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Abstract

We consider dynamic competition among platforms in a market with network

externalities. A platform that dominated the market in the previous period be-

comes “focal” in the current period, in that agents play the equilibrium in which

they join the focal platform whenever such equilibrium exists. Yet when faced

with higher-quality competition, can a low-quality platform remain focal? In the

finite-horizon case, the unique equilibrium is efficient for “patient” platforms;

with an infinite time horizon, however, there are multiple equilibria where ei-

ther the low- or high-quality platform dominates. If qualities are stochastic,

the platform with a better average quality wins with a higher probability, even

when its realized quality is lower, and this probability increases as platforms

become more patient. Hence social welfare may decline as platforms become

more forward looking.

JEL Classification : L1

Keywords: network externalities, dynamic competition, coordination

1 Introduction

A traditional concern in markets with network externalities is that the “wrong” plat-

form may dominate due to consumers’ miscoordination. Our main research question

is whether markets can correct such inefficient outcomes in a dynamic competition

between far-sighted platforms, when consumers’ expectations concerning the domi-

nant platform depend on the history. We confirm this intuition for long finite horizon,

but identify two novel factors that may prevent efficient outcome when the horizon is

infinite.

Platform competition typically involves both network effects and repeated interac-

tion. We often observe that a platform that was dominant in the recent past has the

advantage of customers’ favorable expectations, meaning that customers expect that

this platform will also attract other customers in the current period. We shall refer to

such a platform as a focal platform. For example, Apple’s success with the iPhone 4

resulted in pre-orders for its iPhone 5 exceeding 2 million within a day of its launch in

September 2012 — even though there were not yet any applications that could take

advantage of the phone’s new features. Moreover, analysts predicted that 50 million

users would buy the new smartphone within three months of its launch.1 A similar dy-

namics was in evidence for the iPhone 6’s release, as sales topped 4 million in the first

1 Ryan Faughnder and Adam Satariano, “Apple iPhone 5 Pre-Orders Top 2 Million, Doubling
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24 hours.2 Analysts reported that this trend continued with the iPhone 7’s release.3

In contrast, neither Blackberry nor Windows phones enjoyed a comparable advantage

during this period. Even though the Blackberry phones — the Q10 and the Z10 —

received glowing reviews, the absence of positive expectations made it difficult for the

firm to gain substantial market share: application developers were skeptical about the

phone’s ability to attract users; sales were indeed sluggish, which was due in no small

part to the paucity of available apps.4 We can ascribe the developer’ skepticism and

the resulting lack of apps to the Blackberry platform’s recent history.

Yet even dominant platforms can lose market share, despite winning in the past,

when faced with a higher-quality competitor. In the market for smartphones, for

instance, Nokia dominated the early stage (along with RIM) with smartphones based

on a physical keyboard. Apple then revolutionized the industry by betting on its new

operating system, which featured touch-screen technology. A few years later, Samsung

managed to gain substantial market share (though not market dominance) by betting

on smartphones with large screens. The supplanting of industry leaders was likewise a

common theme in the market for video-game consoles. Nintendo, Sony, and Microsoft

alternated as the market leader (Hagiu and Halaburda 2009). Thus platforms are

sometimes able to overcome the market’s unfavorable expectations. These examples

raise the question of when is it profitable for a platform facing unfavorable position

to invest in capturing the market, and when it is profitable for a platform facing a

favorable position to invest in retaining the market, if each firm knows that its current

strategy may affect its future position.

If the impact on the future is ignored, then it may not be profitable for the nonfocal

platform to overcome unfavorable expectations even if it can offer higher quality than

the focal platform. The reason is that network effects provide the focal platform with

a short-term competitive advantage: in a one-time interaction, a focal platform can

use its position to dominate the market even when competing against a higher-quality

platform. Yet we can expect that, in the long run, if platforms are forward looking

then a high-quality but presently nonfocal platform can overcome its expectations

disadvantage because it can afford short-term losses in order to become focal in the

future. At the same time, a low-quality forward looking focal platform also has an

incentive to invest in maintaining its dominant market position. So even though the

Record”, Bloomberg (2012). Available at: (http://www.bloomberg.com/news/2012-09- 17/apple-
iphone-5-pre-orders-top-2-million-double-prior-record-1-.html).

