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SARA LÓPEZ-PINTADO∗

Departamento de Economı́a, Métodos Cuantitativos e Historia Económica,
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SUMMARY
Microarray experiments provide data on the expression levels of thousands of genes and, therefore, sta-
tistical methods applicable to the analysis of such high-dimensional data are needed. In this paper, we
propose robust nonparametric tools for the description and analysis of microarray data based on the con-
cept of functional depth, which measures the centrality of an observation within a sample. We show that
this concept can be easily adapted to high-dimensional observations and, in particular, to gene expres-
sion data. This allows the development of the following depth-based inference tools: (1) a scale curve for
measuring and visualizing the dispersion of a set of points, (2) a rank test for deciding if 2 groups of mul-
tidimensional observations come from the same population, and (3) supervised classificationtechniques
for assigning a new sample to one of G given groups. We apply these methods to microarray data, and to
simulated data including contaminated models, and show that they are robust, efficient, and competitive
with other procedures proposed in the literature, outperforming them in some situations.
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1. INTRODUCTION

DNA microarrays and oligonucleotide chips of high density are broadly used in modern biomedical re-
search and can serve as a guide for the diagnosis and treatment of some diseases. One of their most
interesting current applications is the characterization and classificationof different types of cancers. Tra-
ditionally, tumors have been classifiedaccording to their morphologic appearance, but since tumors with
similar histologic features often follow different clinical courses, a classificationbased on molecular anal-
ysis is more reliable and informative. Microarray analysis of cancer cells results in a better understanding
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of molecular variation between tumors, thus they provide a more reliable classification and facilitate the
development of more specific and efficient treatments (see Alonand others, 1999; Golub and others,
1999; Perou and others, 1999; Pollack and others, 1999; Ross and others, 2000; Singh and others, 2002;
Dopazo, 2006).

Microarray experiments have attracted wide interest. Apart from the biological insight that they pro-
vide, they suggest numerous statistical problems in different areas such as image analysis, missing data
imputation, clustering, discriminant analysis, design of experiments, and variable selection. Microarray
data present the expression levels of many genes (that we will consider as variables) with respect to a num-
ber of observations (samples) and therefore, they can be considered as high dimensional. Many classical
multivariate statistical procedures do not behave well when the dimension of the data is very high with
respect to the sample size. In addition, for this type of data, it is very useful to introduce robust statistical
techniques since outliers are difficult to detect and they can affect the analysis in many different ways.

In this paper, we propose robust depth-based statistical tools for the analysis of microarray data. The
idea of depth for multivariate data provides a way of measuring how representative or central an ob-
servation is within a sample. For a given sample or distribution P , a notion of depth assigns for every
observation x a real number D(x, P) satisfying that the closer a point is to the mass center the higher its
depth is. Based on a notion of depth, a sample of multivariate points can be ordered from center outward
and robust statistics such as the median or trimmed mean can be defined. Most of the notions of multivari-
ate depths introduced in the literature (see Tukey, 1975; Liu, 1990; Liu and others, 1999) are not tailored
to high-dimensional data and are intractable when the dimension is greater than 4. López-Pintado and
Romo (2007, 2009) proposed a nonparametric robust methodology for analyzing functional data based on
new notions of depth that can be easily adapted to high-dimensional data and are computationally feasible.
These new ideas can be used to define the most representative sample within a group of observations of
high dimension (e.g., the expression levels of a set of genes in a tumor type affecting a group of individ-
uals). In addition, a scale curve can be defined for this type of data providing a tool for measuring and
visualizing the dispersion of a sample of observations. We also propose a rank test for microarray data to
decide whether 2 groups of samples come from the same “population” (e.g., type of cancer). Finally, we
have adapted the depth-based classification techniques for functional data introduced in Ĺopez-Pintado
and Romo (2006) to high-dimensional data. To assess the performance of these techniques, we have ap-
plied them to real and simulated data. In particular, our results show that the classification procedures we
propose for gene expression data are often more robust than the ones frequently used in the literature (see
Dudoit and others, 2002).

2. REPRESENTATION OF THE DATA AND A DEPTH MEASURE

Let y1, . . . , yn be a sample of points inRd , where d is much larger than the size of the sample n (n << d).
Denote by y(k) the kth component of the vector y. A way of representing or visualizing high-dimensional
data is using parallel coordinates (see Inselberg, 1985; Wegman, 1990), where the d axes are now parallel
and equidistant, and the coordinates of a d-dimensional vector are represented as points on these axes
connected by straight lines, as shown in Figure 1, left panel. The ordering of the genes in the x-axis
is arbitrary, but all the concepts introduced in this paper are invariant under permutations of the genes
(see López-Pintado and Romo, 2009); therefore, the results are not affected by the arbitrary ordering. In
what follows, we will denote by yi (k) the level of expression of the kth gene (variable) in the i th sample
(observation).

