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An augmented Lagrangian interior-point method using
directions of negative curvature

Abstract. We describe an efficient implementation of an interior-point algorithm for non-convex problems
that uses directions of negative curvature. These directions should ensure convergence to second-order KKT
points and improve the computational efficiency of the procedure. Some relevant aspects of the implemen-
tation are the strategy to combine a direction of negative curvature and a modified Newton direction, and
the conditions to ensure feasibility of the iterates with respect to the simple bounds. The use of multivariate
barrier and penalty parametersis also discussed, as well as the update rules for these parameters. We analyze
the convergence of the procedure; both the linesearch and the update rule for the barrier parameter behave
appropriately. As the main goal of the paper is the practical usage of negative curvature, a set of numerical
resultson small test problemsis presented. Based on these results, the relevance of using directions of negative
curvature is discussed.
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1. Introduction

We are interested in developing an algorithm to compute local solutions for nonlinear,
and possibly non-convex, problems of the form

min,  f(x)
st. c¢c(x)=0 D
x >0,

where f : R” > R and ¢ : R"” — R™. More specifically, we wish to compute second-
order KKT points for problem (1), that is, points that can be assured to satisfy both the
first-order conditions and the second-order necessary conditions[20].

The use of directions of negative curvature plays a crucia rolein this context; only
by considering this second-order informationit is possibleto ensure convergenceto such
points. Trust-region methods can take negative curvature into account provided that a
sufficiently accurate approximation to an eigenvector corresponding to a (sufficiently)
negative eigenval ue of the Hessian matrix can be computed [9]. Linesearch procedures,
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while presenting interesting properties from a practical point of view, must consider
second-order information by explicitly computing some direction of negative curvature,
if it is available. The idea of using directions of negative curvature was proposed by
Fiacco and McCormick [12]. Later, Moré and Sorensen [25] described how to modify
Newton’'s method to incorporate this second-order information.

If exact second derivatives are used, the explicit computation of these directions
can be carried out with limited cost, from an appropriate factorization of the coeffi-
cient matrix in the system of Newton equations, see [18] for example. Nevertheless,
the requirement to obtain both descent and negative curvature directions from the New-
ton system of equations limits the choice of numerical procedures that can be used to
compute the search direction.

In this paper we will be concerned with deriving a linesearch algorithm that uses
negative curvature, extending the ideas of Moré and Sorensen [25] to nonlinearly con-
strained problems. The directions required to update the iterates will be generated using
an interior-point approach. In this setting, problem (1) istransformed into a sequence of
equality constrained problems of the form (see[12])

min, f(x) — > uilogx;
i=1
st. c(x) =0.

@)

The search directions are computed to approximate the solutions of these barrier prob-
lems. We have chosen to use avector of barrier parameters .« € R”, onefor each simple
bound x > 0.

Interior-point methods have proved to be very successful for the solution of linear
and general convex problems. More recently, asignificant amount of effort has been de-
voted to extending these procedures to non-convex problems, see for example El-Bakry
eta. [10], Gaulapali [14], Gay et a. [16], Vanderbei and Shanno [28], Yamashita[32],
among others. Nevertheless, very few of these proposals have taken into consideration
the use of negative curvature directions.

Once directions of negative curvature have been obtained, it is still necessary to
combine them with traditional descent directions. In general, iterates will fail to satisfy
both first-order and second-order conditions; it isimportant to make use of both types of
information simultaneously to ensure the efficiency of the procedure. The combination
of descent and negative curvature directions has been considered by McCormick [23]
and Moré and Sorensen [25] for the unconstrained case using linesearch approaches.
Trust-region methods for the unconstrained case have been proposed by Byrd, Schnabel
and Schultz [8]. Forsgren and Murray [13] have proposed amethod for the linear equal-
ity-constrained case. Other approaches to ensure convergence to second-order KKT
points for the constrainted case are described in [1, 2, 5, 15]. Designing an efficient
procedure to obtain a satisfactory combination of these directions poses considerable
difficulties, as the Newton direction is well-scaled in general, and specifically near a
stationary point, while directions of negative curvature have no inherent scale. Note that
from a theoretical point of view this problem is not particularly relevant, but from a
practical point of view it may have a large impact on the efficiency of the algorithm.
Rather than attempting to provide solutions to this complication, our aim in this paper
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has been to offer some suggestions on how to use these directions to reduce the impact
of the scaling problem, and at the same time to improve the performance of methods
that use negative curvature.

As we already mentioned, the approach implemented in the proposed algorithm
will be similar to that in Moré and Sorensen [25]. In this approach we generate iter-
ates from combinations of descent directions and negative curvature directions. These
iterates should have reasonable properties, such as globa convergence. A linesearch
has been introduced in our algorithm as a mechanism to enforce this property. We will
compute the iterates in such a manner that the value of an augmented Lagrangian merit
function is decreased in each iteration. For problem (2) this merit function takes the
form

n 1 m
La(x, 2 p,0) = f(x)— ;m logx; — AT e(x) + 5 ;chj(x)2~ ©)

The penalty term in the merit function is defined using a vector of penalty parameters,
onefor each congtraint, p € R™. Thisfunction hasbeen extensively studied by Bertsekas
[3] among others. It has the advantage of being differentiable at all points where it is
defined (the interior of the positive orthant). Also, under suitable assumptions the local
minimizers for problem (2) are minimizers for this merit function, if all components of
p arelarge enough.

This merit function introduces variables and parameters, A and p, that have to be
updated through the successive iterations in the algorithm to ensure convergence. Anal-
ogously, the barrier problems (2) aso include parameters u that must be updated. The
choice of updating strategies may affect significantly the efficiency of the overall pro-
cedure and will be considered in some detail in the following sections.

Our proposal will address the three issues discussed in the preceding paragraphs:
the definition of the search directions, their combination and the updating of the param-
eters, in amanner that produces an efficient and robust procedure. We intend to do this
from a practical point of view, that is, we wish to derive a procedure that is efficient
in practice, and we check that this is the case by conducting numerical tests on a set
of small problems. We are also interested in studying the impact that using negative
curvature information may have in practice on the efficiency of the algorithm. Although
the paper is mostly numerically oriented, we will also present some theoretical results
on the convergence of the algorithm. These results should help to justify some of our
implementation choices.

The paper is organized as follows: In Section 2 we introduce the general results and
the notation used to motivate and describe the algorithm, as well asits genera scheme.
Section 3 describes the procedure to compute the search directions. In Section 4 we
indicate how to combine the directions to obtain the next iterate. Section 5 gives the
rules for updating the algorithm parameters. In Section 6 we derive some convergence
results. Section 7 discusses implementation issues and gives the structure of the algo-
rithm. Finally, in Section 8 we present and comment some computational results on a
problem test set.
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2. Notation and general comments

Thefirst-order Karush-Kuhn-Tucker (KK T) conditions for problem (1) are:

Vix)—=Vel (x)r—z=0,
c(x) =0,
Zx =0, )

x,z>0,

where A and z are the multipliers for the equality and bound constraints respectively,
and Z denotes a diagonal matrix having as entries the elements of z, Z = diag(z).

In the proposed algorithm, instead of considering directly the preceding conditions,
we solve a sequence of problems (2) such that ©; — O for al i, following [12]. The
first-order KKT conditionsfor (2) are:

Vix)—Velor—X"1u=0,
c(x) =0, ©)

where X = diag(x). Replacing
=X"1u, (6)

in thefirst equation of (5), thefirst-order KKT conditionsfor the barrier problem can be
rewritten as.

Vfx)—Vel (x)r—z=0,
c(x) =0, )
Zx = .

The set of equations (7) isknown as the primal-dual equations for problem (2). Initially
implemented by Mehrotra [24], the search directions obtained from them have better
theoretical and practical properties than those computed from (5). The algorithm will
compute search directions based on these primal-dual KKT equations. In addition to
trying to satisfy these conditions, to ensure that the logarithmic terms in the objective
function of (2) are well defined, the agorithm should force the variables x; to remain
strictly positive. From the comparison of these conditions and (4), it will be of interest
to have z > 0in al iterations of the algorithm.

We also want to satisfy the necessary second-order condition. For problem (2) this
condition requires that

wT (VML(x, W)+ MX_2> Wi psd., G)

where L isdefined as L(x, 1) = f(x) — ATc(x), M is adiagonal matrix with entries
those of u, M = diag(n) and W4 has columns that form a basis for the null-space of
Ve(x).

Wewill usethenotationu = O (v) for two functionsu and v of acommon variable x
whenever lim,_,gu(x)/v(x) < K for some positive constant K. Analogously, u = o(v)
will be used to indicate two functions satisfying lim, g u(x) /v(x) = 0.

The algorithm we propose must carry out the following tasks in each iteration:
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— The computation of search directions, both to improve the satisfaction of the first-
order KKT conditions (7) based on Newton's method, and the satisfaction of the
second-order condition (8) using directions of negative curvature for the merit func-
tion Ly.

— The combination of these directions to compute the next iterate, ensuring sufficient
decrease for the augmented Lagrangian merit function (3).

— Finally, the updating of the multipliers A and penalty parameters p in the merit
function, and the barrier parameters p associated with problem (2).

In the following sections we indicate how to conduct these tasks in an efficient man-
ner. A schematic version of the a gorithm, indicating the Sections of the paper where the
different steps are described, is presented below.

Initialize variables (x2, 19, z0), barrier (1°)

and penalty (o°) parameters Section 7.3
repeat
From the Newton primal-dual equations: Sections 3.1, 3.2

Compute a descent direction, d¥,
for the primal variables x
Compute search directions, d and a¥,
for the multipliers A and z

Compute, if it exists, d*, a direction

of negative curvature Section 3.3
Adjust the penalty parameter pk Section 5.2
Compute o, using a curvilinear search Section 4

Update the primal variables using
xf L = k4 agdf + a,dk

Update the multipliers Sections 4, 5.1
Decrease the barrier parameter vector f Section 5.3
until convergence Section 7.2

It can be shown that this algorithm has good global and local convergence properties,
under reasonable assumptions on the problem. In Section 6 we show that the method
converges to second-order KKT points for problem (1), under some assumptions on the
penalty parameter. A more general analysis of the behavior of this penalty parameter can
be derived by adapting theresultsin [26]. Also, thelocal convergence properties (super-
linear convergence) could be derived in a straightforward manner from the arguments
in[33].

3. Computation of the search directions

We will start by considering the computation of a descent direction for the variables x,
dy, based on amodified Newton method applied to the primal-dual equations (7).
5



3.1. The descent direction

Newton’s method provides search directions d,, d;, and d,, corresponding to update
directionsfor the variables x, A and z respectively. From thefirst-order Taylor series ex-
pansion for the primal-dual KK T conditions (7) about thevaluesx, A and z, theresulting
system of linear equations defining the search directionsis:

H —vcl -1 dy —Vf+Vela+z
Ve 0 O d, | = —c . ©
Z 0 X d, nw—Z7zZx

where H (x, 1) = Vi L(x, 1) = V2 f(x) = )_; 4;V?¢,(x), Z = diag(z), I denotesthe
identity matrix and X = diag(x).
From the last set of equationsin (9), we have

d. =X —z—x1zd,. (10)

Replacing (10) in the first two sets of equationsin (9), the movement direction d, can
be computed as the solution of the symmetric system

_ T -1
K(dx):( Vf+Ve'r+X M), (11)
—d)L —C
where K isdefined as
G VT
k= <Vc 0 )’ (12)

forG=H+X1z.

3.2. Solving the system of equations

The direction obtained from (11) may fail to provide descent for any reasonable merit
function; for example, if theiterates are close to astationary point that isnot aminimizer.
To ensure good global convergence properties for the algorithm it isimportant to adapt
system (11) so that the direction d,, provides sufficient decrease for the merit function

3).

The gradient of the merit function is given by
Vila=Vf—X"1u—vel (A= Ro), (13)
where R = diag(p). The Hessian of L 4 with respect to x will be given by
VieLa = V2f + MX 2 =Y (= pjcj)VZcj + Ve  RVe
= Ve L(x,A — Rc) + MX 2 + V¢ RVe. (14)
The Newton direction for the minimization of the merit function (3) will be given by

(VaxL(x, A — Re) + MX >+ Ve RVe)d, = —(Vf — X — Vel (L = Ro)).
(19)
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As the minimization of the merit function is not a very efficient procedure to ensure the
satisfaction of the constraints, the additional condition that Vc(x)d, = —c(x), aready
included in (11), isimposed. Using this condition, (15) now becomes

(VexL(x, A — Re) + MX 3 dy = —(Vf — X L — vl ). (16)

Toensurethat dy isadirection of descent for (3), we may replace the coefficient matrix
VixL(x, . — Re) + MX~2 in (16) with a matrix G, = H + X~1Z that is positive
definite on the null space of the constraints Ve (x), that is, such that W G o W4 isposi-
tive definite. H isabounded approximation for H (x, A — Rc(x)), obtai ned as described
below.