2http://www.cnet.com/news/apple-iphone-6-iphone-6-plus-preorders-top-4m-in-first-24-hours
3https://www.ft.com/content/dc40349c-8d2b-345c-b9c3-20dfe41a9992
4On the quality and launch of the Blackberry phones, see Austen (2012) and Bunton (2013).
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nonfocal platform has a quality advantage, the focal platform has an expectations

advantage.

In this paper, we ask whether a low-quality platform currently benefiting from its

focal position can continue to dominate the market in a dynamic setting — that is,

when platforms account for the future benefits of capturing the market today. For

example, would Apple continue to dominate the market for tablets if competitors

(Samsung’s Tab, Microsoft’s Surface, etc.) offered tablets of higher base quality? Is it

possible for a video-game console to maintain market leadership when facing higher-

quality competitors? More specifically, we are interested in whether the higher-quality

platform’s likelihood of winning increases with the importance attached by firms to

the future. The winning platform’s identity affects not only the firms involved but also

social welfare, which is higher when the better platform wins.

To investigate this research question, we analyze a model of dynamic competition

between two platforms. In each period, one of the platforms wins by capturing all of the

market. So as to focus on the model’s dynamic aspects, we assume that customers are

homogeneous.5 Consumers base their current-period behavior on their observation of

past outcomes; thus the platform that won the market in the previous period becomes

focal in the current period. It follows that capturing the market in one period gives the

platform an advantage in future periods. Hence a nonfocal platform may be willing

to sacrifice current profits to gain a better future market position.

We start with the case where each platform’s stand-alone quality is constant for all

periods and where the time horizon is finite. We show that, when platforms do not care

about future profits, the low-quality focal platform maintains its position despite the

nonfocal platform’s higher quality — provided the quality gap is not too great. But

when the future is important for the platforms or the quality gap is sufficiently large,

the higher-quality platform wins the market at the start of the game and maintains

its leadership. This outcome follows because a high-quality platform can earn higher

profits than the low-quality one as the focal platform in the last period. So as compared

with the low-quality platform, the high-quality platform has a larger incentive to fight

for focality in the game’s early stages.

We then consider the infinite-horizon case. We find that, when platforms care

moderately about the future, there is a unique equilibrium in which a high-quality

platform wins the market. But when the platforms care a lot about the future, the

result is an increase both in the focal platform’s incentive to maintain its position

5The consequences of this assumption are addressed in Section 7.
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and in the nonfocal platform’s incentive to win the focal position. This gives rise to

multiple Markov equilibria. In one Markov equilibrium, the high-quality platform wins

the focal position in the first period and then maintains it indefinitely — even if it

begins as a nonfocal platform; however, there are equilibria in which the focal platform

can maintain its leadership indefinitely even if it is of low quality. Thus an infinite

horizon yields a new form of market failure, leading to an outcome where one platform

aggressively builds market share under all circumstances (i.e., both on and off the

equilibrium path) and succeeds in doing so because the other platform restrains from

sacrificing current profit.

In terms of social welfare, these results indicate that when firms’ patience increases

from low to moderate, the social welfare increases. This outcome reflects the market’s

movement from the equilibrium in which the low-quality platform wins to the equi-

librium in which the high-quality one overcomes its nonfocal position and thereafter

maintains its newly acquired focal position indefinitely. However, as firms’ patience in-

creases further, the effects on welfare are ambiguous owing to the existence of multiple

equilibria.

These results are a unique consequence of network effects. We consider an alterna-

tive model where instead of network effects buyers face switching costs and platforms

can price discriminate between existing and new consumers. We find that the mar-

ket failure that our paper identifies vanishes. Under switching costs, when players

sufficiently care about future payoffs, there is a unique equilibrium in which the best

platform wins. Intuitively, in the absence of network effects, a buyer’s decision to

switch from one platform to the other is not affected by the buyer’s beliefs concerning

the decisions of other buyers. This result highlights the qualitative difference between

network effects and switching costs as well as the important role that beliefs play in

markets with competing platforms.6

When qualities are constant, our model finds that the same platform dominates

the market in all periods. Yet there are some cases in which platforms “take turns” at

being the dominant platform, as with the Sony, Nintendo, and Microsoft video-game

consoles mentioned previously. We therefore study how focality and the importance

of the future affect changes in market leadership and market efficiency.

