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Abstract

We consider a semiparametric transformation model, in which the regression func-
tion has an additive nonparametric structure and the transformation of the response is
assumed to belong to some parametric family. We suppose that endogeneity is present
in the explanatory variables. Using a control function approach, we show that the pro-
posed model is identified under suitable assumptions, and propose a profile estimation
method for the transformation. The proposed estimator is shown to be asymptotically
normal under certain regularity conditions. A simulation study shows that the esti-
mator behaves well in practice. Finally, we give an empirical example using the U.K.
Family Expenditure Survey.
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Roman Pays 20, B 1348 Louvain-la-Neuve, Belgium. E-mail address: ingrid.vankeilegom@uclouvain.be.

This research was supported by the European Research Council under the European Community’s Seventh

Framework Programme (FP7/2007-2013) / ERC Grant agreement No. 203650 and 295298, by IAP research

network grant nr. P7/06 of the Belgian government (Belgian Science Policy) and by the contract “Projet

d’Actions de Recherche Concertées” (ARC) 11/16-039 of the “Communauté française de Belgique” (granted
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1 Introduction

In this paper we consider the problem of estimating a semiparametric transformation model,

when some explanatory variables in the model are endogenous. Endogeneity is an important

issue in statistics, which is however often ignored in practice. It arises naturally in observa-

tional studies, like e.g. in medicine, economics, social sciences, psychology, education, etc. It

occurs when some of the independent variables in the model are related to the error term.

The formal meaning of ‘being related to the error term’ depends on the model, like e.g.

it could mean that the conditional expectation of the error term is non-zero, or that the

error term and the independent variables are not independent. Endogeneity can happen e.g.

when relevant explanatory variables are omitted from the model, when certain variables are

measured with error, when confounding factors are present, or when simultaneous equations

are in place. On the other hand, covariates that are not related to the error term are called

exogenous. We refer to the textbooks by Hayashi (2000), Wooldridge (2008) and Imbens

and Rubin (2015) for excellent introductions into the problem of endogeneity and how to

cope with it in identification, estimation or testing problems.

We are interested in studying the issue of endogeneity in the context of semiparametric

transformation models of the following form :

Λθ(Y ) = ϕ(X,Z) + ϵ. (1.1)

Here, the response Y is one-dimensional, X takes values in Rdx , and Z in Rdz , with dx ≥ 1

and dz ≥ 0. The class {Λθ : θ ∈ Θ} is a parametric family of strictly increasing functions,

and the true regression function ϕ0(·, ·) has an additive structure given by

ϕ0(x, z) = c+
dx∑
α=1

ϕα
x0(xα) +

dz∑
α=1

ϕα
z0(zα), (1.2)

with E[ϕα
x0(Xα)] = 0 for α = 1, . . . , dx and E[ϕα

z0(Zα)] = 0 for α = 1, . . . , dz. We assume

moreover that X is endogenous, while Z represents a vector of exogenous random variables,

meaning that (X,Z) and ϵ are not independent. Our objective is to identify the structure

(Λθ(·), ϕ(·, ·), Fϵ(·) = Pr(ϵ ≤ ·)), to estimate θ and ϕ given a sample of observations and to

do inference on these estimators.

When endogeneity is present, ordinary regression techniques produce biased and incon-

sistent estimators. There exist several approaches to cope with this issue. The technique we

use in this paper is based on so-called ‘control variables’. A control variable is such that the

error term in the model is conditionally unrelated to the explanatory variables given this
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control variable, whereas without conditioning on this variable the explanatory variables (or

at least the endogenous ones) would be related to the error term. So, in a sense the control

variable re-establishes in a sense the desirable property that the covariates and the error

term are not related, which is crucial to do correct inference. The control function approach

has been detailed in several papers, see e.g. Newey, Powell and Vella (1999) or Imbens and

Newey (2009).

A legitimate question is how to find an appropriate control function in practice. As we

will see further in this paper, a control variable can be constructed once we have so-called

‘instrumental variables’ at our disposal. These are variables that are not part of the original

model, they are depending on the endogenous variables conditional on the other covariates,

and they are unrelated to the error term in the model (i.e. the instruments do not suffer from

the same problem as the original explanatory variables). In other words, the instrumental

variable does not have a direct effect on the response, other than through the endogenous

variables.

We illustrate the concept of instrumental variable by means of the following textbook

example : let X be the price of an agricultural good, and let Y be the demand for the

good. This is a case where endogeneity could be present, since the price of a good influences

the demand, and vice versa (so we have so-called ‘simultaneous equations’). A possible

instrument W in this case could be a certain measure of favorable growing conditions, since

it could be believed that W is related to X and does not influence Y in a direct way, other

than through X.

Many other examples can be found in the literature, see e.g. Angrist and Krueger (2001),

Johannes, Van Bellegem and Vanhems (2013) and Manzi, San Martin and Van Bellegem

(2014). Detecting sources of endogeneity and finding appropriate instrumental variables is a

difficult empirical problem. The aim of this paper is not to propose solutions to this problem.

Researchers doing applied work are in a much better position for answering this delicate

question. Instead, our goal is to study the interesting statistical challenges encountered

when endogeneity arises in the semiparametric transformation model defined in (1.1) with a

given instrumental variable W .

Transformation models lie at the heart of many problems in statistics, since they aid

interpretability, they lead to approximately additive regression functions, they stabilize the

variance of the error, and they help to obtain errors that are approximately normal. A

seminal paper in the literature on transformations is the one by Box and Cox (1964), who

proposed a parametric family of power transformations that includes as special cases the

logarithm and the identity. Other transformations have been proposed in the literature, like
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for example, the Zellner and Revankar (1969) transform and the Bickel and Doksum (1981)

transform. See also the book by Carroll and Ruppert (1988) and the review paper by Sakia

(1992) for more details and references on this topic.

Various papers have studied transformation models under different sets of assumptions.

In a fully exogenous setting, some papers have considered nonparametric forms for Λ and

ϕ, like Horowitz (2001) or Jacho-Chavez, Lewbel and Linton (2010). Other papers have

analyzed semiparametric transformation models by either assuming a parametric form for ϕ,

like in Horowitz (1996) or Moon (2013), or a parametric form for Λ, as in Linton, Sperlich and

Van Keilegom (2008). The latter model has also been studied by Colling, Heuchenne, Samb

and Van Keilegom (2015) and Heuchenne, Samb and Van Keilegom (2014), who studied

nonparametric estimators of the density and of the distribution function of the error term,

and by Colling and Van Keilegom (2014) and Neumeyer, Noh and Van Keilegom (2014),

who developed tests under this model. Our work extends the latter model by considering a

vector X of endogenous variables, and we focus on the problem of estimating the different

components of the model.

The issue of endogeneity has already been investigated in the setting of transformation

models. Chiappori, Komunjer and Kristensen (2010) consider a fully nonparametric setting

and, with a little stronger assumption of conditional independence between ϵ and one coor-

dinate of X, are able to identify the model and recover a parametric rate of convergence for

the estimated transformation operator. On the other hand, Florens and Sokullu (2012) and

Fève and Florens (2010) consider a semiparametric form for the function ϕ and identify and

estimate the model using an instrument W and by imposing very few technical assumptions

(like conditional mean independence) in the line of ill-posed inverse problems theory. In our

case, the parametric assumption concerns the operator Λ and we identify the model using a

control function approach.

We also note that there exists a limited literature on other semiparametric regression

models with endogenous variables. We refer to Chen and Pouzo (2009) for semiparametric

inference with nonsmooth residuals, Florens, Johannes and Van Bellegem (2012) for instru-

mental regression in partially linear models, and Birke, Van Bellegem and Van Keilegom

(2014) for instrumental regression in semiparametric single index models.

At last, one could also relate our work to the semiparametric analysis with generated

covariates developed in Mammen, Rothe and Schienle (2012) since the control function needs

to be estimated in a first step. However, we also need to take into account the estimation

of the density of the error term ϵ in the estimation process, and our estimation procedure is

therefore, from a structural point of view, quite different from theirs. We will detail more
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explicitly the differences with the existing literature further on in this paper.

The paper is organized as follows. Section 2 is devoted to the identification of the model.

In Section 3 we explain in detail our estimation procedure. Section 4 states the consistency

and asymptotic normality of the estimators of θ and ϕ. A finite sample study is presented in

Section 5, including some simulations and an application to real data, and we also propose a

bootstrap procedure to estimate the distribution of θ̂ in practice. Some general conclusions

are given in Section 6, and finally all the proofs are collected in the Appendix.

2 Identification

Consider model (1.1) with, as explained earlier, a vector of endogenous variables X and a

vector of exogenous variables Z. We use a control function approach to treat the endogeneity

and we assume that there exists a control variable V such that :

(A.1) (X,Z) and ϵ are independent conditional on V

(A.2) The support of V conditional on (X,Z) equals the support of V .

These assumptions are standard in the literature on nonseparable models (see Imbens and

Newey 2009) and will allow to identify the functions ϕ and Fϵ. The result we present below

allows to identify the fully nonparametric structure (Λ, ϕ, Fϵ), i.e. ϕ is not necessarily additive

but can take any functional form, and Λ can be any monotone transformation that does not

necessarily belong to a parametric family. Therefore, in this section, we omit the index θ for

the operator Λ and the functions ϕ and Fϵ.

To stick to a general setting, we suppose there exists an unknown function r and an

instrumental variable W such that V ≡ r(X,Z,W ) satisfies assumptions (A.1) and (A.2)

and r is identified. In Remark 2.2 below, we will give some classical examples of this function

r. Moreover, we assume that the random vector (X,Z,W, Y ) is absolutely continuous with

density fX,Z,W,Y , whose support is RX,Z,W,Y ⊂ Rdx+dz+dw+1.

We also need to identify Λ and based on Chiappori, Komunjer and Kristensen (2010) and

Linton, Sperlich and Van Keilegom (2008), we impose the following additional assumptions:

(A.3) Λ is a continuously differentiable and strictly increasing function defined on the support

RY of Y .

(A.4) For almost all (x, z) ∈ RX,Z (the support of (X,Z)), the density fϵ|X,Z(·|x, z) exists, is
strictly positive and continuously differentiable.
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(A.5) The derivative of ϕ with respect to x1 (the first coordinate of x) exists and the set

{(x, z) ∈ RX,Z : ∂
∂x1
ϕ(x, z) ̸= 0} has a nonempty interior.

(A.6) E(Λ(Y )) = 1, Λ(0) = 0, and E(ϵ) = 0.

Our result is based on the equality:

FY |X,Z,V (y|x, z, v) = Pr[Λ(Y ) ≤ Λ(y)|X = x, Z = z, V = v]

= Pr[ϵ ≤ Λ(y)− ϕ(X,Z)|X = x, Z = z, V = v]

= Pr[ϵ ≤ Λ(y)− ϕ(x, z)|V = v],

where the first equality comes from the monotonicity Assumption (A.3), and the third one

follows from Assumption (A.1). Then, following Imbens and Newey (2009) we have:∫
FY |X,Z,V (y|x, z, v)FV (dv) = Fϵ(Λ(y)− ϕ(x, z)). (2.1)

Proposition 2.1. Under Assumptions (A.1)− (A.6), the structure (Λ, ϕ, Fϵ) is identified.

