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bstract

This paper describes a new algorithm for the solution of nonconvex unconstrained optimization problems, with the
roperty of converging to points satisfying second order necessary optimality conditions. The algorithm is based on a pro
edure which, from two descent directions, a Newton type direction and a direction of negative curvature, selects in each
teration the linesearch model best adapted to the properties of these directions. The paper also presents results of numeri
al experiments that illustrate its practical efficiency.
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. Introduction

The goal of this work is the efficient solution of optimization problems having the form
m
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f ðxÞ; ð1Þ
here f : Rn ! R is a twice continuously differentiable function.
Many algorithms have been proposed in the literature to solve such problems, but only a few attempt to use

econd-order information available in the Hessian matrix of f; this information may play a very significant role
n the design of efficient algorithms. Unconstrained optimization problems are usually solved by applying
lgorithms based on Newton’s method. These methods, when properly implemented, have well-known conver-
ence properties and, in particular, they can be shown to be globally convergent to first-order critical points.
here are two broad classes of procedures to ensure these convergence properties: linesearch methods and

rust-region methods. The method described in this paper belongs to the class of linesearch procedures;
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in particular, we describe a linesearch that uses second-order information in an efficient manner. This infor-

mation is introduced through the computation of a negative curvature direction in each iteration: along these
negative curvature directions the quadratic model is unbounded below and, in some cases, this property offers
the potential for a larger reduction in the value of the objective function.

We shall introduce a methodology for the linesearch that exploits any nonconvexity that the objective func-
tion may present locally. To that end, in each iteration we compute a pair of directions ðsk; dkÞ. The first one,
sk, is a modified Newton direction that ensures fast convergence under convexity assumptions. The second
one, dk, is a negative curvature direction that allows the algorithm to move in an efficient manner away from
local nonconvex regions. The approach proposed in this paper will be applied to the small dimensional setting,
although the underlying ideas can also be adapted to large dimensional problems with limited modifications.

One of the first proposals to take into account second-order information in order to ensure convergence
towards second-order critical points is that of Fiacco and McCormick [8]. More recently, the use of this infor-
mation has been studied by Fletcher and Freeman [9], Gill and Murray [11], or Mukai and Polak [22], among
others. In a linesearch context the work of McCormick [18] is particularly relevant. In this work, Armijo’s rule
[1] for the termination of the linesearch is adapted and modified to include negative curvature information.
Moré and Sorensen [21] and Goldfarb [13] follow a similar approach, their work being the first one to use
explicitly negative curvature directions in the solution of specific instances of unconstrained problems. More
recently, Moguerza and Prieto [19] have extended the methodology of Moré and Sorensen to constrained
problems within an interior point framework. Both in Moré and Sorensen [21] and Moguerza and Prieto
[19], the next iterate is obtained through a backtracking procedure along a second-order curve combining
the directions. In Moguerza and Prieto [20], the search is conducted on a curve obtained from the approximate
solution of an ordinary differential equation related to the problem. Other approaches to ensure convergence
to second-order critical points for the constrained case are described in Auslender [2], Gay [10], Bannert [3]
and Bonnans [4].

Although out of the scope of this paper, there are linesearch procedures based on the conjugate gradient
methodology for unconstrained optimization which are useful for solving large scale problems. These methods
have well-known convergence properties (see [16], and references therein), and have been used in some prac-
tical engineering applications (see, for instance [25]). Other works also use directions of negative curvature
within conjugate gradient schemes (see [23] and references therein). For instance, in Gould et al. [14], in each
iteration the best direction is chosen and a standard linesearch is conducted. Another method based in the
selection of directions is suggested by Sanmatı́as and Roma [24]. The relation between our proposal and San-
matı́as and Roma [24] will be discussed below.

The main aim of this work is to identify a criterion such that in each iteration the best search procedure is
chosen. Depending on the results from the application of this criterion, the algorithm will apply either a cur-
vilinear search similar to that proposed by Moré and Sorensen [21], combining both search directions, or a
standard linesearch similar to that proposed by Gould et al. [14], using just one of the two directions.

The structure of the paper is as follows: In Section 2, we introduce some basic definitions as well as a
method to compute the descent directions. Section 3 describes the procedure to select the steplength and dis-
cusses its convergence properties. Section 4 introduces a condition to identify the search method to be used in
a given iteration. In Section 5, we discuss implementation details and present a general scheme for the algo-
rithm. Section 6 shows the results from the computational experiments. Finally, Section 7 presents some
conclusions.

2. Basic definitions and search direction computations
For the remainder of the paper we will assume that the following regularity properties hold for problem (1)

and the initial point of the algorithm, x0.

A1. The level set Lðx0Þ ¼ fx : f ðxÞ 6 f ðx0Þg is compact.
A2. The objective function f has second-order derivatives that are Lipschitz-continuous on an open set that

contains Lðx0Þ.
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Assuming that x is an indefinite point (see [21], for a precise definition), a pair of vectors ðs; dÞ is said to be a
T T
descent pair if gðxÞ s 6 0, gðxÞ d 6 0 and dTHðxÞd < 0, where gðxÞ � rf ðxÞ and HðxÞ � r2f ðxÞ. A possible

choice for a descent pair would be s ¼ �gðxÞ and d ¼ �un, where un denotes an eigenvector associated to a
negative eigenvalue of HðxÞ. The sign for un is chosen to ensure that gðxÞTd 6 0. If x is not indefinite and
gðxÞ 6¼ 0, then the second-order information is not relevant (and d ¼ 0). From a more practical point of view,
in a given iterate xk a direction sk is assumed to be a sufficient descent direction if there exist constants c1 and
c2, independent of k, such that

sT
k gðxkÞ 6 �c1kgðxkÞk2 ð2Þ
and
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kskk 6 c2kgðxkÞk: ð3Þ

nalogously, we will consider that dk is a sufficient direction of negative curvature at xk if there exists a
constant c3 independent of k such that

dT
k gðxkÞ 6 0;

T
dk HðxkÞdk 6 minð0; hkHk Þ;
kdkk 6 c3:

ð4Þ

e h 2 ð0; 1Þ is independent of k and kHk denotes the smallest eigenvalue of the Hessian matrix HðxkÞ if xk is
nite, and zero otherwise. These conditions are similar to those introduced by Lucidi et al. [17].
Conditions (2) and (3) are the standard ones for Newton-type directions. Condition (4) ensures that dk con-
tains information related to the smallest eigenvalue of the Hessian matrix.