Although, as stated before, several notions of depth for multivariate data have been proposed (see for
a review, Liu and others, 1999; Zuo and Ser̀ing, 2000), most of them are computationally intensive and
are not appropriate for high-dimensional data. More recently, alternative notions of depth for functional
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Fig. 1. Left panel: expression level of 10 genes, represented with numbers 1–10 in the x-axis, from 7 individuals.
Right panel: the depth index of the solid curve with respect to the dashed ones is 5/10 since the expression levels of 5
of the 10 genes are inside the band determined by the dashed curves.

data have been reported in the literature (see Fraiman and Muniz, 2001; Cuevas and others, 2006, 2007;
López-Pintado and Jörnsten, 2007; López-Pintado and Romo, 2009), which in general can be adapted to
high-dimensional data without a large computational burden. In this paper, we will focus on the finite-
dimensional version of the modified band depth (MBD) introduced in Ĺopez-Pintado and Romo (2009)
because it is easy to compute and particularly convenient for irregular curves. Nevertheless, all the sta-
tistical tools described here could be applied using any other feasible depth. Let f1, . . . , fn be a set of
continuous functions defined on the intervalI . The MBD of any f within the sample is as follows:

MBD( f ) =
(
n
2

)−1 1
λ(I )

∑

16i1<i26n
λ(A( f ; fi1 , fi2)), (2.1)

where
A( f ; fi1 , fi2) =

{
t ∈ I : min

r=i1,i2
fr (t) 6 f (t) 6 max

r=i1,i2
fr (t)

}
(2.2)

and λ is the Lebesgue measure in R.
The finite-dimensional version of this depth for ad-dimensional point y in the sample y1, . . . , yn , is

as follows:

MBDd(y) =
(
n
2

)−1 ∑

16i1<i26n
d−1 ×

d∑

k=1
I{min{yi1 (k),yi2 (k)}6y(k)6max{yi1 (k),yi2 (k)}}. (2.3)

The theoretical properties of this notion of depth are analyzed in López-Pintado and Romo (2009).
For microarray data, the depth of an observation y with respect to the sample y1, . . . , yn can be in-

terpreted as the mean, over all possible pairs of observations, of the proportion of coordinates (or genes)
whose expression is between the minimum and the maximum of the expressions of 2 observations from
the sample y1, . . . , yn .
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Figure 1, right panel, shows the way of calculating the depth MBDd of our illustrative example. The
depth index of the solid curve with respect to the 2 dashed curves is definedas the proportion of its
coordinates that are inside the band determined by the 2 dashed ones (in this case, 5 over 10). To obtain
the depth of the solid curve with respect to the sample, we would have to consider all the possible bands
determined by pairs of curves from the sample and calculate the mean of these indexes. It can be easily
shown that the computational cost of the MBD of n d-dimensional points is O(n2 ∙ d). For instance, the
average CPU time to compute MBDd in data sets of n = 25 points in dimension d = 250 was 0.084s and
in data sets of n = 50 points in dimension d = 500 was 1.258s, using a personal computer with an Intel
Core 2 processor, 2.40 GHz and 2.00 GB of RAM memory.

3. STATISTICAL TOOLS

The notion of depth provides an order in a high-dimensional data sample, and therefore, robust statistics,
such as the median or the trimmed mean, can be defined. Lety(1), . . . , y(n) be the ordered sample from
the deepest observation(s) to the most extreme one(s).

3.1 The scale curve

The notion of the scale curve introduced by Liu and others (1999) can be extended to functional data by
definingthe scale curve A(p) of a set of functions f1, . . . , fn in C(I ) as the area of the band delimited by
the bnpc most central curves, where bnpc is the largest integer smaller than np (see López-Pintado and
Romo, 2007). The scale curve measures the increase in the area of the band determined by the fraction p
most central curves, where p moves from 0 to 1. This notion can be easily adapted to high-dimensional
data if we represent each vector as a curve based on the parallel coordinates representation and use the
trapezoid formula to compute the area of the band.

The scale curve is an easy tool that helps visualize and compare the dispersion of different samples
of high-dimensional data. See section 4 in the supplementary material available at Biostatistics online for
intuitive examples showing its usefulness.

