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1 Introduction

Does the sequencing of decisions matter for decision-making? Controlling for the quality and merits

of a case, we find that the sequence of past decisions matters for the current decision – decision-

makers exhibit negatively autocorrelated decision-making. Using three independent and high stakes

field settings: refugee asylum court decisions in the U.S., loan application reviews from a field

experiment by Cole, Kanz, and Klapper (2015), and Major League Baseball home plate umpire

calls on pitches, we show consistent evidence of negatively autocorrelated decision-making, despite

controlling for case quality, which leads to decision reversals and errors.

In each of the three high stakes settings, we show that the ordering of case quality is likely to

be conditionally random. However, a significant percentage of decisions, more than five percent in

some samples, are reversed or erroneous due to negative autocorrelation induced by the behavior

of decision-makers. The three settings provide independent evidence of negatively autocorrelated

decision-making across a wide variety of contexts for decision-makers in their primary occupations,

and across a very large sample size of decisions in some cases. Each field setting offers unique

advantages and limitations in terms of data analysis that taken together portray a compelling

picture of negatively autocorrelated decision-making arising from belief biases.

First, we test whether U.S. judges in refugee asylum cases are more likely to deny (grant) asy-

lum after granting (denying) asylum to the previous applicant. The asylum courts setting offers

administrative data on high frequency judicial decisions with very high stakes for the asylum appli-

cants – judge decisions determine whether refugees seeking asylum will be deported from the U.S.

The setting is also convenient because cases filed within each court (usually a city) are randomly

assigned to judges within the court and judges decide on the queue of cases on a first-in-first-out

basis. By controlling for the recent approval rates of other judges in the same court, we are able to

control for time-variation in court-level case quality to ensure that our findings are not generated

spuriously by negative autocorrelation in underlying case quality. A limitation of the asylum court

data, however, is that we cannot discern whether any individual decision is correct given the case

merits. We estimate judges are up to 3.3 percentage points more likely to reject the current case

if they approved the previous case. This translates into two percent of decisions being reversed

purely due to the sequencing of past decisions, all else equal. This effect is also stronger follow-
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ing a longer sequence of decisions in the same direction, when judges have “moderate” grant rates

close to 50% (calculated excluding the current decision), and when the current and previous cases

share similar characteristics or occur close in time (which is suggestive of coarse thinking as in

Mullainathan, Schwartzstein, and Shleifer, 2008). We also find that judge experience mitigates the

negative autocorrelation in decision-making.

Second, we test whether loan officers are more likely to deny a loan application after approving

the previous application using data from a loan officer field experiment conducted in India by Cole,

Kanz, and Klapper (2015). The field experiment offers controlled conditions in which the order

of loan files, and hence their quality, within each session is randomized by the experimenter. In

addition, loan officers are randomly assigned to one of three incentive schemes, allowing us to test

whether strong pay-for-performance incentives reduce the bias in decision-making. The setting is

also convenient in that we can observe true loan quality, so we can discern loan officer mistakes.

Another advantage of the field experiment setting is that payoffs only depend on accuracy. Loan

officers in the experiment are told that their decisions do not affect actual loan origination and they

do not face quotas. Therefore, any negative autocorrelation in decisions is unlikely to be driven by

concerns about external perceptions, quotas, or by the desire to treat loan applicants in a certain

fashion. We find that up to nine percent of decisions are reversed due to negative autocorrelation

in decision-making under the flat incentive scheme among moderate decision-makers. The effect

is significantly weaker under the stronger incentive schemes and among less moderate decision-

makers. Across all incentive schemes, the negative autocorrelation is stronger following a streak of

two decisions in the same direction. Education, age, experience, and a longer period of time spent

reviewing the current loan application reduce the negative autocorrelation in decisions.

Third, we test whether baseball umpires are more likely to call the current pitch a ball after

calling the previous pitch a strike and vice versa. An advantage of the baseball umpire data is that

it includes precise measures of the three-dimensional location of each pitch. Thus, while pitches may

not be randomly ordered over time, we can control for each pitch’s true “quality” or location and

measure whether mistakes in calls conditional on a pitch’s true location are negatively predicted

by the previous call. We find that umpires are 1.5 percentage points less likely to call a pitch a

strike if the previous pitch was called a strike, holding pitch location fixed. This effect more than

doubles when the current pitch is close to the edge of the strike zone (so it is a less obvious call)
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and is also significantly larger following two previous calls in the same direction. Put differently,

MLB umpires call the same pitches in the exact same location differently depending solely on the

sequence of previous calls. We also show that any endogenous changes in pitch location over time

are likely to be biases against our findings.

Altogether, we show that negatively autocorrelated decision-making in three diverse settings

is unrelated to the quality or merits of the cases considered and hence results in decision errors.

We explore several potential explanations that could be consistent with negatively autocorrelated

decision-making, including belief biases such as the gambler’s fallacy and sequential contrast effects,

and other explanations such as quotas, learning, and a desire to treat all parties fairly. We find that

the evidence across all three settings is most consistent with the gambler’s fallacy and/or sequential

contrast effects, and in several tests we are able to reject the other theories.

The “law of small numbers” and the “gambler’s fallacy” is the well documented tendency for

people to overestimate the likelihood that a short sequence will resemble the general population

(Tversky and Kahneman, 1971, 1974; Rabin, 2002; Rabin and Vayanos, 2010) or underestimate the

likelihood of streaks occurring by chance. For example, people often believe that a sequence of coin

flips such as “HTHTH” is more likely to occur than “HHHHT” even though each sequence occurs

with equal probability. Similarly, people may expect flips of a fair coin to generate high rates of

alternation between heads and tails even though streaks of heads or tails often occur by chance.

This misperception of random processes can lead to errors in predictions.

In our analysis of decision-making under uncertainty, a decision-maker who himself suffers from

the gambler’s fallacy may similarly believe that streaks of good or bad quality cases are unlikely to

occur by chance. Consequently, the decision-maker may approach the next case with a prior belief

that the case is likely to be positive if she deemed the previous case to be negative, and vice versa.

Assuming that decisions made under uncertainty are at least partially influenced by the agent’s

priors, these priors then lead to negatively autocorrelated decisions. Similarly, a decision-maker who

fully understands random processes may still engage in negatively autocorrelated decision-making

in an attempt to appear fair if she is being evaluated by others, such as promotion committees or

voters, who suffer from the gambler’s fallacy.

Our analysis differs from the existing literature on the gambler’s fallacy in several ways. First,

most of the existing empirical literature examines behavior in gambling or laboratory settings (e.g.
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Benjamin, Moore, and Rabin, 2013; Ayton and Fischer, 2004; Croson and Sundali, 2005; Clotfelter

and Cook, 1993; Terrell, 1994; Bar-Hillel and Wagenaar, 1991; Rapoport and Budescu, 1992; Suetens,

Galbo-Jorgensen, and Tyran, 2015; Asparouhova, Hertzel, and Lemmon, 2009) and does not test

whether the gambler’s fallacy can bias high-stakes decision-making in real-world or field settings

such as those involving judges, loan officers, and professional baseball umpires.1

Second, our analysis differs from the existing literature because we focus on decisions. We define

a decision as the outcome of an inference problem using both a prediction and investigation of the

current case’s merits. In contrast, the existing literature on the gambler’s fallacy typically focuses

on predictions or bets made by agents who do not also assess case merits. Our focus on decisions

highlights how greater effort on the part of the decision-maker or better availability of information

regarding the merits of the current case can reduce errors in decisions even if the decision-maker

continues to suffer from the gambler’s fallacy when forming predictions. Our findings support this

view across all three of our empirical settings.

Finally, we study the behavior of experienced decision-makers making decisions in their primary

occupations. In some settings, we have variation in incentives to be accurate and show that stronger

incentives can reduce the influence of decision biases on decisions. In addition, and in contrast to the

laboratory setting as well as other empirical settings studied in the literature, our decision-makers

see a large sample of cases – many hundreds for an asylum judge and tens of thousands or more for

an umpire – affording us very large samples of decisions.

Other potential alternative and perhaps complementary explanations appear less consistent

with the data, though in some cases we cannot completely rule them out. One potential alternative

explanation is that decision-makers face quotas for the maximum number of affirmative decisions,

which could induce negative autocorrelation in decisions since a previous affirmative decision implies

fewer affirmative decisions can be made in the future. However, in all three of our empirical settings,

agents do not face explicit quotas or targets. For example, loan officers in the field experiment are
1Simonsohn and Gino (2013) (SG) also examine decisions in a real-world setting by looking at the scoring of

MBA admissions interviews. They focus on narrow bracketing (dividing continuous flows of judgments into daily
subsets), although they discuss the gambler’s fallacy as a potential mechanism behind their findings. While SG
examine scores on a 1-5 scale, we study binary sequences of decisions, which may be a closer fit to simple binary
models of the gambler’s fallacy. In addition, and importantly, we emphasize difference in reactions to the ordering of
recent decisions while SG test a general narrow bracketing model in which agents react to the average score assigned
previously within the same day, regardless of ordering. As we highlight, the sequencing and ordering of cases is a key
distinguishing feature of the gambler’s fallacy.
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only paid based upon accuracy and their decisions do not affect loan origination. Asylum judges

are not subject to any explicit quotas or targets and neither are baseball umpires. Nevertheless, one

may be concerned about self-imposed quotas or targets. We show that such self-imposed quotas

are unlikely to explain our results by contrasting the fraction of recent decisions in one direction

with the sequence of such decisions. In a quotas model, the only thing that should matter is the

fraction of affirmative decisions. We find, however, that agents negatively react to extreme recency

holding the fraction of recent affirmative decisions constant. That is, if one of the last N decisions

was decided in the affirmative, it matters whether the affirmative decision occurred most recently

or further back in time. This behavior is consistent with the sequencing of decisions mattering

and is largely inconsistent with self-imposed quotas, unless the decision-maker also has very limited

memory and cannot remember beyond the most recent decision.

Another related potential explanation is a learning model, where decision-makers do not neces-

sarily face quotas, but they believe that the correct fraction of affirmative decisions should be some

level. The decision-makers are unsure of where to set the quality bar to achieve that target rate

and therefore learn over time, which could lead to negative autocorrelation in decisions. However,

baseball umpires should not have a target rate and instead have a quality bar (the official strike

zone) that is set for them. Further, decision-makers in all of our settings are highly experienced

and should therefore have a standard of quality calibrated from many years of experience. As a

consequence, they are probably not learning much from their most recent decision or sequence of

decisions. In addition, a learning model would not predict a strong negative reaction to the most

recent decision either, especially when we also control for their own recent history of decisions, which

should be a better proxy for learning.

Another potential interpretation specific to the baseball setting is that umpires may have a

preference to be equally “fair” to both teams. Such a desire is unlikely to drive behavior in the asylum

judge and loan officers settings, because the decision-makers review sequences of independent cases

which are not part of “teams.” However, a preference to be equally nice to two opposing teams in

baseball may lead to negative autocorrelation of umpire calls if, after calling a marginal or difficult-

to-call pitch a strike, the umpire chooses to “make it up” to the team at bat by calling the next pitch

a ball. We show that such preferences are unlikely to drive our estimates for baseball umpires. We

find that the negative autocorrelation remains equally strong or stronger when the previous call was
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obvious (i.e., far from the strike zone boundary) and correct. In these cases, the umpire is less likely

to feel guilt about making a particular call because the umpire probably could not have called the

pitch any other way (e.g., he, and everyone else, knew it was the right call to make). Nevertheless,

we find strong negative autocorrelation following these obvious and correct calls, suggesting that a

desire to undo marginal calls or mistakes is not the sole driver of our results.

Finally, we investigate several potential explanations closely related to the gambler’s fallacy.

Since these are empirically indistinguishable, we present them as possible variants of the same

theme, though we argue they may be less plausible in some of our settings. The first is sequential

contrast effects (SCE), in which the decision-maker’s perception of the quality of the current case

is negatively biased by the quality of the previous case (Pepitone and DiNubile, 1976; Simonsohn

and Loewenstein, 2006; Simonsohn, 2006). For example, Bhargava and Fisman (2014) find that

speed dating subjects are more likely to reject the next candidate if the previous candidate was

very attractive and Hartzmark and Shue (2015) find that investors perceive today’s earnings news

as less impressive if unrelated firms released good earnings news in the previous day. Theoretically,

the gambler’s fallacy and SCE can predict the same patterns in decision outcomes. The distinction

is mainly with regard to when the subject makes a quality assessment. Under the gambler’s fallacy,

a subject who sees a high quality case will predict that the next case is likely to lower in quality in

a probabilistic sense even before seeing the next case, whereas SCE predicts the subject will make a

relative comparison after seeing both both cases. While the laboratory or prediction markets may

be able to separate these two biases, they will be observationally equivalent when looking at only

decision outcomes, since we cannot observe what is inside a decision-maker’s head. Complicating

matters further, it may also be the case that the gambler’s fallacy affects the decision-maker’s

perception of quality, leading to a contrast effect. For example, a subject may believe that the next

case is likely to be lower in quality after seeing a high quality case, and this makes him perceive the

next case as indeed being less attractive.

We present suggestive evidence that our results are more consistent with a simple gambler’s

fallacy model than the SCE model. SCE may be less likely to occur in the context of baseball

because there is a well-defined quality metric (the regulated strike zone), although SCE may still

bias perceptions of quality on the margin. In both the asylum court and loan approval settings,

we find that decisions are unrelated to continuous quality measures of the previous case after we
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condition on the previous binary decision. This is consistent with a simple gambler’s fallacy model

in which agents expect binary reversals and less supportive of a SCE model in which agents should

react negatively to the continuous quality of the previous case. However, our tests cannot fully

reject SCE because we may measure the true quality of the previous case with error.

Another possibility is that the decision-maker is rational, but cares about the opinions of others,

such as promotion committees or voters, who are fooled by randomness. In other words, it is the

outside monitors who have the gambler’s fallacy and decision-makers merely cater to it. These

rational decision-makers will choose to make negatively-autocorrelated decisions in order to avoid

the appearance of being too lenient or too harsh. While concerns about external perceptions could

be an important driver of decisions, they are unlikely to drive the results in the context of loan

approval, which is an experimental setting where monetary payouts depend only on accuracy (and

loan officers know this) and the ordering of decisions is never reported to an outside party.

Lastly, a related explanation is that agents may prefer to alternate being “mean” and “nice”

over short time horizons. This preference could, again, originate from the gambler’s fallacy. A

decision-maker who desires to be fair may over-infer that she is becoming too negative from a short

sequence of “mean” decisions. However, a preference to alternate mean and nice is unlikely to drive

behavior in the loan approval setting where loan officers in the experiment know that they do not

affect real loan origination (so there is no sense of being mean or nice to loan applicants).