The proof is given in the Appendix.

Remark 2.1. 1. Note that Chiappori, Komunjer and Kristensen (2010) suggest a slightly

different independence assumption, instead of (A.1): ϵ is independent of X1 conditional

on (X−1, Z, V ) (where X = (X1, X−1)). Although an equivalent identification result

could be derived with their set of assumptions, the estimation of the parameter θ would

become more tricky since the distribution of ϵ would remain conditional on (X−1, Z).

2. Note also that Proposition 2.1 only gives sufficient conditions to identify the structure

(Λ, ϕ, Fϵ). In particular, Assumption (A.2) could be weakened using a separability as-

sumption as proposed in Newey, Powell and Vella (1999). Indeed, once Λ is identified

using Assumptions (A.1), (A.3)− (A.6), we get:

E (Λ(Y )|X = x, Z = z, V = v) = ϕ(x, z) + λ(v),

where λ(v) = E [ϵ|V = v]. Then, using Theorem 2.2 in Newey, Powell and Vella (1999)

and the normalization assumption (A.6), we conclude that if there is no functional

relationship between (X,Z) and V , then ϕ is identified.

Remark 2.2. Note that different candidates can be proposed to characterize the control

variable V . In the line of Newey, Powell and Vella (1999), V can be defined as the error of

the following (separable) nonparametric model :

X = ψ(Z,W ) + V, (2.2)
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where W is a vector of instrumental variables taking values in Rdw such that (ϵ, V ) and

(Z,W ) are independent, in order to satisfy Assumption (A.1).

A second option would be to consider a nonseparable model and a single endogenous

variable X defined by:

X = ψ(Z,W, η), (2.3)

where ψ is strictly monotone in η. Then, V = FX|Z,W (X|Z,W ) = Fη(η) is a uniformly

distributed control variable under the following conditions: (i) (ϵ, η) and (Z,W ) are inde-

pendent, and (ii) η is a continuously distributed random variable with strictly increasing

distribution function on the support of η and ψ(Z,W, t) is strictly monotone in t with prob-

ability 1 (see Imbens and Newey 2009 for more details).

A natural extension of model (2.3) when X is multidimensional, consists in considering

the set of one-dimensional independent models:
X1 = ψ1(Z,W, η1)

...

Xdx = ψdx(Z,W, ηdx),

(2.4)

and η = (η1, ..., ηdx).

3 Estimation

Although a fully nonparametric approach is possible, we return now (and for the rest of

the paper) to model (1.1), which assumes that the transformation Λ is parametric and that

the true regression function ϕ0 has the additive structure given in (1.2). Hence, we assume

that Λ(·) ≡ Λθ(·), for some parametric family {Λθ(·) : θ ∈ Θ}, where we suppose that Θ is

compact. Indeed, considering a parametric transformation can lead to easier interpretation,

like for the family of power transformations proposed by Box and Cox (1964), and the Bickel

and Doksum (1981) class of transformations.

From equation (2.1) we obtain:∫
fY |X,Z,V (y|x, z, v)dFV (v) = fϵ(θ0) (Λ0(y)− ϕ0(x, z)) . Λ

′
0(y), (3.1)

where fϵ(θ0) and fY |X,Z,V are the probability density functions of ϵ and of Y given (X,Z, V ),

respectively, and where θ0 is the true value of θ and Λ0 ≡ Λθ0 .
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Consider now a randomly drawn i.i.d. sample (Xi, Zi,Wi, Yi), i = 1, ..., n from the random

vector (X,Z,W, Y ). Then, the criterion function is derived from equation (3.1) by:

n∑
i=1

{
log[fϵ(θ0) (Λ0(Yi)− ϕ0(Xi, Zi))] + log[Λ′

0(Yi)]
}
. (3.2)

This criterion function depends on the unknown functions fϵ(θ0), r and ϕ0. The idea

is now to estimate θ be replacing all unknown quantities in the above criterion function

by nonparametric estimators for a fixed value of θ, and to maximize the so-obtained ex-

pression with respect to the unknown parameter θ. In what follows, we denote H(θ, f, ϕ) =

E
{
log[f (Λθ(Y )− ϕ(X,Z))]+log[Λ′

θ(Y )]
}
and we let Hn(θ, f, ϕ) be its empirical counterpart.

Let us first of all consider the estimation of the function ϕ0. Consider, for θ ∈ Θ, the

functions

mθ(x, z, v) = E (Λθ(Y )|X = x, Z = z, V = v)

and

ϕadd
θ (x, z) := cθ +

dx∑
α=1

ϕα
xθ(xα) +

dz∑
α=1

ϕα
zθ(zα)

with ϕα
xθ(xα) = E(mθ(xα, X−α, Z, V )) − cθ, where X = (Xα, X−α), ϕα

zθ(zα) =

E(mθ(X, zα, Z−α, V ))− cθ, where Z = (Zα, Z−α), and cθ = E[Λθ(Y )]. Hence, for estimating

ϕadd
θ (x, z), we first need to estimate mθ(x, z, v).

Remark 3.1. Note that for ϕθ(x, z) := E[mθ(x, z, V )] we have in general that ϕadd
θ (x, z) ̸=

ϕθ(x, z) except if θ = θ0, since the additive structure of mθ(x, z, v) only holds for θ = θ0.

Denoting m0 ≡ mθ0 , we have that

m0(x, z, v) = ϕ0(x, z) + λ(v), (3.3)

where λ(v) = E [ϵ|V = v] using assumption (A.1). Note that, under Assumption (A.6) we

have:

E [λ(V )] = E [E (ϵ| V )] = Eϵ = 0.

We assume in what follows that we dispose of a nonparametric estimator of Vi =

r(Xi, Zi,Wi), denoted by V̂i = r̂(Xi, Zi,Wi) (i = 1, . . . , n). For instance, consider the non-

separable equation (2.3). A nonparametric estimator of Vi is then given by

V̂i = F̂X|Z,W (Xi|Zi,Wi)

=

∑n
j=1 1(Xj ≤ Xi)Kh(Zi − Zj)Kh(Wi −Wj)∑n

j=1Kh(Zi − Zj)Kh(Wi −Wj)
, (3.4)
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where K is a d-dimensional product kernel of the form K(u1, . . . , ud) =
∏d

j=1 k1(uj), with

d = dz or dw and k1 is a univariate kernel function. As usual, h is a bandwidth converging to

zero when n tends to infinity, k1h(·) = k1(·/h)/h and Kh(u1, . . . , ud) =
∏d

j=1 k1h(uj). Later

in the paper we will develop conditions on V̂i−Vi that are needed for the asymptotic theory.

We first estimate the function mθ(x, z, v) by using a nonparametric kernel estimator

based on (Xi, Zi, V̂i, Yi) (i = 1, . . . , n):

m̂θ(x, z, v) = Ê
[
Λθ(Y )|X = x, Z = z, V̂ = v

]
=

∑n
i=1 Λθ(Yi)Kh(x−Xi)Kh(z − Zi)Kh(v − V̂i)∑n

i=1Kh(x−Xi)Kh(z − Zi)Kh(v − V̂i)
.

For simplifying the presentation, we work with the same bandwidth for all variables.

In what follows, we use marginal integration techniques (see e.g. Linton and Nielsen

1995). Note that other methods could have been used like smooth backfitting techniques

(see Mammen, Linton and Nielsen 1999). We briefly comment on this in Section 4. Consider

ϕ̂α
xθ(xα) =

1

n

n∑
i=1

m̂θ(xα, X−αi, Zi, V̂i)− ĉθ (α = 1, . . . , dx)

ϕ̂α
zθ(zα) =

1

n

n∑
i=1

m̂θ(Xi, zα, Z−αi, V̂i)− ĉθ (α = 1, . . . , dz),

where ĉθ = n−1
∑n

i=1 Λθ(Yi). The nonparametric estimator of ϕadd
θ (x, z) is now given by:

ϕ̂add
θ (x, z) = ĉθ +

dx∑
α=1

ϕ̂α
xθ(xα) +

dz∑
α=1

ϕ̂α
zθ(zα). (3.5)

Using the estimator of ϕadd
θ (x, z) we can now estimate the error density fϵ(θ) of the variable

ϵ(θ) = Λθ(Y )− ϕadd
θ (X,Z) for a fixed value of θ:

f̂ϵ(θ)(e) =
1

n

n∑
i=1

k2g (e− ϵ̂i(θ)) , (3.6)

where ϵ̂i(θ) = Λθ(Yi)−ϕ̂add
θ (Xi, Zi), k2 is a univariate kernel, and g is a bandwidth parameter.

Finally, we are in position to estimate the transformation parameter θ, by plugging-in

the estimators of all unknown quantities in the criterion function given in (3.2):

θ̂ = argmax
θ∈Θ

Hn

(
θ, f̂ϵ(θ), ϕ̂

add
θ

)
(3.7)

= argmax
θ

n∑
i=1

{
log[f̂ϵ(θ)(Λθ(Yi)− ϕ̂add

θ (Xi, Zi))] + log[Λ′
θ(Yi)]

}
.
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Once θ is estimated we can estimate the unknown regression function ϕ0(x, y). This gives

ϕ̂add(x, z) = ϕ̂add
θ̂

(x, z)

for any x and z.

4 Large sample properties

In this section we present the consistency and the asymptotic normality of our estimators.

Our consistency result will be proved using the paper by Delsol and Van Keilegom (2014),

which considers general semi-parametricM -estimation problems when the criterion function

is not necessarily smooth and is allowed to have several local maxima. This framework

is appropriate in our context, since the criterion function defined in (3.7) depends in a

complicated way on θ, and so the existence of a unique (local) maximizer is not guaranteed.

The regularity conditions (C.1)–(C.10) under which the results below are valid, are given

in the Appendix.

Theorem 4.1. Assume (A.1)–(A.6) and (C.1)–(C.9). Then,

θ̂ − θ0
P→ 0.

Given that we now know that θ̂ is a consistent estimator of θ0, we can from now on

maximize the criterion function with respect to a shrinking neighborhood around θ0. In this

shrinking neighborhood the criterion function will have a unique local maximum (namely θ̂)

and hence we can from now on consider θ̂ as the solution of the derivative of the criterion

function H with respect to θ over this shrinking neighborhood, and prove the asymptotic

normality using the general framework considered in Chen, Linton and Van Keilegom (2003)

on semiparametric Z-estimation. (Note that Delsol and Van Keilegom (2014) also propose

some asymptotic distribution theory of their estimator, but in a much more general setting

since their criterion function may not be differentiable, which is not our case.)