3.2 The rank test

One of the most important characteristics of the notion of depth is that it provides an extension of the idea
of rank in the real line to higher dimensions. Let P be a population from which a sample of n points is
drawn, and for a given data point xi , let R(Pn, xi ) be the proportion of observations from the sample with
depth smaller than or equal to the depth of xi . We can order the observations xi according to increasing
values of R, assigning them an integer rank from 1 to n. The higher the rank of an observation the deeper it
is within the sample. Liu and Singh (1993) generalized to multivariate data the univariate Wilcoxon rank
test through the order induced by a multivariate depth. López-Pintado and Romo (2009) extended this
rank test to functional data, and in this paper, we have adapted it to high-dimensional data, in particular,
to microarray data, using the modifiedband depth MBDd definedin Section 2.

This test can be summarized as follows. Let x1, . . . , xn be a sample of high-dimensional vectors from
population P1 and let y1, . . . , ym be a sample of vectors from population P2. Assume that there is a third
reference sample Z = {z1, z2, . . . , zn0} from 1 of the 2 populations, for example, P1, with n0 > n,m.
Let Pn0 be the corresponding empirical distribution. Order the values R(Pn0 , xi ) and R(Pn0 , yi ), from
smallest to highest, giving them a rank from 1 to n + m.
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The statistic used to test H0: P1 = P2 is as follows:

W =
m∑

j=1
ranks(R(Pn0 , y j )), (3.1)

whose distribution under H0 is that of the sum of m elements drawn without replacement from {1, 2, . . . ,
n+m}. We reject the null hypothesis (that both groups come from the same population) whenW is smaller
than the critical value.

3.3 Classification methods

In this section, we describe the methods that will be used to classify microarray data. The first 2 are based
on data depth (in particular, on MBDd ) and are derived from the classificationrules introduced for func-
tional data in López-Pintado and Romo (2006): the distance to the trimmed mean, DS, and the weighted
trimmed average distance, TAD. Both approaches are based on obtaining a “similarity” or “distance”
measure between the new observation to be classifiedand the most representative data points in each
group, given by the functional depth that naturally measures how representative an observation is in the
class it belongs to. These procedures are tested and, following the exhaustive study of Dudoit and others
(2002), are compared to the k nearest neighbors method (kNN) and the diagonal linear discriminant anal-
ysis (DLDA), classificationmethods commonly used in the literature that often provide the best results
(Romualdi and others, 2003; Wessels and others, 2005; Tárraga and others, 2008).

Distance to the trimmed mean, DS. Let x(1), . . . , x(n) be the observations in the sample ordered from
center outward using any notion of depth (i.e., starting with the deepest one(s) and ending with the shal-
lowest one(s)). The α-trimmed mean is definedas the average of the n − bnαc deepest points:

m̂α
n =

∑n−bnαc
∑

i=1 x(i)

(n − bnαc)
. (3.2)

The proposed method for the assignment of a new observation to one of G given groups of data,
A1, . . . , AG , consists of finding the distance from the new observation to the trimmed mean in each group
and classifying it in the group that minimizes such distance. This method is denoted as DS. For a particular
α, we denote it as DSα .

Weighted average distance, T AD. This second classificationmethod is based on the weighted average
distance of an observation x to a given group Ag , which we defineas the sum of the weighted distances
from x to each element in the group. The weights are computed using the depth of each observation
with respect to its own group. Thus, the deepest points have a larger iǹuence on the final distance. Let
Ag = {x1, . . . , xng } be a group from population Pg . The weighted average distance from x to Ag is defined
as follows:

AD(x, Ag) =

∑ng
i=1d(x, xi )D(xi , Pg)
∑ng

i=1D(xi , Pg)
, (3.3)

where ng is the size of group Ag and D is any depth notion. The observation x will be assigned to the
group Ak if AD(x, Ak) = min

g=1,...,G
{AD(x, Ag)}.

This index of cluster membership depends on the group size. This can be overcome taking into account
only of the m deepest points in each group, x(1), . . . , x(m), to compute the weighted average distance
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(where m 6 n1, n2, . . . , ng). This version of the procedure is denoted as TAD, standing for (weighted)
trimmed average distance:

TAD(x, Ag) =

∑m
i=1d(x, x(i))D(x(i), Pg)∑m

i=1D(x(i), Pg)
. (3.4)

The other 2 methods that we will apply to the data are kNN and DLDA.

k nearest neighbors, kN N. The method is based on computing the values of a distance function (e.g., the
Euclidean distance or one minus the correlation coefficient) for every pair of data points, which correspond
to the expression levels of different genes in different (e.g., tumoral) samples. The kNN rule, introduced
by Fix and Hodges (1951), classifies each element in the test set by finding thek nearest observations in
the training set and assigning the observation to the most frequent class among these k neighbors. The
value of k is selected by cross-validation.