The modified system used to define the search directions is then

G, vcT dy ~Vi+Velh—Ro)+ X (17)
Ve O —d,, —c
where its coefficient matrix (and G, in particular) is computed from a modification of
([ Gy vel
Kp_(Vc 0 >’ (18)

for G, = Vi L(x, % — Rc) + X~1Z and i an approximation to 1.

The matrix G, in (17) can be generated in the process of factorizing K ,. Instead of
amodified Cholesky factorization of the reduced Hessian WZ G,W,, see[16], we have
chosen to use a version of the symmetric indefinite factorization on the full matrix K,
see [7] for example, incorporating the modifications proposed in [13]. This alternative
is able to obtain the desired modification for the reduced Hessian directly from system
(17), it alows the computation of appropriate directions of negative curvature, as we
will describein Section 4, and it can be applied to medium-sized and large problems.

The modified factorization selects the pivots using rules that ensure that the rows of
the Jacobian V¢ are considered first. In this manner, the modifications in the pivots will
not affect the part of the system corresponding to this Jacobian matrix. For additional
details see[13]. We now state the basic properties of this factorization. Assume that the
LDLT factorization of K ,, defined in (18), has been computed using the factorization
algorithm described in [13], and that the matrix D in the factorization is partitioned into

D1 0

b= (220). 0
where D1 and D> are block-diagonal matrices with 1 x 1 and 2 x 2 blocks and D3
includes al the pivots chosen from elements of Ve(x). The precise rules to choose
these pivots can be found in [13]. For D> the Schur decomposition is computed, that is,
Dy = UAUT, where U isamatrix whose columns are the eigenvectors of D, and A isa
diagonal matrix of eigenvalues, rr;. This computation is straightforward since the blocks
in D, are at most of size two. For agiven ¢ > 0, define adiagona matrix A having as
itsi-th dlagonal element the value 7; = max(|r;|, ¢). Construct Dy as Dy = UAUT
where A = diag(;) and define D as:

=~ (D10
po(22)



Let d be the solution of
LDLTd = PTb, (20)

for P an appropriate permutation matrix, and b the right-hand side of (17). Finally let
d = Pd, the vector of unknownsin system (17),

dx
d= (—d) .
It holdsthat Ved, = —c and W1 G, W, is positive definite, where G , is the submatrix
corresponding to the appropriate rows and columnsof LDL” | see[13].

The factorization in [13] requires that the matrix V¢ has full row rank. This can-
not be guaranteed in practice, but our algorithm detects this rank deficiency within the
factorization procedure and takes into account those rows of V¢ that numerically are
linearly dependent, that is, those associated with very small pivots. This modification
introduces errors in the solution of the system, but the computed directions seem to
behave reasonably well in practice.

3.3. Second-order directions

If we wish to avoid convergence to pointsthat do not satisfy the second-order necessary
condition (8), we must make use of directionsof negative curvature. For an unconstrained
problem min, f(x), wewould look for directions satisfying the classical definition, see
[25], that is, we will require adirection of negative curvature d to satisfy at an iterate x

VioTd<0 and  d'V?f(x)d <O. (21)
To ensure convergence to second-order KK T points, these directions should also satisfy
dIV? f(q)dy — 0= limsup_, sormin(V2 £ (xx)) = 0and di — O,

where Amin(V2 f (x)) denotes the smallest eigenvalue of V2 f (xy).

For equality constrained problems these conditions can be easily generalized: from
(8) negative curvature information is only relevant on the subspace spanned by Wy ; we
consider only negative curvature directions that lie in this subspace, d = Wv. How-
ever, for (nonlinear) inequality constrained problemsiit is not clear how to define these
directions, or how to use them. Now negative curvature information will depend on the
current estimate of the active set and the procedure to update it. This information will
be relevant in a given iteration both when this estimate does not change, and when the
estimate is modified by moving away from some of the active bounds. We will build
directions of negative curvature for the merit function using the preceding unconstrained
conditions, under certain additional restrictions on theinfeasibility of the current iterate.

We now give a more precise statement for these conditions. The gradient of the
merit function (3) and its Hessian matrix with respect to x are given by (13) and (14),
respectively. Analogously to the case of the descent Newton direction, and due to the
limitations of the merit function regarding the satisfaction of the constraints, we will
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impose the additional condition that the direction of negative curvature should liein the
null-spaceof thematrix V. Thisisreasonable, asthe constraintsmust hold with equality
at the solution, and the descent direction is computed to satisfy these constraints. From
the definition (21) and this additional condition, a direction of negative curvatured, for
our algorithm should satisfy

dy = Waw, dF (Vf—X"1u) <0, d' (VeyL(x, A — Rc) + MX~?)d, <0. (22)

At each iterate we need to determine if negative curvature is present, and if that is
the case we also need to compute a direction satisfying the preceding conditions. We
will conduct this analysis and compute this direction from matrix (18), used to define
the descent direction, to reduce as much as possible the computational cost within the
agorithm. However, the matrix used in definition (22), Vi, L(x, A — Rc) + M X 2, may
differ from V. L(x, A — Rc) + X~1Z, the matrix that appears in (18). Both matrices
will be closeif (6) is approximately satisfied. A direction of negative curvature will be
computed as an approximate eigenvector corresponding to a negative eigenvalue of the
coefficient matrix of (18), and we will check if conditions (22) are satisfied before using
itinthe search. Note that closeto astationary point for the barrier problem (2), condition
(6) will be approximately satisfied and directions of negative curvature, if they exist, will
eventually be accepted.

Another theoretical issue must be considered. The definition (22) has been made for
the barrier problem (2), but the problem of interest is (1). It would be important to en-
sure that by computing second-order KKT pointsfor problem (2), we arein fact solving
problem (1). This issue has been treated in detail in [16] and [29]; we now present the
basic result that justifies the validity of our approach.

A second-order KKT point (x*, A*) for problem (1) will satisfy the first-order con-
ditions (4), and the matrix WJTVML(x*, A*)W; will be positive semidefinite. Here, W
denotes a matrix whose columns form a basis for the null-space of the Jacobian of the
active constraints at the solution of (1). If / € R”*" denotesthe p rows of the identity
associated with the components of x* that are equal to zero (the active boundsin x > 0),
then W corresponds to a basis for the null-space of the matrix

« [ Veix®)
e (T,

Without loss of generality, we can construct abasis W4 for the null-space of Ve (x*),
having theform W, = (Y W, ), whereY isaset of p columnsin W4 that do not belong
to the null-space of J* (p isthe number of active bounds at x*). Let v* = (x*, A*, z*)
denote the corresponding values at a second-order KKT point of (1). We will use the
notation H, = V,,L(x, A — Rc) and G, = H, + X 1Z.

Theorem 1. Givenv = (x, A, z) suchthat |[v — v*|| < € for some small enough ¢, for
the matrix W1 G , W, evaluated at v it holds that

— Thelargest (in magnitude) p eigenvalues of W}G o W4 are positive and unbounded
asv — v*.
— Theremainingn—m— p eigenvaluesarewithin O (¢) of theeigenval uesof WJT H,W;.
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— G, hasinvariant subspaces for which there exist bases ¥ and W such that
IY =Y =0() [W;—W|=0(),
and in particular
IWLG,W — W] H,W;| = O(e).
Proof. See Theorem 3.3 of [30] and Theorem V.2.7 of [27]. O

As a consequence of this result, close to a stationary point, the observation of the
finite eigenvalues of W}{ G, W4 from (18) provides enough information on the eigen-
values of WJT H, W, the ones entering the definition of second-order KKT points for
problem (1). Moreover, if we are close enough to a second-order KKT point of (1), the
(finite) negative eigenvalues of WXG » W4 and their associated eigenvectors will pro-
vide good approximations to the corresponding onesin WJT H,W;. As aconsequence,
we will be able to compute in an efficient manner directions of negative curvature as
approximate eigenvectors corresponding to negative eigenvalues of the matrix in (18),
while ensuring convergence to second-order KKT points of (1).

3.4. Computation of directions of negative curvature

We compute a direction of negative curvature d,, (assuming that it exists) from the same
symmetric indefinite factorization used to obtain the descent direction d, in (20). If no
negative curvatureisavailable at the current iterate, we set d, = 0. Let K, bethe matrix
defined in (18), and assume that its symmetric indefinite factorization K, = LDL” has
been computed using the algorithm in [13]. Assume that from the factorization it has
been determined that this matrix has more than m negative eigenvalues, implying that
Wf{ G, W4 has at least one negative eigenvalue, see [19].

We obtain d,, in the following manner: let w be defined asw = Pw, where P isthe
permutation matrix in (20) and v = (w! wl)T satisfies

LT LT\ (o1 . 0
(302) (52) = 2v7miea () @

where Amin(D2) denotes the most negative eigenvalue of Dy, defined in (19), and u;,
isaunit eigenvector corresponding to this smallest eigenvalue. The negative curvature
direction d,, is defined as the first n components of w. In[13] it is shown that

Ve(x)d, =0, (24)

so that d,, liesin the correct subspace, and there exist positive constants c1 and ¢z such
that

dl'G,d, < =122 (WEG,Wa) and  dld, < —cormn(WLG,Wa).  (25)

Nevertheless, this scaling may not be adequate for the search procedure. We rescale this
negative curvature direction using the norm of the descent direction d,, to ensure that
both directions are comparable in size.
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If condition (6) is approximately satisfied, the direction d,, computed using the
preceding procedure will be a direction of negative curvature for the merit function
La(x, A; p, ). Inthiscase, as Ved, = 0, in order to satisfy (22) it will be enough to
choose the sign of d,, so that

drvf-x"tw=<o. (26)

As in general (6) may not be satisfied, each time a direction of negative curvature is
computed we will also check if

dl (Hy + MX™?)dy < —Bucc1i?2in(WI G, Wa) (27)

is satisfied for some prespecified constant 8, € (0, 1). If thisisnot the case, the negative
curvature direction d,, will not be used.

An additional condition on the use of negative curvature is related to the violation
of the constraints. If thisviolation istoo large, that is, if ||c(x)] > B, for some positive
constant 3,, we set d,, = 0. We only use negative curvature when it has been computed
close enough to feasible points, where it is most relevant.

The primal iterates x* must remain positive throughout the algorithm to ensure that
the barrier function is well-defined. This condition is imposed in the search procedure,
described in the following Section, by limiting the largest acceptable step. This limita-
tion may impact the convergence of the procedure, if the size of some component of the
negative curvature direction becomestoo large compared with the corresponding primal
iterate. To ensure that this does not happen we impose the additional condition

(d)i > —Banxk, (28)

where B4, > 1isaprespecified constant. This condition is automatically satisfied for
large enough B4, if thematrix Lin K, = LDLT iscomputed so that it remains bounded
asxk — 0. The factorization described above satisfies this condition, see [6]. Note that

from (23)
H + x1z vt dy _ ) 3/2pT 0
( ve 0 ><w2>—i(—xm.n(Dz>> PTL(, ).

and X ~1d,, remains bounded if the other matrices are bounded. For other factorizations,
condition (28) can be enforced as part of the agorithm, without affecting its conver-
gence. Let @ denote the direction obtained from the computation in (23); if ﬁd,,xf < zf-‘
and (d); < —Banxk, set (dX); = —Panx¥, otherwise (@%); = (d*);. Thevaluesof those
components of d* satisfying B4, xf > z¥ are readjusted to ensure (24) is satisfied. If this
is not possible or the readjusted direction does not satisfy (25), set d* = 0.

4. Thecurvilinear search

For agiveniterate (x, A), classical linesearch methods applied to problem (2) compute

adirection of movement d = (a7 7' )", and then determine a scalar o such that the
next iterate (x + ady, A + ad,) provides sufficient decrease for an appropriate merit
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function. Therole of the merit function isto ensure, through the proper choice of «, the
convergenceto aminimizer of thismerit function, that should correspond to aminimizer
of (2). Thecomputation of « isusually referred to asalinesearch (see[18], for example).

This approach works quite well in practice whenever there is a single search direc-
tiond,. In our case we may have a pair of search directions at a given iteration, d, and
dy,. Inthis case, the preceding procedure must be modified to take into account that the
next iterate must be found by searching on a subspace having dimension two, instead
of dimension one as was the case for the classical approach. We have chosen to use a
curvilinear search, defined on the subspace generated by both directions, and applied
to the augmented Lagrangian merit function (3). This curvilinear search will be based
on the directions d, computed from (17) and d,, obtained as described in the preceding
section from (23).