We now denote Θ for a shrinking neighborhood of the finite dimensional parameter set

around θ0 (and we will implicitly consider the associated shrinking neighborhood for the

infinite dimensional parameter space). We define a non-random measurable vector-valued

function G by the derivative of the function H with respect to θ:

G(θ, γaddθ ) = E{M(θ, γaddθ , X, Z,W, Y )}.
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Here, γaddθ is a vector of nuisance parameters defined by

γaddθ = (ϕadd
θ , ϕ̇add

θ , fϵ(θ), f
′
ϵ(θ), ḟϵ(θ))

t,

where ϕ̇add
θ (respectively ḟϵ(θ)) denotes the vector of partial derivatives of ϕadd

θ (respectively

fϵ(θ)) with respect to the components of θ and f ′
ϵ(θ)(y) denotes the derivative of fϵ(θ)(y) with

respect to y, and the function M is defined as follows:

M(θ, γaddθ , X, Z,W, Y ) (4.1)

=
1

fϵ(θ)(ϵ(θ))

[
f ′
ϵ(θ)(ϵ(θ))

{
Λ̇θ(Y )− ϕ̇add

θ (X,Z)
}
+ ḟϵ(θ)(ϵ(θ))

]
+

Λ̇′
θ(Y )

Λ′
θ(Y )

.

Let Mn(θ, γ
add
θ ) = n−1

∑n
i=1M(θ, γaddθ , Xi, Zi,Wi, Yi). Then, Mn(θ, γ̂

add
θ ) is the derivative

(up to the multiplicative factor n−1) of the criterion function defined in equation (3.7) with

respect to θ, where γ̂addθ = (ϕ̂add
θ ,

˙̂
ϕadd
θ , f̂ϵ(θ), f̂

′
ϵ(θ),

˙̂
fϵ(θ))

t.

Remark 4.1. Note that, by construction, G(θ, γaddθ ) = 0 at θ = θ0 ∈ Θ where θ0 ∈ Θ and

γadd0 ≡ γaddθ0
are the true unknown finite and infinite dimensional parameters. Note also that

∥Mn(θ, γ̂
add
θ )∥ takes its minimum at θ̂, where ∥ · ∥ denotes the Euclidean norm.

We denote by Γ the matrix of partial derivatives of G(θ, γaddθ ) with respect to θ:

Γ = Ġ(θ, γaddθ )
∣∣∣
θ=θ0

(4.2)

We also need to introduce the matrix

Σ = Var
{
A(T )

}
, (4.3)

where

A(T ) = M(θ0, γ
add
0 , T ) +

dx+dz∑
α=1

Dα
1 (T ) +D2(T ), (4.4)

T = (X,Z,W, Y ), and the functions Dα
1 and D2 are given in (7.6) and (7.7) in the Appendix.

We are now ready to state the asymptotic normality result :

Theorem 4.2. Assume (A.1)–(A.6) and (C.1)–(C.10). Then,

n1/2(θ̂ − θ0)
d→ N(0,Ω),

where

Ω = Γ−1Σ(Γt)−1,

and where Γ and Σ are defined in (4.2) and (4.3).
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The following corollary is a by-product of the main result:

Corollary 4.1. Assume (A.1)–(A.6) and (C.1)–(C.10). Consider the notation S = (X,Z)

and ds = dx + dz. Then, for any s = (x, z) ∈ RX,Z,

(nh)1/2
(
ϕ̂add(s)− ϕ0(s)

)
d→ N(0, σ2(s)),

where

σ2(s) =

∫
k21(u)du

ds∑
α=1

fSα(sα) V ar
{[

Λ0(Y )−mθ0(S, V )
]
f−1
Sα|S−α,V

(sα|S−α, V )
∣∣∣Sα = sα

}
.

Let us comment on these asymptotic results:

1. It can be seen from the proof of Theorem 4.2 that the extra terms in the formula of

Σ come from the estimation of the nuisance functions ϕ0, ϕ
add
0 , fϵ(θ0), f

′
ϵ(θ0)

and ḟϵ(θ0).

Note that these terms would be equal to zero if (X,Z) and ϵ would be independent,

which is the case in the exogenous model considered by Linton, Sperlich and Van

Keilegom (2008). Another difference between the variance in the endogenous and the

exogenous case lies in the formula of ϕadd
θ (x, z) (denoted bymθ(x) in their paper). Even

for θ = θ0, the function ϕ0(x, z) is different in the two cases, namely in the exogenous

case it equals E[Λ0(Y )|X = x, Z = z], whereas in the endogenous case it is given by∫
E[Λ0(Y )|X = x, Z = z, V = v]dFV (v).

2. Note that the asymptotic distribution of ϕ̂add(x, z) in Corollary 4.1 is the same as that

of ϕ̂add
0 (x, z), i.e. the asymptotic distribution is as if the parameter θ0 were known.

3. Instead of using the marginal integration method to estimate ϕ0(x, z), we could as

well use other estimation procedures, like e.g. the smooth backfitting method (see e.g.

Mammen, Linton and Nielsen, 1999, and Mammen and Park, 2005). However, the

proofs are considerably more complicated in that case. For the smooth backfitting,

we expect that the asymptotic distribution of θ̂ will be the same as for the marginal

integration method, except that ϕadd
θ (x, z) is now given by the components depending

on x and z of the function madd
θ (x, z, v) defined as:

madd
θ (x, z, v) = argminm∈Madd

∫ [
mθ(x, z, v)−m(x, z, v)

]2
dFX,Z,V (x, z, v),

11



where

Madd =

{
m : m(x, z, v) =

dx∑
α=1

mxα(xα) +
dz∑
α=1

mzα(zα) +mv(v)

for some mx1 , . . . ,mxdx
,mz1 , . . . ,mzdz

,mv

}
.

Proving the asymptotic properties of this type of estimator is however not at all an

easy task. We therefore restrict attention in this paper to the marginal integration

estimator. The refinement of our method to smooth backfitting methods (or other

methods to estimate an additive regression function) is left as a topic of future research.

4. The asymptotic results of this section can be compared with some related papers.

First of all, the paper by Mammen, Rothe and Schienle (2012) considers also a general

class of semiparametric optimization estimators with infinite-dimensional nuisance pa-

rameters that include a conditional expectation function estimated nonparametrically

using generated covariates. In our model, the generated covariate V affects the func-

tion ϕadd
θ , its derivative with respect to θ, the residual density function fϵ(θ) as well

as its derivatives with respect to the principal argument and to θ. This structural

difference between both models has of course an impact, not only on the estimation

step, but also on the inference.

Second, our model extends the setup considered in Linton, Sperlich and Van Keilegom

(2008), which includes no endogenous variable X, and therefore no generated covariate

V . As it has just been stressed, the estimation of V appears in each step and thus

affects all the nuisance functions. In addition, the assumption of endogeneity implies

that (X,Z) and ϵ are not independent anymore, which complicates a lot the derivation

of the asymptotic variance in Theorem 3.2. This second main difference is stressed in

the first comment above, as well as in the proof where more lemmas are required to

derive the asymptotic normality (Lemmas 7.2 and 7.3).

Third, our framework is also very different from Imbens and Newey (2009) although

the identification proof is partly based on their arguments. From a structural point of

view, we need to identify two functions namely Λ and ϕ whereas they only consider the

identification of ϕ. Moreover, we consider a semiparametric model and our estimation

procedure includes the estimation of the parameter θ (whereas they consider a fully

nonparametric setting). As we have stressed above, the estimation of θ in an endoge-

nous setting complicates a lot the estimation step, since our model also requires the

12



estimation of the function ϕ and the density fϵ of the error, as well as the derivatives

of ϕ and fϵ.

5 Finite sample study

5.1 Simulations

We consider the following data generating process:

Λθ(Y ) = b0 + b1X + ϵ,

where Λθ is the Box-Cox transformation, that is Λθ(y) = yθ−1
θ

(θ ̸= 0), Λθ(y) = log(y)

(θ = 0), and ϵ is drawn from N(0, σ2
e). In this setting, we omit the exogenous variable Z.

The variable X is generated from the following generating process:

X = a0 + a1W + a2ϵ+ U,

whereW, ϵ and U are mutually independent,W is drawn from N(0, σ2
w) and U from N(0, σ2

u).

The regressor X is then correlated with the error term ϵ and the instrumental variable W is

correlated with X but not with ϵ in order to correct for this endogeneity issue. The control

function V is identified as the residual of the regression of X on W . We present here the

results for the case where b0 = 1, b1 = 0.25, a0 = 1, a1 = −0.5, a2 = 2, σw = 1, σe = 0.25 and

σu = 0.2.

The parameter θ0 is set equal to 1, 2 and 3 and is estimated using the package ”optimize”

in R. We use the gaussian kernel and fix the bandwidth parameters as follows: hX = hW =

0.1, hV = 0.04 and hϵ = 0.05. Note that optimizing the bandwidth parameters in order to

minimize the mean squared error should give better results but we believe this is beyond the

scope of this paper. The Monte Carlo study has been performed with mc = 500 replications

and a sample size n = 100. We provide each time the mean, the standard deviation and the

mean squared error (mse hereafter) of θ̂. We also provide the bias, the standard deviation

and mse for the nonparametric estimator ϕ̂(x) evaluated at the median value of X. Moreover

we also present the same results when the true value of V is used. The results are summarized

in Table 1 and show that the method works well for reasonable sample size, that is the bias

and variance are relatively small.

13



θ0 mean(θ̂) sd(θ̂) mse(θ̂) bias(ϕ̂) sd(ϕ̂) mse(ϕ̂)

1 0.94 (0.96) 0.69 (0.64) 0.48 (0.41) 0.09 (0.09) 0.44 (0.42) 0.20 (0.18)

2 1.91 (1.95) 0.76 (0.74) 0.58 (0.54) 0.06 (0.06) 0.36 (0.38) 0.14 (0.14)

3 2.89 (2.93) 0.81 (0.79) 0.66 (0.63) 0.05 (0.05) 0.33 (0.34) 0.11 (0.11)

Table 1: Simulation results for θ0 and ϕ0(x) evaluated at the median of X. The numbers

between parentheses correspond to the values computed using the true control function V .

5.2 Bootstrap

Note that although the asymptotic limit of n1/2(θ̂ − θ0) is explicitly defined and has a

simple normal distribution, it cannot be directly applied in practice, since the covariance

matrix contains a number of unknown quantities, namely the parameter vector θ0, the error

density fϵ(θ0), its derivative f
′
ϵ(θ0)

, the function ϕ0 and the derivatives of these functions with

respect to θ. Each of these functions can be estimated by a kernel estimator, by taking the

appropriate derivative of the kernel estimator of ϕ0 and of fϵ(θ0) given in (3.5) and (3.6). This

approach leads (under suitable conditions on the bandwidths) to a consistent estimator of

the asymptotic variance, by using similar results as in Lemma 7.1 (for ϕ0 and its derivatives)

and Lemma 7.2 (for fϵ(θ0) and its derivatives). However, we do not recommend to follow

this approach in practice since some of these unknown quantities are hard to estimate and

require the introduction of new smoothing parameters.