2.1. Computing a modified Newton direction

Under assumptions A1 and A2 it is possible to construct a local quadratic model for the objective function
from the corresponding Taylor series expansion at all iterates xk 2Lðx0Þ as

f ðxk þ pÞ ’ f ðxkÞ þ gðxkÞTp þ 1

2
pTHðxkÞp: ð5Þ
ntroduce the notation
1

UkðsÞ � gðxkÞTsþ

2
sTHðxkÞs ð6Þ
e right-hand side of (5), omitting the constant term f ðxkÞ. As shown, for example, in Gill et al. [12], sk is a
nary point of Uk if it satisfies the linear system of equations
HðxkÞsk ¼ �gðxkÞ: ð7Þ
The direction s , obtained as a solution of (7), is known as the Newton direction. An efficient method to com-
k
this direction uses the modified Cholesky factorization proposed by Gill and Murray [11].
2.2. Computing a direction of negative curvature

For an iterate xk 2Lðx0Þ, a direction of negative curvature dk will be useful if it satisfies condition (4). Note
that from (4), it follows that

dT
k HðxkÞdk ! 0) minð0; kHk Þ ! 0: ð8Þ
motivation underlying (4) is to ensure that the iterates move towards regions of local convexity for f.

the complete spectral decomposition of the Hessian matrix HðxkÞ were available, it would be easy to
obtain directions dk satisfying condition (4). Unfortunately, the determination of a complete system of eigen-
vectors and eigenvalues for this matrix can be computationally very expensive.
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Alternatively, the modified Cholesky factorization of Gill and Murray [11] allows the computation of a neg-

ative curvature direction simultaneously with the determination of a modified Newton direction; in this man-
ner, the computational cost to obtain a descent pair is reasonable. In Moré and Sorensen [21] it is shown that
this factorization may either provide unbounded negative curvature directions or arbitrarily small negative
curvature, compared to that available in the quadratic model at the iteration. We have chosen to impose
the condition kdk 6 c3 in (4). An alternative factorization which can be used, while avoiding this problem,
is the one proposed by Bunch and Parlett [6]. In computational experiments using small-size problems we have
obtained similar results for both factorizations.

3. The curvilinear search

In this section, we present some convergence results for a search based on the use of descent pairs, as
defined in Section 2. Many of these results are adapted from those in Moré and Sorensen [21].

When using a search method to ensure global convergence, in each iteration a parametric curve xðaÞ is built
from the directions computed in that iteration. The goal is to find a value of the parameter a > 0 such that

f ðxðaÞÞ < f ðxÞ: ð9Þ
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ur case, in each iteration k we compute a descent pair ðsk; dkÞ, and, from it, we define a general parametric
ve as
C ¼ fxkðaÞ � xk þ /1ðaÞsk þ /2ðaÞdk; a P 0g; ð10Þ

ere / ðaÞ and / ðaÞ are appropriate (nonnegative) weight functions for the linear combination. We build
1 2

curve using both descent directions, in order to use simultaneously the information available in them.

We now analyze the properties of this search and reasonable choices for the functions /1 and /2. We start

by studying the problem of finding an appropriate value for a, ensuring the convergence of the algorithm,
from the analysis of the univariate function

wkðaÞ � f ðxkðaÞÞ: ð11Þ
The following Lemma shows that there exists a value of a > 0 such that a condition related to (9) and

uring sufficient descent is satisfied, as long as either w0kð0Þ < 0 or w0kð0Þ 6 0 and w00kð0Þ < 0 hold. The
Lemma extends the results in Moré and Sorensen [21], as it considers general functions /1 and /2 in (10) with
the only assumption that they have Lipschitz-continuous second derivatives.

Lemma 1. Let wðaÞ : R! R, defined as in (11), be a function with Lipschitz-continuous second derivatives on an

open interval I containing ½0; 1�, and c1 2 ð0; 1Þ be a given scalar. If either w0ð0Þ < 0 or w0ð0Þ 6 0 and w00ð0Þ < 0
then there exists a scalar ĝ > 0 in I such that

wðaÞ 6 wð0Þ þ c1 w0ð0Þaþ 1

2
w00ð0Þa2

� �
ds for all a 2 ½0; ĝ�, where ĝ is strictly positive.

urthermore, let c2 be another given scalar such that 1 > c2 > c1 > 0. Either wð1Þ 6 wð0Þþc1ðw0ð0Þ þ 1
2 w0ð0ÞÞ

ds or there exists a scalar g > 0 satisfying g 6 ĝ, such that
wðaÞ 6 wð0Þ þ c1 w0ð0Þaþ 1

2
w00ð0Þa2

� �
; ð12Þ

0 0 00
w ðaÞP c2 min w ð0Þ þ w ð0Þa; 0ð Þ ð13Þ

d simultaneously for all a 2 ½g; ĝ�, and g is strictly positive.

of. Let
WðaÞ � wðaÞ � wð0Þ � c1 aw0ð0Þ þ 1

2
a2w00ð0Þ

� �
:
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Note that, from the properties of w and this definition, Wð0Þ ¼ 0, W0ð0Þ ¼ ð1� c1Þw0ð0Þ 6 0 and W00ð0Þ ¼
00
ð1� c1Þw ð0Þ < 0 if W0ð0Þ ¼ 0. Also, W has Lipschitz-continuous second derivatives on I.