A search will aso be carried out on the multipliers. Their search direction will be
defined from d,,, obtained from (17), but it will be modified to take into account the
right-hand side used in (17) and the Newton direction for the merit function given in
(16). The actual search direction is defined as

dyp = d). — Re(x). (29)

To combine the preceding directions we will follow the proposal in [25]. Given an
iterate (x, A) and directionsd,, d, and d, , the next iterate will be obtained as a point on
the curves

x(@) = x + o&?dy + ad,, (30)
Ma) = A+ a?dy,. (31)

This combination is the simplest one that guarantees sufficient decrease for the
merit function whenever either we have adirection of descent or we have adirection of
negative curvature. See Lemma 2.2 in [25].

Thevalue of « isdetermined to ensurethat (x («), A(«)) provides sufficient decrease
for the augmented Lagrangian merit function (3). Let

d(@) = La(x(@), Ma); p, 1),

where p isthe penalty parameter vector. For an initial value amax, defined later on, we
will check if

1
¢ (tmax) < $(0) + yéa%axqs”(oy (32)

If this condition is satisfied, we choose @ = amax. Otherwise, we apply a backtracking
procedure from amax to find avalue @ € (0, omax) Ssatisfying

~2
@ = $(0) +759"O), (33)
¢ @) > 1(¢'(0) + ag" (0)), (34)

where y and n are scalar parameters satisfying0 < y < 3 and 3 <7 < 1.
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In addition to the sufficient decrease conditions (33)—(34), we also force the iterates
to remain on the domain of the merit function (the positive orthant). Thus, « is chosen
so that x(«) > 0 by defining amax appropriately, that is, we choose amax So that al
a € [0, amax] satisfy

Pi(a) = &?(dy); + a(dy); +x; >0 Vi. (35)

If @; denotesthe smallest positive root of P; (), if it exists, or oo otherwise, the preced-
ing condition is satisfied for agiveni and al « € [0, @;), asx; > 0. Asaconsequence,
we must choose omax < Min; ;.

On the other hand, to take advantage of the good local convergence properties of the
Newton direction we consider the step to this Newton direction (¢« = 1) whenever it is
reasonable, that is, whenever the Newton step lies within the positive orthant and there
is no negative curvature available. Consequently, the initial step amax is defined as

max = MiN(é min(;), 1), (36)

where the parameter §, introduced to ensure the strict positivity of the iterates, has been
defined as

§ = max(0.995,1 — || u|). (37)

Near the solution (when i >~ 0), theterm 1 — ||| guarantees that a step of one will
not be prevented by the positivity requirement. Thisisrelevant to ensure adequate local
convergence properties.

Finally, we impose an additional condition that helps to ensure that the iterates re-
main in a compact set throughout the algorithm. The next iterate is computed as x (« ),
wherea, = a if &, satisfying (33)34), also satisfies

lle(x (@)l < Be, (38)

for some positive constant B, satisfying 8. > 28,, where 8, wasthe constant introduced
at theend of Section 3.4. Otherwise, avalue«, isdetermined by applying abacktracking
procedure from & until conditions (33) and (38) are both satisfied. From (30) and (31),
the next iterates are defined as
K= ok @p)?df +afdy, A =0K ()2, @)
JHHL = 3 max (B, (@h)?) d,
where . is the value used in the definition of G,, (18), and H,, and 8, € [0, 1] isa
prespecified constant.

5. Parameter updates

A complete specification of the algorithm should indicate how to update the different
parameters that appear in the computation of the search directions and the curvilin-
ear search. In the following paragraphs we describe the procedures used to update the
multiplier estimates, the penalty parameters and the barrier parameters.

13



5.1. Themultipliers

Two sets of dual variables are generated by the algorithm, the equality constraint mul-
tipliers A and the approximations to the multipliers for the bound constraints z. The
multipliers A are updated within the curvilinear search using (31) and the value «,,
chosen for the variables x according to the procedure described in the preceding
section.

The solution of Newton's system of equations (9) provides a search direction for the
multipliers z, d,, defined in (10). These dual variables will be updated from

Z(ag) = z + aqd;, (40)
using an adequate value of «. The only condition on the values of the dual variablesis

their non-negativity. The scalar o4 is chosen asthelargest reasonable value that satisfies
this condition, as follows. Let

oy = min(amin( i
d
(dz)i

where § isdefined asin (37). The step length for the dual variables, «,, is defined as

(dy)i < 0) , 1) , (41)

oy = max (/3 (Olp/amax)z) aq, (42)

where g8, € [0, 1] is another prespecified parameter. The correction to a, isintroduced
to scale oy so that its value is related to the value of «,, obtained from the linesearch.

5.2. The penalty parameters

The penalty parameters p; are used in the algorithm to ensure the convergence to points
satisfying the constraints ¢(x) = 0. The Newton direction should generate iterates that
satisfy thiscondition in the limit, but if the penalty parameters are not sufficiently large,
this Newton direction may not be a descent direction for the merit function and will not
be accepted. As a consequence, the penalty parameters are chosen so that the sufficient
decrease condition given by inequality (33) can be satisfied. The updating of these pa-
rametersis a so very relevant for the computational efficiency of the procedure. A very
large value of these parameters may cause numerical problems in the computation of
the search directions from (17). Also, these parameters have an impact on the updating
of the A multiplier estimates.

Theupdateformulawill bederivedintermsof condition (33). Thisconditionincludes
theinitia derivatives of the merit function along the curve x («) defined in (30),

PO =dl (Vf-X"w), (43)
¢"(0) =dl (VerL(x,A — Rc) + MX 2)d, +2dT (Vf — X1 — Vel (o — Re))
—2d] c. (44)
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As (24) holds, thetermsd! Vel (A — Re) and df Vel RV ed, have been removed from
the preceding expressions. To simplify the following arguments, define 6, as

6y =dl (Vf—X"Tu—veTr) —dle. (45)
Also, note that (17) implies6, = —d! G ,d,.
If negative curvature is available in the current iteration, that is, if d, # 0, from

(26) and Vcd,, = Qiit follows that ¢’ (0) < 0. We still need to have a sufficient descent
condition

¢"(0) < 8,(min(b,, 0) — ||c[|?), (46)

for some constant 0 < §, < 1. If the current values of d,, d,,, ds, and p are such that
(46) is not satisfied, we set d,, = 0 for the search.

If no negative curvature has been detected or the preceding condition has resulted in
having d, = 0, then ¢’(0) = 0 and condition (33) becomes equivalent to

$(@) < ¢(0) + y&*(@d] (Vf — Xt — Ve (L= Re)) —d o).

For the curvilinear search to be well defined we need to have again a sufficient descent
condition equivalent to (46) (see [25]):

¢"(0) =dl (Vf— X"t — Ve (.= Re)) —df ¢ < 8,(min(8,, 0) — ||c||?).

This condition is a slightly stronger version of the classical descent requirement
d'Vv.Ls < 0, but (46) must take into account that the multiplier update A(«) (31)
isaso included in the curvilinear search.

Condition (46) can always be satisfied for an adequate choice of the penalty param-
eter vector p. If at the current iterate the equality constraints are satisfied, c¢(x) = 0, (46)
can be rewritten as

dI(Vf — X"t <§,min@,,0) < 6, <3, min@,,0),

using (45), Vedy = —c from (11), and ¢ = 0. From (17), Ved, = 0 and the positive
definiteness of G, in the appropriate subspaces,

~dI'Gpdy =d (Vf+X 1) =6, <0, 47
and the preceding condition, and (46), are satisfied.
If c(x) # 0, (46) may not hold for the current value of the penalty parameter p, and
it must be modified. We can rewrite (46) as
¢" () =6, +dI' Vel Re < §5,(min,, 0) — [c]?). (48)
From (17), implying Vced, = —c, (48) isequivaent to
0, — T Re < §,(min(@,, 0) — [c|?). (49)
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Define¢ € R™ as¢; = cjz, and note that ¢” Rc = ¢ T p. Following the procedure used
in code NPSOL [17], the update of the penalty parameter vector p is obtained from the
following problem:

min %pr
st. ¢Tp >0, —3,(min®©,,0) — |c|?) (50)
p =0

The solution of this problem is given by

p* =max (0,6, - §,(min(6,,0) — | )) T
This solution satisfies (49) and (46).
If (46) does not hold and p; < 8pp* the j-th component of p will be updated to
pp* for some 5, > 1. In practice, it WI|| also be necessary to ensure that o does not
become too Iarge (see [18]) to avoid ill-conditioning. If p; is much larger than p*, we
will reduceitsvalue while ensuring that (46) isstill satisfied. The strategy we will follow
to update p is similar to the one described in [11]. We will compute atrial value 5;:

i =/Pi@p+ 07,
where§, > 1, and the new value of p at iteration k will be defined as

8/,,0;‘ if 8/,,0.”‘.‘ > 'O.I;’
P =1 5y if < 30t (51)

pj? otherwise.

To avoid having to modify p too often, the parameter §, is increased at each iteration
where p is modified.

5.3. The barrier parameters

The vector of barrier parametersin (2) is also updated in each iteration. The updating
rule is based on the relationship between the satisfaction of the first-order conditions,
the complementarity conditions and the values of the barrier parameters. The definition
of u;, given below, can be shownto be O (|| F (x, A, z)ll%) near aKKT point, that is one
of the conditions required to attain superlinear convergence (see [10] or [33]), where
F(x, A, z) isrelated to the satisfaction of thefirst-order KKT conditionsfor problem (1)
at the current iterate.

Define
Vf(x)—Vex)Th—z
F(x,A,z)= c(x) , (52
A= Bw)Xz+ B (z— X u+n)
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for some prespecified constant 8,, € [0, 1], and set

| IFG AN T IF(x A, ) = 1,

- 53
| F(x,x,2)I? otherwise, (33)

"

andlet y = Xz. Vector n isupdated in amanner similar to the penalty parameter p. The
problem

min %ur,u
st. y'u= 0, (54)
nw=>0

has its solution for © = QMy/||y||2. A small perturbation is introduced on this solution
to define u* as

y+ Bylylle
M* =9,u ;
yoy

(55)

wheree = (1...1)7 and By € [0, 1//n] isaprespecified constant.

Definition (53) has been introduced to prevent n; from becoming too large when
far from aKKT point. On the other hand, if y; is small then x* may become too small.
To avoid this situation we compute areference value i, similar to the one used in [10],

XTZ

n

and define the new value of 1 at iteration k as

k1 _ [ Budt max((up), @y if st max((uHt, 1) < uf
Hi = k i (57)
Wi otherwise,
where 8, < lisaprespecified constant,
8¢ = min(0.25, exp(—(1/6}))), (58)

and 6% is the value of 6, at iteration k. Note that .1% will not be decreased in every
iteration, but only when a sufficient reduction in the satisfaction of the KKT conditions
has been achieved. Thisdefinition of 1 ensuresthat . — 0if problem (2) hasasolution.

6. Theoretical results

Although the convergence analysis of the proposed procedure is not the main goa of

this paper, in this Section we study some of its propertiesto justify the validity of some

of the choices made in the algorithm. In particular, we wish to justify that the choice

of linesearch and barrier parameter updates (the more unusual parts of the algorithm)

are reasonable from a theoretical point of view. Nevertheless, from a numerical point

of view the contents of this section could be omitted, as they have no impact on the
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remainder of the paper. For the sake of a clearer presentation, the detailed proofs for
these results have been collected in an Appendix at the end of the paper.

We will study the properties of the limit points for the sequence generated by the
algorithm (if they exist). We will see that they are second-order KKT points for the
problem of interest (1), under some regularity assumptions on the problem. We will also
introduce some conditions on the sequence of iterates, to simplify the argumentsin the
proofs. The assumptions on problem (1) are:

A.1 Thefunctions f and c; have Lipschitz-continuous third derivatives on the region
defined by the bounds.

A.2 Strict complementarity holds at al first-order KKT points.

A.3 Theiterates generated by the algorithm remain in a compact set.

A.4 The penalty parameter remains bounded in the algorithm.

A.5 The Jacobian matrix of the equality constraints, Vc(x), has full row rank at all
feasible points of problem (1).

Note that A.1 and A.3 imply that the objective function remains bounded below in the
algorithm.

Assumptions A.1, A.2 and A.5 are related to the problem, while the other two as-
sumptionsconcern theal gorithm. Excluding theseassumptionswouldimply asignificant
increase in the technical complication of the proofs, not our main concern for this pa-
per. Assumption A.3 is mostly relevant for the primal variables, as for the dual ones the
boundedness condition can be imposed within the algorithm by limiting the size of the
corresponding search directions. Assumption A.4 is quite strong, but it would be very
difficult to show the boundedness of the parameter (without making any assumption on
it), given the complex update rule we use. For sightly simpler update rules, see [26]
for example, it is possible to remove this condition, under some alternative assumptions
on the behavior of the multiplier estimates in the agorithm. Assumption A.5 is aso
very strong, but it simplifies significantly the arguments in the proofs. It ensures that
Ve(x*)dk = —c(x*) close to the solution, and as a consequence that both (47) and
condition (46) hold in the algorithm.