An alternative approach consists in approximating the variance, or even the whole dis-

tribution, of θ̂ by means of a bootstrap procedure. The use of bootstrap techniques in the

context of semiparametric inference has received a lot of attention in recent years. Chen,

Linton and Van Keilegom (2003) propose a naive bootstrap procedure and give primitive

conditions under which the bootstrap estimator converges to the same limit as the original

estimator. Our estimator, which is a two-step semiparametric Z-estimator whose nuisance

function depends on θ, is a special case of the general estimator considered in their setting. In

a closely related context of one-step semiparametric M -estimation whose nuisance function

is independent of θ, Cheng and Huang (2010), respectively Cheng (2015), proposed an ex-

changeable bootstrap scheme for approximating the distribution, respectively the moments,

of θ̂, whereas Cheng and Pillai (2012) proposed a model based bootstrap procedure. Finally,

instead of using a bootstrap procedure, one could also make use of Bayesian inference tech-

niques to approximate the distribution of a semiparametric estimator. We refer to Cheng
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and Kosorok (2008) for more details.

Let us now focus on how the naive bootstrap proposed in Chen, Linton and Van Kei-

legom (2003) can be applied in our setting. Let (X∗
i , Z

∗
i ,W

∗
i , Y

∗
i ), i = 1, . . . , n, be drawn

randomly with replacement from the original data (Xi, Zi,Wi, Yi), i = 1, . . . , n, and for any

θ let γ̂add,∗ = (ϕ̂add,∗
θ ,

˙̂
ϕadd,∗
θ , f̂ ∗

ϵ(θ), f̂
′∗
ϵ(θ),

˙̂
f ∗
ϵ(θ))

t be the same estimator as γ̂addθ but based on the

bootstrap data. For each (θ, γ), define

M∗
n(θ, γ) = n−1

n∑
i=1

M(θ, γ,X∗
i , Z

∗
i ,W

∗
i , Y

∗
i )

and define

θ̂∗ = argminθ∈Θ

∥∥∥M∗
n(θ, γ̂

add,∗
θ )

∥∥∥.
Theorem B in Chen, Linton and Van Keilegom (2003) shows that under certain regularity

conditions n1/2(θ̂∗ − θ̂) and n1/2(θ̂ − θ0) converge in distribution to the same normal limit.

More precisely, using similar techniques as in the proof of Theorem 4.2, we conjecture that

n1/2(θ̂∗ − θ̂) = −Γ−1n−1/2

n∑
i=1

[
A(X∗

i , Z
∗
i ,W

∗
i , Y

∗
i )− A(Xi, Zi,Wi, Yi)

]
+ oP ∗(1), (5.1)

where the function A(X,Z,W, Y ) is defined in (4.4) and where the oP ∗(1)-term goes to zero in

probability, conditionally on the original data (Xi, Zi,Wi, Yi), i = 1, . . . , n. From this claim

together with the central limit theorem and Theorem 4.2 the result would follow. However, a

detailed proof of (5.1) is beyond the scope of this paper, since it requires elaborate, lengthy

and sophisticated calculations which are too space consuming. Instead we will check the

validity of the proposed bootstrap procedure by means of a simulation study.

We continue to use the same model as in Subsection 5.1. For each sample of obser-

vations (Xi, Yi,Wi)i=1,...,n of size n = 100, we generate B = 100 bootstrapped samples

(X∗
i , Y

∗
i ,W

∗
i )i=1,...,n of the same size, drawn randomly with replacement from the original

data. Then, from these bootstrapped samples, B estimators (θ̂b,∗)b=1,...,B are computed as

well as the mean and the variance of these B bootstrapped estimators. We simulatemc = 100

initial samples (Xi, Yi,Wi)i=1,...,n in order to obtain a total of mc bootstrapped means and

bootstrapped variances. At last, we provide the histograms of these bootstrapped means

and bootstrapped variances for different values of θ0 (see Figures 1, 2 and 3). In order to

provide an empirical proof of the validity of our bootstrap procedure, we check that each

histogram is centered around the mean and the variance of the 100 estimated values of θ0.

This is indeed the case for each of the 6 figures which therefore suggests that the proposed

bootstrap procedure works well in practice.
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Figure 1: Histograms of bootstrapped means and variances for θ0 = 1. The corresponding

values for the original samples are Mean(θ̂) = 1.04 and V ar(θ̂) = 0.41.
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Figure 2: Histograms of bootstrapped means and variances for θ0 = 2. The corresponding

values for the original samples are Mean(θ̂) = 2.01 and V ar(θ̂) = 0.57.
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Figure 3: Histograms of bootstrapped means and variances for θ0 = 3. The corresponding

values for the original samples are Mean(θ̂) = 2.99 and V ar(θ̂) = 0.67.

5.3 Real data analysis

We conclude this finite sample study by considering the estimation of Engel curves based on

the UK Family Expenditure Survey as in Blundell, Chen and Kristensen (2007). The Engel
16



curve relationship describes the expansion path for commodity demands as the household’s

budget increases. The motivation for a control function approach derives from the endogene-

ity of the total budget variable. As total expenditure is endogenous for individual commodity

demands, we use gross earnings of the household head as an instrument (see Blundell, Chen

and Kristensen 2007 for a detailed discussion). In this application, we consider a single year

of study, 1995, and 3 broad categories of nondurables and services: (1) leisure goods and

services, (2) travel and (3) household goods and services. To preserve some demographic

homogeneity, we consider couples where the head of household is aged between 20 and 55

and at work and among them select a subset of couples with 3 children. We first present

some descriptive statistics for this subsample in Table 2.

Mean Sd.

Leisure goods 0.129 0.105

Travel 0.190 0.098

Household goods 0.114 0.085

log nondurable expenditure 5.810 0.637

log gross earnings 5.769 0.644

Sample size 294

Table 2: Data descriptives

The objective is to estimate the model defined in (1.1) where Y represents a budget share

(leisure, travel or household) andX the log of nondurable expenditure. There is no exogenous

variable Z in the application. The instrumental variableW used to identify and estimate the

model is the log of gross earnings. The operator Λθ is chosen as the Box-Cox transformation.

The control variable V is identified as the conditional distribution of X given W and the

bandwidth parameters are fixed as follows: hX = hW = 0.5, hV = 0.02 and hϵ = 0.3. The

same remark as in Subsection 5.1 applies, that is optimizing the bandwidth parameters in

order to minimize the mse should give better results but this is beyond the scope of this paper.

Figure 4 presents the estimated curves of ϕ0 for the three goods and the corresponding 95%

pointwise confidence bands obtained using the naive bootstrap described above and based

on 100 resamples. The results for the estimation of θ0 are presented in Table 3 with the

values of the mean and the standard deviation obtained by the same bootstrap procedure.

The results show small standard deviations and relatively small confidence intervals.
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Figure 4: Estimation of the function ϕ0 for the 3 budget shares together with the 95%

pointwise confidence intervals, based on 100 resamples.

θ̂ Mean(θ̂∗) Sd(θ̂∗)

Leisure goods 0.120 0.107 0.087

Travel 0.303 0.314 0.126

Household goods 0.001 0.003 0.012

Table 3: Estimation of θ0 for the 3 budget shares together with bootstrapped means and

standard deviations based on 100 resamples.

6 Conclusion

In this work we have studied a semiparametric transformation model with a parametric

transformation operator Λθ, a nonparametric regression function ϕ and some endogenous

explanatory variables. We use a control function approach to identify the nonparametric

structure (Λ, ϕ, Fϵ). A profiling method is proposed to estimate the parametric transforma-

tion, and by imposing an additive structure on the function ϕ, we showed the asymptotic

normality of the proposed estimator with
√
n rate of convergence. Some finite sample sim-

ulations confirm the validity of our method. Finally, we illustrated our method using data

from the UK Family Expenditure Survey.

7 Appendix : Proofs

In this Appendix we first prove in Subsection 7.1 the identification of the model stated in

Proposition 2.1. Next, in Subsection 7.2 we state the conditions under which the asymptotic
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results of Section 4 are valid. To prove these asymptotic results we need a number of lemmas,

which are proved in Subsection 7.3. Finally, Subsections 7.4 and 7.5 contain the proofs of

the consistency and asymptotic normality results, respectively.

7.1 Identification

Proof of Proposition 2.1. To prove identification of the structure (Λ, ϕ, Fϵ), we proceed

in two steps: we first establish identification of Λ and then prove that ϕ and Fϵ are identified.

1. Identification of Λ. This first step is inspired by the proof of Chiappori, Komunjer

and Kristensen (2010). Under the regularity assumptions (A.3) and (A.4), we can

differentiate equation (2.1) with respect to y and x1 (the first coordinate of x) to

obtain:

∂

∂y

∫
FY |X,Z,V (y|x, z, v)FV (dv) = fϵ(Λ(y)− ϕ(x, z)).Λ′(y)

∂

∂x1

∫
FY |X,Z,V (y|x, z, v)FV (dv) = −fϵ (Λ(y)− ϕ (x, z)) .

∂

∂x1
ϕ(x, z).

Let A = {(x, z) ∈ RX,Z : ∂
∂x1

∫
FY |X,Z,V (y|x, z, v)FV (dv) ̸= 0 for every y ∈ RY }. Under

Assumptions (A.4) and (A.5), the set A has a nonempty interior. Then, for any point

(x, z) ∈ A and for every y ∈ RY , we have:

− Λ′(y)
∂

∂x1
ϕ(x, z)

= s(y, x, z),

where s(y, x, z) =
∂
∂y

∫
FY |X,Z,V (y|x,z,v)FV (dv)

∂
∂x1

∫
FY |X,Z,V (y|x,z,v)FV (dv)

. Note that s(y, x, z) is non zero and keeps

a constant sign for all y ∈ RY . Integrating from 0 to y and under Assumption (A.6)

we get:

Λ(y) = − ∂

∂x1
ϕ(x, z).S(y, x, z),

where S(y, x, z) =
∫ y

0
s(t, x, z)dt. Again, S(y, x, z) is nonzero and keeps a constant

sign for all y ∈ RY . Hence, E[S(Y, x, z)] ̸= 0. Using again Assumption (A.6) we get:

∂

∂x1
ϕ(x, z) = − 1

E[S(Y, x, z)]
,

and finally we obtain that:

Λ(y) =
S(y, x, z)

E[S(Y, x, z)]
.

Hence, Λ is identified.
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2. Identification of ϕ and Fϵ. The identification of ϕ is a direct consequence of As-

sumptions (A.1) and (A.2) following Imbens and Newey (2009). Identification of Fϵ

eventually follows from equation (2.1). This finishes the proof. �

7.2 Assumptions

For any ℓ ≥ 1 we let ∂
∂eℓ

denote the derivative with respect to the ℓth argument of a vector

e, ∇e denotes the gradient with respect to the vector e, and ∇t
e is its transpose. At last,

we denote by ṁθ(x, z, v) the vector of partial derivatives of mθ(x, z, v) with respect to the

components of θ. The following regularity conditions are required for the asymptotic results:

(C.1) For j = 1, 2, kj is a symmetric kernel of order qj ≥ 4, i.e.
∫
umkj(u) du = 0 for

m = 1, . . . , qj − 1 and
∫
uqjkj(u) du ̸= 0. Moreover, kj has compact support and is

twice continuously differentiable, and q1 satisfies q1 > 2dz + dw + dx + dv + 1.

(C.2) nh4dz+2dw+2dx+2dv+2 → ∞, nh2q1 → 0, ng6(log g−1)−2 → ∞ and ng2q2 → 0, where q1

and q2 are defined in condition (C.1).

