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Abstract In this work, we investigate PET imaging with 68Ga 

and 66Ga after proton irradiation on a natural zinc foil. The 

nuclides 68Ga and 66Ga are ideally suited for off line PET 

monitoring of proton radiotherapy due to their beta decay half

lives of 67.71(9) minutes and 9.49(3) hours, respectively, and 

suitable fl end point energy. The purpose of this work is to 

explore the feasibility of PET monitoring in hadrontherapy 

treatments, and to study how the amount of activity and the 

positron range affect the PET image reconstruction. Profiting 

from the low energy reaction threshold for production via (p,n) 

reactions, both 68Ga and 66Ga gallium isotopes have been 

produced by activation on a natural zinc target by a proton 

pencil beam. In this way, it is possible to create detailed patterns, 

such as the Derenzo inspired one employed here. The proton 

beam was produced by the 5 MV tandetron accelerator at 

CMAM in Madrid. The energy of this beam (up to 10 MeV) is 

similar to the residual energy of the protons used for therapy at 

the distal edge of their path. The activated target was imaged in 

an ARGUS small animal PETtCT scanner and reconstructed 

with a fully 3D iterative algorithm, with and without positron 

range corrections. 

I. INTRODUCTION 

External beam radiotherapy using protons has been used 
extensively for more than forty years. Protons show an 

increasing energy deposition with the penetration distance, 

giving rise to the maximum of the energy loss -the Bragg 
peak- close to the end of the range of the protons. This 
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physical feature causes an advantage of proton treatment over 

photon or electron irradiation since the region of maximum 

energy deposition can be well positioned within the target for 
each beam direction. This opens up the possibility of 

achieving a highly conformal high dose region, created by a 
spread-out Bragg peak (SOBP), and thus the potential of 

covering extended tumour volumes with high accuracy and 

low collateral damage to healthy tissue [1]. 
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Fig. I. Cross sections for production of IIC and 150 by protons impinging 
on stable carbon and oxygen isotopes (12C and 160) [3]. 

The most promising method for in vivo and non-invasive 
monitoring of proton radiotherapy is positron emission 
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tomography (PET) [2]. When suitable positron emitters, such 
as IIC and 150, are produced by nuclear interactions along the 

proton beam path, they can be imaged as a spatial imprint of 

dose deposition. The main complications of the method are the 
lack of activation in the few last millimeters of the penetration 

depth (see figure 1), which is due to the energy threshold of 
about 15 to 20 MeV for most proton induced nuclear 

reactions, as well as the poor spatial correlation between the �+ 

activity and the dose depth profiles. This hampers the 

extraction of appropriate information about the range and dose 
localization [1]. As seen in figure 1 the energy thresholds for 
the main (p, pn) reaction channels leading to the production of 
IIC and 150 are 16.6 MeV and 20.3 MeV [3]. 

However, other so-called metal �+ isotopes suitable for PET 

imaging can be produced at lower energies than IIC and 150 

via proton induced reactions on appropriate targets. If a given 
tumor-specific molecule is labeled with the target isotope for 
these reactions, the interesting �+ PET isotopes will be then 

produced in proton therapy by protons reaching the target 
volume with low energy. Some of these alternative PET 
nuclides are isotopes of Ga and Cu [4], [5]. In this experiment 
we would like to focus on the study of the gallium isotopes 
66Ga and 68Ga (see Table I) with half-lives of T 1/2  9.49(3) h 

and T1/2  67.71(9) min respectively [6]. In a real patient 

irradiation at high energies, the total production of IIC and 150 

isotopes would be much higher than what can be expected for 
the metal isotopes, but due to the reaction threshold it will 

occur at a different location. Moreover, since the half-life of 

these metal isotopes is larger than IIC (T1/2  20.334(24) min) 

and 150 (T1/2  2.037(3) min), the PET acquisition a few IIC 
half-lives after proton irradiation will only retain the activity 

coming from metal isotopes. 