Overall, we show that belief biases possibly stemming from misperceptions of what constitutes

a fair process can lead to decision reversals and errors. While we cannot completely distinguish

between variants of the gambler’s fallacy and SCE, our evidence is unique to the literature on

decision-making biases in its breadth in terms of studying large samples of important decisions made

as part of the decision-maker’s primary occupation. We also find heterogeneity in the field data that

may have useful policy implications. For example, we find that negative autocorrelation in decisions

declines if the current and previous case considered are separated by a greater time delay, consistent

with experimental results in Gold and Hester (2008), in which the gambler’s fallacy diminishes in

coin flip predictions if the coin is allowed to “rest.” We further find that education, experience, and

strong incentives for accuracy can reduce biases in decisions. Finally, our research also contributes

to the sizable psychology literature using vignette studies of small samples of judges that suggest

unconscious heuristics (e.g., anchoring, status quo bias, availability) play a role in judicial decision-

7



making (e.g., Guthrie et al., 2000). In addition, our results contribute to the theoretical literature

on decision-making, e.g., Bordalo, Gennaioli, and Shleifer (2014), which models how judges can be

biased by legally irrelevant information.

The rest of the paper is organized as follows. Section 2 outlines our empirical framework and

discusses how it relates to theory. Section 3 presents the results for asylum judges. Section 4 presents

results for the loan officer experiment. Section 5 presents the baseball umpire results. Section 6

discusses our findings in relation to various theories, including the gambler’s fallacy. Section 7

concludes.

2 Empirical Framework and Theory

We describe our empirical framework for testing autocorrelation in sequential decision-making across

the three empirical contexts and relate it to various theories of decision-making.

2.1 Baseline Specification

Our baseline specification simply tests whether the current decision is correlated with the lagged

decision, conditional on a set of control variables:

Yit = �0 + �1Yi,t�1 + Controls+ ✏it.

Yit represents binary decisions by decision-maker i ordered by time t. �1 measures the change in the

probability of making an affirmative decision if the previous decision was affirmative rather than

negative. If the ordering of cases is conditionally random, then �1 should be zero if the quality

of the case is the only determinant of decisions. An autocorrelation coefficient, �1, different from

zero indicates that decision-makers are basing their decisions on something other than quality or

satisfying an objective function that contains more than just accuracy. �1 < 0 is evidence in favor

of negatively autocorrelated decision-making unrelated to quality, and �1 > 0 is evidence of positive

autocorrelation unrelated to quality. For instance, �1 > 0 might imply some belief in the “hot

hand,” i.e., that seeing a recent streak of positive (or negative) cases implies something about the

conditional quality of subsequent cases being higher (lower), even though the conditional quality
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has not changed.2 �1 < 0 could be consistent with several theories, including the gambler’s fallacy,

which we show through a simple extension of Rabin’s (2002) model of the law of small numbers

in Appendix B. The basic idea is that, if the ordering of cases is random and decisions are made

only based upon case merits, a decision-maker’s decision on the previous case should not predict

her decision on the next case, after controlling for base rates of affirmative decisions. However, a

decision-maker who misperceives random processes may approach the next decision with a prior

belief that the case is likely to be more negative if she deemed the previous case to be positive,

and vice versa, leading to negatively autocorrelated decisions. Negative autocorrelation in decisions

could also be consistent with sequential contrast effects (SCE), quotas, and learning.

In some empirical settings, we can also determine whether any particular decision was a mistake.

If we include a dummy for the correct decision as part of Controls, then any non-zero estimate of

�1 is evidence of mistakes. In other settings when we cannot definitively determine a mistake, we

use �1 to estimate the fraction of decisions that are reversed due to autocorrelated decision-making.

For example, in the case of negative autocorrelation bias (what we find in the data), the reversal

rate is: �2�1a (1� a), where a represents the base rate of affirmative decisions in the data (see

Appendix A for details).

Even if the ordering of cases is random within each decision-maker, we face the problem that our

estimate of �1 may be biased upward when it is estimated using panel data with heterogeneity across

decision-makers. The tendency of each decision-maker to be positive could be a fixed individual

characteristic or slowly changing over time. If we do not control for heterogeneity in the tendency

to be positive across decision-makers (and possibly within decision-makers over time), that would

lead to an upward bias for �1, since the previous and current decision are both positively correlated

with the decision-maker’s unobserved tendency to be positive.

We control for decision-maker heterogeneity in several ways. One simple method is to control

for heterogeneity using decision-maker fixed effects. However, decision-maker fixed effects within a

finite panel can lead to negative correlation between any two decisions by the same decision-maker,

which biases toward �1 < 0. To remove this bias, we alternatively control for a moving average of

the previous n decisions made by each decision-maker, not including the current decision. A benefit
2Following Gilovich et al. (1985)’s seminal work, a number of papers have found evidence of hot hand beliefs in

sports settings, although some results have been challenged in recent work, e.g., Miller and Sanjurjo (2014) and Green
and Zwiebel (2015).
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of this specification is that it also tests whether the decision-maker reacts more to the most recent

decision, controlling for the average affirmative rate among a set of recent decisions. The drawback

of using a moving average is that it may imprecisely measure the tendency of each decision-maker

to be positive due to small samples and hence be an inadequate control for heterogeneity. Hence,

we also control for the decision-maker’s average decision in all other settings other than the current

decision.3 In our baseline results, we report estimates that control for individual heterogeneity using

recent moving averages and leave-out-means because these methods do not bias toward �1 < 0. In

the Online Appendix, we show that the results are very similar with the inclusion of decision-maker

fixed effects, although point estimates tend to be more negative, as expected. Finally, we cluster

standard errors by decision-maker or decision-maker⇥session as noted.

A second important reason we include control variables is that the sequence of cases considered is

not necessarily randomly ordered within each decision-maker. To attribute �1 < 0 to decision biases,

the underlying quality of the sequence of cases considered, conditional on the set of controls, should

not itself be negatively autocorrelated. We discuss for each empirical setting why the sequences of

cases appear to be conditionally random.4

Because many of our regressions include fixed effects (e.g., nationality of asylum applicant),

we estimate all specifications using the linear probability model, allowing for clustered standard

errors, as suggested by Angrist and Pischke (2008). However, we recognize there is debate in the

econometrics literature concerning the relative merits of various binary dependent variable models.

In the Online Appendix, we reestimate all baseline tables using logit and probit models and estimate

similar marginal effects.
3Except for the regressions with decision-maker fixed effects, we never include the current observation in the

calculation of averages for control variables, since that could lead to a spurious negative estimated relationship
between the current and previous decisions in finite panels.

4While we will present specific solutions to the possibility that case quality is not randomly ordered in later
sections, we note that most types of non-random ordering are likely to correspond to positive autocorrelation (e.g.,
slow-moving trends in refugee quality) which would bias against finding negative autocorrelation in decisions.
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2.2 Streaks

We also test whether agents are more likely to reverse decisions following a streak of two or more

decisions in the same direction. Specifically, we estimate:

Yit = �0 + �1I(1, 1) + �2I(0, 1) + �3I(1, 0) + Controls+ ✏it.

All controls are as described in the baseline specification. Here, I(Yi,t�2, Yi,t�1) is an indicator

representing the two previous decisions. All �’s measure behavior relative to the omitted group

I(0, 0), in which the decision-maker has decided negatively two-in-a-row. Tests for streaks can help

differentiate among various theories. For example, a basic gambler’s fallacy model predicts that

�1 < �2 < �3 < 0. The intuition is that agents mistakenly believe that streaks are unlikely to occur

by chance, and longer streaks are particularly unlikely to occur. Following a (1,1) another 1 would

constitute a streak of length three, which agents may believe is very unlikely to occur. Similarly,

following a (0,1), agents may believe that another 1 is less likely to occur than a 0, because the

former would create a streak of length two.

The predictions under an SCE model are less obvious and depend on the specific assumptions of

the model. For instance, if agents only contrast current case quality with the case that preceded it,

then the decision in time t�2 should not matter, so we would expect �1 = �2 < �3 = 0. However, if

agents contrast the current case with the previous case and, to a lesser degree, the case before that,

a SCE model could deliver similar predictions to those of the gamblers’ fallacy model, implying

�1 < �2 < �3 < 0.

A quotas model, on the other hand, yields very different predictions. For quotas, �1 should be

the most negative, since two affirmative decisions in the past puts a more binding constraint on the

quota limit than following only one affirmative decision. However, when the decision-maker decided

in the affirmative for only one out of the two most recent cases, it should not matter whether the

affirmative decision was most recent or not, hence �2 = �3. The learning model also does not predict

�2 < �3 unless it is a particular form of learning where more weight is given to the most recent

decision. We test these various predictions across each of our three settings.
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3 Asylum Judges

Our first empirical setting is U.S. asylum court decisions.

3.1 Asylum Judges: Data Description and Institutional Context

The United States offers asylum to foreign nationals who can (1) prove that they have a well-

founded fear of persecution in their own countries, and (2) that their race, religion, nationality,

political opinions, or membership in a particular social group is one central reason for the threatened

persecution. Decisions to grant or deny asylum have potentially very high stakes for the asylum

applicants. An applicant for asylum may reasonably fear imprisonment, torture, or death if forced

to return to her home country. For a more detailed description of the asylum adjudication process

in the U.S., we refer the interested reader to Ramji-Nogales et al. (2007).

We use administrative data on U.S. refugee asylum cases considered in immigration courts from

1985 to 2013. Judges in immigration courts hear two types of cases: affirmative cases in which the

applicant seeks asylum on her own initiative and defensive cases in which the applicant applies for

asylum after being apprehended by the Department of Homeland Security (DHS). Defensive cases

are referred directly to the immigration courts while affirmative cases pass a first round of review

by asylum officers in the lower level Asylum Offices. For these reasons, a judge may treat these

cases differently or, at the very least, categorize them separately. Therefore, we also test whether

the negative autocorrelation in decision-making is stronger when consecutive cases have the same

defensive status (both affirmative or both defensive).5

The court proceeding at the immigration court level is adversarial and typically lasts several

hours. Asylum seekers may be represented by an attorney at their own expense. A DHS attorney

cross-examines the asylum applicant and argues before the judge that asylum is not warranted.

Those that are denied asylum are ordered deported. Decisions to grant or deny asylum made by

judges at the immigration court level are typically binding, although applicants may further appeal

to the Board of Immigration Appeals.

Our baseline tests explore whether judges are less likely to grant asylum after granting asylum

in the previous case. To attribute negative autocorrelation in decisions to a cognitive bias, we first
5See http://www.uscis.gov/humanitarian/refugees-asylum/asylum/obtaining-asylum-united-states for more de-

tails regarding the asylum application process and defensive vs. affirmative applications.
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need to show that the underlying quality of the sequence of cases considered by each judge is not

itself negatively autocorrelated. Several unique features of the immigration court process help us

address this concern. Each immigration court covers a geographic region. Cases considered within

each court are randomly assigned to the judges associated with the court (on average, there are

eight judges per court). The judges then review the queue of cases following a “first-in-first-out”

rule.6 In other words, judges do not reshuffle the ordering of cases considered.

Thus, any time variation in case quality (e.g., a surge in refugees from a hot conflict zone) should

originate at the court-level. This variation in case quality is likely to be positively autocorrelated on

a case-by-case level and therefore a bias against our findings of negative autocorrelation in decisions.

We also directly control for time-variation in court-level case quality using the recent approval rates

of other judges in the same court and test autocorrelation in observable proxies of case quality in

the Online Appendix.

Judges have a high degree of discretion in deciding case outcomes. They face no explicit or

formally recommended quotas with respect to the grant rate for asylum. They are subject to the

supervision of the Attorney General, but otherwise exercise independent judgment and discretion

in considering and determining the cases before them. The lack of quotas and oversight is further

evidenced by the wide disparities in grant rates among judges associated with the same immigration

court (Ramji-Nogales et al., 2007). For example, within the same four-year time period in the court

of New York, two judges granted asylum to fewer than 10% of the cases considered while three

other judges granted asylum to over 80% of cases considered. Because many judges display extreme

decision rates (close to zero or one), we also present subsample analysis excluding extreme judges

or limiting to moderate judges (grant rate close to 0.5). We exclude the current observation in the

calculation of moderate status, so our results within the moderate subsample will not spuriously

generate findings of negative autocorrelation in the absence of true bias.

Judges are appointed by the Attorney General. In our own data collection of immigration judge

biographies, many judges previously worked as immigration lawyers or at the Immigration and
6Exceptions to the first-in-first-out rule occur when applicants file applications on additional issues or have closures

made other than grant or deny (e.g., closures may occur if the applicant doesn’t show up, if the applicant chooses to
withdraw, or for miscellaneous rare reasons encoded in the “other” category). Since these violations of first-in-first-
out are likely driven by applicant behaviors often several months prior to the recent set of decisions, they are likely
uncorrelated with the judge’s previous decision which often occurs in the same or previous day. To test this, we also
examine autocorrelation in proxies for case quality in the Online Appendix to assess whether deviations from the rule
drive negative autocorrelation in decisions. We find nothing in this regard.
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Naturalization Service (INS) for some time before they were appointed. Judges typically serve until

retirement. Their base salaries are set by a federal pay scale and locality pay is capped at Level

III of the Executive Schedule. In 2014, that rate was $167,000. Based upon conversations with the

President of the National Association of Immigration Judges, no bonuses are granted. See Appendix

C for more background information.

Our data comes from a FOIA request filed through the Transactional Records Access Clearing-

house (TRAC). We exclude non-asylum related immigration decisions and focus on applications for

asylum, withholding of removal, or protection under the convention against torture (CAT). Appli-

cants typically apply for all three types of asylum protection at the same time. As in Ramji-Nogales

et al. (2007), when an individual has multiple decisions on the same day on these three applications,

we use the decision on the asylum application because a grant of asylum allows the applicant all the

benefits of a grant of withholding of removal or protection under the withholding-convention against

torture while the reverse does not hold. In the Online Appendix we redefine a grant of asylum as

affirmative if any of the three applications are granted and find qualitatively similar results.7 We

merge TRAC data with our own hand-collected data on judicial biographies. We exclude family

members, except the lead family member, because in almost all cases, all family members are either

granted or denied asylum together.