(C.3) The density fX,Z,V exists and is bounded away from zero and infinity. Moreover, fX,Z,V

is Lipschitz continuous and has a compact support RX,Z,V .

(C.4) mθ(x, z, v), ṁθ(x, z, v) and ∇vmθ(x, z, v) exist and are q1 times continuously differen-

tiable with respect to the components of x, z and v on RX,Z,V × Θ. In addition, all

derivatives up to order q1 are bounded, uniformly in (x, z, v, θ) in RX,Z,V ×Θ.

(C.5) fZ,W (z, w) and FX|Z,W (x|z, w) exist and are q1 times continuously differentiable with

respect to the components of z and w on RZ,W . In addition, all derivatives up to order

q1 are bounded, uniformly in (x, z, w) ∈ RX,Z,W , and fZ,W (z, w) is bounded away from

zero, uniformly in z and w.

(C.6) Λθ(y) is three times continuously differentiable with respect to y and θ, and there exists

a δ > 0 such that

E
[

sup
∥θ′−θ∥≤δ

∣∣∣ ∂k+l

∂yk∂θl11 ...∂θ
lp
p

Λθ′(Y )
∣∣∣] <∞

for all θ in Θ and for all k and l such that 0 ≤ k + l ≤ 3, where l = l1 + ... + lp and

θ = (θ1, ..., θp)
t. Moreover,

sup
θ∈Θ

E
∥∥∥Λ̇θ(Y )

∥∥∥2 <∞.
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(C.7) Fϵ(θ)(y) is three times continuously differentiable with respect to y and θ, and

sup
θ,y

∣∣∣ ∂k+l

∂yk∂θl11 ...∂θ
lp
p

Fϵ(θ)(y)
∣∣∣ <∞

for all k and l such that 0 ≤ k + l ≤ 2, where l = l1 + ...+ lp and θ = (θ1, ..., θp)
t.

(C.8) ∀ϵ > 0, ∃δ(ϵ) > 0 such that ∥ θ − θ0 ∥> ϵ implies

H(θ0, fϵ(θ0), ϕ0)−H(θ, fϵ(θ), ϕ
add
θ ) > δ(ϵ)

(C.9) The control function Vi and its estimate V̂i satisfy

V̂i − Vi =
(
n−1

n∑
k=1

Bik

)
(1 +Ri),

where (Bik)k=1,...,n have the same dimension as Vi and

Bik = Q(Xi, Xk, Zi,Wi)Kh(Zi − Zk)Kh(Wi −Wk)

for some bounded function Q,

max
1≤i,k≤n

∥∥∥E(Bik|Zk,Wk, Xi, Zi,Wi)
∥∥∥ = OP (h

q1),

and Ri is the residual term of dimension 1 such that max1≤i≤n |Ri| = oP (1).

(C.10) The matrix Γ is of full rank.

Remark 7.1. Conditions (C.1)–(C.7) are quite similar to the assumptions in Linton, Sper-

lich and Van Keilegom (2008). Condition (C.8) is needed to identify the true parameter θ0.

It is taken from the paper of Delsol and Van Keilegom (2014) on which our consistency proof

is based. Also note that, contrary to other papers in the literature, we explicitly show the

consistency of θ̂. At last, condition (C.9) gives high level conditions for the convergence of

the generated regressor V̂ to V , which is required to prove the consistency and the rate of

convergence of θ̂.

Let us check briefly that condition (C.9) is satisfied for the estimator V̂i defined in (3.4).

21



We have:

V̂i − Vi

=

∑n
k=1

[
1(Xk ≤ Xi)− FX|ZW (Xi|Zi,Wi)

]
Kh(Zi − Zk)Kh(Wi −Wk)∑n

k=1Kh(Zi − Zk)Kh(Wi −Wk)

=
n−1

∑n
k=1

[
1(Xk ≤ Xi)− FX|ZW (Xi|Zi,Wi)

]
Kh(Zi − Zk)Kh(Wi −Wk)

fZW (Zi,Wi)

+OP ((nh
dz+dw)−1) +O(h2q1)

:=
(
n−1

n∑
k=1

Bik

)
(1 + oP (1)).

It can be shown that E(Bik|Zk,Wk, Xi, Zi,Wi) = OP (h
q1) uniformly in i and k which proves

the result.

7.3 Some useful lemmas

We first start this subsection by presenting a few lemmas that will be useful to prove both

the consistency and the asymptotic normality result.

From now on, in order to simplify the notations, we consider S = (X,Z) and ds = dx+dz.

The following lemma gives an i.i.d. representation of the estimators ϕ̂add
θ (s) and

˙̂
ϕadd
θ (s),

uniformly in θ and s, and will be a key ingredient for obtaining the asymptotic limit of our

estimator θ̂.

Lemma 7.1. Assume (A.1)–(A.6) and (C.1)–(C.9). Then, using the abbreviated notation

S = (X,Z) and s = (x, z), we have

ϕ̂add
θ (s)− ϕadd

θ (s)

= n−1

n∑
i=1

(
ds∑
α=1

k1h(sα − Sαi)
[
Λθ(Yi)−mθ(Si, Vi)

]
f−1
Sα|S−α,V

(Sαi|S−αi, Vi)

+
dx∑
α=1

EX−α

[
∇t

v

{E(Λθ(Y )|S,W )−mθ(S, V )

fSα|S−αV (sα|S−α, V )

}
fSαZW |X−α(sα, Z,W |X−α)

×Q(X,Si,Wi)
∣∣∣Sα = sα, Z = Zi,W = Wi

]
+

ds∑
α=dx+1

EX

[
∇t

v

{E(Λθ(Y )|S,W )−mθ(S, V )

fSα|S−αV (sα|S−α, V )

}
fZW |X(Z,W |X)fSα|XZ−αW (sα|X,Z−α,W )

×Q(X, sα, S−αi,Wi)
∣∣∣Sα = sα, Z−α = Z−αi,W = Wi

]
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+
ds∑
α=1

EX

[
∇t

vmθ(sα, S−α, V )Q(X,Si,Wi)
∣∣∣Z = Zi,W = Wi

]
fZW (Zi,Wi)

+
[ ds∑

α=1

mθ(sα, S−αi, Vi)− (ds − 1)Λθ(Yi)− ϕadd
θ (s)

])
+oP (n

−1/2),

uniformly in s ∈ RX,Z and θ ∈ Θ. The i.i.d. representation for
˙̂
ϕadd
θ (s)− ϕ̇add

θ (s) is obtained

by replacing Λθ, mθ and ϕadd
θ in the above representation by respectively Λ̇θ, ṁθ and ϕ̇add

θ .

Proof of Lemma 7.1. We restrict attention to proving the first result of Lemma 7.1, since

the second one can be shown in a very similar way. We first decompose ϕ̂add
θ (s)− ϕadd

θ (s) as

follows:

ϕ̂add
θ (s)− ϕadd

θ (s)

=
1

n

n∑
i=1

[
ds∑
α=1

m̂θ(sα, S−αi, V̂i)− (ds − 1)Λθ(Yi)

]
− ϕadd

θ (s)

=
1

n

n∑
i=1

[
ds∑
α=1

mθ(sα, S−αi, Vi)− (ds − 1)Λθ(Yi)− ϕadd
θ (s)

]

+
ds∑
α=1

1

n

n∑
i=1

[
m̂θ(sα, S−αi, V̂i)−mθ(sα, S−αi, Vi)

]
= R1(s) +

ds∑
α=1

Rα
2 (s).

Then, using a Taylor expansion on Rα
2 (s), we have:

Rα
2 (s) =

1

n

n∑
i=1

(m̂θ −mθ) (sα, S−αi, V̂i) +
1

n

n∑
i=1

(
mθ(sα, S−αi, V̂i)−mθ(sα, S−αi, Vi)

)
=

1

n

n∑
i=1

(m̂θ −mθ) (sα, S−αi, Vi) +
1

n

n∑
i=1

∇t
vmθ(sα, S−αi, Vi)(V̂i − Vi)

+
1

n

n∑
i=1

∇t
v (m̂θ −mθ) (sα, S−αi, ξi)(V̂i − Vi)

+
1

2n

n∑
i=1

(V̂i − Vi)
t∇vvmθ(sα, S−αi, ξ

′

i)(V̂i − Vi)

= Rα
21(s) +Rα

22(s) +Rα
23(s) +Rα

24(s),

where ξi = λiVi+(1−λi)V̂i for some λi ∈ [0, 1], ξ
′
i = λ

′
iVi+(1−λ′

i)V̂i for λ
′
i ∈ [0, 1], (V̂i−Vi)t

is the transpose of the vector V̂i − Vi, ∇vmθ represents the gradient of mθ, i.e. the vector
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of partial derivatives of mθ with respect to the components of v, ∇t
vmθ its transpose, and

∇vvmθ is the Hessian matrix.

In what follows we concentrate on Rα
21(s) and R

α
22(s), since it is easily seen that Rα

23(s)

and Rα
24(s) are of lower order.

We start with Rα
21(s). Write

Rα
21(s) =

1

n

n∑
i=1

(m̂θ − m̃θ)(sα, S−αi, Vi) +
1

n

n∑
i=1

(m̃θ −mθ)(sα, S−αi, Vi)

= Rα
211(s) +Rα

212(s),

where

m̃θ(s, v) =

∑n
i=1 Λθ(Yi)Kh(s− Si)Kh(v − Vi)∑n

i=1Kh(s− Si)Kh(v − Vi)
,

i.e. with respect to m̂θ(s, v) we have replaced the V̂i’s by the true (but unknown) Vi’s. The

term Rα
212(s) can be worked out similarly as in e.g. Linton and Nielsen (1995), since this is

the ordinary marginal integration estimator. Hence, this term equals

n−1

n∑
i=1

[
Λθ(Yi)−mθ(Si, Vi)

]
k1h(sα − Sαi)f

−1
Sα|S−α,V

(Sαi|S−αi, Vi) + oP (n
−1/2).