Diagonal linear discriminant analysis, DLDA. This is a particular case of a maximum likelihood
discriminant rule, which assigns the observation x to the group where its likelihood is maximized. If
the conditional densities of the different groups are unknown but normal, they can be estimated using
the training set, where only the mean and the covariance matrix of each group have to be estimated. The
DLDA method assumes in addition that all the groups have the same diagonal covariance matrix, thus the
discriminant rule is easy to compute.

3.4 Simulation results

To validate the procedures presented above, we carried out an extensive simulation study by generating
data sets from different schemes. The main findings in this study can be summarized as follows. (1) In
data sets generated from distributions with the same or similar covariance structure, the scale curves are
indistinguishable, whereas when the groups come from distributions with different covariance structure,
the scale curves are distinct. (2) The rank test is able to detect differences between groups coming from
distinct populations. (3) We have tested the performance of the depth-based classification methods, also
considering contaminated models and show that they are competitive with other procedures frequently
used in the literature. See section 3 in the supplementary material available at Biostatistics online, for a
detailed description of the models, the simulation process, and the results obtained. The methods proposed
were implemented in R (code available in section 5 in the supplementary material available at Biostatistics
online). For the comparison of our classification techniques to kNN and DLDA, we used the code included
in the R packages “class” and “sma,” respectively.

4. APPLICATIONS

We have analyzed the following publicly available gene expression data sets.

4.1 Leukemia

This microarray data set (Golub and others, 1999) comes from a study of the expression levels of 6817
genes, using Affymetrix high-density oligonucleotides arrays, in 2 types of acute leukemia: lymphoblastic
(ALL) and myeloid (AML), and consists of 47 ALL samples, comprising 38 from B cells and 9 from T
cells, and 25 AML samples. The data were preprocessed and filtered following the 3-step procedure
described by Dudoit and others (2002): (1) genes with values less than 100 or larger than 16 000 are
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thresholded, (2) genes with max/min 6 5 or (max − min) 6 500 (where max and min refer to the
maximum and minimum expression levels of a given gene across the samples) are discarded, and (c)
the data are transformed taking the base 10 logarithm. In addition, to prevent a single experiment from
dominating in the analysis, we standardized each experiment to zero mean and unit variance across the
genes, as in Dettling and Bühlmann (2002). With these steps, the dimension of the data is reduced to 3571
genes. We analyzed this data set, first considering only 2 groups, corresponding to the 2 types of leukemia,
AML and ALL, and second, distinguishing the 3 groups, AML, B-ALL, and T-ALL.

In each case, we selected the 50 most representative genes, following the B/W criterion described in
Dudoit and others (2002). Figure 2(a) shows the scale curve for such genes, for individuals with AML
and for individuals with AML. The dispersion of the gene expression curves of individuals in the ALL
group is greater than that of individuals in the AML group. Figure 3(a) shows the 3 scale curves for the
corresponding 50 most representative genes when considering the 3 groups. Here, the B-ALL samples
show a greater variability than the AML samples, whereas both have a higher variability than the T-ALL
samples. This could be partially caused by the difference in class sizes.

We have also applied the rank test described in Section 3.2 to this data set. Since the number of
observations in the ALL group is bigger than the number of observations in the AML group, we have
considered the AML group and 22 randomly selected observations from the ALL group as the test sets,
and the remaining 25 observations from the ALL group as the reference set. The p value obtained is very
close to 0 (in the order of 10−13), so we reject the null hypothesis that both groups of curves come from
the same population.

For the 3-group study, we tested the hypothesis of having a common parent distribution. For every
possible pair of groups, we ran the rank test choosing test groups of sample size 9 and using the remaining
observations from the biggest group as the reference group. The null hypothesis in all the cases is rejected
with p values in the order of 10−5. Notice that this is not a multiple testing, and therefore, we only run
pairwise comparisons. As an exercise, we also tested the equality of the parent population of 2 samples,
randomly selected from the same group and obtained, as expected, nonsignificant results.