(a) Consider the case when w0ð0Þ < 0. From the Taylor series expansion for W around zero and a 2 I we
have

WðaÞ ¼ W0ð0Þaþ 1
W00ðf1Þa2
for s

impl

and
F

for s
a 2 ½

(b
a 2 ½

for s

Defi
hold

Wðb5
2

ome f1 2 ½0; a�. Let �I denote a closed subinterval of I that contains zero. Then w and its first and second
00 0
� �
derivatives are bounded on I . Let K1 be a bound for w ðaÞ on I and b1 ¼ �2w ð0Þ=K1. For all a 2 ð0; b1Þ, it

holds that WðaÞ < 0 and, as a consequence of the definition of ĝ, it also holds that ĝ P �2w0ð0Þ=K1.
If w0ð0Þ < 0 but wð1Þ 6 wð0Þ þ c1ðw0ð0Þ þ 1

2 w00ð0ÞÞ does not hold, we have that Wð1Þ > 0 and, by continuity,
there exists a positive value b2 < 1 such that Wðb2Þ ¼ 0 and b2 is the first such value. From the mean-value
theorem, there exists a positive value b3 < b2, the smallest positive zero of W0 so that W0ðb3Þ ¼ 0. Note that
(12) holds for all a 2 ½0; b2�.

We study two cases: (i) If w0ð0Þ þ b3w
00ð0Þ 6 0, then from c2 > c1 it holds that

0 ¼ w0ðb3Þ � c1ðw0ð0Þ þ b3w
00ð0ÞÞ
6 w0ðb Þ � c ðw0ð0Þ þ b w00ð0ÞÞ
3 2 3

¼ w0ðb3Þ � c2 minðw0ð0Þ þ b3w
00ð0Þ; 0Þ

ying that both (12) and (13) hold for a ¼ b3. (ii) If w0ð0Þ þ b3w
00ð0Þ > 0, from W0ðb3Þ ¼ 0 it holds that
w0ðb3Þ ¼ c2ðw0ð0Þ þ b3w
00ð0ÞÞ > minðw0ð0Þ þ b3w

00ð0Þ; 0Þ ¼ 0
(13) also holds for a ¼ b3.
rom W0ðb Þ ¼ 0 and Taylor series expansions, it follows that
3
c1ðw0ð0Þ þ b3w
00ð0ÞÞ ¼ w0ðb3Þ ¼ w0ð0Þ þ b3w

00ðf3Þ ð14Þ
00
ome f 2 ½0; b �. From b < 1 and our assumptions, there exists a value K such that jw ðaÞj 6 K3 for any
3 3 3 3

0; b3�. Any a that satisfies (13) will also satisfy a P b3 and, from (14),
a P b3 P �ð1� c1Þw0ð0Þ
2K3

> 0: ð15Þ
) Consider now the case when w0ð0Þ 6 0 and w00ð0Þ < 0. Using again Taylor series expansions for
0; 1�,
WðaÞ ¼ W0ð0Þaþ 1

2
W00ðf2Þa2 ¼ W0ð0Þaþ 1

2
W00ð0Þa2 þ 1

2
ðW00ðf2Þ �W00ð0ÞÞa2
ome f2 2 ½0; a�. Let K2 denote the Lipschitz constant for W00ðaÞ on I, then jW00ðf2Þ �W00ð0Þj 6 K2a,
0 1 00 2 1 3
WðaÞ 6 W ð0Þaþ
2

W ð0Þa þ
2

K2a :
ning b ¼ �ð1� c Þw00ð0Þ=K2, for any a 2 ð0; b Þ it holds that 1 W00ð0Þa2 þ 1 K2a3 < 0. As W0ð0Þ 6 0, (12)
4 1 4 2 2

s for all a 2 ð0; b4Þ and from the definition of ĝ we have that
00
ĝ P �ð1� c1Þw ð0Þ=K2: ð16Þ

If, in addition, wð1Þ > wð0Þ þ c1ðw0ð0Þ þ 1
2
w00ð0ÞÞ holds, we apply an argument similar to the preceding case.

As Wð0Þ ¼ 0, W0ð0Þ 6 0, W00ð0Þ < 0 and Wð1Þ > 0, by continuity there exists a positive value b < 1 such that
5

Þ ¼ 0 and b5 is the first such value. From the mean-value theorem, there exists a positive value b6 < b5,

the smallest positive zero of W0, so that W0ðb6Þ ¼ 0. Note that (12) holds for all a 2 ½0; b5�.
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However, under the conditions on w0ð0Þ and w00ð0Þ, we have w0ð0Þ þ b6w
00ð0Þ < 0, and from c2 > c1 it holds
that

0 ¼ w0ðb6Þ � c1ðw0ð0Þ þ b6w
00ð0ÞÞ
imp

for
0

Any

T
et a

and
then

Pro

que

and
6 w0ðb6Þ � c2ðw0ð0Þ þ b6w
00ð0ÞÞ

¼ w0ðb6Þ � c2 minðw0ð0Þ þ b6w
00ð0Þ; 0Þ

lying again that both (12) and (13) hold for a ¼ b6.

0
Again, from W ðb6Þ ¼ 0 and Taylor series expansions,

c1ðw0ð0Þ þ b6w
00ð0ÞÞ ¼ w0ðb6Þ ¼ w0ð0Þ þ b6w

00ð0Þ þ b6ðw00ðf4Þ � w00ð0ÞÞ
some f4 2 ½0; b6�. Note that b6 < 1, and let K4 denote the Lipschitz constant for w00ðaÞ on ½0; b6�. Using

w ð0Þ 6 0 it follows that

�ð1� c1Þb6w
00ð0Þ 6 �ð1� c1Þðw0ð0Þ þ b6w

00ð0ÞÞ ¼ b6ðw00ðf4Þ � w00ð0ÞÞ 6 K4b
2
6: ð17Þ
a that satisfies (13) will also satisfy a P b6 and from (17)
00
a P b6 P �ð1� c1Þw ð0Þ
K4

> 0: � ð18Þ
he following Corollary assumes that a backtracking search to compute a is conducted as described in Gill
l. [12], that is, for a given positive constant d < 1 we define the steplength a as the first value in the sequence
fdig1i 0 for which condition (12) is satisfied.