We also restrict the sample to decisions with known time ordering within day or across days

and whose immediate prior decision by the judge is on the same day or previous day or over the

weekend if it is a Monday. Finally, we restrict the sample to judges who review a minimum of 100

cases for a given court and courts with a minimum of 1,000 cases in the data. These exclusions

restrict the sample to 150,357 decisions, across 357 judges and 45 court houses.

Table I summarizes our sample of asylum decisions. Judges have long tenures, with a median of
7Following Ramji-Nogales et al. (2007), we use the decision on the asylum application for our baseline analysis. If

the judge denies asylum but grants withholding of removal or protection under CAT, the asylum applicant receives
much more limited benefits than she would if she were granted asylum. In such cases, applicants face employment
limitations and are only granted withholding of removal to the particular country where they may be persecuted but
may be moved to a safe third country (and such protections are person-specific rather than applying to spouses or
children). Therefore, it is not obvious whether a denial of asylum accompanied by a grant of withholding or protection
under CAT is a positive or negative decision. Further, while the evidentiary standard for qualifying for withholding
of removal or protection under CAT is much higher than those for the asylum application, the judge also exercises
less subjective discretion in the determination of the former two applications which are classified as mandatory if
the applicants meet the high evidentiary standard. This is relevant for cases in which the applicant has committed
crimes or assisted in the persecution of others (which disqualify her for asylum) but remains eligible for withholding
of removal or protection under CAT.
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8 years of experience. For data on tenure, we only have biographical data on 323 of the 357 judges,

accounting for 142,699 decisions. The average case load of a judge is approximately two asylum

cases per day. The average grant rate is 0.29. 94% of cases have a lawyer representing the applicant,

and 44% are defensive cases initiated by the government. The average family size is 1.21. 47% of

hearings occur in the morning between 8 AM and 12 PM, 38% occur during lunch time between 12

PM and 2 PM, and 15% occurred in the afternoon from 2 PM to 8 PM. We mark the clock time

according to the time that a hearing session opened.

The non-extreme indicator tags decisions for which the average grant rate for the judge for

that nationality-defensive category, calculated excluding the current observation, is between 0.2

and 0.8. The moderate indicator tags decisions for which the average grant rate for the judge for

that nationality-defensive category, excluding the current observation, is between 0.3 and 0.7.8

3.2 Asylum Judges: Empirical Specification Details

Observations are at the judge ⇥ case order level. Yit is an indicator for whether asylum is granted.

Cases are ordered within day and across days. Our regression sample includes observations in which

the lagged case was viewed on the same day or the previous workday (e.g., we include the observation

if the current case is viewed on Monday and the lagged case was viewed on Friday), and for which

we know the ordering of cases considered within the same day.9

Control variables in the regressions include, unless otherwise noted, a set of dummies for the

number of affirmative decisions over the past five decisions (excluding the current decision) of the

judge. This controls for recent trends in grants, case quality, or judge mood. We also include a

set of dummies for the number of grant decisions over the past five decisions across other judges

(excluding the current judge) in the same court. This controls for recent trends in grants, case

quality, or mood at the court level. To control for longer term trends in judge- and court-specific

grant rates, we control for the judge’s leave-out-mean grant rate for the relevant nationality ⇥

defensive category, calculated excluding the current observation. We also control for the court’s

average grant rate for the relevant nationality ⇥ defensive category, calculated excluding the judge
8Results, reported in the Online Appendix, are qualitatively similar using these two sets of cutoffs.
9We also have data on decisions in which we do not know the ordering of the current case with respect to the

previous case because two or more cases are considered within a single session with a single time stamp. These
observations are excluded from the regression sample, but are used to create control variables relating to judge
average grant rates.
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associated with the current observation. In our baseline results, we do not include judge fixed effects

because they mechanically induce a small degree of negative correlation between Yit and Yi,t�1. In

the Online Appendix we report results using judge fixed effects and obtain similar results with

slightly more negative coefficient estimates, as expected. Finally, we control for the characteristics

of the current case: presence-of-lawyer indicator, family size, nationality ⇥ defensive status fixed

effects, and time-of-day fixed effects (morning / lunchtime / afternoon). The inclusion of time-of-day

fixed effects is designed to control for other factors such as hunger or fatigue which may influence

judicial decision-making (as shown in the setting of parole judges by Danziger et al., 2011).

3.3 Asylum Judges: Results

In Table II, Column 1, we present results for the full sample of case decisions and find that judges are

0.5 percentage points less likely to grant asylum to the current applicant if the previous decision was

an approval rather than a denial, all else equal. In the remaining columns, we focus on cumulative

subsamples in which the magnitude of the negative autocorrelation increases substantially. First,

the asylum data cover a large number of judges who tend to grant or deny asylum to almost

all applicants from certain nationalities. More extreme judges necessarily exhibit less negative

autocorrelation in their decisions. In Column 2 of Table II, we restrict the sample to non-extreme

judge observations (where non-extreme is calculated excluding the current decision). The extent of

negative autocorrelation doubles to 1.1 percentage points.

In Column 3 of Table II, we further restrict the sample to cases that follow another case on the

same day (rather than the previous day). We find stronger negative autocorrelation within same-

day cases. The stronger negative autocorrelation when two consecutive cases occur more closely in

time is broadly consistent with saliency and the gambler’s fallacy decision-making model, because

more recent cases may be more salient and lead to stronger expectations of reversals. These results

are also consistent with experimental results in Gold and Hester (2008), which finds that laboratory

subjects who are asked to predict coin flips exhibit less gambler’s fallacy after an interruption when

the coin “rests.” The higher saliency of more recent cases could also be consistent with stronger

SCE, but is less likely to be consistent with a quotas constraint, unless judges self impose daily but

not overnight or multi-day quotas.

Column 4 of Table II restricts the sample further to cases in which the current and previous
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case have the same defensive status. Individuals seeking asylum affirmatively, where the applicant

initiates, can be very different from those seeking asylum defensively, where the government initiates.

In affirmative cases, applicants typically enter the country legally and are applying to extend their

stay. In defensive cases, applicants often have entered illegally and have been detained at the border

or caught subsequently. Judges may view these scenarios to be qualitatively different. The negative

autocorrelation increases to 3.3 percentage points.

Hence, from an unconditional 0.5 percentage points, the negative autocorrelation increases six-

fold to 3.3 percentage points if we examine moderate judges on same-day cases with the same

defensive status. Using the estimate in Column 4 of Table II within the sample of non-extreme,

same-day, same defensive cases, the coefficient implies that 1.6% of asylum decisions would have

been reversed absent the negative autocorrelation in decision-making. Table A.I in the Online

Appendix reports the extent of the negative autocorrelation among each omitted sample and presents

formal statistical tests for whether the estimates in each cumulative subsample significantly differ

from one-another. We find that the negative autocorrelation among extreme-judge and different-

defensive-status subsamples are close to zero and significantly differ from the non-omitted samples.

However, the negative autocorrelation is economically substantial even across consecutive days (with

insignificant differences), although the effect size doubles when the judge considers cases within the

same day.

Finally, Column 5 of Table II tests whether decisions are more likely to be reversed following

streaks of previous decisions. After a streak of two grants, judges are 5.5 percentage points less likely

to grant asylum relative to decisions following a streak of two denials. Following a deny then grant

decision, judges are 3.7 percentage points less likely to grant asylum relative to decisions following

a streak of two denials, whereas behavior following a grant then deny decision is insignificantly

different from behavior following a streak of two denials. In the terms of our empirical framework

introduced in Section 2.2, we find that �1 < �2 < �3 < 0. A formal statistical test of the difference

in the �’s appears at the bottom of the table, where we reject that the betas are all equal and that

�2 = �3. (The only insignificant difference is between �1 and �2, though �1 has, as predicted, a more

negative point estimate.) These results are consistent with the gambler’s fallacy affecting decisions

and inconsistent with a basic quotas model. Moreover, the magnitudes are economically significant.

Using the largest point estimate following a streak of two grant decisions: a 5.5 percentage point
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decline in the approval rate represents a 19 percent reduction in the probability of approval relative

to the base rate of approval of 29 percent.

We report robustness tests of our findings in the Online Appendix. Table A.II reports results

using logit and probit models. The economic magnitudes are similar. Table A.III reports results

using judge fixed effects. As expected, the coefficients are slightly more negative due to a mechanical

negative autocorrelation between any two decisions by the same judge induced by the fixed effects.

However, the bias appears to be small and the coefficient estimates are of similar magnitude to our

baseline results that control for a moving average of each judge’s past five decisions as well as her

leave-out-mean grant rate. In addition, the precision of the estimates do not change much between

the two specifications, suggesting that controlling for heterogeneity using the moving average of a

judge’s decisions and her leave-out-mean instead of judge fixed effects yields similar identification

despite the former containing more measurement error. Table A.IV presents results for an alternative

definition of the granting of asylum, where instead of using the asylum grant decision, we code a

decision as a grant if the judge granted any of the asylum, withholding of removal, or protection

under the U.S. Convention Against Torture applications. The results are very consistent with

slightly smaller point estimates.

Finally, a potential concern with the sample split among moderate and extreme decision-makers

is that we may mechanically measure stronger negative autocorrelation among moderates. We

emphasize that, because we do not use the current observation in the calculation of whether a

decision-maker is moderate, restricting the sample to moderates does not mechanically generate

�1 < 0 if the true autocorrelation is zero (for example, a judge who decides based upon random

coin flips would be classified as a moderate, but would display zero autocorrelation). However,

another potential issue that could mechanically generate greater measured negative autocorrelation

for moderate judges is our use of a binary statistical model. The autocorrelation of a binary

variable is biased away from one and the size of the bias increases as the base rate of decisions gets

closer to zero or one. This may lead us to estimate a lower degree for negative autocorrelation for

“extreme” decision-makers. One method to address this issue is to use the tetrachoric correlation,

which models binary variables as functions of continuous (bivariate normal) latent variables. The

bivariate probit model extends the tetrachoric correlation to allow for additional control variables.

Using the bivariate probit model, Table A.V shows that there is strong negative autocorrelation

18



in decisions for moderate decision-makers that is statistically significant and of similar economic

magnitude as those from our baseline regressions. Conversely, for extreme decision-makers, there is

no evidence of any autocorrelation. These results match our estimates from the linear probability,

logit, and probit regressions and indicate that the potential mechanical correlation coming from

binary models is not driving our results.

Table III explores additional heterogeneity across judges and cases. In this and subsequent

tables, we restrict our analysis to the sample defined in Column 4 of Table II – observations for which

the current and previous case were decided by non-extreme judges on the same day and with the

same defensive status. Column 1 of Table III shows that the reduction in the probability of approval

following a previous grant is 4.2 percentage points greater when the previous decision corresponds to

an application with the same nationality as the current applicant. While there is significant negative

autocorrelation when sequential cases correspond to different applicant nationalities, the negative

autocorrelation is three times larger when the two cases correspond to the same nationality. This

suggests that the negative autocorrelation in decisions may be tied to saliency and coarse thinking.

Judges are more likely to engage in negatively autocorrelated decision-making when the previous

case considered is similar in terms of characteristics, in this case nationality. These results are

consistent with stronger autocorrelation also found when the previous case occurred close in time

with the current case or shared the same defensive status (as shown in Table II).

Columns 2 and 3 of Table III show that moderate judges and judges with less experience display

stronger negative autocorrelation in decisions. Judges who have less than the median experience

in the sample (8 years) display stronger negative autocorrelation. The fourth column repeats the

regression including judge fixed effects. We find that experience is also associated with significantly

less negatively autocorrelated decisions for a given judge over time.10

Because we measure decisions rather than predictions, reduced negative autocorrelation does not

necessarily imply that experienced judges are more sophisticated in terms of understanding random

processes. Both experienced and inexperienced judges could suffer equally from the gambler’s fallacy

in terms of forming prior beliefs regarding the quality of the current case. However, experienced
10To identify the effect of experience within judges over time, we include judge fixed effects in Column 4. In general,

we avoid inclusion of judge fixed effects except in tables in the Online Appendix because judge fixed effects bias the
coefficient on Lag grant downward. However, the coefficient on Lag grant ⇥ experienced judge remains informative,
which we focus on in Column 4.
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judges may draw, or believe they draw, more informative signals regarding the quality of the current

case. If so, experienced judges will rely more on the current signal and less on their prior beliefs,

leading to reduced negative autocorrelation in decisions.

Finally, we present evidence supporting the validity of our analysis. To attribute negative

autocorrelation in decisions to cognitive biases and not case quality, we show that the underlying

quality of the sequence of cases considered by each judge is not itself negatively autocorrelated.

Within a court, the incoming queue of cases is randomly assigned to judges associated with that

court, and the judges review the queue of cases following a “first-in-first-out” rule. Therefore, time

variation in case quality (e.g., a surge in refugees from a hot conflict zone) should originate at the

court-level and is likely to be positively autocorrelated on a case-by-case level. We support this

assumption in Table A.VI in the Online Appendix. We find that case quality does not appear to

be negatively autocorrelated in terms of observable proxies for quality. However, our identifying

assumption requires that autocorrelation in unobserved aspects of case quality is also not negative.

4 Loan Officers

Our second empirical setting examines loan officers making loan application decisions.

4.1 Loan Officers: Data Description and Institutional Context

We use field experiment data collected by Cole et al. (2015).11 The original intent of the experiment

was to explore how various incentive schemes affect the quality of loan officers’ screening of loan

applications. The framed field experiment was designed to closely match the underwriting process

for unsecured small enterprise loans in India. Real loan officers were recruited for the experiment

from the active staff of several commercial banks. These loan officers had an average of 10 years of

experience in the banking sector. In the field experiment, the loan officers screen real, previously

processed, loan applications. Each loan file contained all the information available to the bank at

the time the loan was first evaluated.
11For a detailed description of the data, we refer the interested reader to Cole et al. (2015). Our data sample

consists of a subset of the data described in their paper. This subsample was chosen by the original authors and
given to us before any tests of serial correlation in decision-making were conducted. Therefore, differences between
the subsample and full sample should not bias the analysis in favor of our findings.
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Each loan officer participated in at least one evaluation session. In each session, the loan

officer screened six randomly ordered loan files and decided whether to approve or reject the loan

application. Because the loan files corresponded to actual loans previously reviewed by banks in

India, the files can be classified by the experimenter as performing or nonperforming. Performing

loan files were approved and did not default during the actual life of the loan. Nonperforming loans

were either rejected by the bank in the loan application process or were approved but defaulted

in the actual life of the loan. Loan officers in the experiment were essentially paid based upon

their ability to correctly classify the loans as performing (by approving them) or nonperforming (by

rejecting them). In our sample, loan officers correctly classify loans approximately 65 percent of

the time. The percentage of performing loans they approve is 78%, while the percentage of non-

performing loans they approve is 62%, which shows they exhibit some ability to sort loans. Overall,

the tetrachoric correlation between the binary variables, loan approval and loan performance (1 =

performing, 0 = non-performing), is 0.29 and significantly different from random chance.