As an additional simplification, we will ignore condition (34). It ensures that the
steplength is not unnecessarily small. While this is a reasonable practical requirement,
it does not impact the theoretical properties of the algorithm. From the definition of
0, that ensures descent for the merit function, and the existence of a step o, see Moré
and Sorensen [25], the iterates generated by the algorithm are well-defined. Also, from
Assumption A4 and (51), as the value 4; is increased by a finite amount every time
that p; is reduced, the number of reductions is finite and the value of p eventually re-
mains constant in the algorithm. Several constants were introduced in the definition of
the algorithm; to simplify the proofs we only analyze the case where 8, = 1in (39),
B: € (0,1]in (42), B € (0,1] in(52) and B, € (0, 1//n] in (55).

We now summarize the structure of the argumentsin this section:

— Our main result shows that the update rule we use for the barrier vector parameter
enforces its convergence to zero. This same rule guarantees convergence to first-or-
der KKT points for problem (1). In addition to these results, we also show that the
limit points must be second-order KK T points. We prove that the descent conditions
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in the linesearch force the algorithm to move away from points that do not satisfy
the required second-order conditions. All these properties are proved in Theorem 2.

— To establish this main result, we first show that if the algorithm updates the barrier
parameter only afinite number of times, then the primal variables converge to first-
order KKT points for the barrier problem (2). This result, presented in Lemma 3,
will be used in Theorem 2 to prove a contradiction, as the barrier parameter must
eventually be updated when sufficiently closeto afirst-order KKT point for problem
(2). An auxiliary result in Lemma 4 shows that dual variables also converge to the
correct values.

— A previousintermediate result, proved in Lemma 2, shows that whenever one com-
ponent of the barrier vector parameter converges to zero, al of them must converge
to zero. As a consequence, we only need to consider the cases when all components
are bounded away from zero, Lemma 3, and when all of them converge to zero,
Theorem 2.

— Ourfirst auxiliary result, Lemma 1, establishesthe boundedness of the primal iterates
whenever the barrier parameter is bounded away from zero.

From (57), the components of the barrier parameter v are nonincreasing. 1t might
happen that someor all of the componentsin p.* would not convergeto zero. Thefollow-
ing Lemmas show that this cannot happen. To prove this result, we start by introducing
abound on the values of the primal variables in terms of the barrier parameter value.

Lemma 1. LetZ denote the set of components ;Lf (i € Z) of the barrier parameter that
change only a finite number of times in the course of the algorithm, and assume 7 is
nonempty. Then there exists 7, > 0 such that sz > y, for all sufficiently large k and all
iel.

We can now present afirst result related to the convergence of the barrier parameter
uX. Init we show that the case in which some of the components of the parameter con-
verge to zero and other components remain bounded away from zero cannot happen in
the algorithm. We will continue using the notation introduced in Lemma 1.

Lemma2. Let 7 denote the set of components Mf (i € J) of the barrier parameter
that change an infinite number of timesin the course of the algorithm, and assume 7 is
nonempty. Then 7 = {1, ... ,n} and Iiminfkﬁooel’j =0.

From this result only two situations are possible in the algorithm: i) the components
of the barrier parameter change only a finite number of times in the algorithm, and the
barrier parameter eventually remains constant, and ii) all components of the barrier pa-
rameter change an infinite number of times. The following Lemma considers the first
case.

Lemma 3. Let 7 denote the set of components Mf (i € J) of the barrier parameter
that change an infinite number of times in the course of the algorithm, and assume 7
is empty. Then any limit point x* of the sequence {x*} generated by the algorithmis a
first-order KKT point of the barrier problem (2).

_ We need an additional auxiliary lemmato show that the sequences of dual variables
(3%}, {z*}, dso converge to the desired values.
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Lemmad. Let 7 denote the set of components Mf (i € J) of thebarrier parameter 1
that change an infinite number of timesin the course of the algorithm, and assume 7 is
empty. The sequences {x*}, {1*} and {z*} generated by the algorithm satisfy

lim |V %) — Xk = ve)HTA5 =0 and  lim ||I2¥ — (x5~ uk) = 0.
k— o0 k— o0

We now show that the barrier parameter converges to zero, that is, that the situation
analyzed in Lemma 3 cannot happen in practice, and also that the limit points of the
sequence generated by the algorithm must have the correct properties.

Provingthat ¥ — 0andthelimit pointsmust befirst-order KK T pointsfollowseas-
ily from the definition of the barrier parameter in the algorithm. The proof that any limit
point must al so beasecond-order KKT pointislessstraightforward, aswehaveto consid-
er now that i can bearbitrarily small and the argumentsin the proofsof Lemmas1 and 3
can no longer be applied. We show the desired result by proving that in this case the step-
length « isalso bounded away from zero, and as aconsequence that the a gorithm cannot
converge unless (¢*)”(0) — 0, implying that any negative curvature must also vanish.

The agorithm obtains both the descent and the negative curvature information from
the barrier problem (2). The convergence of the algorithm to second-order KKT points
for problem (1) requires the existence of a relationship between the negative curvature
in both problems, as shown in Theorem 1. One of the requirements for that theorem
is the correct identification of the active set at the solution, that follows from the strict
complementarity Assumption A.2.

Theorem 2. The barrier parameter is updated an infinite number of timesin the algo-
rithm. Furthermore, there exists a subsequence of iterates converging to second-order
KKT points of problem (1).

Although our aim is not the study of the local convergence of the algorithm, we
provide afew comments onitslocal properties. The following condition would also be
required:

A.6 The sufficient optimality conditions hold at all second-order KKT points of

problem (1).

Under this assumption and Theorem 2 there can only be a finite number of iterations
where negative curvatureis used, asin aball around the solution point the relevant Hes-
sian matrices are strictly positive definite. Asymptotically, only Newton directions are
used to obtain the new iterates. The arguments in [33] can be adapted to the proposed
algorithm to prove superlinear convergence, by showing that the stepstaken closeto the
solution coincide with the feasible steps &f; and &5, that these steps converge to one at
arate related to the size of ¥ and that having a vector barrier parameter does not affect
the arguments in the proofs. Different approaches, such as the one in [21], can also be
adapted but may require modifying the barrier parameter update rule.

7. Implementation issues

The algorithm described in the preceding sections includes certain parameters and con-
ditions that have not been completely specified yet. In the following paragraphs we
indicate how to carry out some of these computations.
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7.1. Use of directions of negative curvature

After the factorization process has detected the presence of negative curvaturein agiven
iteration, some additional conditions are checked before using this negative curvature
direction in the curvilinear search. Appropriately restricting the use of negative curva-
ture has a significant impact on the efficiency of the algorithm. In particular, the three
following conditions should hold:

dy{vxxLAdn < —é1, (59)
dI'Vi Lady < dl G ,d, + e, (60)
le@) < es, (61)

where €1, g2 and g3 are positive constants. Condition (59) guarantees that d,, is a di-
rection of negative curvature for the augmented Lagrangian merit function. Condition
(60) takes into account those cases where (6) is far from being satisfied. Finaly, (61)
guarantees that we only use negative curvature when we are close enough to feasibility.
If any of these conditionsis not satisfied, the algorithm setsd,, = 0. In practice, if these
conditions are not taken into account the algorithm may get stuck away from a solution.

In our implementation we have defined e1 = 10~ and e = 10~3. The parameter
g3 isdefined in each iteration as:

e = min(1072(0.1+ [Ix*|| + [ £%]). 3),

where f* isthe objective function of (1) at iteration k.

7.2. Convergence criterion

The stopping criterion for the algorithm will be related to the satisfaction of thefirst and
second-order KKT conditions for problem (1). The algorithm will stop if no negative
curvature has been detected at the current iteration and the condition

IF(x, 2, 2)l2 <@+ VI

is satisfied at the current iterate. In this condition F(x, A, z) denotes the measure of
optimality defined in (52) and f (x) is the objective function for problem (1). We have
taken e = 1078,

7.3. Initial values of parameters and variables

Let x° denote the starting point for the algorithm, assumed to be specified by the
user. Sometimes these initial points may not satisfy the bound constraints. The algo-
rithm transforms the given initial point following an automatic strategy similar to that
described in [28]. Basically, for problems with zero lower bounds, such as (1), if the
initial value of one of the variablesis outside the bounds it has been redefined by

%0 = max (1, 5,1%01/n)
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For problems with upper and lower bounds, / < x < u,
10 = max (min (52, ui — 0,11 — 1)) . 1; + 01w; — 1)),

that is, theinitial value has been redefined by moving it inside the bounds to within 10%
of the closest bound.

The remaining initial values for the variables and parameters are defined from x°.
Theinitial valueof thedual variablesz% isdefined asz® = (X% ~1e. Theinitial Lagrange
multiplier estimate A2 is chosen as an approximation to the | east-squares sol ution of the
linear system

Vex®Ta0 = v F(x%) — 20,

The penalty parameter vector p? isinitially taken to be zero. The initial barrier vector
wC is defined using (57) evaluated at the preceding values.

7.4. Other parameters

The constant 8. in (38) is updated recursively. Initeration k + 1 it is defined to be

BET = max ( Klle(xk) || BE, 1) ,

where K > 1isaconstant (in our implementation we use K = 7.5). Theinitia value
of B, isdefined as

69 = max (VTGO ).

The parameter § ©» IN(46), controlling the sufficient descent in the linesearch, has been set
tozerointhealgorithm. Also, 8,,, introduced in (57), the update of the barrier parameter,
has been set to one. Other constants have been taken in the implementation as 8, = 0
in(39), B, =0in(42), B» = 0in (52) and B, = 0in (55). These values are in the
limit of their theoretically acceptable ranges, but this does not seem to have an impact
in practice.

7.5. Numerical difficulties

In the preceding description of the algorithm we have considered only simple bounds
of the form x > 0, to simplify the resulting expressions. The implementation of the
algorithm used for the tests is able to handle simple bounds of the form ! < x < u,
where some of theentriesin/ could be equal to —oo, and some of thosein u could be co.
The finite bounds are included in the objective function vialogarithmic barrier terms.
If avariable getsvery closeto its corresponding bound at agiven iteration, it is pos-
siblethat dueto roundoff errorsitsvalue may be considered to be equal to the bound and
the logarithmic function will not be defined in subsequent iterations. A possible solution
is given in [14], where the variables are forced to be removed from their bounds by a
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fixed distance, chosen as 10~°. However, this strategy presents aclear disadvantage: the
solution of a particular problem, for a sufficiently small value of 1, might be closer to
the bound than the previous tolerance. Also, from our numerical experience this option
may delay convergence by a significant number of iterations.

In our strategy, the information on the distance to the bounds will be kept in avector
r, that will be updated separately from the values of the variables, using the same in-
formation. The independent term in inequality (35) will also be defined in terms of this
Vector.

Another numerical problem that might arise is the ill-conditioning of the symmet-
ric system (17) to solve in each iteration, due to the terms X ~1Z. Under reasonable
conditions, it can be shown that thisill-conditioning is benign (see [29] and [31]).

7.6. Thealgorithm

We present below a more detailed scheme of the proposed interior point algorithm
(Curvilinear Search Interior Point M ethod - CSIPM).

Algorithm CSIPM

Select x0 by modifying the user-specified initial value x©, if necessary
Chooseinitial values for A% and z°.
Choose initial values for vectors p° and °
Setk=0
repeat
Compute d¥, df and d* from (17) using the factorization
described in [13]
Compute df, from (29)
Compute, if it exists, d¥, a direction of negative
curvature from (23)
Compute pF+1 from (51)
Set d¥ = 0if any one of the conditions (59), (60)
or (61) is not satisfied
Compute «, using the curvilinear search procedure
satisfying (33), (34) and (38)
Compute o from (42)
K = xk - oBdf + apdf
W =k 4ol
= 2k audt
Compute the updated barrier vector p*+1 from (57)
k=k+1
until convergence
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8. Numerical results

We have conducted a set of numerical experimentson acollection of test problemsusing
agorithm CSIPM. The algorithm has been implemented, and the tests have been carried
out, on MATLAB.

8.1. Test problems

The test set we have considered is composed of 145 small problems from the CUTE
collection [4], selected from those nonlinear constrained problems having less than 100
variables and continuous derivatives (note that exact first and second derivatives have
been used). The initial points given in CUTE have been used.