We also consider the case when a general search is used. We assume that this search computes a value for
the steplength ak satisfying both (12) and (13), with initial steplength equal to one.

Corollary 1. If a backtracking search with parameter d is used, the value of a computed from the search, â,

satisfies

â P dĝ
is bounded away from zero. If a general search is conducted to compute a value satisfying both (12) and (13),

the computed value a satisfies
a P g:

iþ1 i i
of. This result follows for the backtracking search from ak ¼ dak and ak not satisfying (12) and, conse-
ntly, satisfying ai

k > ĝ, and the bound for ĝ. For the general search, the result follows directly from the

bounds for g. h

The preceding results establish the existence of sufficient descent given certain conditions on the derivatives
of w. The satisfaction of these conditions depends on the properties of the functions /1 and /2, and those of
the descent pair ðs; dÞ. We now analyze our requirements on these functions. From the definition of wðaÞ it
follows that

w0ð0Þ ¼ /01ð0ÞgðxÞ
Tsþ /02ð0ÞgðxÞ

Td;

w00ð0Þ ¼ ð/01ð0ÞÞ
2sTHðxÞsþ ð/02ð0ÞÞ

2dTHðxÞd

þ 2/01ð0Þ/

0
2ð0ÞsTHðxÞd þ /001ð0ÞgðxÞ

Ts

þ /002ð0ÞgðxÞ
Td

, from these equalities and the properties of the descent pair ðs; dÞ, we have

/01ð0ÞP 0;/02ð0ÞP 0) w0ð0Þ 6 0;
/01ð0Þ ¼ 0; /001ð0ÞP 0; /002ð0ÞP 0) w00ð0Þ 6 0:
6



If, in addition to these conditions, /02ð0Þ > 0 and /001ð0Þ > 0, then w00ð0Þ < 0. We also need the second deriv-

atives to be Lipschitz-continuous on ½0; 1�.

The preceding inequalities thus provide necessary conditions on /1 and /2 to ensure that either w0ð0Þ < 0 or
w0ð0Þ 6 0 and w00ð0Þ < 0 hold, as required in Lemma 1. We assume in what follows that the functions /1 and
/2 satisfy

C1. It holds that

/01ð0Þ ¼ 0; /02ð0Þ > 0; /001ð0Þ > 0; /002ð0ÞP 0:
C2.

and i
Note that, under C1, for any descent pair ðs; dÞ 6¼ 0 we have
w0ð0Þ ¼ /02ð0ÞgðxÞ
Td 6 0;

ð19Þ

w00ð0Þ ¼ ð/02ð0ÞÞ

2dTHðxÞd þ /001ð0ÞgðxÞ
Tsþ /002ð0ÞgðxÞ

Td < 0:

Also, given xk and a descent pair ðsk; dkÞ, we assume that the next iterate xk+1 is defined as
xkþ1 ¼ xkðakÞ;

where a is chosen to satisfy the following condition:
The steplength a is defined to be equal to one if wð1Þ satisfies (12); otherwise, a is computed to satisfy
k k

both (12) and (13).
This standard condition ensures that a steplength of one is taken whenever it provides sufficient descent.
Finally, we need a condition on the descent pair ðsk; dkÞ to ensure that it provides either sufficient descent
or sufficient negative curvature compared to that available in the current iterate xk. We introduce the
following sufficient condition to replace (2) (4):

C3. Let �c1, �c2, �c3 and �h be nonnegative constants. For all iterations k, the descent pair ðsk; dkÞ satisfies the
conditions

kskk 6 �c1kgðxkÞk; gðxkÞTsk 6 0;

gðx ÞTd 6 0; kd k 6 �c
k k k 2

and defining
�

wk ¼

sT
k gðxkÞ=kgðxkÞk if gðxkÞ 6¼ 0;
0 otherwise;
minðwk; d
T
k HðxkÞdkÞ 6 minð��c3kgðxkÞk; �hkHk Þ: ð20Þ

his condition ensures that either the (scaled) descent or the negative curvature available in the descent pair
given iteration are sufficient, when compared with the largest descent and negative curvature available in
T
for a
the quadratic model for that iteration. Instead of testing both conditions (descent and negative curvature) sep-
arately, we have combined them into one requirement, defined to be as general as possible but also satisfied by
the choice of directions used in the proposed algorithm, as shown in the following section.

The following result shows that, under these conditions and our initial assumptions, the procedure is glob-
ally convergent.

Theorem 1. Let f : Rn ! R in (1) satisfy assumptions A1 and A2. Consider the sequence fxkg generated under

condition C2 using a descent pair ðsk; dkÞ satisfying condition C3. Then,

lim
k!1

gðxkÞ ¼ 0 ð21Þ
f the first-order critical points of f in Lðx0Þ satisfy the sufficient second-order condition,
lim
k!1

kHk ¼ 0: ð22Þ
7



Proof. From C2 and (12), all iterates remain in Lðx0Þ. As a consequence of assumptions A1 and A2, the

sequence ff ðxkÞg is bounded below, and the sequence fxkg has convergent subsequences.