Participants in each session were randomly assigned to one of three incentive schemes which

offered payouts of the form [wP , wD, w]. wP is the payout in rupees for approving a performing

loan, wD is the payout for approving a non-performing loan, and w is the payout for rejecting a

loan (regardless of actual loan performance). Beyond direct monetary compensation, participants

may have also been motivated by reputational concerns. Loan officers were sent to the experiment

by their home bank and the experiment was conducted at a loan officer training college. At the

end of the experiment, loan officers received a completion certificate and a document summarizing

their overall accuracy rate. The loan officers were told that this summary document would only

report their overall accuracy without reporting the ordering of their specific decisions and associated

accuracy. Thus, loan officers might have been concerned that their home bank would evaluate

these documents and therefore were motivated by factors other than direct monetary compensation.

Importantly however, the approval rate and the ordering of decisions was never reported. Therefore,

there was no incentive to negatively autocorrelate decisions for any reason.

In the “flat” incentive scheme, payoffs take the form [20, 20, 0], so loan officers had monetary

incentives to approve loans regardless of loan quality. However, loan officers may have had rep-

utational concerns that led them to exert effort and reject low quality loan files even within the
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flat incentive scheme.12 In the “stronger” incentive scheme, payouts take the form [20, 0, 10], so

loan officers faced a monetary incentive to reject non-performing loans. In the “strongest” incentive

scheme, payouts take the form [50,�100, 0], so approval of non-performing loans was punished by

deducting from an endowment given to the loan officers at the start of the experiment. The payouts

across the incentive treatments were chosen to be approximately equal to 1.5 times the hourly wage

of the median participant in the experiment.

The loan officers were informed of their incentive scheme. They were also made aware that their

decision on the loans would affect their personal payout from the experiment but would not affect

actual loan origination (because these were real loan applications that had already been evaluated

in the past). Finally, the loan officers were told that the loan files were randomly ordered and that

they were drawn from a large pool of loans of which approximately two-thirds were performing

loans. Because the loan officers reviewed loans in an electronic system, they could not review the

loans in any order other than the order presented. They faced no time limits or quotas.

Table IV presents summary statistics for our data sample. The data contains information on

loan officer background characteristics such as age, education, and the time spent by the loan officer

evaluating each loan file. Observations are at the loan officer ⇥ loan file level. We consider an

observation to correspond to a moderate loan officer if the average approval rate of loans by the

loan officer in other sessions (not including the current session) within the same incentive scheme

is between 0.3 and 0.7.

4.2 Loan Officers: Empirical Specification Details

Yit is an indicator for whether the loan is approved. Loans are ordered within a session. Our sample

includes observations for which the lagged loan was viewed in the same session (so we exclude the first

loan viewed in each session because we do not expect reliance on the previous decision to necessarily

operate across sessions which are often separated by multiple days). In some specifications, we split

the sample by incentive scheme type: flat, strong, or strongest.
12The incentives in the “flat” scheme may at first seem surprisingly weak, but the authors of the original experiment

used this incentive condition to mimic the relatively weak incentives faced by real loan officers in India. As shown in
the next table, the overall approval rate within the flat incentive scheme is only 10 percentage points higher than the
approval rates under the two other incentive schemes and loan officers were still more likely to approve performing
than nonperforming loans. This suggests that loan offers still chose to reject many loans and may have experienced
some other intrinsic or reputational motivation to accurately screen loans.
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We control for heterogeneity in mean approval rates at the loan officer ⇥ incentive scheme level

using the mean loan officer approval rate within each incentive treatment (calculated excluding the

six observations corresponding to the current session).We also include an indicator for whether the

loan officer has ever approved all six loans in another session within the same incentive treatment,

to control for the fact that these types of loan officers are likely to have particularly high approval

rates in the current session. Finally, we include an indicator for whether the current session is the

only session attended by the loan officer within the incentive treatment (if so, the first two control

variables cannot be calculated and are set to zero). Because the loan officer field experiment data

is limited in size and each session consists of only six loan decisions, we do not control for a moving

average of each loan officer’s average decision rate over the past five decisions within the session (as

we do in the asylum judge setting). In the Online Appendix, we also present results controlling for

loan officer fixed effects.

4.3 Loan Officers: Results

Table V, Column 1 shows that loan officers are 8 percentage points less likely to approve the current

loan if they approved the previous loan when facing flat incentives. This implies that 2.6 percent of

decisions are reversed due to the sequencing of applications. These effects become much more muted

and insignificantly different from zero in the other incentive schemes when loan officers face stronger

monetary incentives for accuracy, as shown by the other interaction coefficients in Column 1. A

test for equality of the coefficients indicate significantly different effects across the three incentive

schemes. In Column 2, we control for the true quality of the current loan file. Therefore, all reported

coefficients represent mistakes on the part of the loan officer. After including this control variable,

we find quantitatively similar results, indicating that the negatively autocorrelated decision-making

results in decision errors.

In Columns 3 and 4 of Table V, we repeat the analysis for loan officers with moderate approval

rates (estimated using approval rates in other sessions excluding the current session). In the loan

officers experimental setting, a potential additional reason why the effect sizes are much larger in the

moderate loan officers sample is that some loan officers may have decided to shirk in the experiment

and approve almost all loans. Removing these loan officers from the sample leads to much larger

effect sizes. Comparing the coefficient estimates with those in the same row in Columns 1 and 2, we
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find that, within each incentive treatment, moderate decision-makers display much stronger negative

autocorrelation in decisions. Under flat incentives, moderate decision-makers are 23 percentage

points less likely to approve the current loan if they approved the previous loan, implying that

9 percent of decisions are reversed. Even within the stronger and strongest incentive treatments,

loan officers are 5 percentage points less likely to approve the current loan if they approved the

previous loan. Overall, these tests suggest that loan officers, particularly moderate ones, exhibit

significant negative autocorrelation in decisions which can be mitigated through the use of strong

pay for performance.

Tables A.VII - A.X in the Online Appendix report robustness tests for the loan officer sample.

Table A.VII further tests whether the loan officers in the experiment are exerting effort in making

accurate decisions and how that effort varies with incentives. We assess whether the loan approval

decision is correlated with the ex ante quality of the loan file, as proxied by the fraction of other

loan officers who approved the loan file, and the average quality score/rating given by other loan

officers for the loan file. We further explore how the correlation between decisions and ex ante

loan quality interact with the three incentive schemes. The results show that loan officers are more

likely to approve loans that other loan officers approve or rate highly and that the consensus in

decision-making increases with stronger incentives.

Table A.VIII shows that the results are similar using other binary regression models, such as

logit and probit. Table A.IX reports results from a specification that includes loan officer fixed

effects. The coefficients are directionally similar but more negative than those in Table V. This is

expected because the inclusion of fixed effects, particularly in short panels such as in the loan officers

experimental setting, biases the coefficients downward. Table A.X reports results from a bivariate

probit model that adjusts for the bias that, when using a binary dependent variable, the moderate

subsample may mechanically exhibit more negative autocorrelation. The results using the bivariate

probit model confirm that the negative autocorrelation in decisions is stronger for moderates even

after adjusting for this potential bias, and the negative autocorrelation decreases with incentives.

In the remaining analysis, we pool the sample across all three incentive treatments unless oth-

erwise noted. Table VI shows that loan officers with graduate school education and who spend

more time reviewing the current loan file display significantly reduced negative autocorrelation in
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decisions.13 Older and more experienced loan officers also display significantly reduced negative au-

tocorrelation. These results are similar to our previous findings on asylum judges, and suggest that

education, experience, and effort can reduce behavioral biases. Again, because we focus on deci-

sions rather than predictions, our results do not necessarily imply that more educated, experienced,

or conscientious loan officers suffer less from cognitive biases. These loan officers may still suffer

equally from the gambler’s fallacy but draw, or believe they draw, more precise signals regarding

current loan quality, leading them to rely less on their (misinformed and based-on-case-sequence)

priors regarding loan quality.

Table VII examines decisions following streaks of decisions. We find that after approving two

applications in a row, loan officers are 7.5 percentage points less likely to approve the next appli-

cation, relative to when the loan officer denied two applications in a row. The effects are larger

and more significant when restricted to moderate loan officers (Column 2). We easily reject that

�1 = �2 = �3 and �1 = �3 for the past sequence of decisions. However, “Lag reject - approve” has

a less negative coefficient than “Lag approve - reject” even though a gambler’s fallacy model where

recency matters would predict the opposite. The sample size is small, however, and the difference

between these two coefficients is insignificant and small in the sample of moderates.

Lastly, we discuss why our results are robust to a unique feature of the design of the original

field experiment. Within each session, the order of the loans viewed by the loan officers on the

computer screen was randomized. However, the original experimenters implemented a balanced

session design. Each session consisted of four performing loans and two non-performing loans.14 If

the loan officers had realized that sessions were balanced, a rational response would be to reject

loans with greater probability after approving loans within the same session (and vice versa). We

believe there are several reasons why it is unlikely that loan officers would react to the balanced

session design.
13The sum of the coefficients on Lag approve and Lag approve x grad approve is positive, leading to the puzzling

implication that loan officers with graduate school education engage in positively autocorrelated decision-making.
However, our sample size is limited and the sum of the two coefficients is insignificantly different from zero.

14Note that the fraction of loans performing is not exactly 67%, implying that the original experiment did not
implement an exactly balanced session design for every session. Cole, Kanz, and Klapper (2015) initially balanced
each session to have exactly four performing loans, according to early performance data given to them by the bank
that originally processed the loans. However, the bank then sent the researchers a revised categorization of the loan
files. The researchers used the revised data to categorize the data but did not reassign loans to sessions. This led to
85% of the sessions in our data having exactly 4 performing loans, 11% of the sessions having 3 performing loans, 3%
of the sessions having 5 performing loans, and 1% of sessions having 2 performing loans.
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First, loan officers were never informed that sessions were balanced. Instead, they were told

that the six loans within each session were randomly selected from a large population of loans.

Second, if loan officers had “figured out” that sessions were balanced, we would expect that loan

officers would be more likely to use this information when subject to stronger pay for performance.

In other words, there should be greater negative autocorrelation within the incentive treatments

with stronger pay-for-performance – this is the opposite of what we find. Also, the better educated

may be more likely to deduce that sessions are balanced, so they should display stronger negative

autocorrelation, which is again the opposite of what we find.

In Columns 1 and 2 of Table A.XI in the Online Appendix, we reproduce the baseline results

showing that the negative autocorrelation in decisions is strongest in the flat incentive scheme

treatment. In Columns 3 through 6, we show that the true performance of the current loan is

negatively related to both the lagged decision and the true quality of the lagged loan file, and the

negative autocorrelation in true loan quality is approximately similar in magnitude across all three

incentive treatments. The results in Columns 1 and 2 are inconsistent with loan officers realizing

that sessions were balanced. If loan officers had realized that sessions were balanced, we would

expect the opposite result, i.e., that the negative autocorrelation in decisions would be equally or

more strong under the stronger incentive schemes.

5 Baseball Umpires

Our final empirical setting uses data on called pitches by the home plate umpire in Major League

Baseball (MLB).

5.1 Baseball Umpires: Data Description and Institutional Context

In Major League Baseball, one important job of the home plate umpire is to call a pitch as a either

a strike or ball, if a batter does not swing. The umpire has to determine if the location of the

ball as it passes over home plate is within the strike zone as described and shown in Figure I. If

the umpire decides the pitch is within the strike zone, he calls it a strike and otherwise calls it a

ball. The boundaries of the strike zone are officially defined as in the caption for Figure I, and are

not subject to individual umpire interpretation. However, each umpire is expected to use his “best
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judgment” when determining the location of the ball relative to the strike zone boundaries. Hence,

umpire judgment matters.

We test whether baseball umpires are more likely to call the current pitch a ball after calling

the previous pitch a strike. Of course, pitch quality (e.g., location) is not randomly ordered. For

example, a pitcher will adjust his strategy depending on game conditions. An advantage of the

baseball umpire data is that it includes precise measures of the trajectory and location of each

pitch. Thus, while pitch quality may not be randomly ordered over time, we can control for each

pitch’s true location and measure whether mistakes in calls, conditional on a pitch’s true location,

are negatively predicted by the previous call.

We use data on umpire calls of pitches from PITCHf/x, a system that tracks the trajectory and

location of each pitch with respect to each batter’s strike zone as the pitch crosses in front of home

plate. The location measures are accurate to within a square centimeter. The PITCHf/x system

was installed in 2006 in every MLB stadium and implemented for part of the 2007 season. Our

data covers approximately 3.5 million pitches over the 2008 to 2012 MLB seasons, when the system

produced an entire season of pitch data. We restrict our analysis to called pitches, i.e., pitches in

which the batter does not swing (so the umpire must make a call), excluding the first called pitch

in each inning. This sample restriction leaves us with approximately 1.5 million called pitches over

12,564 games by 127 different umpires. In some tests, we further restrict our sample to consecutive

called pitches, where the current called pitch and the previous called pitch were not interrupted

by another pitch in which the umpire did not make a call (e.g., because the batter took a swing).

Consecutive called pitches account for just under 900 thousand observations.

Baseball umpires in our sample do not receive immediate feedback regarding whether each call

was correct (data on whether each pitch was within the strike zone according to the PITCHf/x

system is available after the game). Nevertheless, the umpire likely receives some cues. At the very

least, umpires can observe the extent to which others disagreed with the call. First, the umpire

knows roughly where the pitch landed and how “close” the call was. A call made on a pitch near the

edge of the strike zone is more ambiguous, for instance. More to the point, the umpire also receives

cues from the batter’s reaction, the pitcher’s reaction, and the crowd’s reaction to the call. These

parties voice their disagreement if they believe the umpire made a mistake. Making an unambiguous

erroneous call will likely draw a stronger reaction from at least one of these parties.
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Table VIII summarizes our data sample. Approximately 30% of all called pitches are called as

strikes (rather than balls). Umpires make the correct call 86.6% of the time. We also categorize

pitches by whether they were ambiguous (difficult to call) or obvious (easy to call). Ambiguous

pitches fall within ±1.5 inches of the edge of the strike zone. 60% of ambiguous pitches are called

correctly. Obvious pitches fall within 3 inches around the center of the strike zone or 6 inches or

more outside the edge of the strike zone. 99% of obvious pitches are called correctly.