To study this question, we consider the case where the quality of each platform

changes stochastically every period — a setup that is consistent with the continuous

technology improvements seen in the markets for such products as video-game consoles

6For an extensive discussion of switching costs, see Farell and Klemperer (2007).
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and smartphones. In this setting it is possible for a low-quality platform to itself

become a higher-quality one. Even so, we will assume that one of the platforms is of

higher quality in average.

Unlike the case of fixed quality, in this stochastic scenario there is a unique Markov

equilibrium. It is possible for either platform to win the market in any period if its

quality in that period is sufficiently high. Still, the more platforms care about the

future, the more likely it is that the platform with better average quality wins the

market, even when its quality realization is lower. In some cases it is also possible for

a focal platform to lose its market dominance even if its quality realization is higher

than that of the nonfocal competitor. Thus social welfare may decline with increases

in platforms’ concern for the future.

The intuition behind this result is as follows. The platform with a higher quality

on average is more likely capable of defending its focal position. Therefore, as future

considerations become more important to platforms, this firm has more incentive to

compete aggressively in order to capture a focal position even if its current realized

quality is low. At the same time, the platform expecting a lower future quality on

average has less incentive to win the market even if its current quality is high. This

result indicates that the changes in market leadership, following technological improve-

ments, which we observe in several markets for platforms (e.g., video-game consoles,

smartphones), may not necessarily result in outcome in which the platform with higher

quality wins.

Related Literature

Our paper’s main conclusion is that even long-term considerations may not lead to an

outcome in which the best platform wins. For example, there is disagreement in the

economics literature as to whether the presence of network effects leads to long-term

market inefficiency. David (1985) argues that the QWERTY keyboard’s prevalence

is an example of long-term inefficiency due to network effects; that claim is based on

evidence that the Dvorak keyboard enables faster typing and requires less training.

Liebowitz and Margolis (1990) criticize David’s argument by claiming, on the basis of

a case study, that the success of QWERTY is due not to network effects but rather to

its superior quality vis-à-vis Dvorak. In an experiment, Hossain and Morgan (2009)

find that the more efficient platform always wins over time, which would seem to

support the claim of Liebowitz and Margolis. Our paper contributes to this debate by
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demonstrating that, when platforms strategically set prices to compete for users, both

efficient and inefficient equilibria are possible in the long term.

Most theoretical analyses of platform competition focus on static games. Caillaud

and Jullien (2001, 2003) introduce the notion of favorable beliefs — with respect to

networks in the context of two-sided markets — as a tool that can be used to char-

acterize the full equilibrium set for competition between undifferentiated platforms.

This concept was used in subsequent research on two-sided markets (see Hagiu 2006;

Jullien 2011; Halaburda and Yehezkel 2013) as a way of modeling market leadership

when one platform benefits from favorable expectations; it has also been used in the

literature on telecommunications to model consumer inertia (Lopez and Rey 2016).

Though all of these papers acknowledge the dynamic nature of platform competition,

their aim is to approximate market characteristics using static models. Halaburda

and Yehezkel (2016) extend this concept to partial beliefs advantage and explore how

platform’s pricing strategies affect their future profits; the article employs a simple

multi-period setup in which the extent of beliefs advantage depends on the market’s

history.

There has been some work addressing dynamic price competition between plat-

forms. Our main contribution to this literature is showing how beliefs depending on

the history of the market affect dynamic competition between vertically differentiated

platforms. Doganoglu (2003), Cabral (2011) and Biglaiser and Crémer (2016) consider

platforms that are identical in their intrinsic qualities, while we focus on the tradeoff

between network effects and quality. Interestingly, they show that an entrant with

a smaller network may be active in the market, despite lack of intrinsic quality ad-

vantage. This result is possible with sufficient customer heterogeneity and switching

costs.7 Customer heterogeneity allows for niche firms to exists and periodically gain

strong position, despite network effects.

Chen and Tse (2008) characterize the optimal dynamic trajectory of prices in

platform competition. They focus on an environment where horizontal differentiation,

heterogeneity of users and multi-homing allow for multiple platforms to coexist in the

market in the equilibrium.