Now consider

(m̂θ − m̃θ)(sα, S−αi, Vi) =

∑n
j=1 N̂ij∑n
j=1 D̂ij

−
∑n

j=1 Ñij∑n
j=1 D̃ij

,

where N̂ij = Λθ(Yj)k1h(sα−Sαj)Kh(S−αi−S−αj)Kh(Vi− V̂j), D̂ij = k1h(sα−Sαj)Kh(S−αi−
S−αj)Kh(Vi − V̂j), and similarly for Ñij and D̃ij. In analogy with these notations, we define

Ni = E(Λθ(Y )|sα, S−αi, Vi)fS,V (sα, S−αi, Vi) and Di = fS,V (sα, S−αi, Vi). In order to simplify

the notation, we have omitted the dependence on θ and sα, but of course it will be a crucial

point in the proof. Next, write

Rα
211(s) = n−1

n∑
i=1

n∑
j=1

(N̂ij − Ñij)
1∑n

j=1 D̂ij

+ n−1

n∑
i=1

n∑
j=1

Ñij

( 1∑n
j=1 D̂ij

− 1∑n
j=1 D̃ij

)
=
[
n−2

n∑
i=1

n∑
j=1

(N̂ij − Ñij)
1

Di

− n−2

n∑
i=1

n∑
j=1

(D̂ij − D̃ij)
Ni

D2
i

]
(1 + oP (1)),

where the oP (1) term is uniform in sα (from assumption (C.3)) and in θ. The latter equals[
n−2

n∑
i=1

D−1
i

n∑
j=1

{
∇t

vÑij −∇t
vD̃ij

Ni

Di

}
(Vj − V̂j)

]
(1 + oP (1))

= −
[
n−3

n∑
i=1

D−1
i

n∑
j=1

n∑
k=1

{
∇t

vÑij −∇t
vD̃ij

Ni

Di

}
Bjk

]
(1 + oP (1)), (7.1)
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where the oP (1) term is again uniform in sα and θ, and where ∇vÑij = Λθ(Yj)k1h(sα −
Sαj)Kh(S−αi−S−αj)h

−1∇vKh(Vi−Vj), ∇vD̃ij = k1h(sα−Sαj)Kh(S−αi−S−αj)h
−1∇vKh(Vi−

Vj), and

V̂j − Vj =
(
n−1

n∑
k=1

Bjk

)
(1 + oP (1)),

uniformly in 1 ≤ j ≤ n, by condition (C.9). Ignoring the factor (1 + oP (1)), (7.1) is a

V -process of order three depending on sα, θ and h, which can be rewritten as:

n−3

n∑
i=1

n∑
j=1

n∑
k=1

q(Ti, Tj, Tk, sα, θ, h)

where Ti = (Xi, Zi,Wi, Yi)
t and

q(Ti, Tj, Tk, sα, θ, h) = −D−1
i

{
∇t

vÑij −∇t
vD̃ij

Ni

Di

}
Bjk.

We denote p(Ti, Tj, Tk, sα, θ, h) = h2dz+dw+dx+dv+1q(Ti, Tj, Tk, sα, θ, h) and consider the fol-

lowing V -process:

Vn(sα, θ, h) = n−3

n∑
i=1

n∑
j=1

n∑
k=1

p(Ti, Tj, Tk, sα, θ, h).

Since a V -process can be written as a U -process plus negligible terms, following Sherman

(1994), we introduce the associated U -process Un(sα, θ, h) which can be decomposed as (see

equation (6) on page 449 in Sherman):

Un(sα, θ, h)

=
1

n(n− 1)(n− 2)

∑
i,j,k ̸=

p(Ti, Tj, Tk, sα, θ, h)

= n−1

n∑
i=1

E[p(Ti, T, T
′, sα, θ, h)|Ti] + n−1

n∑
j=1

E[p(T, Tj, T
′, sα, θ, h)|Tj]

+n−1

n∑
k=1

E[p(T, T ′, Tk, sα, θ, h)|Tk]− 2E[p(T, T ′, T ′′, sα, θ, h)] +Rn(sα, θ, h), (7.2)

where T, T ′, T ′′ are i.i.d. and have the same distribution as T1, ..., Tn. The last termRn(sα, θ, h)

is by construction the sum of two degenerate U -processes, one of order 2, denoted by

Rn2(sα, θ, h), and one of order 3, denoted by Rn3(sα, θ, h). In what follows, we concen-

trate on Rn2(sα, θ, h), which will be dominant. In order to control uniformly in sα, θ and
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h the term Rn2(sα, θ, h), we will apply Corollary 4 in Sherman (1994). Let us first intro-

duce some notations. We define the following functional class associated to the U -process

Un(sα, θ, h):

F = {(t, t′, t′′) → p(t, t′, t′′, sα, θ, h) : sα ∈ RSα , θ ∈ Θ, h > 0}.

In order to apply Corollary 4, we need to check that F is Euclidean (see Sherman 1994 or

Pakes and Pollard 1989 for a precise definition). Using conditions (C.5), (C.6) and (C.9), and

Lemma 2.14 and Example 2.10 in Pakes and Pollard (1989), it follows that F is Euclidean

and so is the class of functions associated to Rn2(sα, θ, h) (see Lemma 6 in Sherman 1994).

Then, using Corollary 4 in Sherman (1994), it follows that

sup
sα,θ,h

|Rn2(sα, θ, h)| = OP (n
−1)

and hence, using Assumption (C.2),

h−(2dz+dw+dx+dv+1)
n sup

sα,θ
|Rn2(sα, θ, hn)| = OP (n

−1h−(2dz+dw+dx+dv+1)
n )

= oP (n
−1/2),

where hn denotes (here) the smoothing parameter associated to the sample size n (in order

to make the distinction with the parameter h of the U -process). Let us now go back to the

first term on the right hand side of equation (7.2) evaluated at h = hn:

n−1

n∑
i=1

E[p(Ti, T, T
′, sα, θ, hn)|Ti] := n−1h2dz+dw+dx+dv+1

n

n∑
i=1

E[q(Ti, T, T
′, sα, θ, hn)|Ti].

By definition, we have:

n−1

n∑
i=1

E[q(Ti, Tj, Tk, sα, θ, hn)|Ti] = −n−1

n∑
i=1

D−1
i E

[{
∇t

vÑij −∇t
vD̃ij

Ni

Di

}
Bjk

∣∣∣Ti].
From condition (C.9) we know that ∥E(Bjk|Tj)∥ = OP (h

q1
n ) uniformly in j. Then, it easily

follows that

n−1

n∑
i=1

E[q(Ti, T, T
′, sα, θ, hn)|Ti] = OP (h

q1
n ) = oP (n

−1/2),

since nh2q1n → 0 and by using assumptions (C.3), (C.5) and (C.6). In reality the order is even

smaller than OP (h
q1
n ), but it is not necessary to do a more detailed order calculation, since

we reach already the required oP (n
−1/2)-rate based on this simple argument. In a similar
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way we can show the order of the second term on the right hand side of (7.2) (with p replaced

by q) :

n−1

n∑
j=1

E[q(T, Tj, T
′, sα, θ, hn)|Tj] = OP (h

q1
n ) = oP (n

−1/2).

For the third term more work is needed. It is easily seen that

E[q(T, Tj, Tk, sα, θ, hn)|Tj, Tk]

= ∇t
v

{Λθ(Yj)− E(Λθ(Y )|sα, S−αj, Vj)

fSα|S−αV (sα|S−αj, Vj)

}
k1h(sα − Sαj)Kh(Zj − Zk)Kh(Wj −Wk)

×Q(Xj, Xk, Zj,Wj) + oP (n
−1/2) (7.3)

uniformly in j, k, sα and θ. The calculation of the expected value of (7.3) with respect to Tj

depends on the value of α. In fact, when α = 1, . . . , dx, Sαj = Xαj and so the variables in the

product k1h(sα−Sαj)Kh(Zj −Zk) appearing in (7.3) are dz +1 different variables. However,

when α = dx + 1, . . . , ds, then we have only dz different variables, one of the components of

Zj appearing in fact twice. This has an impact on the expected value. For α = 1, . . . , dx, it

is easily shown that

n−1

n∑
k=1

E[q(T, T ′, Tk, sα, θ, hn)|Tk]

= EX−α

[
∇t

v

{E(Λθ(Y )|sα, S−α,W )− E(Λθ(Y )|sα, S−α, V )

fSα|S−αV (sα|S−α, V )
fSαZW |X−α(sα, Z,W |X−α)

}
×Q(sα, X−α, Sk,Wk)

∣∣∣Sα = sα, Z = Zk,W = Wk

]
+ oP (n

−1/2),

uniformly in sα and θ. The derivation for α = dx + 1, . . . , ds can be done in a similar man-

ner. Finally, it follows from the above calculations that E[q(T, T ′, T ′′, sα, θ, hn)] = o(n−1/2)

uniformly in sα and θ. This finishes the calculation of Rα
211(s), and hence of Rα

21(s).

Next, consider Rα
22(s). Using again Sherman (1994)’s result on degenerate U -processes,

we can prove in a very similar way as for Rα
21(s) that

Rα
22(s) = n−1

n∑
i=1

∇t
vmθ(sα, S−αi, Vi)(V̂i − Vi)

=
{
n−2

n∑
i=1

n∑
k=1

∇t
vmθ(sα, S−αi, Vi)Bik

}
(1 + oP (1))
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=
{
n−1

n∑
i=1

E
[
∇t

vmθ(sα, S−αi, Vi)Q(Xi, X, Zi,Wi)Kh(Zi − Z)Kh(Wi −W )
∣∣∣Ti]

+n−1

n∑
k=1

E
[
∇t

vmθ(sα, S−α, V )Q(X,Xk, Z,W )Kh(Z − Zk)Kh(W −Wk)
∣∣∣Tk]

−E
[
∇t

vmθ(sα, S−α1, V1)S12

]}
(1 + oP (1)) + oP (n

−1/2)

= n−1

n∑
k=1

E
[
∇t

vmθ(sα, S−α, V )Q(X,Sk,Wk)
∣∣∣Tk, Z = Zk,W = Wk

]
fZW (Zk,Wk)

+O(hq1n ) + oP (n
−1/2),

provided nh2q1n → 0. This finishes the proof. �

Next, write the result of Lemma 7.1 for θ = θ0 using the following abbreviated notations:

ϕ̂add
0 (s)− ϕadd

0 (s) = n−1

n∑
i=1

{ ds∑
α=1

k1h(sα − Sαi)v
α
1 (Ti) + v2(s, Ti)

}
+ oP (n

−1/2), (7.4)

and

˙̂
ϕadd
0 (s)− ϕ̇add

0 (s) = n−1

n∑
i=1

{ ds∑
α=1

k1h(sα − Sαi)w
α
1 (Ti) + w2(s, Ti)

}
+ oP (n

−1/2), (7.5)

uniformly in s ∈ RX,Z , where Si = (Xi, Zi) and Ti = (Si,Wi, Yi) for i = 1, . . . , n.

Lemma 7.2. Assume (A.1)–(A.6) and (C.1)–(C.9). Then,

f̂ϵ(θ0)(y)− fϵ(θ0)(y)

= n−1

n∑
i=1

{ ds∑
α=1

vα1 (Ti)
∂

∂y
fϵ(θ0),Sα(y, Sαi) + E

[
v2(S, Ti)f

′
ϵ(θ0)|S(y|S)

∣∣∣Ti]}
+n−1

n∑
i=1

k2g(y − ϵi(θ0))− fϵ(θ0)(y) +Rn1(y),

f̂ ′
ϵ(θ0)

(y)− f ′
ϵ(θ0)

(y)

= n−1

n∑
i=1

{ ds∑
α=1

vα1 (Ti)
∂2

∂y2
fϵ(θ0),Sα(y, Sαi) + E

[
v2(S, Ti)f

′′
ϵ(θ0)|S(y|S)

∣∣∣Ti]}
+(ng)−1

n∑
i=1

k′2g
(
y − ϵi(θ0)

)
− f ′

ϵ(θ0)
(y) +Rn2(y),
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˙̂
f ϵ(θ0)(y)− ḟϵ(θ0)(y)

= n−1

n∑
i=1

{ ds∑
α=1

vα1 (Ti)
∂

∂y
ḟϵ(θ0),Sα(y, Sαi) + E

[
v2(S, Ti)ḟ

′
ϵ(θ0)|S(y|S)

∣∣∣Ti]
+

ds∑
α=1

wα
1 (Ti)

∂

∂y
fϵ(θ0),Sα(y, Sαi) + E

[
w2(S, Ti)f

′
ϵ(θ0)|S(y|S)

∣∣∣Ti]}
+(ng)−1

n∑
i=1

k′2g
(
y − ϵi(θ0)

)(
Λ̇0(Yi)− ϕ̇add

0 (Si)
)
− ḟϵ(θ0)(y) +Rn3(y),

where supy |Rnj(y)| = oP (n
−1/2), j = 1, 2, 3.