Table 1 shows the results obtained by CSIPM for these problems. The columnsin
the table correspond to:

— Prob. : problem name.

— (bj . : value of the objective function f(x) at the solution.

— Const . : norm of the constraint vector, ||c(x)]|, a the solution, including slacks.
— KKT: norm of thefirst-order KKT conditions at the solution, || F(x, A, 2)|.

— | ter. :iteration count (number of factorizations of the primal-dual system).

— Eval . : number of evaluations of the objective function and the constraints.

— NC: number of iterationsin which directions of negative curvature were used.

In those cases where negative curvature was detected the problem was solved a
second time, setting the negative curvature direction to zero. Table 1 includes two
lines for those problems, one for the results from each of the two versions of the
agorithm.

8.2. Analysis of the results

The algorithm was able to solve al problems but two, problems HS13 (with a rank-
deficient Jacobian at the solution) and HS109 (after exceeding 250 iterations no solution
was reached). For some of the problems the code finds better local minimizers than
those given in [22] (this happens for problems HS106, HS107, HS112 and HS116, for
example), while for other problems the local minimizers found are worse (HS97 and
HS98). Problem HS99 is an example of a badly scaled problem. The termination toler-
anceis satisfied when the norm of thefirst-order KKT conditionsis 0.4994. Introducing
amore demanding stopping criterion (atolerance of 10~14), the norm of the KK T condi-
tions goes down to 10~ after 3 additional iterations, but the value of the merit function
remains basically unaltered.

In general, the number of iterations required to solve the problemsis fairly small.
The number of function evaluations is higher, but no particular care was taken with the
strategy to choose the value of « (a standard backtracking search was implemented). It
is also interesting to note the large number of cases in which a unit step was directly

accepted.
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Table 1. Results for small-size problems

[ Prob. I bj . [ Const. [ KKT [Titer. [Eval. [ NC
Al RPORT 47952.7018 | 1.5e-07 | 1.4e-04 15 15 0
ALJAZZAF 75.005 | 5.6e-10 | 2. 0e-07 20 27 0
ALSOTAME 0.08208499 | 2. 2e-16 | 6.8e-11 8 8 0
Bl GGSC4 -24,499999 | 8.9e-16 | 7.1e-08 19 19 3

-24.499999 0 | 6.9e-08 20 20 0

BT13 1.29e-121 | 5.1e-09 | 5. 1e-09 21 25 0
CANTI LVR 1.33995636 | 5.2e-11 | 7.9e-11 15 18 0
CB2 1.95222449 | 3.3e-14 | 5. 1le-14 11 12 0
CB3 2.0 | 4.1e-11 | 5.4e-11 10 11 0
CHACONN1 1.95 | 3.2e-09 | 5.0e-09 9 11 0
CHACONNZ2 2.0 | 3.8e-09 | 5.1e-09 10 12 0
CONG Gz 28.0 | 1.1e-07 | 2.2e-07 33 37 0
CSFI 1 -49.0752 | 1.6e-11 | 1.2e-09 33 46 2
-49.0752 | 1.1e-09 | 1.0e-08 35 55 0

CSFI 2 55. 0176056 | 9.2e-12 | 1.6e-09 58 62 0
DEMYNALO -2.9999999 | 1.1e-09 | 3.5e-09 13 14 0
DI PI GRI 680. 63006 | 9.0e-10 | 2.3e-09 9 13 1
680. 63006 | 1.9e-09 | 5. 1e-09 10 15 0

DI SC2 1.5625 | 1.6e-14 | 1. 6e-14 45 53 0
DUAL1 0. 035012968 | 2.2e-16 | 1.7e-09 18 18 0
DUAL2 0.033733671 | 5.1e-16 | 1.7e-11 14 14 0
DUAL4 0. 746090649 | 1.0e-16 | 1. 1e-08 14 14 0
EXPFI TA 0.0011366117 | 2.9e-14 | 1.3e-11 33 33 1
0.0011366117 | 3.7e-14 | 1.2e-11 33 33 0

FCCU 11. 14910914 | 4.4e-15 | 4. 2e-15 8 8 0
G GOVEZ1 -3.0 | 2.4e-16 | 1.4e-15 17 19 0
HATFLDH -24.499999 | 2.9e-15 | 2.4e-07 12 12 1
-24,.499999 | 2.3e-15 | 2. 3e-07 12 12 0

H MVELBI -1735.569545 | 1.1e-06 | 1.5e-05 26 26 0
H MVELBK 0.0518143 | 3.9e-12 | 1.7e-10 25 28 0
H MVELP2 -62.0538698 | 1.4e-08 | 2.1e-08 16 34 3
-62. 0538698 | 1.4e-11 | 1.9e-11 19 32 0

H MVELP3 -59.01312394 | 1.1e-09 | 3.3e-09 15 33 5
-59.01312394 | 1.8e-12 | 3.4e-10 15 25 0

H MVELP4 -59.01312394 | 1.6e-10 | 1.6e-10 24 50 4
-59.01312391 | 1.4e-07 | 1.4e-07 21 42 0

H MVELP5 -59.01312395 | 4.5e-12 | 4.5e-12 68 112 1
-59.01312395 | 4.4e-11 | 4.4e-11 57 80 0

H MVELP6 -59. 01312395 | 1.2e-12 | 1.2e-12 42 64 1
-59.01312395 | 3.7e-12 | 4.2e-12 35 44 0

HONG 22.57108736 | 5.5e-17 | 6.4e-13 7 7 0
HS10 -1.0 | 4.2e-14 | 6. 6e-14 15 22 0
HS11 -8.49846422 | 1.3e-10 | 6.5e-10 7 8 0
HS12 -30.0 | 7.6e-14 | 7.7e-14 10 19 0
HS13 -- -- -- -- -- | --
HS14 1.39346498 | 7.1le-15 | 1.7e-13 7 10 0
HS15 306.50 | 6.7e-14 | 2. 2e-11 17 17 0
HS16 0.25 | 1.1e-16 | 1. 1le-16 15 17 0

25




Table 1. (cont.)

Pr ob. I oj . [ Const. [ KKT [Tlter. [Eval. [ NC
HS17 1.0 | 5.4e-11 | 1. 1e-08 16 16 0
HS18 4.999999 | 8.3e-13 | 8.4e-13 13 15 0
HS19 -6961.81388 | 7.8e-08 | 4.9e-05 17 17 0
HS20 40.19872981 | 1.2e-16 | 5.8e-14 8 9 0
HS21 -99. 9599999 0| 2.7e-13 5 5 0
HS21MOD -99. 9599998 0 | 3.1e-07 12 12 0
HS22 1.0 | 3.3e-16 | 3.2e-15 6 6 0
HS23 2.0 | 3.5e-12 | 1.5e-10 9 10 0
HS24 -1.0 | 4.4e-16 | 4.6e-12 8 10 3
-1.0 | 9.1e-16 | 1.2e-12 6 6 0

HS29 -22.62741699 | 6.0e-10 | 6. 1e-10 10 17 1
-22.62741699 | 6.0e-10 | 6. 0e-10 10 16 0

HS30 1.0 | 5.1e-10 | 9. 6e-10 6 7 0
HS31 5.999999 | 3.1e-12 | 1.5e-09 5 5 0
HS32 1. 00000001 | 7.9e-13 | 7.0e-08 14 14 0
HS33 -4.58578643 | 3.0e-14 | 5. 2e-14 9 10 1
-4.58578643 | 8.0e-13 | 2. 2e-12 13 21 0

HS34 -0.83403244 | 4.6e-14 | 1. 2e-13 9 9 0
HS35 0.11111111 | 1.1e-17 | 1.9e-10 7 7 0
HS36 -3299.9999 | 3.5e-15 | 9. 2e-12 8 8 1
-3299.9999 | 4.4e-26 | 1.2e-11 8 8 0

HS37 -3455.9999 | 3.5e-15 | 2. 0e-06 7 8 0
HS41 1. 92592592 0| 1.3e-12 7 7 0
HS43 -44.0 | 7.7e-08 | 2.3e-07 14 23 0
HS44 -14.999999 | 1.8e-15 | 3.4e-12 9 9 3
-12.999999 | 1.4e-15 | 6.6e-15 9 9 0

HS44NEW -14.999999 | 1.8e-15 | 3.4e-15 9 9 3
-12.999999 | 1.4e-15 | 6.6e-15 9 9 0

HS53 4,0930232 | 1.8e-15 | 6.2e-14 4 4 0
HS57 0.030647619 | 6.0e-11 | 3.7e-10 22 49 | 12
0.030647619 | 1. 7e-09 | 3. 1e-09 27 50 0

HS59 -7.80278947 | 7.0e-11 | 7. 2e-11 26 31 1
-7.80278947 | 4.0e-10 | 8. 6e-10 25 30 0

HS60 0. 03256682 | 6.5e-12 | 1.8e-11 7 7 0
HS63 961. 7151721 | 4. 1e-11 | 1. 2e-09 6 9 0
HS64 6299. 84243 | 1.2e-16 | 2.5e-14 26 30 0
HS65 0.95352886 | 9.8e-32 | 1.4e-15 15 26 2
0. 95352886 | 2.1e-08 | 2.8e-11 17 31 0

HS66 0.518163274 | 6. 2e-14 | 8. le-14 8 8 0
HS67 -1162. 119226 | 1.0e-09 | 7.9e-08 11 19 0
HS68 -0.920425004 | 1.4e-17 | 1. 1le-14 24 35 0
HS69 -956. 7128869 | 4.4e-09 | 9. 4e-06 9 9 0
HS70 0. 1870436431 0 | 1.0e-08 24 27 0
HS71 17.0140173 | 2. 2e-14 | 3.7e-14 8 8 0
HS72 727.67936 | 1.7e-18 | 7.3e-12 24 24 0
HS73 29.894378 | 8.0e-15 | 1.2e-13 16 16 0
HS74 5126.4981 | 1.4e-11 | 6. 5e-09 8 8 0
HS75 5174.4127 | 2.5e-13 | 4.3e-10 9 9 0
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Table 1. (cont.)

Pr ob. I Qoj . [ Const. ] KKT [ Tter. [Eval. [ NC
HS76 -4.681818181 | 1. 3e-16 2.3e-10 7 7 0
HS80 0. 0539498 | 9. 3e-09 9. 9e-09 9 9 0
HS81 0.0539498 | 1.5e-10 1. 6e-10 9 9 0
HS83 -30665. 539 | 3. 4e-09 1.2e-12 19 19 0
HS84 -5280335.13 | 1. 0e-08 1. 8e-07 36 43 0
HS86 -32.348679 | 1.0e-14 1. Oe- 08 14 14 0
HS88 1.362656815 | 1. 7e-17 1.1e-12 25 33 0
HS91 1.36265681 | 1.4e-13 4.9e-09 14 18 6
1.36265681 | 3.2e-17 7.8e-13 19 34 0

HS92 1.36265681 | 4. 6e-15 2.9e-09 21 27 6
1.36265681 | 1.3e-14 8. 3e-09 28 42 0

HS93 135. 075963 | 3. 2e-15 1. 5e-07 9 9 0
HS95 0. 0156195 | 6.9e-12 2.7e-10 11 11 0
HS96 0. 0156195 | 2. 6e-11 8. 3e-10 11 11 0
HS97 4.0712463 | 6. 2e-12 2.0e-09 13 13 0
HS98 4.0712463 | 9. 7e-15 1.2e-12 16 19 1
4.0712463 | 1.0e-10 2. 0e-08 16 17 0

HS99 -8.3108e+08 | 4.4e-11 | 0.49945913 6 6 0
HS100 680. 630057 | 9. 0e-10 2.3e-09 9 13 1
680. 630057 | 1.9e-09 5. 1le-09 10 15 0

HS104 3.9511634 | 1.5e-13 1. 0e-12 12 12 0
HS105 1044. 611692 | 2. 6e-18 4.0e-09 17 21 2
1044. 611692 | 4. 3e-18 9.4e-12 17 19 0

HS106 7049. 24802 | 4.1e-11 4. 1e-11 13 14 0
HS107 4797.98185 | 5.2e-14 7.5e-09 9 13 0
HS108 -0. 8660254 | 3.2e-10 5.3e-10 19 24 0
HS109 -- -- -- -- -- --
HS110 -45. 7784697 -- 4.8e-13 5 5 0
HS111 -47.7610917 | 5. 0e-08 9. 0e- 08 12 18 0
HS112 -47.7610908 | 2. 5e-06 1. 8e-08 12 18 0
HS113 24.306209 | 1.4e-11 2.3e-11 18 25 3
24. 306209 | 5.1e-09 5. 8e-08 41 54 0

HS114 -1768. 80696 | 3. le-11 1. 0e-10 17 18 0
HS116 97.5875096 | 2.9e-13 8.4e-11 32 36 0
HS117 32.3486790 | 1.2e-10 5.7e-10 23 27 0
HS118 664. 820450 | 2. Oe-14 3. 1le-10 14 14 0
HS119 244.899697 | 2. 2e-16 2.9e-08 12 12 0
HS268 2.5e-9 | 5.6e-15 5. 0e- 09 18 19 0
HUBFI T 0.016893495 | 2. 9e-17 2.8e-09 7 7 0
KI WCRESC -3.0e-15 | 9. 0e-15 1.2e-14 10 15 0
LAUNCH 9. 004903149 | 8. 5e-11 1. 9e-08 36 70 3
9. 004903149 | 5.9e-11 1.5e-08 37 69 0

LI'N -0.0175775 | 3.9e-17 4. 1e-16 8 9 1
-0. 0175775 | 6. 2e-17 5. 6e-10 8 9 0

LOADBAL 0. 4528510391 | 3. 1le-12 4. 8e-10 13 13 0
MADSEN 0.6164324355 | 1.1e-11 1.5e-11 11 12 0
MVAKELAL -1.414213564 | 2. 0e-09 3. 1le-09 12 12 0
VAKELA2 7.1999999 | 2.3e-11 8. 8e-11 7 7 0
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Table 1. (cont.)