Consider any of these convergent subsequences, and add condition (12) for all iterations along the sequence
up to a given iteration r in the subsequence, to obtain

Xr�1 � �

f ðx Þ � f ðx Þ 6 c w0 ð0Þa þ 1

w00ð0Þa2 :

Tak

F

and

and
w00kð0

If gð
the

�Kk

T

r 0 1

k 0
k k

2 k k

ing limits as r!1, using the boundedness of f and the signs of a, w0 and w00 it follows that
w0kð0Þak ! 0 and w00kð0Þa2
k ! 0:
rom condition C3, if sk ¼ dk ¼ 0 for some iteration k, then gðxkÞ ¼ 0 and kHðxÞ ¼ 0, implying that xk sat-

isfies the second-order necessary conditions. If the descent pair is not equal to zero in any iteration, from C1
we have w0kð0Þ 6 0 and w00kð0Þ < 0 for all k. For these iterations, from Corollary 1, (16) and w00kð0Þ < 0, if we
conduct a backtracking, search we have that

w00kð0Þa2
k 6

d2ð1� c1Þ
2ðw00kð0ÞÞ

3

2
6 0
K2

, if we conduct a general search, from (18),
2 3
w00kð0Þa2
k 6
ð1� c1Þ ðw00kð0ÞÞ

2
6 0
K4

if K2 is an infinite subsequence, from w00kð0Þa2
k ! 0 and the preceding bounds it must hold along it that

Þ ! 0. But from (19), this implies
dT
k HðxkÞdk ! 0 and gðxkÞTsk ! 0:
xkÞ ¼ 0 along an infinite subsequence, from C3 we have kHk ! 0. Otherwise, assume gðxkÞ 6¼ 0 for all k in
subsequence; we may have that either gðxkÞTsk=kgðxkÞk ! 0 along all subsequences, in which case condi-
tion C3 implies minð��c3kgðxkÞk2
; �hkHk Þ ! 0 and

kgðxkÞk ! 0; kHk ! 0;

or along a subsequence there exists a positive constant K such that, for all k, in the subsequence gðx ÞTs 6
k k

gðxkÞk 6 0, but this implies kgðxkÞk ! 0. From kskk 6 �c1kgðxkÞk we have that 0 P gðxkÞTsk=kgðxkÞkP

�kskkP ��c1kgðxkÞk and we must also have gðxkÞTsk=kgðxkÞk ! 0, contradicting our assumption. Thus, in
all cases we have

kgðxkÞk ! 0; kHk ! 0

and the desired result follows from these limits and assumption A2. h
he preceding convergence results provide a justification for the algorithm of interest in this paper but, in

order to have a practical algorithm, we still need to define in a precise manner both the form of the functions
/1 and /2 and that of the descent pair ðsk; dkÞ. Regarding the functions, the simplest choice that satisfies the
desired conditions C1 is /1ðaÞ � a2 and /2ðaÞ ¼ a. We will use it in the remainder of the paper. The choice of
the directions in the descent pair will be discussed in the following section.

4. The modified linesearch

As we mentioned before, in each iteration the proposed algorithm computes a descent pair ðsk; dkÞ, but
before carrying out a search to satisfy C2, it decides what information in the descent pair will be used in
the search. This approach is similar to the one discussed in Gould et al. [14], with the main difference that,
while they only consider two alternatives, we consider the three following possibilities:
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• To conduct a linesearch based just on the use of the modified Newton direction, using the descent pair

ðsk; 0Þ.

• To conduct a linesearch based only on the negative curvature direction, using the descent pair ð0; dkÞ.
• To carry out a curvilinear search combining both directions, making use of the full descent pair ðsk; dkÞ.

Our choice will be made from a comparison of the descent provided by each direction on a quadratic model
of the objective function. We wish to select the alternative that offers the most significant descent information.
A similar proposal to this scheme was suggested in San Matı́as and Roma [24], where the proposed method
would select one of these three different possibilities from a comparison of the descent provided on the qua-
dratic model of the objective function. The main differences between this work and the proposal in San Matı́as
and Roma [24] are the way in which the weights for the directions are chosen and the scaling of the direction of
negative curvature.

As previously mentioned, before analyzing the descent information, it is important to consider the scaling
of each of the directions. The manner in which they are computed and their properties usually imply a signif-
icant difference in their sizes. The Newton direction sk ensures good local convergence properties for unit step-
lengths, while the negative curvature direction has no specific scale attached to it (the quadratic model used to
define it would imply an infinite steplength). In this way, our implementation handles this problem by adjust-
ing the scale of the direction of negative curvature so that its norm equals that of the Newton direction, that is,
kdkk ¼ kskk. Therefore, the scaling of the negative curvature direction will be adequately related to the
Newton direction (see, [19]). Some other proposals regarding this task can be consulted in Byrd et al. [7]
and Moguerza and Prieto [20].

Consider now the choice of search directions. Let Qk denote the local quadratic model for the objective
function around xk, defined as

QkðzÞ ¼ gðxkÞTzþ 1

2
zTHðxkÞz: ð23Þ
Gou
desc

is sa
tion,

If dk

sk w

hold
In

tial f
ld et al. [14] study both directions in the descent pair ðsk; dkÞ, and select the one that provides the largest
ent ratio, measured against the quadratic model. Thus, the Newton direction s is chosen whenever the
k
condition

QkðskÞ
kskk

6
QkðdkÞ
kdkk

ð24Þ
tisfied. If the Newton direction has not been modified, and the quadratic model is minimized by this direc-
it holds that
QkðskÞ ¼
1

2
gðxkÞTsk: ð25Þ
is replaced in (23) and (24), together with (25), we have the following condition equivalent to (24): Select
henever
gðxkÞTsk

kskk
6 2QkðdkÞ ð26Þ
s for dk such that kdkk ¼ 1.
equality (26) provides a criterion to determine which of both directions in the pair gives the largest poten-

or descent in the objective function. The proposal in Gould et al. [14] could be generalized to the case in
which both directions offer a significant potential for descent. If inequality (26) is extended to consider this
case, we have the condition

s2QkðdkÞP
gðxkÞTsk

kskk
P s1QkðdkÞ; ð27Þ
9



where s1 and s2 are prespecified constants satisfying 0 < s2 < 2 < s1. This multiple condition can be used as a

criterion to select among the three alternatives introduced at the beginning of this section, in the following
manner:

• The fulfilment of condition (27) implies that both directions provide relevant descent information, there-
fore, if (27) holds the descent pair is defined as ð�sk; �dkÞ ¼ ðsk; dkÞ and the new iterate is obtained from a cur-
vilinear search as

xkþ1 ¼ xk þ a2
ksk þ akdk:
• O

• F
therwise, if
gðxkÞTsk
< s1QkðdkÞ ð28Þ
kskk

holds, then the descent provided by the Newton direction sk is more significant than the descent provided
by the negative curvature direction. Therefore, the algorithm performs a linesearch based only on the New-

ton direction, the descent pair is defined as ð�sk; �dkÞ ¼ ðsk; 0Þ and the next iterate is obtained from

xkþ1 ¼ xk þ a2
ksk:
inally, if condition

T

s2QkðdkÞ <
gðxkÞ sk

kskk
ð29Þ
holds, then the negative curvature direction provides significant descent and should be included in the
search. In this case, we will distinguish two alternatives:
If, in addition, condition

gðxkÞTdk P s3dT
k HðxkÞdk ð30Þ

holds simultaneously to (29) for some positive constant s , then the descent direction provides worse des-
3
cent information than the negative curvature direction. The procedure conducts a linesearch that consid-

ers only the direction of negative curvature, the descent pair is defined as ð�sk; �dkÞ ¼ ð0; dkÞ and it
computes the next iterate as

xkþ1 ¼ xk þ akdk:

Otherwise, if condition
gðxkÞTdk < s3dT
k HðxkÞdk ð31Þ
holds simultaneously to (29), then the direction of negative curvature also has significant descent infor-

mation. In this case, the algorithm could be implemented using only the negative curvature direction, but
this would require additional implementation changes. For the sake of simplicity, we have chosen to keep

the information in sk and conduct a search as in the first case, considering both directions, defining the
descent pair as ð�sk; �dkÞ ¼ ðsk; dkÞ and computing the new iterate from a curvilinear search as

xkþ1 ¼ xk þ a2
ksk þ akdk:

The following result establishes that the preceding rules to select the directions in the search satisfy condition

and, as a consequence, that the algorithm is globally convergent.
C3,

Lemma 2. Assume that in each iteration k, the iterates {xk} remain in the set Lðx0Þ, assumptions A1 and A2 hold

and we are able to compute a descent pair ðsk; dkÞ satisfying conditions (2) (4) and kdkk ¼ 1. Then, condition C3

holds for the descent pair ð�sk; �dkÞ defined as indicated in the preceding paragraphs.

Proof. Note that under assumptions A1 and A2 and the condition that the iterates remain in Lðx0Þ there
exists a constant c4 such that kgðxkÞk 6 c4 and from conditions (2) (4) we have
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gðxkÞTsk 6 0; kskk 6 c2kgðxkÞk; gðxkÞTdk 6 0; kdkk 6 c3: ð32Þ
As a

If

But
obta

From

C
minð

From

and

F

5. A

T

consequence, it is enough that we study condition (20).

If (27) holds, the desired result follows from �sk ¼ sk, �dk ¼ dk and conditions (2) and (4) implying

�sT
k gðxkÞ 6 �c1kgðxkÞk2 and �dT

k HðxkÞ�dk 6 hkHk ;
) minð�sT
k gðxkÞ=kgðxkÞk; �dT

k HðxkÞ�dkÞ 6 minð�c1kgðxkÞk; hkHk Þ:
(28) holds, then �sk ¼ sk and �dk ¼ 0, implying minð�sT

k gðxkÞ=kgðxkÞk; �dT
k HðxkÞ�dkÞ ¼ sT

k gðxkÞ=kgðxkÞk. From

(28), (32), (4) and s1 > 2,

sT
k gðxkÞ

6 s1 gðxkÞTdk þ
1

dT
k HðxkÞdk

� �
6 s1

1
dT

k HðxkÞdk 6 dT
k HðxkÞdk 6 hkHk : ð33Þ
kskk 2 2

(2) implies �kskkkgðxkÞk 6 sT
k gðxkÞ 6 �c1kgðxkÞk2 ) kskkP c1kgðxkÞk and using this bound in (33), we

in
sT
k gðxkÞ
kgðxkÞk

6 c1

sT
k gðxkÞ
kskk

6 c1hkHk :
this inequality and sT
k gðxkÞ 6 �c1kgðxkÞk2, we have that

T �T � T
minð�sk gðxkÞ=kgðxkÞk; dk HðxkÞdkÞ ¼ sk gðxkÞ=kgðxkÞk 6 minð�c1kgðxkÞk; c1hkHk Þ:
�
onsider now the case in which conditions (29) and (30) hold. Now we have �sk ¼ 0 and dk ¼ dk, implying

�sT
k gðxkÞ=kgðxkÞk; �dT

k HðxkÞ�dkÞ ¼ dT
k HðxkÞdk. From (29), (30) and (3) we have that
sT
k gðxkÞ
kgðxkÞk

P c2

sT
k gðxkÞ
kskk

P c2s2 gðxkÞTdk þ
1

2
dT

k HðxkÞdk

� �
P c2s2 s3 þ

1

2

� �
dT

k HðxkÞdk:
(2) we then have

T c1
d Hðx Þd 6 � kgðx Þk
k k k c2s2ðs3 þ 1
2
Þ k
using (4) and the preceding results we obtain

c1

 !

minð�sT

k gðxkÞ=kgðxkÞk; �dT
k HðxkÞ�dkÞ ¼ dT

k HðxkÞdk 6 min �
c2s2ðs3 þ 1

2
Þ kgðxkÞk; hkHk :
inally, if (29) and (31) hold, then using the same arguments as in the first case

�sT
k gðxkÞ 6 �c1kgðxkÞk2 and �dT

k HðxkÞ�dk 6 hkHk ) minð�sT
k gðxkÞ=kgðxkÞk; �dT

k HðxkÞ�dkÞ

6 minð�c1kgðxkÞk; hkHk Þ: �
dapted curvilinear search (ACS) algorithm
he implementation of the proposed algorithm involves several decisions concerning practical details; we

describe some of them in the following paragraphs.

• In those iterations where the negative curvature direction is used, it is computationally efficient to scale this
direction using the information from the Newton direction, see Moguerza and Prieto [19].