TABLE I. MAIN PROPERTIES OF THE RADIONUCLIDES 68GA AND 66GA, ALONG 

WITH THE PET STANDARD 18F. DATA TAKEN FROM  

r 1+ 1+ 0+ 
TI/2 (min) 109.77(5) 67.71(9) 569(2) 

Stable daughter 180 68Zn 66Zn 

Annihilation branching 194% 178% 112% 
Q� (keY) [branching] 634 [97%] 822 [1.2%] 924 [4%] 

1899 [87.9%] 4153 [50%] 
Mean E� (keY) [branching] 250 [97%] 353 [1.2%] 397 [4%] 

836 [87.9%] 1905 [50%] 
Mean beta range (mm) 0.64 2.24 5.12 

In this experimental work, we use a low energy proton 

beam on a natural zinc target, as in Sattari et al [7]. We depict 

a Derenzo-inspired pattern on the target in order to evaluate 
the viability of producing phantoms for PET Imaging with 

Gallium isotopes. 

II. EXPERIMENT 

The Cockcroft-Walton 5 MV tandetron accelerator at CMAM 
provides a proton beam of up to 10 MeV [8]. As a 

compromise of sizable reaction cross-sections and reliable 
accelerator performance we used the CMAM proton beam at 
9.0 MeV and 10 nA. The activation was performed in the 

standard multipurpose beam line at CMAM (see figure 2), 
which includes an experimental chamber with a 4-axes 

programmable goniometer with enough precision and speed in 

its axial and radial degrees of freedom for our purpose. 

Fig. 2. The experimental chamber at the standard beam line at CMAM [8]. 

A high-purity (99.99%) zinc target (p=7.13 g/cm3) was 
used in this experiment, with natural abundances of 27.9% for 
66Zn and 18.8% for 68Zn. In a natural zinc target both gallium 

emitters of interest are produced with enough activity and 
adequate half-life to allow for an offline PET measurement. 

The different half-lives and Q-values of 66Ga and 68Ga allow 

exploring different activity ranges and positron range effects. 
Our aim was to activate a suitable target foil with a proton 
beam of this sort and activate a Derenzo-inspired pattern 

(figure 3). The irradiation time and intensity were adjusted in 
order to have the same activity per surface unit in each spot. 
The values are shown in Table II. 

TABLE II. IRRADIATION TIME AND INTENSITY ADJUSTED TO HAVE THE SAME 

e (deg) 

108 
180 
252 

ACTIVITY PER SURFACE UNIT IN EACH SPOT 

r (mm) Size Time (s) 
(mm) 

5,13 
2,8,14 

2,5,8,11,14 

3x3 
2x2 
I x I 

2 x 40 
3 x 36 
5 x 39 

I (nA) 

6.3 
3.1 

0.78 

Fig. 3. Derenzo inspired pattern activated with the low energy proton 
beam at CMAM. 
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An actlvlmeter was used to measure the actIvIty in the 

target after irradiation. The target with the Derenzo-inspired 

pattern was measured in the ARGUS small animal PETICT 

scanner [9] located at the Laboratorio de Imagen Medica at the 
Hospital General Universitario Gregorio Marafi6n, and the 

acquISItIOn was reconstructed with the 3D iterative 

reconstruction algorithm FIRST [10], with and without 
positron range correction [11]. After PET measurements, and 

in order to measure the activity of other isotopes produced 

(mainly 67Ga and isotopes produced by other reactions 
channels) high-resolution gamma spectrometry with HPGe 

detector was performed, see figure 4. 
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Fig. 4. Low energy region of the gamma spectrum obtained 8 days after 
irradiation with an HPGe detector. The full energy peaks corresponding to 
67Ga isotope are shown. 

III. COUNT RATE ESTIMATES FOR 68GA AND 66GA 

For the count rate estimates we calculate the radionuclides 

produced per unit time in a thick target by a beam of protons 
of energy E as: 

r=¢Y(E), (1) 

where cP is the proton flux (s I) for the selected beam current 
and Y(£) is the thick target yield. Given the almost linear 

dependence of the cross section with penetration depth (see 
figure 5), which takes into account the behavior of the energy 

loss, we can estimate the amount of radionuclides produced 
per unit time using: 

(2) 

where PA is the atomic density of natural Zn, fthe fraction of 

the isotope of interest in the target material, r is the 
penetration depth of the protons in the material for which the 

cross section is non-negligible, and & is the cross section for 

protons in Zn, as depicted in figure 6. 