5.2 Baseball Umpires: Empirical Specification

Our baseline tests explore whether umpires are less likely to call the current pitch a strike after calling

the previous pitch a strike, controlling for pitch location, which should be the sole determinant of

the call. The sample includes all called pitches except for the first in each game or inning. Yit is

an indicator for whether the current pitch is called a strike. Yi,t�1 is an indicator for whether the

previous pitch was called a strike.

To attribute negative autocorrelation in decisions to cognitive biases, we assume that the un-

derlying quality of the pitches (e.g., the location of the pitch relative to the strike zone), after

conditioning on a set of controls, is not itself negatively autocorrelated. To address this potential

concern, we include detailed controls for the characteristics of the current pitch. First, we control

for the pitch location relative to an absolute point on home plate using indicators for each 3⇥3

inch square. We also control explicitly for whether the current pitch was within the strike zone

based on its location, which should be the only characteristic that matters for the call according to

MLB rules. Finally, we control for the speed, acceleration, curvature, and spin in the x, y, and z

directions of the pitch, which may affect an umpire’s perception. For a complete detailed list of all

control variables, please see Appendix D. Our control variables address the concern that pitch char-

acteristics are not randomly ordered. In addition, the fact that we control for whether the current

pitch is actually within the true strike zone for each batter implies that any non-zero coefficients on

other variables represent mistakes on the part of the umpire. Nothing else, according to the rules,

should matter for the call except the location of the pitch relative to the strike zone. Specifically,

any significant coefficient on the lagged umpire decision is evidence of mistakes.

Of course, umpires may be biased in other ways. For example, Parsons et al. (2011) show

evidence of discrimination in calls: umpires are less likely to call strikes if the umpire and pitcher
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differ in race and ethnicity. However, while biases against teams or specific types of players could

affect the base rate of called pitches within innings or against certain pitchers, they should not

generate high-frequency negative autocorrelation in calls, which is the bias we focus on in this

paper.15 In addition, in the Online Appendix, we include umpire, batter, and pitcher fixed effects,

which should account for these sorts of biases, and find similar effects. More relevant for our tests,

Moskowitz and Wertheim (2011) show that umpires prefer to avoid making calls that result in

terminal outcomes or that may determine game outcomes. To differentiate our finding from these

other types of biases which may affect the probability of the umpire calling strike versus ball at

different points in the game, we control for indicator variables for every possible count combination

(number of balls and strikes called so far on the batter),16 the leverage index (a measure developed

by Tom Tango of how important a particular situation is in a baseball game depending on the

inning, score, outs, and number of players on base), indicators for the score of the team at bat,

indicators for the score of the team in the field, and an indicator for whether the batter belongs to

the home team.

In our previous analysis of asylum judges and loan officers, we controlled for heterogeneity

in each decision-maker’s approval rate using the decision-maker’s leave-out-mean approval rate,

moving average of the past five decisions, and/or decision-maker fixed effects. We also conducted

subsample analysis limited to moderate decision-makers. These control variables for decision-maker

heterogeneity are less relevant in the setting of baseball umpires, because professional umpires tend

to have very homogeneous mean rates of strike calls.17 Therefore, we present our baseline regression

results without inclusion of controls for individual heterogeneity (the lack of controls should be a

bias against findings of negative autocorrelation), and show in the Online Appendix that the results

are very similar if we control for umpire fixed effects or a moving average of the past five decisions.
15Along the same lines, umpires may potentially be misled by catcher framing, in which catchers strategically try

to catch a pitch close to the chest, so that the pitch appears closer to the center of the strike zone than it actually
was. In general, deceptive maneuvers such as catcher framing may alter the overall rate of called strikes within a
game or inning, but should not affect our results which measure high-frequency negative autocorrelation. We test
whether the current mistake in umpire decisions is negatively related to the previous call. Catcher framing should
not affect negative autocorrelation in calls because catchers do not have incentives to frame more following a previous
call of ball.

16In Table A.XVI in the Online Appendix, we find qualitatively similar coefficients on Yi,t�1 if we do not control
for count.

17Among umpires who have made more than 500 calls, the standard deviation in the mean rate of calling strikes is
0.01, potentially because extreme umpires would be much less accurate and umpire accuracy can be judged relative
to the PITCHf/x system.
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Finally, since we use the sample of called pitches, these are pitches in which the batter chose not

to swing. Whether the batter chooses to swing is unlikely to be random and may depend on various

game conditions, which is partly why we add all of the controls above. However, endogenous sample

selection of this form should also not bias our results toward finding spurious negative autocorrelation

in umpire calls. We test, within the sample of called pitches, whether umpires tend to make mistakes

in the opposite direction of the previous decision, after controlling for the true quality (location)

of the current pitch. We also show that, insofar as pitch quality is not randomly ordered, it tends

to be slightly positively autocorrelated within this sample, which is a bias against our findings of

negative autocorrelation.

5.3 Baseball Umpires: Results

Table IX, Column 1 shows that umpires are 0.9 percentage points less likely to call a pitch a strike

if the most recent previously called pitch was called a strike. Column 2 shows that the negative

autocorrelation is stronger following streaks. Umpires are 1.3 percentage points less likely to call

a pitch a strike if the two most recent called pitches were also called strikes. Further, umpires are

less likely to call the current pitch a strike if the most recent pitch was called a strike and the pitch

before that was called a ball than if the ordering of the last two calls were reversed. In other words,

extreme recency matters. We easily reject that �1 = �2 = �3 in favor of �1 < �2 < �3 < 0. These

findings are consistent with the gambler’s fallacy and less consistent with a quotas explanation (in

addition, umpires do not face explicit quotas). The results are also less consistent with a learning

model about where to set a quality cutoff bar, because there is an objective quality bar (the official

strike zone) that, according to the rules, should not move depending on the quality of the previous

pitch.

All analysis in this and subsequent tables includes detailed controls for the actual location,

speed, and curvature of the pitch. In addition, because we control for an indicator for whether the

current pitch actually fell within the strike zone, all reported non-zero coefficients reflect mistakes

on the part of the umpires (if the umpire always made the correct call, all coefficients other than

the coefficient on the indicator for whether the pitch fell within the strike zone should equal zero).

In Columns 3 and 4 of Table IX, we repeat the analysis but restrict the sample to pitches that

were called consecutively (so both the current and most recent pitch received umpire calls of strike
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or ball) without any interruption. In the consecutive sample, the umpire’s recent previous calls may

be more salient because they are not separated by uncalled pitches. We find that the magnitude

of the negative autocorrelation increases substantially in this sample. Umpires are 2.1 percentage

points less likely to call the current pitch a strike if the previous two pitches were called strikes.

This represents a 6.8 percent decline relative to the base rate of strike calls. We test whether the

differences in magnitudes between the full sample and the consecutive called pitches sample are

significant and find that they are, with p-values below 0.001. In all subsequent analysis, unless

otherwise noted, we restrict the sample to consecutive called pitches.

Tables A.XII - A.XVI in the Online Appendix report robustness tests of these results. Table

A.XII shows similar results with batter, pitcher, and umpire fixed effects. Table A.XIII reports

similar results using the moving average of the umpire’s past five calls as a control variable. Table

A.XIV shows similar effects and economic magnitudes using logit and probit models, and Table

A.XV shows similar results using a bivariate probit model. Table A.XVI shows similar results if we

exclude control variables for the count (number of balls and strikes called so far on the batter).

Since in this setting, we are particularly concerned that the “quality”, i.e., location, of the pitch

will also react to the umpire’s previous call, we control for each pitch’s true location (plus the other

controls described in Appendix D) and measure whether mistakes in calls conditional on a pitch’s

true location are negatively predicted by the previous call. If our location and other controls are

mismeasured or inadequate, however, then autocorrelation in the quality of pitches could still be an

issue. To assess how concerning this issue might be, we also re-estimate the regression by replacing

the dependent variable of whether a pitch is called a strike with an indicator for whether the pitch

is actually a true strike. We also estimate a version of the analysis where the dependent variable

is replaced with the distance of the pitch from the center of the strike zone. We then test whether

these proxies for the true location of the pitch depend on whether the lagged pitch was called a

strike. In other words, how does the actual quality of the pitch respond to the previous call?

Table A.XVII in the Online Appendix shows that the negative autocorrelation in umpire calls

is unlikely to be caused by changes in the actual location of the pitch. We continue to restrict the

sample to consecutive called pitches and repeat the analysis using the current pitch’s true location

as our dependent variable (to identify the effect of previous calls on the location of the current pitch,

we exclude location controls). Columns 1 and 2, which use an indicator for whether the current
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pitch was within the strike zone as the dependent variable, show that pitchers are more likely to

throw another strike after the previous pitch was called a strike, resulting in positive, rather than

negative, coefficients on the previous call. Hence, autocorrelation in the quality of pitches biases

us against our finding of negatively autocorrelated decision-making. In Columns 3 and 4, we use

the distance of the pitch in inches from the center of the strike zone as the dependent variable.

If pitchers are more likely to throw true balls (more distant from the center of the strike zone)

after the previous pitch was called a strike, we should find significant positive coefficients on lagged

strike calls; again, we find the opposite. In other words, endogenous changes in pitch location as

a response to previous calls should lead to positive rather than negative autocorrelation in umpire

calls because the quality of pitches is slightly positively autocorrelated. Finally, in Columns 5 and

6, we include the same set of detailed pitch location controls (dummies for each 3 x 3 inch square)

as in our baseline specifications, and find that all coefficients on lagged calls become small and

insignificant, suggesting that our controls effectively remove any autocorrelation in the quality of

pitches and account for pitcher’s endogenous responses to previous calls.

Table X shows that the negative autocorrelation in decisions is reduced when umpires receive

more informative signals about the quality of the current pitch. Columns 1 and 2 restrict the

analysis to observations in which the current pitch is ambiguous – pitches located close to the

boundary of the strike zone, where it is difficult to make a correct strike or ball call. Columns 3 and

4, restrict the analysis to observations in which the current pitch is likely to be obvious – pitches

located close to the center of the strike zone (“obvious” strikes) or far from the edge of the strike

zone (“obvious” balls). We find that the magnitude of negative autocorrelation coefficients are ten

to fifteen times larger when the current pitch is ambiguous relative to when the current pitch is

obvious. We can confidently reject equality of the estimates for ambiguous and obvious pitches in

Columns 1 and 3 with p-values well below 0.001. This is consistent with the gambler’s fallacy model

that the decision-maker’s prior beliefs about case quality will have less impact on the decision when

the signal about current case quality is more informative.

It is also important to note that the stronger negative autocorrelation for ambiguous pitches is

not merely a consequence of these pitches being more difficult to call. We expect umpire accuracy

to decline for these pitches, but an unbiased umpire should not be more likely to make mistakes in

the opposite direction from the previous call. That is, overall accuracy may be lower but there is
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no expectation that calls should alternate and be negatively autocorrelated.

In Table XI, we explore heterogeneity with respect to game conditions and umpire characteris-

tics. Column 1 shows that an increase in leverage (the importance of a particular game situation for

determining the game outcome) leads to significantly stronger negative autocorrelation in decisions.

However, the magnitude of the effect is small: a one standard deviation increase in game leverage

leads to less than a 10 percent increase in the extent of negative autocorrelation. Column 2 shows

that umpires who are more accurate (calculated as the fraction of pitches correctly called by the

umpire in other games excluding the current game) are also less susceptible to negatively autocor-

related decision-making. A one standard deviation increase in umpire accuracy reduces negative

autocorrelation by 25 percent. Finally, Column 3 tests whether the magnitude of the negative auto-

correlation varies by game attendance. We divide game attendance into quintiles and compare the

highest and lowest quintiles to the middle three quintiles (which represent the omitted category).

We don’t find any significant differences in behavior by game attendance except in the highest

quintile, where the negative autocorrelation increases by 18 percent. However, this difference in

behavior is only marginally significant. The marginally stronger negative autocorrelation effects for

high leverage situations and high attendance games may be consistent with umpires worrying about

appearing biased in more heavily scrutinized environments, where fans, analysts, and the media

may suffer from the gambler’s fallacy.

6 Addressing Alternative Explanations

Across all three of our settings, we find consistent evidence of negatively autocorrelated decision-

making. We believe our results are best explained by decision-makers suffering from the gambler’s

fallacy. Other explanations for negatively autocorrelated decisions such as quotas, learning, or pref-

erences to treat all parties fairly, are less consistent with the evidence, though we cannot completely

rule out sequential contrast effects as an alternative explanation.

6.1 Sequential Contrast Effects

Perhaps the most difficult alternative story to distinguish – and one which we will not be able to

fully reject empirically – is sequential contrast effects (SCE). Under SCE, negative autocorrelation
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in decisions can arise if agents view the current case in contrast to the preceding case. SCE imply

that lagged case quality affects the perception of the quality of the current case. Under Rabin’s

(2002) original model, where agents react to past binary outcomes, we could, in principle, distinguish

between agents responding to past decisions (the gambler’s fallacy) versus lagged quality (SCE),

where the former is a binary outcome and the latter continuous. Specifically, we could estimate:

Yit = �0 + �1Yi,t�1 + �2Qualityi,t�1 + Controls+ ✏it.

If SCE drives our findings, then we expect to find that �2 < 0, holding constant the previous

discrete decision Yi,t�1. The idea is, holding constant the previous discrete decision, SCE predicts

that decision-makers should be more likely to reject the current case if the previous case was of

high quality, as measured continuously using Qualityi,t�1. However, in a more general model of

the gambler’s fallacy, such as that proposed in Rabin and Vayanos (2010), agents may react more

negatively to the previous decision if they are more certain that the previous case was a true 1 (0)

because it was very high (low) in quality. Such a model would also predict that �2 < 0, and hence

the two theories make identical predictions.

Tables A.XVIII and A.XIX in the Online Appendix estimate the above equation for the asylum

judges and loan officers samples, respectively, and find that, using a continuous predicted quality

measure for asylum cases and loan officer’s quality scores for loans, the current decision is negatively

correlated with the previous decision, but not reliably related to the previous case’s quality. This is

consistent with a simple gambler’s fallacy model as in Rabin (2002) and less consistent with SCE

or a more general model of the gambler’s fallacy in which agents react negatively to the continuous

quality of the previous case. However, the test cannot fully reject SCE because we may measure

the true quality of the previous case with error. If unobserved quality is better captured by the

binary decision rather than the observed continuous quality measure, then both coefficients represent

quality and are consistent with both SCE and the gambler’s fallacy.