The proof of Lemma 7.2 is similar to that of Lemmas A.1–A.3 in Linton, Sperlich and

Van Keilegom (2008), and is therefore omitted. The only difference is that here ϵ and (X,Z)

are not independent, which has an effect on the main term in the above representations.

For the next lemma, we say for any θ ∈ Θ that G(θ, γ) is pathwise differentiable at γ in

the direction [γ̄− γ] if the limit limτ→0

[
G
{
θ, γ + τ(γ̄− γ)

}
−G(θ, γ)

]
/τ exists. The limit is

in that case denoted by ∆(θ, γ)[γ̄−γ]. This limit places an important role in the calculation

of the asymptotic variance of θ̂.

Lemma 7.3. Assume (A.1)–(A.6) and (C.1)–(C.9). Then,

∆(θ0, γ
add
0 )[γ̂add0 − γadd0 ] = n−1

n∑
i=1

{ ds∑
α=1

Dα
1 (Ti) +D2(Ti)

}
+ oP (n

−1/2),

where for i = 1, . . . , n,

Dα
1 (Ti) = vα1 (Ti)E

[
− ∂

∂ϵ

( 1

fϵ(θ0)(y)
∇θ

[
fϵ(θ0)(ϵ(θ0))

] )
fSα|ϵ(θ0)(Sαi|ϵ(θ0))

− 1

f 2
ϵ(θ0)

(ϵ(θ0))

∂

∂ϵ
fϵ(θ0),Sα(ϵ(θ0), Sαi)∇θ

[
fϵ(θ0)(ϵ(θ0))

]
+

1

fϵ(θ0)(ϵ(θ0))
∇θ

[
∂

∂ϵ
fϵ(θ0),Sα(ϵ(θ0), Sαi)

] ∣∣∣Sαi

]
+wα

1 (Ti)E
[ ∂
∂ϵ
fSα|ϵ(θ0)(Sαi|ϵ(θ0))

∣∣∣Sαi

]
, (7.6)
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and

D2(Ti) = E
[ 1

fϵ(θ0)(ϵ(θ0))

{f ′
ϵ(θ0)

(ϵ(θ0))

fϵ(θ0)(ϵ(θ0))
∇θ

[
fϵ(θ0)(ϵ(θ0))

]
v2(S, Ti)

−
∇θ

[
fϵ(θ0)(ϵ(θ0))

]
fϵ(θ0)(ϵ(θ0))

E
(
f ′
ϵ(θ0)|S(ϵ(θ0)|S)v2(S, Ti)

∣∣∣ϵ(θ0), Ti)
−∇θ

[
f ′
ϵ(θ0)

(ϵ(θ0))
]
v2(S, Ti)

+∇θϵ(θ0)E
(
f ′′
ϵ(θ0)|S(ϵ(θ0)|S)v2(S, Ti)

∣∣∣ϵ(θ0), Ti)
+E
(
ḟ ′
ϵ(θ0)|S(ϵ(θ0)|S)v2(S, Ti)

∣∣∣ϵ(θ0), Ti)}∣∣∣Ti]
+E
[ 1

fϵ(θ0)(ϵ(θ0))

{
− f ′

ϵ(θ0)
(ϵ(θ0))w2(S, Ti)

+E
(
f ′
ϵ(θ0)|S(ϵ(θ0)|S)w2(S, Ti)

∣∣∣ϵ(θ0), Ti)}∣∣∣Ti], (7.7)

and where the functions vα1 , w
α
1 , v2 and w2 are defined in (7.4) and (7.5), ∇θ denotes

the gradient with respect to the vector θ, and ∂
∂ϵ

denotes the derivative with respect to the

argument ϵ.

Proof. Consider an arbitrary θ. Straightforward calculations show that

∆(θ, γaddθ )[γ̂addθ − γaddθ ]

= E
[{f ′

ϵ(θ)(ϵ(θ))

f 2
ϵ(θ)(ϵ(θ))

(ϕ̂add
θ − ϕadd

θ )(S)−
(f̂ϵ(θ) − fϵ(θ))(ϵ(θ))

f 2
ϵ(θ)(ϵ(θ))

}
×
{
f ′
ϵ(θ)(ϵ(θ))

[
Λ̇θ(Y )− ϕ̇add

θ (S)
]
+ ḟϵ(θ)(ϵ(θ))

}
+

1

fϵ(θ)(ϵ(θ))

{
− f ′′

ϵ(θ)(ϵ(θ))
[
Λ̇θ(Y )− ϕ̇add

θ (S)
]
(ϕ̂add

θ − ϕadd
θ )(S)

+(f̂ ′
ϵ(θ) − f ′

ϵ(θ))(ϵ(θ))
[
Λ̇θ(Y )− ϕ̇add

θ (S)
]

−f ′
ϵ(θ)(ϵ(θ))(

˙̂
ϕadd
θ − ϕ̇add

θ )(S)

+(
˙̂
f ϵ(θ) − ḟϵ(θ))(ϵ(θ))− ḟ ′

ϵ(θ)(ϵ(θ))(ϕ̂
add
θ − ϕadd

θ )(S)
}]
.

In order to calculate this expression for θ = θ0, we make use of the expansions given in

(7.4) and (7.5) and of Lemma 7.2. We will develop i.i.d. expansions for the terms involving

vα1 , v2, w
α
1 and w2.

We start with wα
1 . The terms that contribute to wα

1 are those involving
( ˙̂
ϕadd
0 − ϕ̇add

0

)
(S)

and
( ˙̂
f ϵ(θ0)−ḟϵ(θ0)

)
(ϵ(θ0)). More precisely, from the i.i.d. representations of these expressions,
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we get

n−1

n∑
i=1

ds∑
α=1

wα
1 (Ti)E

[
−
f ′
ϵ(θ0)

(ϵ(θ0))

fϵ(θ0)(ϵ(θ0))
k1h(Sα − Sαi) +

∂
∂ϵ
fϵ(θ0),Sα(ϵ(θ0), Sαi)

fϵ(θ0)(ϵ(θ0))

∣∣∣Sαi

]
= n−1

n∑
i=1

ds∑
α=1

wα
1 (Ti)E

[
−
f ′
ϵ(θ0)

(ϵ(θ0))

fϵ(θ0)(ϵ(θ0))
fSα|ϵ(θ0)(Sαi|ϵ(θ0)) +

∂
∂ϵ
fϵ(θ0),Sα(ϵ(θ0), Sαi)

fϵ(θ0)(ϵ(θ0))

∣∣∣Sαi

]
= n−1

n∑
i=1

ds∑
α=1

wα
1 (Ti)E

[ ∂
∂ϵ

(fϵ(θ0),Sα(ϵ(θ0), Sαi)

fϵ(θ0)(ϵ(θ0))

)∣∣∣Sαi

]
= n−1

n∑
i=1

ds∑
α=1

wα
1 (Ti)E

[ ∂
∂ϵ
fSα|ϵ(θ0)(Sαi|ϵ(θ0))

∣∣∣Sαi

]
. (7.8)

Note that the terms in this sum have mean zero, since E[wα
1 (T )|Sα] = 0.

We now consider the terms involving vα1 . Note that

∇θ

[
fϵ(θ)(ϵ(θ))

]
= f ′

ϵ(θ)(ϵ(θ))
[
Λ̇θ(Y )− ϕ̇add

θ (S)
]
+ ḟϵ(θ)(ϵ(θ))

and that

∇θ

[
fϵ(θ),Sα(ϵ(θ), Sα)

]
=

∂

∂ϵ
fϵ(θ),Sα(ϵ(θ), Sα)

[
Λ̇θ(Y )− ϕ̇add

θ (S)
]
+ ḟϵ(θ),Sα(ϵ(θ), Sα).

The terms that involve vα1 can hence be written as

n−1

n∑
i=1

ds∑
α=1

vα1 (Ti)E
[f ′

ϵ(θ0)
(ϵ(θ0))

f 2
ϵ(θ0)

(ϵ(θ0))
k1h(Sα − Sαi)∇θ

[
fϵ(θ0)(ϵ(θ0))

]
−

∂
∂ϵ
fϵ(θ0),Sα(ϵ(θ0), Sαi)

f 2
ϵ(θ0)

(ϵ(θ0))
∇θ

[
fϵ(θ0)(ϵ(θ0))

]
−

∇θ

[
f ′
ϵ(θ0)

(ϵ(θ0))
]

fϵ(θ0)(ϵ(θ0))
k1h(Sα − Sαi)

+
∂2

∂ϵ2
fϵ(θ0),Sα(ϵ(θ0), Sαi)

fϵ(θ0)(ϵ(θ0))
∇θ [ϵ(θ0)] +

∂
∂ϵ
ḟϵ(θ0),Sα(ϵ(θ0), Sαi)

fϵ(θ0)(ϵ(θ0))

∣∣∣Sαi

]
= n−1

n∑
i=1

ds∑
α=1

vα1 (Ti)E
[
− ∂

∂ϵ

(∇θ

[
fϵ(θ0)(ϵ(θ0))

]
fϵ(θ0)(ϵ(θ0))

)
fSα|ϵ(θ0)(Sαi|ϵ(θ0))

−
∂
∂ϵ
fϵ(θ0),Sα(ϵ(θ0), Sαi)

f 2
ϵ(θ0)

(ϵ(θ0))
∇θ

[
fϵ(θ0)(ϵ(θ0))

]
+

∇θ

[
∂
∂ϵ
fϵ(θ0),Sα(ϵ(θ0), Sαi)

]
fϵ(θ0)(ϵ(θ0))

∣∣∣Sαi

]
.(7.9)

Again, note that the above expression has mean zero since E[vα1 (T )|Sα] = 0.

