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 Abstract– Conventional kinetic parameter estimation based on 
compartmental models requires an accurate estimation of 
arterial blood input function. To avoid invasive blood sampling, 
an image-derived input function can be obtained by manually 
defining a Region of Interest. Here we propose a new and simple, 
iterative method for automatic segmentation and input function 
calculation of PET cardiac studies using correlation as a distance 
metric between a priori information regarding the approximate 
shape of the final time-activity curve (TAC) and the actual TAC 
extracted from the image temporal series. 

I. INTRODUCTION 

UANTITATIVE kinetic analysis of dynamic cardiac PET 
data provides unique information that can enable 

improved discrimination between different states of the 
myocardium tissue. Conventional kinetic parameter estimation 
based on compartmental models requires an accurate 
estimation of arterial blood input function (IF). To avoid 
invasive blood sampling on those applications where it can be 
challenging, an image-derived IF (IDIF) can be obtained by 
manually defining a Region Of Interest (ROI) [1-4]. Manual 
segmentation of these images may have reliability and 
reproducibility problems and is also a time-consuming 
process; therefore, several automatic time activity-curve 
(TAC) extraction techniques have been developed; usually, 
image segmentation is a byproduct of this process. Factor 
analysis of dynamic structures (FADS) is currently the most 
used tool to perform automatic segmentations [5, 6], but its 
main problem, the non-uniqueness of the solution, implies 
spatial overlapping between the resulting factor images; this 
also means that a certain region TAC will spill into others. 
Several approaches have been tried to solve this [7, 8] by 
imposing additional restrictions on the values of the factors 
used. Several other approaches have been proposed in the 
literature involving covariance maps, clustering and 
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independent component analysis (ICA) [9-11]. However, they 
still suffer from spatial overlapping, have not been developed 
further or results for this particular application have not been 
published.  

In order for these tools to become clear candidates for 
clinical use, they should comply with at least two 
requirements: 1) they have to be easy to use, and 2) they 
should provide consistent and reliable results.  

Here we propose a new and simpler iterative method for 
automatic image-derived input function calculation of PET 
cardiac studies using a priori information with the main 
purpose of avoid spatial overlapping.  

II. MATERIAL AND METHODS 
Three swine cardiac 13NH3 dynamic PET studies were used in 
this preliminary study. 740 MBq of 13NH3 were injected in a 
bolus. Image matrix size was 128 x 128 x 47, and voxel size 
was 2.34 mm x 2.34 mm x 3.27 mm. The 25 frames dynamic 
sequence was acquired for a total of 900 seconds (18 x 5s, 2 x 
15s, 3 x 60s, 2 x 300 s). Three different ROIs were drawn by a 
specialist over one randomly chosen study in order to segment 
left ventricle, right ventricle and myocardium. From those 
three ROIs, three TACs, one for each region, were extracted. 
The right and left ventricle TACs were fitted to the following 
gamma function: 
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The myocardium curve was modelled after an exponential 
plus a constant factor that corrects for the late time plateau: 
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Exact values of K, α , and β  in (1) and (2) depend on the 
particular set of curves used to obtain the template, but the 
overall shape is always the same: the left ventricle TAC is 
similar to the right ventricle one, with a delayed maximum and 
a slower decay, whereas the myocardium reaches a smoothly 
ascendant plateau (Fig. 1). 
 After the initial template curves generation, the method 
iteratively seeks the TACs corresponding to the three regions 
using the templates as an initial estimation of the solution. 
Then, in every step of the iteration, correlation maps are 
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calculated. A correlation map is a static image with the same 
spatial dimensions as the volume being analyzed; the value for 
each voxel in the map is the correlation between the TAC in 
the original study and the template. Therefore, three 
correlation images are generated as a result. 
 

 
Fig. 1. Sample curves used to start the iterations. The left and right 

ventricle curves originate from (1) (K = 3.045e-6, α = 5.2, β = 6 for left 
ventricle; K = 1 15e-6, α = 6.8, β = 3 for right ventricle) and the myocardium 
curve originates from (2) (K = 0.956, α = 59.71, β = 3.85e-5). The amplitudes 
for each curve (controlled by constant K) have been set so that each maximum 
approaches 1. 
 

 There are three main operations on each iteration. The first 
one is carried out for every voxel in the dynamic volume and 
the last two involve the correlation images generated at the 
first step:  

 
1. The correlation between the measured TAC for each 
voxel and the three templates in the model is computed. The 
highest correlation value is assigned to the corresponding 
ROI correlation map if it is higher than a predefined 
threshold (currently, a correlation coefficient of ρ = 0.5 is 
used for the ventricle curves and ρ = 0.55 for the 
myocardium). This variable is a measurement of how much 
every curve can change its shape between iterations. At 
higher values, less amount of change is allowed. The other 
two correlation maps are set to zero for that voxel. 
2. A mask is computed from each ROI correlation map 
using a median filter (3x3 pixels) to eliminate impulsive 
noise followed by thresholding: those voxels lower than one 
third of the maximum value for that slice are set to zero. 
3. A new curve for each ROI is calculated by averaging the 
measured TACs of those voxels determined by the masks. 
 

After every step, if less than 5% of the voxels in the image 
have changed, the correlation threshold used in step 1 is 
incremented by a factor of 2%. This is done to eliminate noisy 
voxels.  

Convergence of this algorithm is studied by computing the 
sum of absolute differences between a TAC and the one 
obtained in the next iteration (Fig. 2). 