To estimate the classification error distribution, we used internal cross-validation so as to avoid an
overoptimistic estimation of the error rate (see Simon and others (2003)). We randomly chose 2/3 (or
9/10) of the sample as the training set and the remaining 1/3 (or 1/10) of the data as the test set. We
considered 200 simulations of the training and test sets, and in each iteration, the dimension was reduced

Fig. 2. (a) Scale curves for ALL samples (solid line), and AML samples (dashed line), showing that the ALL group
has a larger variability. (b) and (c): Distributions (boxplots) of the error rates for the leukemia data set, considering 2
groups and 2 cross-validation parameters (3-CV and 10-CV, respectively).
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Fig. 3. (a) Scale curves for the B-ALL samples (solid line), T-ALL samples (dotted line), and AML samples (dashed
line) showing the different variability of the classes. (b) and (c) Distributions of the error rates for the leukemia data
set, considering 3 groups and 2 cross-validation parameters (3-CV and 10-CV, respectively).

to d = 50 genes following the criterion B/W applied to the corresponding training set (Dudoit and others
(2002)). Finally, for each classificationmethod, the error rate in the test set was computed as the proportion
of wrongly classified elements.

The different classification methods that we used are the distance to the trimmed mean, considering
α = 0 (distance to the mean, DS0) and α = 0.2 (distance to the 0.2-trimmed mean, DS0.2), the weighted
trimmed average distance, TAD, the nearest neighbors, kNN, and the diagonal linear discriminant analysis,
DLDA. In all these methods, the depth and/or distance used are the MBDd depth and the Euclidean
distance.

We have described the error rate distribution using boxplots. The results for the 2-group case are
shown in Figures 2(b) and (c), where we denote as 3-CV the cases in which the sample is divided in thirds
and as 10-CV when it is divided in tenths. For this data set, all the methods have a good behavior, with
low error rates. The best methods are kNN and DLDA, followed by TAD, but with only slight differences
in the error rates.

For the 3-group case, the corresponding error rates are shown in Figures 3(b) and (c). Although all the
methods again perform similarly, the best one is TAD, followed by the 2 versions of DS, in contrast to the
previous results.

4.2 Prostate

The raw data (Singh and others, 2002) comprise the expression of 52 prostate tumors and 50 nontumor
prostate samples, obtained using the Affymetrix technology. Similarly to the leukemia data set, we pre-
processed the data by setting thresholds at 10 and 16 000 units, excluding genes whose expression varied
less than 5-fold relatively, or less than 500 units absolutely, between the sample, applying a base 10 loga-
rithmic transformation, and finally, standardizing each experiment to zero mean and unit variance across
the genes. This leads to a data set containing 102 samples and 6033 genes, divided into 2 classes, tumoral
(T ) and normal (N ), which we analyzed using the proposed techniques.

The scale curves for the 50 most representative genes, selected by the B/W criterion, show that the 2
classes have similar variability (see Figure 4(a)), but if we increase the dimension of the data set by
including more and more genes, the normal class variability becomes slightly larger than that of the T
class (see the supplementary material available at Biostatistics online, section 2.1).
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Fig. 4. (a) Scale curves for the tumoral samples (solid line), and normal samples (dashed line), from the prostate data
set. Both groups show a similar dispersion for the selected 50 most representative genes. (b) and (c): Distributions of
the error rates for the prostate data set and 2 cross-validation parameters (3-CV and 10-CV, respectively).

Considering random samples of size 25 from each group, and a reference set of 27 tumoral samples,
the rank test shows that both classes are significantly different, withp values in the order of 10−7.

Finally, we estimated the classification error distribution through internal cross-validation as in the
previous example, and the results are shown in the boxplots of Figures 4(b) and (c); in this case, the best
method is TAD, followed by the 2 variants of DS; DLDA has a poor performance, with large error rates;
kNN improves DLDA results, but it is clearly outperformed by the methods based on data depth.

These results illustrate the good performance of the proposed techniques in different data sets. We
have also tested them using the same data sets but increasing the dimension of the problem, that is,
selecting a larger number of genes. For a detailed analysis of higher dimensional data, see section 2 in the
supplementary material available at Biostatistics online.

5. CONCLUSIONS

We have presented several robust statistical tools based on the notion of data depth, which are applicable
to high-dimensional data, and in particular to microarray data. First, we propose a scale curve to describe,
visualize, and compare the dispersion within samples of high-dimensional points. Second, we introduce a
rank test to decide whether there is significant evidence that 2 samples come from 2 different populations
(e.g., genes from 2 types of tumor cells). Finally, we propose 2 classification methods that are tested and
compared with the most frequently used algorithms in the literature. We analyze simulated and real data to
illustrate the usefulness of the scale curve and the rank test. We also show that the proposed classification
methods are accurate and comparable to other procedures used in the classification of microarray gene
expression data. Nevertheless, for simulated models with outliers, our depth-based methods are robust
and competitive in comparison with other techniques, outperforming them in some cases.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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TÁRRAGA, J., MEDINA, I., CARBONELL, J., HUERTA-CEPAS, J., MÍNGUEZ, P., ALLOZA, E., AL-SHAHROUR, F.,
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