Likewise, we cannot completely rule out SCE in baseball. In principle, SCE may simply be less

likely to occur in the context of baseball because there is a well-defined quality metric: the regulated

strike zone. Therefore, quality is established by rule. However, there still may be room for SCE to

affect perceptions of quality, at least at the margin. Further, as shown later in Table XII, umpires
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are slightly more likely to reverse the next call when the previous pitch was an obvious strike, i.e.,

high quality, which is consistent with SCE.

Theoretically, the main distinction between the gambler’s fallacy and SCE lies in when the sub-

ject makes a quality assessment. Under the gambler’s fallacy, a decision-maker who just reviewed

a high quality case would predict the next case is less likely to be high quality (because two high

quality cases in a row are unlikely to occur) even before seeing the next case, whereas, under SCE,

the decision-maker will make a relative comparison after seeing both cases. While the laboratory

setting may be able to separate these two biases, they are observationally equivalent when looking

at only decision outcomes, since we cannot observe what is inside a decision-maker’s head. Compli-

cating matters further, contrast effects bias could potentially arise from the gambler’s fallacy. After

reviewing a high quality case and deciding in the affirmative, a decision-maker may believe that the

next case is less likely to be of high quality, and this makes her perceive the next case as indeed

having lower quality, resulting in a contrast effect.

6.2 Quotas and Learning

In all three of our empirical settings, agents do not face explicit quotas. For example, loan officers

are paid based upon accuracy and are explicitly told that they do not face quotas. However, one may

be concerned that decision-makers self-impose quotas. Even without a self-imposed quota, decision-

makers may believe that the correct fraction of affirmative decisions should be some level ✓. Under

a learning model, the decision-maker may be unsure of where to set the quality bar to achieve an

affirmative target rate of ✓, and learn over time. We show that self-imposed quotas or targets are

unlikely to explain our results by controlling for the fraction of the previous N decisions that were

made in the affirmative, where N equals 2 or 5, and testing whether the previous single decision still

matters. We find that, holding constant the fraction of the previous two or five decisions decided in

the affirmative, the previous single decision negatively predicts the next decision (see Tables II and

IX and A.XIII). The only exception is the loan officers setting in which we do not find, controlling

for the fraction of the past two decisions made in the affirmative, that loan officers react more

negatively to the most recent decision. However, the results are less precisely estimated because the
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field experiment data offers a shorter panel and smaller sample size.18 In general, this behavior is

consistent with models of the gambler’s fallacy, and largely inconsistent with self-imposed quotas,

unless the decision-maker has very limited memory and cannot remember beyond the most recent

decision. Likewise, decision-makers in our three settings are highly experienced and should have a

standard of quality calibrated from many years of experience. They are probably not learning much

from their most recent decision. Therefore, a learning model would not predict a strong negative

reaction to the most recent decision, especially if we also control for their history of recent decisions

using the fraction of recent decisions decided in the affirmative. In addition, baseball umpires should

make decisions according to an objective quality standard (the officially defined-strike zone) rather

than according to a target affirmative decision rate.

6.3 External Perceptions and Preferences for Alternation and Fairness

Finally, we discuss two additional possible explanations for negatively-autocorrelated decisions that

are closely related to variants of our gambler’s fallacy hypothesis. The first is that the decision-

maker fully understands random processes, but cares about the opinions of others, such as promotion

committees or voters, who are fooled by randomness. These rational decision-makers will choose

to make negatively autocorrelated decisions, even if they know they are wrong, in order to avoid

the appearance of being too lenient or too harsh. Concerns about external perceptions could be an

important driver of decisions. However, they are unlikely to drive the results in the context of loan

approval, which is an experimental setting where payouts depend only on accuracy and the ordering

of decisions and their associated accuracy are never reported to participants or their home banks.

The second related explanation is that agents may prefer to alternate being “mean” and “nice”

over short time horizons. We cannot rule out this preference for mixing entirely. However, the desire

to avoid being mean two times in a row, holding the recent fraction of negative decisions constant,

could actually originate from the gambler’s fallacy. A decision-maker who desires to be fair may

over-infer that she is becoming too harsh and negative from a short sequence of “mean” decisions.

Moreover, a preference to alternate mean and nice is again unlikely to drive behavior in the loan
18While we cannot show that loan officers react negatively to the most recent decision controlling for the fraction of

recent decisions made in the affirmative, other results appear inconsistent with a quotas or learning explanation. The
loan officers are paid for accuracy and they should be more likely to self-impose quotas or learn how to implement a
target decision rate when they face stronger monetary incentives.
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approval setting where loan officer decisions in the experiment do not affect real loan origination

(so there is no sense of being mean or nice).

An important and related consideration that is specific to the baseball setting is that umpires

may have a preference to be equally nice or “fair” to two opposing teams. The desire to be fair to two

opposing teams is unlikely to drive results in the asylum judges and loan officers settings because

the decision-maker reviews a sequence of independent cases, and the cases are not part of any teams.

However, in baseball, the umpire makes sequential calls on the same team at bat. Fairness motives

may lead umpires to undo a previous marginal or mistaken call, which could result in negative

autocorrelation. After calling a marginal pitch a strike, the umpire may choose to balance out his

calls by calling the next pitch a ball. While we do not seek to completely rule out these types of

situations, we show that “make-up” calls and preferences for fairness appear unlikely to drive our

estimates for baseball umpires.19

In Table XII, Column 1 shows that the negative autocorrelation is stronger following a previous

correct call than following a previous incorrect call, which is inconsistent with a fairness motive,

because umpires concerned with fairness should be more likely to reverse the previous call if it

was incorrect. Column 2 shows that the negative autocorrelation remains equally strong or stronger

when the previous call was obvious. In these cases, the umpire is less likely to feel guilt about making

a particular call because the umpire could not have called it any other way (e.g., he, and everyone

else, knew it was the right call to make). Nevertheless, we find strong negative autocorrelation

following these obvious calls, suggesting that a desire to undo marginal calls is not the sole driver

of our results. Finally, in Column 3, we restrict the sample to called pitches following previous calls

that were either obvious or ambiguous. We further divide previous ambiguous calls into those that

were called correctly (60%) and those that were called incorrectly (40%). If fairness concerns drive

the negative autocorrelation in calls, the negative autocorrelation should be strongest following

previous ambiguous and incorrect calls. We find the opposite. The negative autocorrelation is

stronger following obvious calls (of which 99% are called correctly) and also following previous

ambiguous calls that were called correctly. These results suggest that fairness concerns and a desire
19We also tested the effect of the last called pitch for the previous team at bat on the first called pitch for the

opposing team at bat. Fairness to two teams would suggest that, if an umpire called a pitch one way or made an error
in one direction against one team, then he would make that same call on the opposing team to balance it out. This
implies positive autocorrelation in calls when the inning changes. We find no evidence consistent with this prediction.
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to be equally nice to two opposing teams are unlikely to explain our results.

7 Conclusion

We document strong negative autocorrelation by decision-makers, unrelated to the quality of cases,

in three high-stakes contexts: refugee asylum courts, loan application reviews, and professional

baseball umpire calls. We find consistent evidence with many common links across the three inde-

pendent settings. This negative autocorrelation is stronger among more moderate and less experi-

enced decision-makers, following longer streaks of decisions in one direction, when the current and

previous cases share similar characteristics or occur close in time, and when decision-makers face

weaker incentives for accuracy. We show that the negative autocorrelation in decision-making is

most consistent with the gambler’s fallacy inducing decision-makers to erroneously alternate deci-

sions because they mistakenly believe that streaks of affirmative or negative decisions are unlikely

to occur by chance. We cannot rule out that sequential contrast effects also help to explain to these

findings, but we show that the results are unlikely to be driven by other alternative explanations

such as quotas, learning, or preferences to treat parties fairly.

Beyond the three settings we study, negatively autocorrelated decision-making could have broader

implications. For example, financial auditors, human resource interviewers, medical doctors, and

policy makers all make sequences of decisions under substantial uncertainty. Our results suggest

that misperceptions of what constitutes a fair process can perversely lead to unfair or incorrect

decisions in many situations.
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Appendix A: Calculation of Reversal and Mistake Rates

In this section, we discuss how to interpret regression coefficients as approximate reversal or mistake
rates. Consider the simple regression Yt = �0 + �1Yt�1 + ✏t. Taking expectations, P (Y = 1) =
�0/ (1� �1). Let a ⌘ �0/ (1� �1) be the rate of affirmative decisions in the data. Suppose that,
absent the bias toward negative autocorrelation in decisions, the rate of affirmative decisions would
still equal a. If the previous decision was a negative, then the negative autocorrelation causes
the current decision to be too likely to be an affirmative by the amount (�0 � a). If the previous
decision was an affirmative, then the current decision is not likely enough to be an affirmative by the
amount (a� (�0 + �1)). Therefore, the fraction of decisions that are reversed due to the negative
autocorrelation is R ⌘ (�0 � a)·P (Yt�1 = 0)+(a� (�0 + �1))·P (Yt�1 = 1). To simplify, substitute
�0 = a (1� �1), so that the previous equation simplifies to R ⌘ �2�1a (1� a), which is positive
since �1 < 0.

If the correct decision is known, we can also estimate the fraction of decisions that are mistakes
caused by the negative autocorrelation in decisions. Consider the alternative simple regression
Yt = e

�0 + e
�1Yt�1 + �Yt,true + et. Let ⌧ ⌘ E [Yt,true] be the rate of affirmative decisions in the data

if all decisions were correct. Let � ⌘ E [1 {Y = Ytrue}] be the accuracy rate in the data. Taking
expectations, P (Y = 1) =

⇣
e
�0 + �⌧

⌘
/

⇣
1� e

�1

⌘
. Let ea ⌘
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affirmative decisions in the data. Suppose that, absent the bias toward negative autocorrelation in
decisions, the rate of affirmative decisions would still equal ea. If the previous decision was a negative,
then the negative autocorrelation causes the current decision to be too likely to be an affirmative
by the amount

⇣
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so that the previous equation simplifies to e
R ⌘ �2e�1ea (1� ea), which is positive since e

�1 < 0.
The fraction of decisions that are mistakes caused by the negative autocorrelation is approxi-

mately M = e
R (�0) � e

R (1� �0) , where �0 = � +M is the accuracy rate if there were no negative
autocorrelation in decisions. The mistake rate is the sum of the fraction of decisions that would have
been accurate but are reversed due to the negative autocorrelation in decisions minus the fraction
of decisions that would have been inaccurate but are reversed due to the negative autocorrelation
in decisions. Note that, in extreme situations where the decision-maker is wrong more than half the
time (e.g. � < 0.5), reversals can increase accuracy. Solving yields a mistake rate of M = (2��1) eR

1�2 eR
.

Appendix B: A Model of Decision-Making Under the Gambler’s Fal-

lacy

To motivate why the gambler’s fallacy may lead to negatively correlated decision-making, we present
a simple extension of the Rabin (2002) model of the gambler’s fallacy and belief in the law of small
numbers. In the Rabin model, agents who suffer from the gambler’s fallacy believe that, within
short sequences, black (1) and white (0) balls are drawn from an imaginary urn of finite size without
replacement. Therefore, a draw of a black ball increases the odds of the next ball being white. As

39



the size of the imaginary urn approaches infinity, the biased agent behaves like the rational thinker.
We extend the model to decision-making by assuming that before assessing each case, agents

hold a prior belief about the probability that the case will be a black ball. This prior belief is shaped
by the same mechanics as the behavioral agent’s beliefs in the Rabin model. However, the agent
also receives a noisy signal about the quality of the current case, so the agent’s ultimate decision is
a weighted average of her prior belief and the noisy signal.

Model Setup

Suppose an agent makes 0/1 decisions for a randomly ordered series of cases. The true case quality
is an i.i.d. sequence {yt}Mt=1 where yt = {0, 1}, P (yt = 1) = ↵ 2 (0, 1), and yt ? yt�1 8t.

The agent’s prior about the current case is

Pt ⌘ P

⇣
yt = 1 | {y⌧}t�1

⌧=1

⌘
.

For simplicity, we assume that the decision-maker believes the true case quality for all cases prior
to t is equal to the decision made (e.g., if the agent decided the ball was black, she believes it is
black).20

The agent also observes an i.i.d. signal about current case quality St 2 {0, 1} which is accurate
with probability µ and uninformative with probability 1�µ. By Bayes Rule, the agent’s belief after
observing St is

P

⇣
yt = 1 | St, {y⌧}t�1

⌧=1

⌘
=

[µSt + (1� µ)↵]Pt

↵

.

The agent then imposes a threshold decision rule and makes a decision Dt 2 {0, 1} such that

Dt = 1

⇢
[µSt + (1� µ)↵]Pt

↵

� X

�
.

We then compare the prior beliefs and decisions of a rational agent to those of an agent who
suffers from the gambler’s fallacy. The rational agent understands that the yt are i.i.d. Therefore,
her priors are independent of history:

P

R
t = P

⇣
yt = 1 | {y⌧}t�1

⌧=1

⌘
= P (yt = 1) = ↵.

By Bayes Rule, the rational agent’s belief after observing St is

P

⇣
yt = 1 | St = 1, {y⌧}t�1

⌧=1

⌘
= µSt + (1� µ)↵.

It is straightforward to see that the rational agent’s decision on the current case should be uncor-
related with her decisions in previous cases, conditional on ↵.

Following Rabin (2002), we assume an agent who suffers from the gambler’s fallacy believes that
for rounds 1, 4, 7, ... cases are drawn from an urn containing N cases, ↵N of which are 1’s (and
the remainder are 0’s). For rounds 2, 5, 8, ... cases are drawn from an urn containing N � 1 cases,

20In this simple model of the gambler’s fallacy in decision-making, agents form priors based upon previous decisions.
In a more general model of the gambler’s fallacy, along the lines of the model in Rabin and Vayanos (2010), agents
may react more negatively to previous decisions if they are more certain that the previous decision was correct. Such
a model would yield similar predictions to those of a SCE model in which agents are more likely to reverse previous
decisions if the previous case was very low or high in quality, measured continuously.
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↵N � yt�1 of which are 1’s. Finally, for rounds 3, 6, 9, ... cases are drawn from an urn containing
N � 2 cases, ↵N � yt�1 � yt�2 of which are 1’s. The degree of belief in the law of small numbers is
indexed by N 2 N and we assume N � 6. As N ! 1, the biased agent behaves likes the rational
thinker.