We now turn to the calculation of the expressions involving w2, which are given by

n−1

n∑
i=1

E
[ 1

fϵ(θ0)(ϵ(θ0))

{
− f ′

ϵ(θ0)
(ϵ(θ0))w2(S, Ti)

+E
(
f ′
ϵ(θ0)|S(ϵ(θ0)|S)w2(S, Ti)

∣∣∣ϵ(θ0), Ti)}∣∣∣Ti]. (7.10)
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Finally, the terms involving v2 can be calculated in a similar manner. It now suffices to

combine this calculation with (7.8), (7.9) and (7.10) to get the required result. �

7.4 Consistency

Proof of Theorem 4.1. We prove the consistency of θ̂ by checking the conditions of

Theorem 1 in Delsol and Van Keilegom (2014) (DVK hereafter). In that paper, high level

conditions are developed for the consistency of the maximizer of a fairly general semipara-

metric maximization problem. In our setting,

θ̂ = argmax
θ∈Θ

Hn(θ, f̂ϵ(θ), ϕ̂
add
θ ),

and we need to check whether the functions Hn, f̂ϵ(θ) and ϕ̂
add
θ satisfy the conditions of the

above theorem. First of all, condition (A1) in DVK is satisfied by definition of the estimator

θ̂, and their condition (A2) is our condition (C.8). Next, define the class

H = M× C1
1(IR),

where M =
∑ds

α=1C
1
a(RSα) and C

b
a(R) (0 < a < ∞, 0 < b ≤ 1, R ⊂ IRk for some k) is the

set of all continuous functions f : R → IR for which

sup
y

|f(y)|+ sup
y,y′

|f(y)− f(y′)|
∥y − y′∥b

≤ a.

We equip the space M with the L2-norm ∥ · ∥L2 . For condition (A3) in DVK we need to

show that

P((ϕ̂add
θ , f̂ϵ(θ)) ∈ H ∀θ ∈ Θ) → 1 as n→ ∞,

and that supθ∈Θ ∥ϕ̂add
θ − ϕadd

θ ∥L2 = oP (1) and supθ∈Θ ∥f̂ϵ(θ) − fϵ(θ)∥L2 = oP (1). For ϕ̂add
θ , the

decomposition in Lemma 7.1 allows to uniformly bound ϕ̂add
θ −ϕadd

θ whereas for f̂ϵ(θ) this fol-

lows from Lemma 7.2 together with Corollary 2.7.4 in Van der Vaart and Wellner (1996). For

condition (A4), since H(θ, h1, h2) = E{log [h2(Λθ(Y )− h1(X,Z))] + log [Λ′
θ(Y )]}, it suffices

to show that supθ∈Θ,(h1,h2)∈H |Hn(θ, h1, h2)−H(θ, h1, h2)| = oP (1), i.e. we need to show that

the family F = {(x, z, y) → log [h2(Λθ(y)− h1(x, z))] + log [Λ′
θ(y)] : θ ∈ Θ, (h1, h2) ∈ H} is

Glivenko-Cantelli. This follows easily from Corollaries 2.7.2 and 2.7.4 in Van der Vaart and

Wellner (1996). At last, condition (A5) is a regularity condition on H which is automati-

cally satisfied since H is continuously differentiable of order 1. This finishes the proof of the

consistency. �
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7.5 Asymptotic normality

Proof of Theorem 4.2. In order to prove the asymptotic properties of our estimator, we

need to check the high level assumptions of Theorems 1 and 2 in Chen, Linton and Van

Keilegom (2003). Note that our setting is very different from Linton, Sperlich and Van

Keilegom (2008) due to the fact that S = (X,Z) and ϵ are not independent in our case and

that we also have a generated covariate V̂ to take into account. However the structure of

our proof is somewhat similar to the structure of the proof of their Theorem 4.1.

A crucial assumption of their Theorem 4.1 is assumption A.8 given in the Appendix of

their paper, which gives the properties that the estimator ϕ̂add
θ (s) (denoted by m̂θ(x) in their

paper) needs to satisfy. In addition, to check condition (2.6) of Theorem 2 in Chen, Linton

and Van Keilegom (2003), they use the results of 11 lemmas given in their Appendix A.2.

In our setting, using the conditions (C.1)−(C.9) which already include their assumptions

A.1.-A.7., everything boils down to checking an analogue of their assumption A.8. and an

analogue of their lemmas. Let’s start with the analogue of their assumption A.8, which in

our case corresponds to the following:

(i) The estimator ϕ̂add
0 can be written as

ϕ̂add
0 (s)− ϕadd

0 (s)

= n−1

n∑
i=1

ds∑
α=1

k1h(sα − Sαi)v01α(sα, Ti) + n−1

n∑
i=1

v02(s, Ti) + v̂0(s),

where Ti = (Xi, Zi,Wi, Yi)
t, sups |v̂0(s)| = oP (n

−1/2), E(v01α(sα, T )|Sα = sα) = 0 and

E(v02(s, T )) = 0. Moreover, a similar expansion holds for the estimator
˙̂
ϕadd
0 .

(ii) Consider the space M defined in the proof of the consistency, Theorem 4.1. Then,

P (ϕ̂add
θ ,

˙̂
ϕadd
θ ∈ M for all θ ∈ Θ) → 1 as n→ ∞.

(iii) The space M satisfies
∫ √

logN(λ,M, ∥ · ∥L2) dλ < ∞, where N(λ,M, ∥ · ∥L2) is the

covering number with respect to the norm ∥ · ∥L2 of the class M, i.e. the minimal

number of balls of ∥ · ∥L2-radius λ needed to cover M.

(iv) supθ∈Θ ∥ϕ̂add
θ − ϕadd

θ ∥L2 = oP (1), supθ∈Θ ∥ ˙̂
ϕadd
θ − ϕ̇add

θ ∥L2 = oP (1).

(v) Uniformly over all θ with ∥θ − θ0∥ = o(1), ∥ϕ̂add
θ − ϕadd

θ ∥L2 = oP (n
−1/4) and ∥ ˙̂

ϕadd
θ −

ϕ̇add
θ ∥L2 = oP (n

−1/4).
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(vi) For all θ with ∥θ − θ0∥ = o(1),

sup
s

∣∣∣( ˙̂ϕadd
θ − ϕ̇add

θ )(s)− (
˙̂
ϕadd
0 − ϕ̇add

0 )(s)
∣∣∣ = oP (1)∥θ − θ0∥+OP (n

−1/2).

First, for point (i), note that the i.i.d. representations for ϕ̂add
0 (s)−ϕadd

0 (s) and
˙̂
ϕadd
0 (s)−

ϕ̇add
0 (s) are given in Lemma 7.1.

Next, let us check that P (ϕ̂add
θ ,

˙̂
ϕadd
θ ∈ M for all θ ∈ Θ) → 1 as n → ∞. We have to

prove that ϕ̂add
θ and

˙̂
ϕadd
θ are uniformly bounded in s and θ as well as their first derivatives

with respect to the components of s. Using condition (C.2), the decomposition in Lemma

7.1 allows to uniformly bound ϕ̂add
θ − ϕadd

θ and
˙̂
ϕadd
θ − ϕ̇add

θ . As for the first derivatives of

these estimators, it suffices to show that they converge in probability to the true functions,

uniformly in s and θ. The proof for these derivatives is somewhat similar in structure to the

proof of Lemma 7.1, and we therefore restrict to explaining the main differences. In fact,

the proof is even much simpler than that of Lemma 7.1, since the remainder terms are only

required to be oP (1), instead of the much sharper bound oP (n
−1/2) that is required in the

aforementioned proof. In particular, contrary to the proof of Lemma 7.1, we do not need to

develop expansions of U -processes and we do not need to perform detailed order calculations.

Hence, the uniform boundedness of these derivatives follows, which shows point (ii) above.

For point (iii), note that the covering number N(λ,M, ∥ · ∥L2) satisfies logN(λ,M, ∥ ·
∥L2) ≤ Kλ−1 (see Corollary 2.7.2 in Van der Vaart and Wellner, 1996), and hence∫ ∞

0

√
logN(λ,M, ∥ · ∥L2) dλ <∞.

Next, using Lemma 7.1 it is easy to show that supθ∈Θ ∥ϕ̂add
θ −ϕadd

θ ∥L2 = OP ((nh
1/2)−1/2+

hq1) = oP (n
−1/4) (the uniformity in θ can be shown using standard arguments based on

partitioning the compact set Θ in small subsets, and the rate of the L2-distance can be

proved following e.g. the method of proof in Härdle and Mammen, 1993). In a similar way

we can show that supθ∈Θ ∥ ˙̂
ϕadd
θ − ϕ̇add

θ ∥L2 = oP (n
−1/4). This shows (iv) and (v).

Finally, for point (vi), note that (again using the second part of Lemma 7.1) it suffices

to control (for all i) ∥∥∥Λ̇θ(Yi)− ṁθ(Si, Vi)− Λ̇0(Yi) + ṁ0(Si, Vi)
∥∥∥,

and this is bounded by∥∥∥Λ̈0(Yi)− m̈0(Si, Vi)
∥∥∥∥θ − θ0∥(1 + oP (1)) = oP (1)∥θ − θ0∥,
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which is of the required order, and where Λ̈0 represents the Hessian matrix with respect to

θ0. This finishes the proof of results (i)-(vi).

The next step is to present the analogues of the 11 lemmas given in Linton, Sperlich and

Van Keilegom (2008). Their lemmas A.1-A-3, A.5 and A.9 concern results about the density

estimation of the error ϵ and its derivatives and correspond to our Lemma 7.2. Their lemmas

A.4, A.6-A.8, A.10-A.11 concern results about the functions M , Mn and their derivatives

and correspond to our Lemma 7.3.

Conditions (C.1)-(C.10), the results (i)-(vi) stated above and these last two lemmas allow

us to conclude. In particular, Lemma 7.3 is crucial for calculating the asymptotic variance of

θ̂, which is equal to the asymptotic variance of Γ−1{Mn(θ0, γ
add
0 )+∆(θ0, γ

add
0 )[γ̂0

add− γadd0 ]},
with ∆(θ0, γ

add
0 )[γ̂0

add−γadd0 ] defined in the paragraph above Lemma 7.3 (see condition (2.6)

in Theorem 2 in Chen, Linton and Van Keilegom 2003). The asymptotic normality of θ̂ then

follows. �

Proof of Corollary 4.1. Write

ϕ̂add(s)− ϕ0(s) =
[
ϕ̂add
θ̂

(s)− ϕ̂add
0 (s)

]
+
[
ϕ̂add
0 (s)− ϕadd

0 (s)
]
. (7.11)

The first term on the right hand side equals (
˙̂
ϕadd
θ (s)|θ=ξ)

t(θ̂ − θ0) for some ξ on the line

segment between θ̂ and θ0. From the proof of Theorem 4.2 it follows that

sup
θ∈Θ

∥ ˙̂
ϕadd
θ (s)∥ ≤ sup

θ∈Θ
∥ ˙̂
ϕadd
θ (s)− ϕ̇add

θ (s)∥+ sup
θ∈Θ

∥ϕ̇add
θ (s)∥ = OP (1),

and hence the first term of (7.11) is OP (n
−1/2) = oP ((nh)

−1/2) by Theorem 4.2. For the

second term of (7.11) we apply Lemma 7.1, which yields that

ϕ̂add
0 (s)− ϕadd

0 (s)

= n−1

n∑
i=1

ds∑
α=1

k1h(sα − Sαi)
[
Λ0(Yi)−m0(Si, Vi)

]
f−1
Sα|S−α,V

(Sαi|S−αi, Vi) + oP ((nh)
−1/2).

The result now follows from e.g. Lindeberg’s central limit theorem, together with standard

variance calculations. �
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