 9 iterations have been used in the tests presented in this 
work. The result consists of three correlation images (one for 

every template used) and three TACs extracted from the 
original image calculated as the average TAC obtained from 
those voxels in the 70th percentile for the correlation score 
and, from those, the ones in the 50th percentile for amplitude; 
this is done to ensure that noisy voxels and voxels are affected 
by spill-over from surrounding areas are not selected. 

Two versions of each study were used: the original one with 
no prior processing and a masked copy which includes the 
heart and eliminates the lungs almost completely. 

For comparison purposes, manual segmentation was 
performed on these studies by an experienced biologist. The 
TACs obtained this way and the ones obtained automatically 
were compared using the area under the curve: 
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The algorithm was developed in Java as a pixel-wise plug-in 

for the PMOD software (PMOD, Zürich, Switzerland). Tests 
were carried out in an Intel Core 2 Quad CPU Q6600 2.40 
GHz with 4 GB of RAM. 

III. RESULTS 
The process took a total of 28.9 ± 1.32 seconds (mean ± 

standard deviation) for the three original 13NH3 studies 
mentioned previously. For the masked version, 36.52 ± 0.75 
seconds were employed. 
  In Fig. 2 are displayed the results of the convergence 
tests for one of the studies. The TAC used for the left ventricle 
of that same study is shown on Fig. 3 for iterations 1, 2 and 3.  
 

 
Fig. 2. Differences between the TAC for each region in a given iteration 

and the one obtained in the next one. After the fourth iteration there is no 
appreciable difference in either region. 

 
The differences between the automatically obtained TACs and 
those obtained via manual segmentation can be found on 
Table I. The correlation between said curves are r > 0.89 for 
all cases and specifically r > 0.97 for the masked cases. 
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Fig. 3. Evolution of the left ventricle curve in one of the studies tested in 

this work. From iteration 3 onwards there is no appreciable change. The first 
curve corresponds to the original analytical curve used to start the iteration. Its 
maximum amplitude has been levelled to that of the second iteration to 
perform this comparison. Only the first 300 seconds are displayed. 
  

TABLE I.  ERROR RELATIVE TO MANUALLY EXTRACTED TACS (MEAN ± SD) 
 

Preprocessing Left ventricle Rigth 
ventricle 

Myocardium 

None 145.91%± 
50.18% 

19.54%± 
15.58% 

13.06%± 
10.31% 

Masked 21.82%±    
11.8% 

6.73%± 
2.89% 

9.59%± 
2.48% 

 
 The big differences obtained when the studies are not 
masked beforehand are mainly due to the presence of the 
lungs, which TAC is similar to the one from left ventricle (Fig. 
4). 
 

 
Fig. 4. Differences in extracted TACs for left ventricle in masked and 

unmasked studies, compared to actual TAC from left ventricle and lung. 

 
Fig. 5. Correlation images for one of the studies, masked (right) and not 

masked (left). From top to bottom, displayed regions are left ventricle, right 
ventricle and myocardium. On the left ventricle image for the masked region, 
residual lung tissue can still be found. 

 
The regions used for the extraction of each curve are 

displayed on the main visualization region inside PMOD for 
verification purposes. An example of said regions is displayed 
on Fig. 5. 

IV. DISCUSSION 
The proposed method was used to successfully extract the 

TACs from left and right ventricles and myocardium from 
several swine studies involving 13NH3 as a tracer. The 
calculation of the TACs and the corresponding correlation 
images took less than 1 minute in the test computer for nine 
iterations. The results of the convergence test suggest that four 
iterations could have been used to get approximately the same 
results. However, the use of a high number of iterations served 
to test the algorithm stability. 

Due to the way the algorithm is defined, there is no spatial 
overlapping between the correlation images used to extract the 
TACs from each region, as can be seen in the results (Fig. 5). 

When compared to results obtained by directly drawing a 
ROI over the image, there are bigger divergences in the 
unmasked studies. This is due to the presence of the lungs, 
whose TAC mixes with the one belonging to the left ventricle 
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(Fig. 4). When the studies are masked as in other previously 
published works [7, 12, 13] the error drops, specially in the 
right ventricle and myocardium TACs. Due to the masking not 
being optimum (Fig. 5), there is still a small influence from 
the lungs that causes the left ventricle curve to depart from 
what is expected. 

Masking is therefore obligatory if the TAC extraction is to 
be done without further post-processing. However, it would 
also be possible to perform the TAC extraction with no pre-
processing and then draw a ROI over the left ventricle in the 
corresponding correlation image. 

The spatial overlapping that represents the biggest 
shortcoming of factor analysis, as seen for example on [12], is 
not present at all in the results obtained with this technique; 
every compartment is strictly separated from each other. This 
represents an improvement over previous approaches that 
corrected ambiguous factor analysis solutions [7, 8]. 

Future work for further development of this techniques 
include modelling different ways of injection, such as 
continuous infusion, and more advanced tissue modelling to 
include later wash-out of the tracer. Also, this iterative 
correlation approach can be applied to implement blind 
segmentation techniques. 

V. CONCLUSION 
A new image-derived TAC extraction algorithm has been 

proposed. Our tests have shown the stability of the results and 
this method can be used to obtain consistently the image-
derived input function from both ventricles. Our 
implementation is integrated with a widespread research tool 
(PMOD), thus being very easy to use and evaluate.  
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