• The direction of negative curvature is computed from the modified Cholesky factorization. But in some
cases, even if the factorization detects the presence of negative curvature in the Hessian matrix, it is not
efficient to use it in the search. We consider a negative curvature direction dk to be useful if it holds that

dT
k HðxkÞdk 6 �edkHðxkÞk: ð34Þ

If this condition is not satisfied in a given iteration, then we set dk ¼ 0.
11



The termination condition for the algorithm has been derived from the optimality conditions for problem

(1). The procedure terminates whenever it holds that

kgðxkÞk 6 eð1þ kgðx0ÞkÞ: ð35Þ

T

6. N
he proposed algorithm follows the scheme presented below:
umerical results

Adapted curvilinear search (ACS) algorithm

Select an initial iterate x0

Let k ¼ 0
Repeat

Compute sk as an approximate solution for the system (7)
Compute, if it exists, a direction of negative curvature dk

Let dk ¼ 0 if (34) is not satisfied
Select the search model from condition (27)
Compute ak to satisfy condition C2
Update the variables according to the search model used:

If (27) holds, xkþ1 ¼ xk þ a2
ksk þ akdk

If (28) holds, xkþ1 ¼ xk þ a2
ksk

If (29) holds, xkþ1 ¼ xk þ akdk

Let k ¼ k þ 1
until convergence
We have conducted numerical experiments using the proposed ACS algorithm on a set of test problems.
Both the algorithm and the test problems have been implemented and executed using MATLAB 6.5 under
Linux.

The algorithm makes use of some parameters. In our implementation we have taken ed ¼ 10�8 in (34). For
the classifying condition (27), we have taken s1 ¼ 10 and s2 ¼ 0:05. Finally, in the termination condition (35)
we have taken e ¼ 10�5.

6.1. The test problems
We have selected the test problems from the collection CUTEr (Constrained and Unconstrained Testing
Environment, revisited) proposed by Gould et al. [15], and itself an expansion of the original CUTE collection
[5]. This set is considered to be a referent for the verification and comparison of nonlinear programming algo-
rithms as the one proposed in this paper. The problems used in the numerical experiments that we have con-
ducted have been chosen to satisfy the following criteria: they must be nonlinear unconstrained problems of
dimension between 1 and 500, and having continuous second derivatives available. Only one instance has been
included for those problems with selectable dimension. A total of 80 problems in CUTEr satisfy these
conditions.

6.2. Analysis of the results
Our main motivation for this work has been to analyze the practical impact of using second-order infor-
mation, as well as the study of efficient implementations of algorithms that make use of this information.
As a consequence, we have defined the computational experiments to compare the results obtained on the test
set using the proposed algorithm to those of three alternative procedures.

12



The first algorithm, MN, is based on a modified Newton method and does not use any second-order infor-

mation. The second algorithm, ALS, carries out an adapted linesearch similar to the one described in Gould
et al. [14], where in each iteration the best direction in the descent pair is selected from condition (26), and used
in a standard linesearch framework. The third algorithm, CS, is based on the proposal by Moré and Sorensen
[21]. Finally, a fourth algorithm, ACS, uses the adapted curvilinear search described in the preceding sections.
In all cases, the initial points used have been those specified as default ones in the CUTEr environment.

Among the 80 problems in the set, the modified Cholesky factorization detected the presence of significant
negative curvature in 46 instances. The comparative study centers on these 46 problems, as for the remaining
cases the four algorithms provide basically equivalent results. In nine out of the 46 problems (DECONVU,
DJTL, HEART6LS, HIMMELBF, HYDC20LS, MARATOSB, PFIT2LS, PFIT3LS and PFIT3LS) none
of the algorithms were able to reach convergence in less than 300 iterations, and these problems were removed
from the study.

Regarding the results obtained by the four algorithms on the 37 remaining problems, algorithms MN, ALS

and CS failed to solve problem SCOSINE while algorithms ALS and CS failed to solve problem SPARSINE.
The modified Newton method, MN, was unable to solve problem OSBORNEB, while the adapted search
algorithm ALS failed to solve problem HEART8LS and the curvilinear search algorithm CS was unable to
solve problem INDEF. All algorithms were stopped whenever the iteration count exceeded 300 and the num-
ber of function evaluations exceeded 2600. Problem BARD was the only one in which, though negative cur-
vature was detected using the modified Cholesky factorization, none of the methods made use of it. Also, the
adapted linesearch algorithm ALS detects negative curvature in one of the iterations for problem BOX3, but it
is not used there. It is interesting to note the small number of problems where the norm of the gradient is larger
than 10�8: one problem for MN, two for ALS, two for CS and three for ACS.

We study first the correlation between the number of curvilinear searches and the performance of the
algorithm. Fig. 1 displays in the x-axis the number of curvilinear searches used within each problem, while the
y-axis represents the average decrease in the number of iterations when using the ACS algorithm instead of the
MN algorithm for the preceding problems. In all cases, the average reduction is negative, that is, the algorithm
that uses negative curvature information is more efficient than the modified Newton algorithm. It is interest-
ing to note that an increase in the number of curvilinear searches conducted within the algorithm tends to be
associated with a larger reduction in the total number of iterations. For example, the average decrease in
the iteration count when the curvilinear search is used three or more times is always larger than 36. At least
for the test set used in this experiment, this result seems to imply that the benefits of using negative curva-
ture are not associated to a particular iteration, but rather have an impact in all occasions in which they
are used.
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Fig. 1. Correlation between number of curvilinear searches and performance of the algorithm.
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In the tables we have used the following labels:
• pnam: Problem name.
• dim: Dimension of the problem.
• iter: Iteration count.
• fgeval: Number of function and gradient evaluations.
• Average 1: Average numbers of iterations and function evaluations, excluding those problems where an

algorithm may have failed.
• Average 2: Average numbers of iterations and function evaluations, including those problems where an

algorithm may have failed.