Model Predictions

The simple model generates the following testable predictions for decision-makers who suffer from
the gambler’s fallacy:

1. Decisions will be negatively autocorrelated as long as the signal of case quality is not perfectly
informative. This occurs because decisions depend on prior beliefs which are negatively related
to the previous decision.

2. “Moderate” decision-makers, defined as those with ↵ close to 0.5, will make more uncondition-
ally negatively autocorrelated decisions than extreme decision-makers, defined as those with
↵ close to 0 or 1. This follows immediately from Rabin (2002).

3. The negative autocorrelation will be stronger following a streak of two or more decisions in
the same direction. This follows from an extension of Rabin (2002) where the decision-maker
believes that he is making the first, second, or third draw from the urn, each with probability
one-third.

4. The negative autocorrelation in decisions is stronger when the signal about the quality of the
current case is less informative. This follows directly from the threshold decision rule defined
above.

Appendix C: Additional Background on Asylum Judges

Immigration Courts Overview

The immigration judges are part of the Executive Office for Immigration Review (EOIR), an agency
of the Department of Justice (Political Asylum Immigration Representation Project, 2014). At
present, there are over 260 immigration judges in 59 immigration courts. In removal proceedings,
immigration judges determine whether an individual from a foreign country (an alien) should be
allowed to enter or remain in the United States or should be removed. Immigration judges are
responsible for conducting formal court proceedings and act independently in deciding the matters
before them. They also have jurisdiction to consider various forms of relief from removal. In
a typical removal proceeding, the immigration judge may decide whether an alien is removable
(formerly called deportable) or inadmissible under the law, then may consider whether that alien
may avoid removal by accepting voluntary departure or by qualifying for asylum, cancellation of
removal, adjustment of status, protection under the United Nations Convention Against Torture,
or other forms of relief (Executive Office for Immigration Review, 2014).
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Immigration Judges

The immigration judges are attorneys appointed by the Attorney General as administrative judges.
They are subject to the supervision of the Attorney General, but otherwise exercise independent
judgment and discretion in considering and determining the cases before them. See INA sec.
101(b)(4) (8 U.S.C. 1101(b)(4)); 8 CFR 1003.10(b), (d). Decisions of the immigration judges are
subject to review by the Board pursuant to 8 CFR 1003.1(a)(1) and (d)(1); in turn, the Board’s
decisions can be reviewed by the Attorney General, as provided in 8 CFR 1003.1(g) and (h). De-
cisions of the Board and the Attorney General are subject to judicial review (Executive Office for
Immigration Review, 2014).

In our own data collection of immigration judge biographies, many previously worked as immi-
gration lawyers or at the Immigration and Naturalization Service (INS) for some time before they
were appointed. The average tenure of active immigration judges, as of 2007, was approximately
eleven to twelve years. Since 2003 the annual attrition rate has averaged approximately 5%, with
the majority of departures due to retirement (TRAC Immigration, 2008).

Proceedings before Immigration Courts

There are two ways an applicant arrives to the Immigration Court. First, the asylum seeker can
affirmatively seek asylum by filing an application. In the event that the Asylum Office did not
grant the asylum application21 and referred it to Immigration Court, the asylum seeker can now
pursue his or her asylum claim as a defense to removal in Immigration Court. Second, if the asylum
seeker never filed for asylum with the Asylum Office but rather the government started removal
proceedings against him or her for some other reason, he or she can now pursue an asylum case in
Immigration Court (Political Asylum Immigration Representation Project, 2014). This latter group
is classified as defensive applicants and includes defendants picked up in immigration raids.

Families

We treat multiple family members as a single case because family members almost always receive
the same asylum decision (based upon Ramji-Nogales et al., 2007 and verified through conversations
with several asylum judges). Following Ramji-Nogales et al. (2007), we infer shared family status
if cases share a hearing date, nationality, court, judge, decision, representation status, and case
type (affirmative or defensive). Because our data contains some fields previously unavailable in the
Ramji-Nogales et al. (2007) data, we also require family members to have the same lawyer identity
code and to be heard during the same or consecutive hearing start time.

A potential concern with inferring that two applicants belong to the same family case using
the criteria above is that family members must have, among the many other similarities, similar
decision status. Therefore, sequential cases inferred to belong to different families will tend to have
different decisions. This may lead to spurious measures of negative autocorrelation in decisions that
is caused by error in the inference of families. We address this concern in two ways. First, we are
much more conservative in assigning cases to families than Ramji-Nogales et al. (2007). In addition
to their criteria, we also require family members to have the same identity for their lawyer and the

21For application at the Asylum Office, see chapters 14-26 of: http://immigrationequality.org/get-legal-help/our-
legal-resources/immigration-equality-asylum-manual/preface-and-acknowledgements/
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same or consecutive hearing start time. This will lead to under-inference of families if some family
members are seen during non-consecutive clock times or the data fails to record lawyer identity, both
of which occur in the data according to conversations with TRAC data representatives. Since family
members tend to have the same decision, under-inference of families should lead to biases against
our findings of negative autocorrelation in decisions. Second, we find evidence of significant and
strong negative autocorrelation when the current and previous case do not correspond to the same
nationality. This type of negative autocorrelation is extremely unlikely to be generated by errors in
the inference of families because family members will almost always have the same nationality.

Appendix D: MLB Control Variables

The empirical tests for baseball umpire decisions include the following control variables unless
otherwise noted. All controls are introduced as linear continuous variables unless otherwise specified
below.

1. Indicator variables for each 3 ⇥ 3 inch square for the (x, y) location of the pitch as it passed
home plate, with (0, 0) being lowest left box from perspective of umpire

2. Indicator for whether the batter belongs to the home team

3. Indicator for each possible pitch count combination (number of balls and strikes prior to
current pitch)

4. Acceleration of the pitch, in feet per second per second, in the x-, y-, and z- direction measured
at the initial release point (three continuous variables)

5. Break angle: The angle, in degrees, from vertical to the straight line path from the release
point to where the pitch crossed the front of home plate, as seen from the catcher’s/umpire’s
perspective

6. Break length: The measurement of the greatest distance, in inches, between the trajectory of
the pitch at any point between the release point and the front of home plate, and the straight
line path from the release point and the front of home plate

7. The distance in feet from home plate to the point in the pitch trajectory where the pitch
achieved its greatest deviation from the straight line path between the release point and the
front of home plate

8. End speed: The pitch speed in feet per second measured as it crossed the front of home plate

9. The horizontal movement, in inches, of the pitch between the release point and home plate,
as compared to a theoretical pitch thrown at the same speed with no spin-induced movement

10. The vertical movement, in inches, of the pitch between the release point and home plate, as
compared to a theoretical pitch thrown at the same speed with no spin-induced movement

11. The left/right distance, in feet, of the pitch from the middle of the plate as it crossed home
plate (The PITCHf/x coordinate system is oriented to the catcher’s/umpire’s perspective,
with distances to the right being positive and to the left being negative)
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12. The height of the pitch in feet as it crossed the front of home plate

13. The direction, in degrees, of the ball’s spin. A value of 0 indicates a pitch with no spin. A
value of 180 indicates the pitch was spinning from the bottom

14. Spin rate: The angular velocity of the pitch in revolutions per minute

15. The velocity of the pitch, in feet per second, in the x, y, and z dimensions, measured at the
initial point (three continuous variables)

16. The left/right distance, in feet, of the pitch, measured at the initial point

17. The height, in feet, of the pitch, measured at the initial point

18. Proportion of previous pitches to the batter during the given game that were either in the
dirt or were a hit by pitch

19. Proportion of previous pitches to the batter during the given game that were put into play

20. Proportion of previous pitches to the batter during the game that were described as either
swinging strike, missed bunt or classified as strike

21. Proportion of previous pitches to the batter during the game that were described as either
intentional ball, pitchout, automatic ball, or automatic strike

22. Proportion of previous pitches to the batter during the game described as foul tip, foul, foul
bunt, foul (runner going) or foul pitchout

23. Proportion of previous pitches to the batter during the game described as “ball”

24. Proportion of previous pitches to the batter during the game described as “called strike”

25. Indicator variable for whether the pitch should have been called a strike based on the objective
definition of the strike zone

26. A measure developed by Tom Tango of how important a particular situation is in a baseball
game depending on the inning, score, outs, and number of players on base

27. Indicator variables for each possible score of the team at bat

28. Indicator variables for each possible score of the team in the field
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Table I
Asylum judges: summary statistics

Mean Median S.D.

Number/of/judges 357

Number/of/courts 45

Years/since/appointment 8.41 8 6.06

Daily/caseload/of/judge 1.89 2 0.84

Family/size 1.21 1 0.64

Grant/indicator 0.29

NonHextreme/indicator 0.54

Moderate/indicator 0.25

Lawyer/indicator 0.939

Defensive/indicator 0.437

Morning/indicator 0.47

Lunchtime/indicator 0.38

Afternoon/indicator 0.15

This table presents summary statistics of the asylum judges data that we use in our decision-making analysis.



Table II
Asylum judges: baseline results

Grant Asylum Dummy

(1) (2) (3) (4) (5)

Lag grant -0.00544⇤ -0.0108⇤⇤⇤ -0.0155⇤⇤ -0.0326⇤⇤⇤
(0.00308) (0.00413) (0.00631) (0.00773)

�1: Lag grant - grant -0.0549⇤⇤⇤
(0.0148)

�2: Lag deny - grant -0.0367⇤⇤
(0.0171)

�3: Lag grant - deny -0.00804
(0.0157)

p-value: �1 = �2 = �3 0.0507
p-value: �1 = �2 0.290
p-value: �1 = �3 0.0214
p-value: �2 = �3 0.0503
Exclude extreme judges No Yes Yes Yes Yes
Same day cases No No Yes Yes Yes
Same defensive cases No No No Yes Yes
N 150,357 80,733 36,389 23,990 10,652
R

2 0.374 0.207 0.223 0.228 0.269

This table tests whether the decision to grant asylum to the current applicant is related to the decision to grant asylum to the
previous applicant. Observations are at the judge x case level. Observations are restricted to decisions that occurred within
one day or weekend after the previous decision. Column 2 excludes extreme judge observations (the average grant rate for the
judge for the nationality-defensive category of the current case, calculated excluding the current observation, is below 0.2 or
above 0.8). Column 3 further restricts the sample to decisions that follow another decision on the same day. Column 4 further
restricts the sample to decisions in which the current and previous case have the same defensive status (both defensive or both
affirmative). Column 5 tests how judges react to streaks in past decisions. The sample is further restricted to observations
in which the current, previous, and previous-previous cases share the same defensive status. To retain sample size, we keep
the restriction that the current and previous case must occur on the same day, but allow the previous-previous case to occur
on the previous day. Lag grant-grant is an indicator for whether the judge approved the two most recent asylum cases. Lag
deny-grant is an indicator for whether the judge granted the most recent case and denied the case before that. Lag grant-deny
is an indicator for whether the judge denied the most recent case and granted the case before that. The omitted category
is Lag deny-deny. All specifications include the following controls: indicator variables for the number of grants out of the
judge’s previous 5 decisions (excluding the current decision); indicator variables for the number of grants within the 5 most
recent cases in the same court, excluding those of the judge corresponding to the current observation; the judge’s average grant
rate for the relevant nationality x defensive category (excluding the current observation); the court’s average grant rate for
the relevant nationality x defensive category (excluding the current judge); presence of lawyer representation indicator; family
size; nationality x defensive fixed effects, and time of day fixed effects (morning / lunchtime / afternoon). Standard errors are
clustered by judge. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.



Table III
Asylum judges: heterogeneity

Grant Asylum Dummy

(1) (2) (3) (4)

Lag grant -0.0196⇤⇤ 0.00180 -0.0484⇤⇤⇤ -0.0553⇤⇤⇤
(0.00801) (0.00900) (0.0115) (0.0115)

Same nationality 0.0336⇤⇤⇤
(0.0108)

Lag grant x same nationality -0.0421⇤⇤⇤
(0.0126)

Moderate judge 0.0326⇤⇤⇤
(0.0116)

Lag grant x moderate judge -0.0700⇤⇤⇤
(0.0136)

Experienced judge 0.0138 0.0253⇤
(0.0106) (0.0140)

Lag grant x experienced judge 0.0327⇤⇤ 0.0456⇤⇤⇤
(0.0152) (0.0156)

Judge FE No No No Yes
N 23,990 23,990 22,965 22,965
R

2 0.229 0.229 0.229 0.247

Column 1 tests whether the gambler’s fallacy is stronger when the previous decision concerned an applicant with the same
nationality as the current applicant. Column 2 tests whether the gambler’s fallacy is stronger among moderate judge observations
(the average grant rate for the judge for the nationality-defensive category of the current case, calculated excluding the current
observation, is between 0.3 and 0.7). Columns 3 and 4 test whether the gambler’s fallacy declines with experience. Experienced
in an indicator for whether the judge, at the time when the case was decided, had more than the median experience in the
sample (8 years). Column 4 adds judge fixed effects, so the interaction term measures the within-judge effect of experience. All
other variables and restrictions are as described in Table II, Column 3. Standard errors are clustered by judge. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.



Table IV
Loan officers: summary statistics

Loan%officer%x%loan%observations
Loan%officers
Sessions%(6%loans%per%session)

Mean S.D./(S.E.) Mean S.D./(S.E.) Mean S.D./(S.E.) Mean S.D./(S.E.)
Fraction%of%loans%performing 0.65 0.66 0.65 0.65
Fraction%loans%approved 0.73 0.81 0.72 0.68
Fraction%decisions%correct 0.64 0.66 0.64 0.64
Fraction%performing%loans%approved 0.78 0.86 0.77 0.75
Fraction%nonGperforming%loans%approved 0.62 0.72 0.61 0.55
Tetrachoric%correlation 0.29*** (0.017) 0.29*** (0.047) 0.28*** (0.020) 0.32*** (0.040)
Fraction%moderate 0.34 0.25 0.36 0.36
Loan%rating%(0G1) 0.71 0.16 0.74 0.16 0.70 0.16 0.73 0.15
Fraction%grad%school%education 0.29 0.30 0.29 0.26
Time%viewed%(minutes) 3.48 2.77 2.84 2.11 3.70 2.96 3.09 2.23
Age%(years) 37.70 11.95 37.37 11.93 38.60 12.17 34.13 10.21
Experience%in%banking%(years) 9.54 9.54 9.67 9.41 9.85 9.76 8.09 8.50

82%loan%officers%participate%in%a%single%treatment
54%do%two%incentive%treatments
52%do%three%incentive%treatments

Age%20G64
Experience%in%banking%(years)%0G40

1528 222 1056 245

1470
89188 76 181

Full%Sample Flat%Incentives Strong%Incentives Strongest%Incentives

9168 1332 6336

This table presents summary statistics on the sample of loan officers obtained from Cole et al. (2015) that we use in our decision-
making analysis. The tetrachoric correlation is the correlation between the loan officer approval decision in the experiment and
the indicator for whether the loan is a performing loan. The loan rating represents the continuous quality score loan officers
assigned to each loan file during the experiment. This loan rating ranges from 0 to 100 and has been scaled down to be between
0 and 1.