MAKELA3 -1.2e-25 | 3.1e-14 | 3.2e-14 16 21| 0
MATRI X2 1.1e-18 | 1.2e-17 | 3.8e-13 33 33 | 2
8.5e-23 | 2.6e-24 | 6. 1le-15 56 56 | O

M FFLI N1 -1.0 | 2.2e-15 | 5.9e-15 6 6 |0
M FFLI N2 -1.0 | 3.5e-15 | 4.0e-15 23 27 | 0
M NVAXBD 115. 7064397 | 4.2e-09 | 4. 3e-09 27 50 | O
M NVAXRB 3.49e-16 | 2.5e-10 | 2.5e-10 8 10 | O
M STAKE -1.0 | 2.7e-14 | 2.8e-14 11 11 | 3
-1.0 | 4.7e-09 | 1.2e-08 10 10 | O

ODFI TS -2380. 026775 | 4.0e-14 | 1. 2e-05 7 710
POLAK1 2.718281833 | 2.3e-08 | 3.1e-08 7 710
POLAK2 54.59815003 | 1.7e-09 | 4. 0e-09 14 30 | O
POLAK3 5.933003353 | 2.5e-08 | 3.0e-08 22 29 | O
POLAK4 -3.8e-18 | 2.2e-18 | 3.4e-13 69 95 | 2
-1.7e-18 | 3.0e-16 | 6.9e-13 | 115 | 153 | 0

POLAKG -44.0 | 3.1e-10 | 3.3e-10 20 34 | 0
PRODPLO 58. 79010 | 2.4e-13 | 3.5e-10 13 13|10
PRCDPL1 35.73896744 | 2.3e-14 | 2. 1e-11 16 16 | 1
35. 73896744 | 2.0e-13 | 5. 2e-11 19 20 | O

RK23 0. 083333335 | 6.8e-10 | 2. 6e-09 7 710
ROSENMVX -44.0 | 6.2e-09 | 1.9e-08 33 53 | 1
-44.0 | 8.2e-10 | 5.3e-09 | 147 | 205 | O

S268 2.5e-09 | 5.6e-15 | 5.0e-09 18 1910
TAMVE 0 0 | 1.9e-15 5 37 | O
TENBARS4 368. 4931619 | 2.8e-10 | 3.9e-10 34 43 | 0
TRUSPYR1 11. 22874087 | 1.7e-12 | 1.5e-11 9 90
TRUSPYR2 11. 22874090 | 1.9e-09 | 4. 3e-08 10 11 |0
TRY-B 1.8e-27 | 3.2e-14 | 8.1e-14 10 10 | O
TWOBARS 1.508652417 | 3.8e-10 | 2. 3e-09 6 6 |0
WOVFLET 1.6e-14 | 2.6e-12 | 2.7e-12 15 | 159 | 1
3.0e-14 | 4.1e-12 | 4. 1e-12 16 | 135 | O

ZECEVI C2 -4.125 | 4.6e-16 | 1.4e-11 8 8|0
ZECEVI C3 97.30945002 | 1.8e-08 | 2. 5e-07 9 12 | 1
97. 30945014 | 5.9e-11 | 1. 0e-09 11 15| 0

ZECEVI C4 7.557507769 | 8.3e-13 | 9.6e-10 10 1110
Y2 2.0 | 3.2e-09 | 3.6e-09 6 6 |0

Table 2 comparesthe resultsfrom the proposed a gorithm (with and without negative
curvature) to those of other codesreported in the literature, in particular those from [28],
[16] and [32], on a set of 22 HS problems (all the problems that were reported in all of
the references). The columnsin the table correspond to the number of iterations (matrix
factorizations) required by:

— CS: the proposed algorithm, using negative curvature.

— CS- nc: the proposed algorithm, when negative curvature was disabled.
— VS: iteration counts for LoQo, as reported in [28].

— Y iteration counts reported in [32].

— GOW iteration counts reported in [16].

From these resultsthe proposed algorithm worksbetter on the average, particularly when

negative curvature is used, than any of the other three codes. Note that none of the three

algorithms uses negative curvature explicitly. All initial points for the algorithms are
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Table 2. Iteration counts for different nonlinear interior point codes

[ Prob. T C JCsnc [ VS ] Y [ GOWN |
HS64 26 26 28 29 --
HS65 15 17 14 15 10
HS71 8 8 12 8 15
HS72 24 24 21 43 --
HS73 16 16 20 12 11
HS83 19 19 15 16 16
HS84 36 36 18 21 25
HS93 9 9 10 29 17
HS95 11 11 18 13 26
HS96 11 11 22 12 27
HS97 13 13 18 22 31
HS98 16 16 19 20 27
HS100 9 10 11 16 10
HS104 12 12 14 19 12
HS106 13 13 33 39 45
HS108 19 19 23 62 13
HS109 - - - - 49 21 32
HS113 18 41 16 25 13
HS114 17 17 31 47 15
HS116 32 32 33 82 - -
HS117 23 23 22 36 33
HS118 14 14 17 34 17

[Average | 17.19 | 17.95 | 21.09 | 28.23 | 20.79 |

Table 3. Iterations and function evaluations with and without negative curvature

Iterations Function evals.
Pr ob. CS [ GCsnc G | Cnc

[Average || 20.94 | 27.38 | 34.29 | 40.91 |

those indicated in [22]. For the GOW algorithm, only those results corresponding to
these starting points are shown.

Regarding the impact of the use of negative curvature on the whole set of 145 test
problems, Table 3 shows the average iteration counts and function evaluations required
by the proposed algorithm for the 34 problems where negative curvature was detect-
ed, both when using negative curvature directions (CS) and when these directions were
disabled (CS-nc). The average reductions in the number of iterations and function eval-
uations, whenever negative curvature was detected, is approximately equal to 24% for
the iteration numbers and 16% for the function evaluations.

Table 4 presents a brief summary of the results. The table includes the total num-
ber of problems in the test set, the number of problems in which negative curvature
was used, and the number of problems in which the use of negative curvature implied
a decrease/no change/increase in the number of iterations and the number of function
evaluations.

From the results in Table 4, negative curvature was used in 23% of the cases. Al-
though in some cases (18%) there was an increase in the iteration count, in more than
half of the cases (53%) there was areduction in the number of iterations. Regarding the
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Table 4. Impact of negative curvature

# of probl ens 145
# with neg. curv. 34
Better 18
# Its. Sane 10
Wr se 6
Better 15
# Eval Sane 6
Wr se 13

number of function evaluations the results were less satisfactory, athough an overall
decrease was till observed. In fact, the reductionsin iterations and function eval uations
were far more marked than the increases. The largest deterioration in the number of
iterations amounted to 9 iterations (20%) for problem HI MMELP5, whilethe largest im-
provement was 114 iterationsin problem ROSENMMX (80%). For those problems where
negative curvature was used, a (geometric) average improvement of 15% in the number
of iterations and 12% in the number of function evaluations was observed. As a con-
seguence, using negative curvature seems to provide significant advantages, although
from the observation of the different behavior in the numbers of iterations and function
evaluations, special care should be taken in the procedure to compute the step length
in the search to reduce the number of function evaluations when negative curvature is
used.

9. Conclusions

In this paper we have described an efficient procedure that makes use of negative
curvature directions to compute local solutions for nonconvex problems. The proce-
dure is based on a primal-dual interior point method to define the search directions,
and a curvilinear search to combine them. Particular care has been taken to intro-
duce conditions that restrict in an appropriate manner the use of negative curvature.
For example, whenever the constraints or the complementarity conditions are far from
being satisfied any negative curvature information that may be available is ignored,
and the effort is devoted to attaining feasibility or to satisfying the complementa-
rity conditions. From a practical point of view, these restrictions on the use of
negative curvature play a very significant role to ensure the efficiency of the
procedure.

The implemented version of the algorithm has been run on a set of test problems.
The results show that the procedure works quite well on these problems. The use of
vector penalty and barrier parametersisin part responsible for this good behavior. The
impact of the negative curvature is not very significant on these small problems (it is
used in only 23% of them), but it can be quite important in some of the cases when it
is used. Given the limited cost of computing a direction of negative curvature when-
ever an appropriate factorization is used to obtain the movement directions, it would
seem that reasonable a gorithms should incorporate the use of this second-order infor-
mation.
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A. Appendix

In this Appendix we include the detailed proofs for the theoretical results described in
Section 6.

A.1. Proof of Lemma 1

The mechanism of the algorithm and the properties of the linesearch guarantee that for
al k,

Lo ok okt kb ly <y (k) kg ph L)kt (62)

Definetheset 7 = {1, ... ,n}\Z. From Assumption A.3 there exists x; > 1 such that
forali andall k, x} < &;. From Assumption A.4 and the definition of Z, there exists an

index r > 0 such that p* = p” anduﬁ.‘ =u; foradl k> randali € 7. For al suchk,
the definition of the merit function (3) implies

La(, ks ph 4 k4 ly = Ly 0% pf by — 37 (bt — uby log ¥
< LaGF 2% oF by = Y™ — ) logx;. (63)
Define ) ;. 7 uj logx; = K. Iterating (63) and using (62) it holdsfor al k > r,

La(x®, 2% o5, 1) = LOK 05 = Xiezuf logx] — 3 e 7uh log xh
+ 3 Yap] e ()
SLaG V00 ) = Y e (uf — uf) log;
S La(x", A" ") + K. (64)

From Assumptions A.1 and A.3, there exists a constant § € R such that for all k > r,
L(xk, 2%) > §. The nonnegativity of the penalty parameter p implies >", o c?(x*) > 0.
From (57) we have Mlj — Oforadl j € J and from Assumption A.3 there existse > 0
suchthat — " 7 ;L’; Iong? > —cforal k >r.

Inequality (64) and the above thus combineto yield

_ZzeIHJ{Inglr =< LA(-xra)‘r;pra Mr)+K _8+€’ (65)
foral k > r.Let uy = max{ul,i € T} and u— = min{u}, i € Z}. Also, for agiven
iteration k, let ZX be the set of indicesin Z such that log x/ is positiveand 7% = 7\7%..
FromAssumptionA.3wehave— 3=, 7« logxf > — 3, .« log%; = —K*. Usingthese
definitions we can write

— Yiez uf loguxf = — Diert B logxf — ;7 uf logaf
e Yo TogaE — i X ot
= —p Yz 109xf — (4 — 1) Xz 10gacf
> —p- Y erlogxf — (uy —p)KT. (66)
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Combining (64), (65) and (66) we obtain
— Yier109xf < pTHLAGT A P W)+ K =8+ €+ (uy — u)KT)
= [liczxf = exp (—uil(LA(x’, Aspl W)+ K =8+ €+ (ug — M,)Kﬂ)
= xf > exp (—Mil(LA(X’, AT et u) + 13)) %if [jez X

fordli € Zandal k > r,wherex; denotesan upper bound onxfc implied by Assumption
A3andK =K —8+e+ (uy —u_)K+.
|

A.2. Proof of Lemma 2

Consider a component uf‘, i € J, of the barrier parameter 1 and let /C; denote the
(infinite) subsequence of iterations where it is updated. From (57), u*** < g, u* for
k € K;, implying u¥ — 0. Also from (57), u¥ > 8% for k € K;, implying either

kK — 0or 8 — 0along the subsequence K;. Consider both cases:

— 1f 8% — Ofork € K;, from (58) it followsmin (0.25, exp(—1/6f)) — 0= 6% — 0
for k € K;. From (52) and (53) it follows that

xfz]]‘» — 0, (67)

fork € K; and al ;.
— If pkF — Ofor k € K;, from (56) and x* > 0, z* > 0 the result in (67) follows also
for this case.