From Table 1, the worst-case performance of the adapted curvilinear search algorithm ACS, when com-
pared with the modified Newton algorithm MN, corresponds to problem HATFLDE, where the number of

Table 1

Overall comparison of iteration and function evaluation counts

pnam dim iter fgeval

MN ALS CS ACS MN ALS CS ACS

ALLINITU 2 8 8 9 9 10 8 11 11
BARD 3 9 9 11 9 9 9 14 9
BEALE 2 9 10 9 9 63 42 88 88
BIGGS6 6 42 39 71 43 69 87 112 90
BOX3 3 8 8 8 8 8 8 8 8
BROWNAL 200 16 19 52 16 91 63 1365 152
BROYDN7D 100 34 27 29 23 248 232 364 285
BRYBND 100 11 11 12 11 16 16 17 15
DENSCHND 3 48 48 48 47 70 49 68 70
DENSCHNE 3 11 12 9 11 14 12 9 11
ENGVAL2 3 17 14 14 14 23 14 16 16
ERRINROS 50 29 35 35 34 70 15 114 109
EXPFIT 2 8 11 10 10 34 17 40 40
GROWTHLS 3 20 24 27 21 32 58 44 99
GULF 3 22 26 31 14 39 41 60 27
HAIRY 2 25 24 16 20 95 125 80 158
HATFLDD 3 22 23 23 22 38 28 30 32
HATFLDE 3 14 17 26 17 17 26 44 33
HEART8LS 8 241 212 197 664 818 761
HELIX 3 16 14 19 18 21 14 36 36
HIELOW 3 8 9 6 6 10 13 9 9
HIMMELBB 2 14 12 10 12 18 12 11 13
HUMPS 2 76 112 78 40 488 1010 1119 848
INDEF 100 244 3 6 246 3 10
KOWOSB 4 10 10 11 6 12 14 15 11
LOGHAIRY 2 96 84 66 68 720 300 797 557
OSBORNEA 5 18 22 20 14 25 137 30 19
OSBORNEB 11 32 16 19 104 39 54
PFIT1LS 3 189 82 159 138 267 98 222 195
SCOSINE 100 94 672
SINQUAD 500 17 25 9 9 27 30 19 19
SNAIL 2 104 103 106 106 215 185 247 247
SPARSINE 100 275 235 1924 2520
SPMSRTLS 28 139 36 24 22 327 184 134 114
STRATEC 10 17 15 16 17 24 18 23 24
VAREIGVL 100 32 53 18 18 36 57 18 20
YFITU 3 36 38 34 34 46 48 47 47

Average 1 35.16 30.63 31.75 26.53 99.44 92.81 162.84 106.63
Average 2 67.16 51.76 57.95 37.84 303.14 229.92 374.81 200.78
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iterations required for convergence is increased by 3 (17.65%), while the largest improvement corresponds to
problem INDEF with a decrease in the number of iterations of 238 (97.54%). The worst case for the ACS algo-

Table 2
Percentage of problems with best performance

MN ALS CS ACS

% best iter 27.03 29.73 32.43 59.46
% best feval 24.32 45.96 18.92 27.03

Table 3
Comparison between ACS and the rest of algorithms

ACS vs MN ACS vs ALS ACS vs CS

Best 21 24 21
Worst 8 7 6
Tied 8 6 10

Number of problems showing the best performance in terms of number of iterations.

Table 4
Comparison between ACS and the rest of algorithms

ACS vs MN ACS vs ALS ACS vs CS

Best 17 15 18
Worst 16 20 9
Tied 4 2 10

Number of problems showing the best performance in terms of function evaluations.
rithm when compared to ALS implies an increase of three iterations (50%) in problem INDEF, while the larg-
est improvement corresponds to a decrease of 206 iterations (68.67%) in problem SCOSINE. Regarding the
curvilinear search algorithm CS, the worst performances for ACS correspond to problems HAIRY and
HIMMELBB, where iteration counts are increased by 4 and 2 (20%) respectively, while the largest improve-
ment, 206 iterations (68.67%), corresponds to problem SCOSINE.

Table 1 also presents a summary of iteration and function evaluation counts for each one of the algorithms,
both including and excluding those problems were the algorithms may have failed. From these tables it is
interesting to note that the lowest average number of iterations corresponds to the proposed algorithm
ACS; the lower numbers of function evaluations for algorithms MN and ALS is explained by the complexity
of a search that uses two directions. This effect can be reduced by using a specialized quadratic search proce-
dure, see for example Gill et al. [12]. Nevertheless, the number of function evaluations for ACS is lower than
the one for CS.

Similar conclusions can be reached from Table 2. This table provides the proportion of cases in which each
algorithm has been the most efficient one (including ties), both regarding iteration and function evaluation
counts.

Finally, Tables 3 and 4 show a comparison of the number of cases in which there was an improvement, a
worsening or no change regarding iteration counts and function evaluation counts, respectively, when com-
paring the proposed algorithm ACS to the other methods. In all cases, the number of improved cases associ-
ated to the ACS algorithm is significant.

7. Conclusions

We have described an efficient procedure that uses directions of negative curvature for the solution of
nonconvex unconstrained problems, selecting the most appropriate search to obtain local solutions for these
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problems. The algorithm is based on a modified Newton model to compute the search directions, and a new

proposal of a modified curvilinear search to combine these directions. Particular attention has been paid
regarding the conditions to impose on directions of negative curvature before they are considered as a part
of the search process.

The computational results illustrate the impact of an appropriate use of negative curvature information: in
more than 50% of the problems negative curvature information was used. Due to the low computational cost
to obtain these directions, it seems highly advisable to integrate them within algorithms for unconstrained
optimization. Furthermore, the results seem to show that using an adaptive search model increases the effi-
ciency of Newton based algorithms.

An important issue raised by the results in this work is to determine the impact of the quality of the negative
curvature direction on the computational efficiency of the overall algorithm, that is, if an improvement of the
directions based on iterative methods, for example, would yield even better computational results for the
algorithm.

Another interesting and promising task would be to verify the performance of the proposed approach
within numerical procedures based on the use of approximate directions such as conjugate gradient or
quasi-Newton methods.
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