IV. RESULTS 

A. Measured activity 
After 2.25 hours of the irradiation, we measured a total 

activity of 1. 77 /.Ci for 66,68Ga isotopes, which correspond to 

65.5 kBq of 511 keV photons (see Table III). This activity 

differs only by 5.6% from the activity estimated from the 

reaction cross-sections and the irradiation times, obtained 

using the expression (2) above. This difference is smaller than 
the precision of the activimeter. 
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Fig. 5. Cross sections (bam) for 68Ga and 66Ga and energy loss as a 

function of depth in the Zn target. The data points are plotted every I MeV 
starting at 9 MeV. 
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Fig. 6. Cross sections and projected range as a function of energy for the 
66Zn(p,nt6Ga and 68Zn(p,n)68Ga reactions. PET acquisitions and image 
reconstructions 

In order to study the activity evolution of the irradiated zinc 

foil, an acquisition with 27 frames (1200 seconds each) was 
acquired in the ARGUS small animal PETICT scanner. Each 

frame was reconstructed using the FIRST procedure, with 80 
updates of the image, without positron range correction, For 

each frame, the total number of counts was computed, 

obtaining the activity-time curve shown in figure 7. This curve 
was fitted to the following expression: 

Counts(t) ==  + Ao(l-  (3) 
TCa68 TCa66 

where Ao is the number of counts in the first frame, TGa68 and 
TGa66 are the mean life for 68Ga and 66Ga respectively and a is 
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the fitting parameter which gives the ratio of 68Ga in the first 
frame, 2.25 hours after irradiation. Using this fit 

TABLE III EXPECTED AND MEASURED ACTIVITIES FOR THE GA ISOTOPES 

Expected activity 

Isotope Initial activity Activity after 2.25 
(kBq) h (kBq) 

ooGa 18.4 15.2 
""Ga 215 54.0 

Measured activity after 2.25 h: 65.5 kBq total  and  

Using the proposed fit, the percentage of 80% of 68Ga 
activity and 20% of 66Ga activity 2.25 hours after irradiation is 

obtained, which compares well with the expected values of 

78% and 22%. 
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Fig. 7. Activity as a function of time obtained with the 27 frame 
acquisition fitted to the decay curve (3). 

Figure 8 shows the PET reconstruction of the Derenzo
inspired pattern irradiated in a zinc target, 2.25 hours after 

irradiation (first frame of the previous acquisition). The 

reconstruction was performed with the OSEM-3D code for the 
ARGUS scanner, without (left) and with positron range 

correction (right). The positron range correction was 
introduced into the reconstruction algorithm using the positron 

range profiles obtained from Monte Carlo simulations as an 

additional blurring applied to the object. This blurring can be 
adapted to the properties of the object in which the positrons 

are annihilated. The properties of the object were obtained 

from a CT image, using a simple segmentation in three 
different materials: zinc, water and air (see [11 D. 

v. CONCLUSIONS 

The proposed experiment has been tested as a valid method 
for producing phantoms for PET imaging with Gallium 

isotopes. Moreover, no other proton induced reaction 

channels, which were open during the irradiation, disturbed 

our purposes either due to the longer half-life or the absence of 

positron emission. We have checked that the production 

cross-sections for Gallium isotopes are in good agreement 
with the EXFOR [3] tabulated ones. The irradiation of natural 

zinc by protons, as employed in this work, has been proved as 
a powerful method of preparing high resolution, activity 

calibrated, gallium phantoms which can be employed to test 
positron range corrected reconstruction methods. 

• 
 

 

Fig. 8. PET reconstruction of the Derenzo inspired pattern irradiated in a 
zinc target, 2 hours after irradiation (first frame of the acquisition). Without 
range correction (left) and with range correction (right). 
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