Thus, (67) holdsfor k € K = U;c 7 K; and dl j.

Assume now that Z = {1, ... ,n}\J is nonempty; from the definition of Z there
exists i > Osuchthat ¥ > i forall kandal I € Z. Let 7 = min(0.005, /1); from the
update of the dual variables (40)—(42), the definition of §*, (37), and & > of, for any
iterationk andany / € Z,

2 = 2K 4ok (@) = 2+ ok min(, (b))

> Zf +akmin(, (@) = A -84 = yzf. (69)

The definition of the search direction df from (17), the modifications in the coef-
ficient matrix (18) and Assumption A.3 imply the existence of a constant x such that
xk <X and|(d¥);] < i forali andall k. Definey, = min(ji/(4x), min; z%/2). For any
iteration k and any / € 7 such that zf‘ < y,, the definition of the dual search direction
d¥ in (10) and the preceding bounds imply

xfdoy = uf — of + @0z > - 25 > 3> 0= (@) >0
= 7t > 2k (69)
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We now show that x/ z} isbounded away from zerofor / € Z. Consider thefirst iteration
index m (if it exists) such that 2" < 7y, and 2"t > py,. From (68), 2" > 72" * =
z}"‘l < y; but then (69) implies z}" > z,’”_l > yy,, acontradiction implying no such
iteration index m exists and zf > yy, foral kandal ! € Z. Thisbound and Lemma 1
yield

xfzf = ppy. > 0 (70)

for al iterations k and al i € Z. But (70) contradicts (67), as a consequence Z = ¢
whenever 7 is nonempty.

Assume J is nonempty, then 7 = {1, ... ,n} and lim;_ Mf = Ofor all I. From
(67) it holdsthat y* = X*zk — Ofor k € K. Also, (57), (58) and (55) imply

1y 112
> B,6); min(0.25, exp(—(1/6:)))/1y"1I. (71)

uf > 85 (uHk = 6, min(0.25, exp(—(1/65)))

for al k € K; and any i. From Assumption A.3 there exists avalue K such that [|y*|| =
| X*¥z¥| < K for all k. Replacing this bound in (71) we have

K _ By
M >?

for al i and all iterations k € K;. From this bound
follows that limcic 6% = 0.

65 min(0.25, exp(—(1/6),))),
0k > 0 and limg_oo uf = 0t

Y

O

A.3. Proof of Lemma 3
If 7 = @, from Assumption A.4 there exists an iteration index  such that p* = p” and
Mf = u; foral k > r andall i. Adding conditions (32) and (33) over all iterations from
rtoany k > r it holds that

LaG T M, o M — L 0" ) < ngzrmﬁ,)%’)”w). (72)

FromAssumptionsA.1and A3, L 4 (xk+1, Ak+1, pk+1 k41 > 5 for all k and some
constant y. Replacing this bound in (72), it follows that

2 - N
— Y (@)% (0) < o (LaGx™ 275 0" 1"y = 7). (73)
But for all k from (46) it holds that (¢*)"(0) < Oand af, > 0. Then, (73) implies
Jim (@,)%(#")"(©0) =0. (74)

We now show that (ok)? is bounded away from zero. From the definition of 4%, (17),
the conditions satisfied by dy;, (22), the definition of 4}, (29) and Assumptions A.1 and
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A.4, there exists a constant y,; such that ||d)’§|| < v, ld, || < yq and || |l < va. From
the definition of o; in (35) and Lemmal,

xF @k + (@ i@h?=0 = xF —@diak - |(d!§>,-|(o‘e§‘>2 <0
xf o
4@ 1@ 2
This bound, together with (36) and (37), impliesfor dl &,
k_ -
Olkmax > 8Py > 0.995y,
2v4 24

= xf = (1@l + 1@l ) min(L.&f) <0 = &

> 0. (75)

The search procedure either defines & to be equal to ok, or from (33) &* satisfies
¢*(2d") > ¢*(0) + 2y (@)*(4")" (0.
Replacing a Taylor series expansion for ¢*(2a*) around 0 in the preceding condition
and using (¢*)'(0) < 0 from (43) and (26) and (¢*)”(0) < O for al «,
¢*(0) + 2a* (¢")'(0) + 2&)*(¢")"(0) + 3@)%(¢")" (€Y
> ¢(0) + 2y @6 (0)
= —1-nE@H%@"H"0) > §@)°@""E
4 32-y) M0
o> kNt cgky?
2 (¢)"(EY)
where g% € [0, 2&*]. Consider the third derivative term (¢*)” (£%); from Assumptions
A.1, A.3 and A.4, the bounds on the search directions, the expressions for the first, sec-
ond and third derivatives of the merit function in terms of the functions f and ¢, and
Lemma 1, implying that the matrices (X*)~* for s = 1, 2, 3 remain bounded, there exits

aconstant y; such that (¢%)” (£¥) < y1. Replacing this bound in (76) and using (75) it
follows that

=

(76)

' o 31—
& > min(099 02 V)) @)
2ya %1
The last step in the computation of o » is based on the satisfaction of condition (38).
Define ¥ (a) = [lc(xk(@))|. If y* @) < B, then o = a* and (77) holds for of.
Otherwise, consider two cases:
— 1f y*(0) = [le(x¥)|| < 3B holds. Define X as the largest value such that y* (@) <
B for al a € [0, «X]. From the Taylor series expansion of y* around zero,

Be = ¥ @by = v*(0) + a (b (¢h),

for ¢k € [0, oe{?]. Assumptions A.1 and A.3 and the boundedness of the search di-
rections imply the existence of a constant y.; such that (v*)'(¢%) = (2¢kdk +
d))T Ve (NT ek )/ ek () < yer, and it holds that

¢ W@ T 21

(78)
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— 1f y*(0) > 3B, from B. > 28, it holds that d¥ = O (see Section 3.4). It follows
that (%) (0) = c(xF)TVe(xk)ak/lc(x®)|| = 0 and from Ve(xk)d* = —c(x¥), a
consequence of (17), and @ = 0,

W0 = (UIVe@)dl 1> + X ¢, () dp) T Ve (x*)dy
+2c(xF)T Ve )dH) () | = ()T Ve )df)?) /lle(:)1IP
= —2llc(x")l| = —2y*(0).

For the Taylor series expansion of v («¥) around zero, using the preceding expressions

for the derivatives,

Y ) = vF0) + ok (F)Y (0 + 3 @2 (0) + F@b)3wb) (5
= ¥X(0) — (@)% 0) + @M (¢h, (79)
where ¢* € [0, «]. From Assumptions A.1 and A.3, there exists a constant y,.3 such that

W) (%) < yes.From(38)itholdsthat v (0) < . foral k,and y* (ak)—y*(0) > 0.
Replacing these boundsin (79) we obtain,

k
L (040 + 3k H"@H) 20 = of = O 5 e g

CTWHEN T 2y
From the backtracking procedure used to compute af, from &, (77), (78) and (80),

. 5 . 0.995y 31-y)
k> min(3ak, &) > min Pe Y @by 02— 81
af z min(Gef. ) zmin (4= =2 -0 @75 ). @Y

for al k, where y. = max(y.1, y.3). Replacing this bound in (74) we obtain
lim (¢*)"(0) = 0. (82)
k— 00
From Assumption A.5 and (46) we have (¢¥)”(0) < —|lc(x¥)||2 and (82) implies
liMi— 00 c(x¥) = 0. The definition (45) and the equalitiesin (17) yield
0F = —(@HT GRdk — 20T df + ()T REe(x*). (83)

To proceed with the analysis, we write d* as the direct sum of a component in the null-
space of Ve(x¥), dX, and another component in the orthogonal subspace, d’z‘, asdl =
Wkdlk + ve(xk)Tak. From (17) and Assumption A5, Ve(x¥)Ve(x¥)Tds = —c(x");
this equality and c¢(x¥) — 0imply lim_ o ||d§|| = 0. Then, (83) can be written as
o0k + @HT WHTGAwhdf = —2ap)T (W5)T GEVe(xh)T db
— @5V GEVe(xR)Tdf — 2c(xM)Tdf + c(xF)T REc(xh).

From Assumptions A.1, A.3, liM_ o llc(x®)|| = 0 and limi_ oo ||d’2‘|| = 0, theright-
hand side of the preceding expression converges to zero, and

lim (65 + @) WhT GLwhdt) =0, (84)
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As (46) and (82) imply limi_, oo Min(@¥, 0) = 0, using this result in (84) it follows

Jlim (max(ek, 0) + (d’l‘)T(W/ﬁ)TG’;W/ﬁdll‘) —0
= lim @)" (W' GEwidi =0= lim |ldf]| =0,
k— o0 k—o0
wherethelast implication follows from the positive definitenessof (W)” GX WX. Thus,
for the sequence of search directions, limg_ ||d)’§ | =0, and from (17),

GEat = -V F (b + (XD T2k + Ve 0k + df)
= lim IV £ (x5 — (X9 7uk = ve@®)T (K +dby) =o.
—00
This result, together with lim;_, o lc(x*)|| = 0, implies that the limit points of the

sequence generated by the algorithm are first-order KKT points for problem (2).
]

A.4. Proof of Lemma 4

From(82) inLemmaa3, (44) and (27), itfollowsthat if 7 isempty thenlim;_, o ||d,’j|| =0
and limg_ o0 [l — x¥|| = 0. Also, there exists avalue it > 0 such that u* > j for
al k.

Consider the sequence {1}, defined from Akt = A% 4+ df, = 3+ df — REc(xb).
From Taylor series expansions and Assumptions A.1 and A.3

Vi = v + ot — x5
Vek) = Ve b + oIk — X1,

and using Lemma 1, implying the boundedness of (X*)~1, and the convergence of {*},
XH Tt = YA T -
_(xk - xRy kel kel k1)1 kel )
Combining these results, it holds that
Vf(xk) _ (Xk)fl k _ VC()Ck)zjk — Vf(xkfl) _ (kal)flukfl
— Ve hHT k1 4 @b =t - RE1e(xk 1) 4 0(D).
From Assumption A.4 and Lemma 3 we have that R*c(x*) — 0and

klim IV £ %) — (X9 Iuk — ve®T Ak = 0.

Consider now the sequence {z¥}. From (40) we have
It = XL < = X = X gt - X
= e R D Gane & [Faand
+ (@ —ab)lut — XFF) + abipt — xFEE +ab)
<t + @ —ablpt — X, (85)

36



wheret = ||k +t — gk 4 X5 — XK 1254 4ok || ik — XE 2k +-ab)|). From (20) it
holdsthat 11X — X*(z* + d*) = Z*a* and from Lemma3, ||d%|| — 0; then Assumption
A3implieslimi_ o ¥ = 0. To simplify the notation, let u¥ = || u* + X*z¥||; from As-
sumption A.3 there exists a constant y,, such that uk < ¥, and k< y, for dl iterations
k.Also, let w/k = [T2H1 — o).

From (10), Lemma 1 and [|@¥|| — OinLemma3, if (¢*); < Oit holds that z¥ >
pk /(K + @%)) = i/ (2%;) for some iteration s and al k > s, where X; is an upper
bound on xf from Assumption A.3. Again from (10), as z; satisfies from Assumption
A3z < 7; for some constant z;,

i — 2 OF + @O _ i+ 22

()il = .
X; Vx

)

and from (41) and (37) it follows that &% > 0.995/; 7, /(2%; (ji; + 2Zi%;)) = 7. From

(42) it then followsthat o > B.7. > Oforal k > 5. Asz¥ > Oimpliesa > 0for all

kandal i, define 7, = min(ming<x<, «%, B.7.) > Oand it holdsthat % > 7, for all k.
Iterating on (85) and using the bound on 015 we obtain the inequality

k-1 k-1
uh <Y ol 0% < Y - ) T A=t (86)
j=0 j=0

For any € > 0O, from limy_, o t* = 0O there exists an iteration index K such that
t/ < €7,/2. Consider iterations k such that k > K + [log(ey./(2y,))/ log(1 — 7,)].
From1— 8, < 1and (86),

k-1 K-1
e N e e T Y e 7 e T e A T
j=K Jj=0
k-1 ) K )
<37 Y A=) Ty Yy @)
=K j=0
o ~
. L o l—(l—)/)K+1
<37y Q-7 +y Q- K
j=0 &
1—v k—K
S%G-F%S%G-F%E:é,

implying lim_, oo 4% = 0, or equivalently lim;_, o || X*z¥ — u¥|| = 0.