Table V
Loan officers: baseline results

Approve Loan Dummy

(1) (2) (3) (4)

Lag approve x flat incent -0.0814⇤⇤ -0.0712⇤⇤ -0.225⇤⇤⇤ -0.228⇤⇤⇤
(0.0322) (0.0323) (0.0646) (0.0639)

Lag approve x stronger incent -0.00674 -0.00215 -0.0525⇤⇤ -0.0484⇤⇤
(0.0134) (0.0134) (0.0215) (0.0214)

Lag approve x strongest incent 0.0102 0.0159 -0.0530 -0.0473
(0.0298) (0.0292) (0.0468) (0.0450)

p-value equality across incentives 0.0695 0.0963 0.0395 0.0278
Control for current loan quality No Yes No Yes
Sample All All Moderates Moderates
N 7,640 7,640 2,615 2,615
R

2 0.0257 0.0536 0.0247 0.0544

This table tests whether the decision to approve the current loan file is related to the decision to approve the previous loan
file. Observations are at the loan officer x loan file level and exclude (as a dependent variable) the first loan file evaluated
within each session. Columns 1 and 2 use the full sample while Columns 3 and 4 restrict the sample to moderate loan officers
(an observation is considered moderate if the loan officer’s average approval rate for loans, excluding the current session, is
between 0.3 and 0.7 inclusive). Control variables include the loan officer’s mean approval rate within each incentive treatment
(calculated excluding the current session), an indicator for whether the loan officer has ever approved all six loans in another
session within the same incentive treatment, and an indicator for whether the current session is the only session attended by
the loan officer within the incentive treatment (if so, the first two control variables cannot be calculated and are set to zero).
Indicator variables for flat incent , strong incent , and strongest incent are also included. Standard errors are clustered by loan
officer x incentive treatment. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.



Table VI
Loan officers: heterogeneity

Approve Loan Dummy

(1) (2) (3) (4)

Lag approve -0.0247⇤ -0.127⇤⇤⇤ -0.376⇤⇤⇤ -0.0555⇤⇤
(0.0135) (0.0329) (0.136) (0.0250)

Grad school -0.0213
(0.0214)

Lag approve x grad school 0.0448⇤
(0.0245)

Log(time viewed) -0.0968⇤⇤⇤
(0.0202)

Lag approve x log(time viewed) 0.0858⇤⇤⇤
(0.0230)

Log(age) -0.0603⇤
(0.0329)

Lag approve x log(age) 0.101⇤⇤⇤
(0.0375)

Log(experience) -0.0133
(0.00985)

Lag approve x log(experience) 0.0226⇤
(0.0116)

Sample All All All All
N 7,640 7,640 7,640 7,640
R

2 0.0256 0.0281 0.0260 0.0256

This table explores heterogeneity in the correlation between current and lagged decisions. Grad school is an indicator for
whether the loan officer has a graduate school education. Time viewed is the number of minutes spent reviewing the current
loan file. Age is the age of the loan officer in years. Experience is the loan officer’s years of experience in the banking sector.
All other variables are as described in Table V. Standard errors are clustered by loan officer x incentive treatment. *, **, and
*** indicate significance at the 10%, 5%, and 1% levels, respectively.



Table VII
Loan officers: reactions to streaks

Approve Loan Dummy

(1) (2)

�1: Lag approve - approve -0.0751⇤⇤⇤ -0.165⇤⇤⇤
(0.0216) (0.0329)

�2: Lag approve - reject -0.0691⇤⇤⇤ -0.0955⇤⇤⇤
(0.0236) (0.0347)

�3: Lag reject - approve -0.0322 -0.0832⇤⇤
(0.0225) (0.0332)

p-value: �1 = �2 = �3 0.0178 0.00448
p-value: �1 = �2 0.703 0.0134
p-value: �1 = �3 0.00493 0.00300
p-value: �2 = �3 0.0483 0.688
Sample All Moderates
N 6,112 2,092
R

2 0.0290 0.0322

This table tests how loan officers react to streaks in past decisions. Lag approve-approve is an indicator for whether the loan
officer approved the two most recent previous loans. Lag approve-reject is an indicator for whether the loan officer rejected the
most recent previous loan and approved the loan before that. Lag reject-approve is an indicator for whether the loan officer
approved the most recent previous loan and rejected the loan before that. The omitted category is Lag reject-reject , which
is an indicator for whether the loan officer rejected the two most recent previous loans. The sample excludes observations
corresponding to the first two loans reviewed within each session. All other variables are as described in Table V . Standard
errors are clustered by loan officer x incentive treatment. *, **, and *** indicate significance at the 10%, 5%, and 1% levels,
respectively.



Table VIII
Baseball umpires: summary statistics

Number of called pitches following a previous called pitch 1,536,807
Number of called pitches following a consecutive previous called pitch 898,741
Number of games 12,564
Number of umpires 127
Fraction of pitches called as strike 0.3079
Fraction of pitches called correctly 0.8664
Fraction of pitches categorized as ambiguous 0.1686
Fraction of pitches categorized as obvious 0.3731
Fraction of ambiguous pitches called correctly 0.6006
Fraction of obvious pitches called correctly 0.9924

This table presents summary statistics for the sample of MLB umpire calls that we use in our decision-making analysis. The
sample represents all called pitches by MLB umpires from all games during the 2008 to 2012 seasons, covering 3.5 million pitches
in 12,564 games, from 127 different home plate umpires. We restrict the sample to called pitches following a previously called
pitch in the same inning. We classify a pitch as ambiguous if the location of the pitch is within 1.5 inches of the boundary of
the strike zone. We classify a pitch as obvious if the location of the pitch is within 3 inches of the center of the strike zone or 6
inches or more outside of the edge of the strike zone.



Table IX
Baseball umpires: baseline results

Strike Full Sample Consecutive Pitches

(1) (2) (3) (4)

Lag strike -0.00924⇤⇤⇤ -0.0146⇤⇤⇤
(0.000591) (0.000972)

�1: Lag strike - strike -0.0133⇤⇤⇤ -0.0208⇤⇤⇤
(0.00104) (0.00269)

�2: Lag ball - strike -0.0100⇤⇤⇤ -0.0188⇤⇤⇤
(0.000718) (0.00157)

�3: Lag strike - ball -0.00276⇤⇤⇤ -0.00673⇤⇤⇤
(0.000646) (0.00155)

p-value: �1 = �2 = �3 1.49e-31 5.17e-22
p-value: �1 = �2 0.000423 0.414
p-value: �1 = �3 4.71e-25 3.07e-08
p-value: �2 = �3 3.79e-24 1.62e-21
Pitch location Yes Yes Yes Yes
Pitch trajectory Yes Yes Yes Yes
Game conditions Yes Yes Yes Yes
N 1,536,807 1,331,399 898,741 428,005
R

2 0.669 0.668 0.665 0.669

This table tests whether the decision to call the current pitch a strike is related to the decision to call the previous pitch(es)
a strike. Observations are at the umpire x pitch level and exclude (as a dependent variable) the first pitch within each game.
Columns 1 and 2 use the sample of all called pitches while Columns 3 and 4 restrict the sample to consecutive called pitches that
are not interrupted by a pitch in which the umpire did not make a call (e.g., because the batter swung at the ball). Note that
the sample size falls further in Column 4 because we require that the current pitch, previous pitch, and previous pitch before
those are all consecutive. Control variables include the pitch location (indicators for each 3x3 inch square), an indicator for
whether the current pitch was within the strike zone, the speed, acceleration, and spin in the x, y, and z directions of the pitch,
break angle characteristics, indicators for every possible count combination (# balls and strikes called so far for the batter), the
leverage index, indictors for the score of the team at bat and indicators for the score of the team in the field, and an indicator
for whether the batter belongs to the home team. For a complete detailed list of control variables, please see Appendix D.
Standard errors are clustered by game. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.



Table X
Baseball umpires: ambiguous vs. obvious calls

Strike Current Pitch Ambiguous Current Pitch Obvious

(1) (2) (3) (4)

Lag strike -0.0347⇤⇤⇤ -0.00226⇤⇤⇤
(0.00378) (0.000415)

�1: Lag strike - strike -0.0479⇤⇤⇤ -0.00515⇤⇤⇤
(0.0113) (0.00101)

�2: Lag ball - strike -0.0324⇤⇤⇤ -0.00442⇤⇤⇤
(0.00566) (0.000773)

�3: Lag strike - ball -0.000838 -0.00283⇤⇤⇤
(0.00563) (0.000841)

p-value: �1 = �2 = �3 1.74e-11 0.00573
p-value: �1 = �2 0.148 0.395
p-value: �1 = �3 0.0000205 0.0104
p-value: �2 = �3 5.02e-11 0.00507
Pitch location Yes Yes Yes Yes
Pitch trajectory Yes Yes Yes Yes
Game conditions Yes Yes Yes Yes
N 151,501 73,820 335,318 153,996
R

2 0.317 0.316 0.891 0.896

This table tests how our results differ depending on whether the current pitch is ambiguous or obvious. The sample is restricted
to consecutive called pitches. Columns 1 and 2 restrict the sample to observations in which the current pitch is ambiguous
(the location of the pitch is within 1.5 inches of the boundary of the strike zone). Columns 3 and 4 restrict the sample to
observations in which the current pitch is obvious (the location of the pitch is within 3 inches of the center of the strike zone
or 6 inches or more outside of the edge of the strike zone. All control variables are as described in Table IX. Standard errors
are clustered by game. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.



Table XI
Baseball umpires: heterogeneity

(1) (2) (3)

Lag strike -0.0146⇤⇤⇤ -0.0146⇤⇤⇤ -0.0143⇤⇤⇤
(0.000972) (0.000972) (0.00108)

Leverage 0.000330
(0.000390)

Lag strike x leverage -0.00140⇤⇤
(0.000625)

Umpire accuracy -0.00406⇤⇤⇤
(0.000451)

Lag strike x umpire accuracy 0.00353⇤⇤⇤
(0.000621)

High attendance 0.00441⇤⇤⇤
(0.00115)

Low attendance -0.00330⇤⇤⇤
(0.00117)

Lag strike x high attendance -0.00270⇤
(0.00157)

Lag strike x low attendance 0.00123
(0.00164)

Pitch location Yes Yes Yes
Pitch trajectory Yes Yes Yes
Game conditions Yes Yes Yes
N 898,741 898,154 894,779
R

2 0.665 0.665 0.665

This table tests how our results differ depending on game conditions or umpire characteristics. The sample is restricted to
consecutive called pitches. Leverage and umpire accuracy are represented as z-scores. Leverage is a measure developed by
Tom Tango of how important a particular situation is in a baseball game depending on the inning, score, outs, and number of
players on base. Umpire accuracy is the fraction of pitches correctly called by the umpire, calculated excluding observations
corresponding to the current game. High and low attendance are indicator variables for whether game attendance is in the
highest and lowest quintiles of attendance, respectively (the omitted category consists of the middle three quintiles). All control
variables are as described in Table IX. Standard errors are clustered by game. *, **, and *** indicate significance at the 10%,
5%, and 1% levels, respectively.



Table XII
Baseball umpires: treating teams “fairly”

Strike Full Sample Following Ambiguous/Obvious

(1) (2) (3)

Lag strike x prev call correct -0.0177⇤⇤⇤
(0.00101)

Lag strike x prev call incorrect -0.00663⇤⇤⇤
(0.00130)

Lag strike x prev call obvious -0.0180⇤⇤⇤ -0.0175⇤⇤⇤
(0.00189) (0.00216)

Lag strike x prev call ambiguous -0.0120⇤⇤⇤
(0.00123)

Lag strike x prev call not ambiguous/obvious -0.0150⇤⇤⇤
(0.00103)

Lag strike x prev call ambiguous and correct -0.0140⇤⇤⇤
(0.00175)

Lag strike x prev call ambiguous and incorrect -0.00821⇤⇤⇤
(0.00188)

p-value: equality 6.70e-22 0.00158 0.0000736
Pitch location Yes Yes Yes
Pitch trajectory Yes Yes Yes
Game conditions Yes Yes Yes
N 898741 895733 476819
R

2 0.665 0.665 0.666

This table tests whether our results are driven by umpires reversing previous marginal or incorrect calls. Columns 1 and 2
use the sample of all consecutive called pitches. Column 3 restricts the sample to pitches following a consecutive called pitch
that was either obvious or ambiguous. Prev call correct and prev call incorrect are indicator variables for whether the umpire’s
previous call of strike or ball was correct or incorrect as measured by PITCHf/x. Prev call obvious in an indicator variable
for whether the location of the previous called pitch was within 3 inches of the center of the strike zone or 6 inches or more
outside of the edge of the strike zone. Prev call ambiguous is an indicator variable for whether the location of the previous
pitch was within 1.5 inches of boundary of the strike zone. Prev call not ambiguous/obvious is an indicator equal to one if
the previous pitch was neither obvious nor ambiguous. Column 3 further divides previous ambiguous calls by whether they
were called correctly. This is not done for previous obvious calls because almost all, 99.3%, of obvious calls are called correctly
as compared to 60.3% of ambiguous calls. In all columns, the reported interactions fully segment the regression sample. For
example, the coefficient on “lag strike x prev call correct” represents the autocorrelation conditional on the previous call being
correct and the coefficient on “lag strike x prev call incorrect” represents the autocorrelation conditional on the previous call
being incorrect. p-values report tests for the equality of the reported coefficients. All control variables are as described in Table
IX. Standard errors are clustered by game. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.



Figure I
Baseball umpires: the strike zone

According to Major League Baseball’s “Official Baseball Rules” 2014 Edition, Rule 2.00, “The STRIKE ZONE is that area over
home plate the upper limit of which is a horizontal line at the midpoint between the top of the shoulders and the top of the
uniform pants, and the lower level is a line at the hollow beneath the kneecap. The Strike Zone shall be determined from the
batter’s stance as the batter is prepared to swing at a pitched ball.”


