”) (%J + ]J ), (6.5)
| /) | o

+z X (S, ®) = S, ) m,-:%l 73 (% + 1) 6.6)

So, the theorem follows if (6.5) and (6.6) are 0,,+(1) uniformly in 4 € [0, o].
To that end, we first observe that proceeding as in DHV but using Lemma 3
instead of their Lemma 1, we have that

| 7i/x)
sp = > g5, = g || =om (O 6.7)
rel0,x] o "

sup ‘ATI ) — A |l =0, (), (6.8)
Je[0,4] 11 Onn On

sup ‘Ag} (@) = A7 (| =0pr (1). (6.9)
2€[0,0] n't nft

Next, uniformly in 4 € [0, 4o}, (6.5) is 0,(1) by Lemma 14 and using (6.7)—
(6.9) after observing that (yé i yé*j) = (0, gbé i ¢é*j>. Next that (6.6)
is also 0, (1), uniformly in 4 € [0, Ag]. follows by (6.7) and (6.9) and because
n-1/2 27:[}:',1/71]-',-1 V6, (ijfk + ]j‘)‘ = O, (1) by Lemmas 7 and 8
with 5 1) = Y8, (2) there and observing the results in Proposition 1. Also, recall
that, by Lemma 3, 7! Z?z[ﬁi/n]ﬂyénj%nj = P[] 79, v) $p, (V) dv. [ |

SUP;e(0,7]
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