A.5. Proof of Theorem 2

Assume that the barrier parameter is updated afinite number of times. Then, there exists
an iteration index r such that u* = u” for all k > r. From Lemmas 3 and 4 it holds in
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this case

iMoo IV F(x5) — 2K = Ve(x) TRk =0
- k—oo IV f(x%) . ()75 (87)
Ilmkaoo ”C(xk)” = 0, ||mk~>oo Xka = ,LLr.

These results imply liMi_ oo ¥* = liMiooo X425 = 1 and limgo oo (X)L —
ZX|| = 0. From (52), (53) and (87),

lim 6 =
k—so0o M

w12 if ) <1
||| otherwise.

From (55),

: wk _ | 1Byl lle iflnll <1
k[)ngo(u )y = {M’/Hl«tr | + Bye otherwise.
Finally, from (56) we have lim_,oc 2% = ", u/ /n.
Let/ € aagmax; u] and notethat yuj > [|”||/+/n and ] + Byllw” || < 2] From
the preceding limits there exists an iteration index K > r such that (u;")k < 3u; and
k< 3% ui/n < 3 foral k > K.Also, from (58) it holdsthat §* < 0.25implying

8 max ((M?)",ﬂk) <340 < u) = uf,

for dl k > K. From (57) the update condition is satisfied for ;*+% and pf™ =
Bk max ()X, i¥) < 2Buu) < uy = i, acontradiction. As a consequence, ;¢
must be updated an infinite number of times and Lemma 2 applies, implying limg_ «
X = 0 and the existence of an infinite sequence K such that 6% — 0 for k € K. From

the definition of 6,,, (53), it holds that

lim ||V G5 — Ve Tk — 51 =0 , lim b = o. 88
kIeIC” f&x) c(x™) 2l kleKIIC(x)II (88)

For the third set of componentsin 6, it holds that limgejc (1 — Bun)x¥zX + B (25 + 1k —
uk/xk) = Oforali. Forany e > Oand any i there exists an iteration index K such that
foralk e K,k > K,

— k
’1’3’%" k Bl <e (89)

k
ﬁ l-Z,»-l—Z,-—f
m

Define y» = €B, /(1 — Bn)y., Wwhere from Assumption A.3 y, > 0 isa constant such
that z¥ < . forall k and all i. From limy_, o, u* = Othere exists another iteration index
K suchthat u¥ < ey2(Bm + 2y2(1 — Bn))/ (2B + v2(1 — ) foral k > K and all
i;let K = max(K, K).

Forany k € K, k > K, if x* < y1 from (89) it holds that

l_ﬂm

m

<€+

7

77Z Y2 = 269 (90)

k
Hi

X
X
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whileif x¥ > y1, using again (89),

k k
_ k 1— '
7ﬁmxlsz‘+zf‘ Mf,’( Z( P k—l—l) A
Brm x; Brm 7]
— Bm k ) Mk k €+MI‘(/V2
= +1)zf <e+—+ = /< :
< Bm Y2 ! 1+V2(1_,Bm)/ﬁm
k M, €+ puk/y2 uk
= |z — —| = +— < 2e, 91
T+ 12— B /B &

and conditions (90) and (91), together with (89), imply
lim (x5~ Ik —ZF =0 , lim|x*| =0 92
keKlI( ) w =2 keKlI |l (92)
As the agorithm ensures that x* > 0 and z¥ > 0 for all , (88) and (92) establish that
aong the sequence /C al limit points are first-order KKT points of problem (1).
We now show that these limit points are also second-order KK T pointsof (1). In par-
ticular, we show that if thisisnot the case, then the merit function (3) must be unbounded
below, against Assumptions A.1 and A.3. Consider an infinite subsequence K C K such

that lim, _e x* = x*,lim, _p A= px andlim, . z* = z*. The existence of this subse-
guence is a consequence of Assumptl on A.3. From (88) and (92) these values satisfy

IVf(x*) = 2% = Ve A* =0 , Je@®I=0 ,

IX*2| =0 , x*=0,2">0. (93)

Assume that Amin (W5 Vi L(x*, A*)W3) =y, < 0for W7 defined as in Theorem
1, implying that x* is not a second-order KKT point of problem (1).

Under this condition, from Assumption A.2, Theorem 1, (92) and (25) there exists
an iteration index r1 such that for al k > r1, k € K, it holds that

d)TGhak < —Fe1yf. (94)
From (93), implying lim, _.- ld¥|| = 0, Assumptions A.1 and A.3, there exists another
iteration index r» such that
129" (Vf ') = (X Tt = Ve)TF = REe(xh)) — 2a5,) T e(xh)]
< gerl, (95)
for al k > rp, k € K. Again from (93),
@d)" (A (x*) 72— (X2 < G, (96)
for someiterationindex r3 and k > r3, k € K. Selectr4 large enough that from A ssump-

tion A4 it holds ok = p” forall k > r4, and let r = max(r1, ro, 3, ra). Replacing (94),
(95) and (96) in (44) yields

@) < —1c1y?, (97)
foral k> randk e K.
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The changein the merit function for iterationslarger than r isdueto the modification
of the variables in the search and the update of the barrier parameters. From (33), for
k > r it holds that

Lo 250 pf 5 < LaGh 25 08 i) + 3y @) ? @)
+ Xima (i — i logix .

From Assumption A.3 there exists x; > 1 such that x{‘ < x; foral kandall i. Replacing
this bound in the preceding inequality, we have

LG 288 g ) < LaGR, 05 of i) + 37 (@))% 69 0)
+ i (uf — it log .

Adding these bounds from r to k, taking into account that logx; > 0and (¢/)”(0) < O,
and using (97),

LG a0 gkttt ly < L7 07 0" 1) + 3y Sk () (¢7)(0)
+ Y (uf — T log
S LaG" 250 1) + 37 Y g @)?(@0) (0
+ X imami 10g;
< LaG" 2707 1) = gy e g @)’
+ X iami 10g i,

forany k > r. FromAssumptionsA.1, A3and — 3, ¥ logx¥ > — 3, u%log x;, where
X; isan upper bound on x{‘ from Assumption A.3, there exists a constant y;, such that
La(x*, 2% ok, uky >y, for dl k. Asaconsequence, if (97) holds then

SYertY g @) < —ve A LaG W5 0l ) + Y pf log s, (98)

for any k > r. From (98) it should hold that lim, ¢ ok = 0.

To complete the proof of convergence to second-order KKT points we now show
that al]‘, is bounded away from zero along the sequence K, which contradicts (98) and
as a consequence implies that (97) cannot hold. The computation of a’;, is carried out
in three stages: it must satisfy the condition (38) on the constraints, but the bound is
in this case identical to the ones obtained in Lemma 3, (78) and (80), as the arguments
were independent of .. It must also preserve the positivity of the primal variables and
produce sufficient descent on the merit function; in both of these cases, the argumentsin
the proof of Lemma 3 are no longer valid, as they depended on the boundedness of the
barrier parameter, and the corresponding bound away from zero on the primal variables.
Now u* — Oandtheterm — 3", u; logx; hasunbounded higher derivativesas i — 0.

We derive a bound for the step to ensure sufficient descent on the merit function,
condition (33). Let ¢ () = ¢X(a) — Y, u¥logxF(a), where ¢¥ (@) = f(xk()) —
WM@)Te(x* (@) +05Y; pfcjz(x" (a)) has continuous and uniformly bounded deriv-
atives from Assumption A.1. We show that sufficient descent on ¢ implies sufficient
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descent on ¢, and as a consequence that the corresponding step is bounded away from
zero. The definition of ¢ and (44) imply

@5 (0) = (¢4 (©0) + @HT M*(x*)~2ak — 2d* (x*) 7Lk, (99)

From (93), Assumption A.1 and (17) it follows that lim
an iteration index 7 > 7 such that, from (92),

o 1441 = 0 and there exists

k\2
(@5 M (XM 2ak — 2ak (e Ik = Zxk <(d )i (dk)) > lepy?
=171
= 50 < (@9 (0) + Eery? < 2940 < —Z ey, (100)

i

foral k > 7 and k € K, where the last inequality follows from (97) and (99). The
arguments used in the proof of Lemma 3 to derive the bound in (81) can be applied to
the function ¢. It holds that

k) < 5 0) + o (5 ) + v (@5 (0), (101)
for al o e (0, @], where &¥ satisfies

ck@hy = ¢k + &k (4 0) + ¥ @525 (0)

= y(@)%(c%"(0) = 3@H2(¢ )”(0)+ F@3hy" &R
— 6y ,9— 18y
(ck>”’(sk) 2 e

= = —(""©0)

’

where the bound follows from the use of Taylor series expansions for ¢* around zero,
and y1, denotes abound on (¢%)” (&%) for &% € [0, &].

We show that the preceding value & also provides a bound for the steplength in the
search on the full merit function ¢*. Let A* = — 3, u¥(logx¥ (e) — log x¥); from the

definition of ¢¥ and (101), for o € [0, &*] and k € K we have

(@) = cF(@) — X uf logxf (@) < ¢ 0) + a ) ) + ya?(c)" (0
— X logxf (@)
< 0 = Y uf logxf + v (@265 ) + AF + a(ch) (0)
< ¢*(0) + y?(¢5)"(0) + A* + (") (0)
< ¢*(0) + 3ya?@h" (0 + AF + a(ch)(0), (102)

where the last inequality follows from (100).

We now prove that (102) implies the satisfaction of (33). Consider the term A*;
from the definition of @; in Section 4 it holds that x* + (a¥)?(d%); + a¥(d¥); = 0 and
2ak(d%); + (d%); < 0, as@; isthe smallest positive root of P;(«) and P;(0) > 0. For i
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such that @; < oo, from (36), (37) and the preceding conditions we also have
xf (o) = xF 4 @)@ + ol (@) = xf + (e *(@D)i + e (@)
> xf + (92@Hd)i + 84 (dy)i
> (1+ (852 = 268 xk + 2@)2((8)2 = %) (@) + @k ((6%)2 — 6% @),
> (1+ (652 — 286 xk — aksk (1 — sk (2a,. @i + (d,’f),-)
> (1+ (8%)% — 26%)xk
> (L @— Ib D2 = 20— i ) af = kPt

As a consequence,

= > ufogxf(e) —logxf) <23 uflog|ut = lim A¥=0. (103)
- - k— 00

Consider now (¢¥)'(0) = (@¥)T (x*)~1x*. From (97) and the definition of G, it follows
that
@HTGRdk < —Fe1y?
= (@7 (X 1Zkak < —Fery? — (@) Vi Lk, 3 — Ree(xh)df < K,
where the last bound follows from Assumptions A.1, A.3 and A.4 and the boundedness
of d* from condition (25). These bounds, Assumption A.2 and (93) imply that, if zF>0
then x* = 0and (dX); — Ofor k € K. Then, (92) yields

lim@)" (x*)~uk = lim@*)7"* = 0. (104)
kelC ke
From (103) and (104) there exists an iteration index 7 > r such that for all k > 7,

kek
At mycm 2((9— 18y)/(16y1))” < —51 (@ /2)%(¢")"(0)
(€ (0) < Zgyelv(9—18y)/(16y1) < —Fv(@* /4 (4" (0)
implying from (102) for all o € [a%/2, ],
" (@) < 90 + 37 (@)?©®")"(0),
and the satisfaction of (33) for all k > 7 and k € K for abounded value

— 18y
32y1,

| /\

ak/2 > cly)L > 0. (105)

Consider now the steplength to ensure that the primal variables remain positive,
ak - From the definition of ¥ as the smallest positive root of (35), it holds that 0 =
1+ @)((db)i /xF)+ak (db)i/xf) if af isfinite. From (17) and GX = A* +(x*) =1 Z%,

(H* + (x%71Zd* = =V £ (x5) + Ve T X + db + (xB 7Lk
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and the boundedness by construction of H*, AssumptionsA.1, A.2and A.3, (92) and (93)
imply that there exists a constant y,;, such that |(d)’§)i |/xl(< < yqx foral k and al i. Re-

garding the direction of negative curvature d*, condition (28) implies |(d¥); |/x{‘ < Ban-
From these bounds it holds that if & isfinite, either & > 1 or

0= 1+ @H%((@"i /x5 + ak(d)i /x5 = 1 @)%yax — @l Ban
1
—k

Zl—&lkydx_&,kﬂdn = >m7
X n

i =

and as a consequence of (36), oe’,;ax > 1/(yax + Ban) and from this bound, (78), (80)
and (105), oz';, is bounded away from zero along the sequence K.
But if a’; is bounded, (98) cannot hold, and the algorithm must converge to second-

order KKT points of problem (1) along the sequence K.
i
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