7Our paper abstracts from switching costs in order to focus on the dynamics of consumer expec-
tations. Consequently, consumers in our model need not form beliefs about the market’s future. The
real-life examples that we cite (i.e., the markets for smartphones and video games) may include both
network externalities and switching costs (stemming, for example, from the adjustments required after
adoption of a new operating system). However, we share with those other models the dynamic-game
feature of firms competing aggressively to build their market share in the current period so as to gain
a long-term advantage. For an analysis of such strategies in games involving dynamic competition,
see Besanko, Doraszelski, and Kryukov (2014).
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Mitchell and Skrzypacz (2006) analyze dynamic competition between platforms

of different intrinsic qualities and show that network effects trumps quality, resulting

in excess inertia, in a short run. But the quality wins in the long run. This is the

property of the unique Markov equilibrium they obtain in the infinite game. Since

they assume sufficient horizontal differentiation, for any prices there exists a unique

allocation of customers attracted to each platform. Thus, they can abstract from the

coordination problem. In contrast, we focus on environments where network effects are

much stronger than differences in taste. In such environments, coordination problem

arises every period and beliefs play important role in the equilibrium. We show that

with beliefs depending on the history of the market multiple Markov equilibria exist.

Most importantly, there exist equilibria with inefficient firm winning and holding the

market even when platforms are patient.

Fudenberg and Tirole (2000) find almost opposite effect to Mitchell and Skrzypacz

(2006). In Fudenberg and Tirole (2000) excess inertia occurs when platforms are pa-

tient. For inpatient platforms, higher quality wins. Like us, they analyze environment

where network effects are more important than heterogeneity of preference, giving rise

to coordination problem. Crucially, they assume that consumers coordinate on the

platform that offers them the highest quality. Such beliefs do not depend on the his-

tory of the market, and thus do not play a role in the dynamics. Our paper is the first

one to address the dynamics of consumer expectation and how it affects the equilibria.

Argenziano and Gilboa (2012) consider a repeated coordination game where play-

ers use the game’s history to form beliefs regarding the behavior of other players. Our

paper adopts that approach in the context of platform competition, as we study how

platforms should compete given such belief formation by consumers. But we add the

feature that each platform can alter beliefs by capturing the market and thereby shift-

ing the coordination of consumers in its favor. In a recent paper, Akerlof, Holden and

Rayo (2018) adopted a related approach to address the issue of dynamic coordination

in a market with network effects. They focus on monopoly dynamic pricing while our

paper focuses on dynamic competition.

The rest of the paper is organized as follows. After describing the model in Sec-

tion 2, in Section 3 we consider the benchmark case of a dynamic game with finite

horizon. Section 4 characterizes Markov equilibria under an infinite time horizon,

and Section 5 discusses the distinction between network effects and switching costs.

Section 6 considers the case where platform qualities change stochastically over time.

We conclude in Section 7 by summarizing our results and touching on some related
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considerations.8

2 The Model

Consider a homogeneous consumer population of size 1 and two competing platforms,

i = A,B, with the same cost (normalized to 0).9 There are T periods, t = 1, 2, . . . , T ,

where T may be finite or infinite. Each platform i offers to the customers a good or

service generating stand-alone value, qi > 0, which we refer to as quality.10 Addition-

ally, consumers, benefit from network effects. A consumer’s utility from buying the

good or service of (thereafter joining) platform i is qi + βni − pi; here ni is a measure

of the other consumers who have joined i, β denotes the strength of network effects,

and pi is the price of platform i.

Notice that our model makes two simplifying assumptions. First, we focus on

one-sided network effects. We view this assumption as a reduced form to scenarios

with both direct and indirect network effects. We make this simplifying assumption

because of our focus on incumbency advantage due to a focal position. Some mar-

kets involve two-sided pricing with indirect network effects, yet, the features of the

incumbency advantage are qualitatively similar to the incumbency advantage in our

model.11 Our second simplifying assumption is that consumers are homogeneous. In

equilibrium, consumers join the same platform while the competing platform is empty.

This raises the question of why should the empty platform keep competing in future

periods. Intuitively, with heterogeneous consumers, some consumers may view their

subjective preferences toward one of the platforms as more important than network

effects. Consequently, both platforms will gain a positive market share, by serving

at least their most loyal consumers. At the same time, platforms will also compete

for consumers that do not have strong preference towards a specific platform, or con-

sumers that view network effects as more important than their subjective preferences.

Since the focus of this paper is on network effects, we focus our attention on these

homogeneous consumers. We discuss the case of consumers’ heterogeneous preferences

in the conclusion and show in the online appendix that our insights extend to this case

8Online appendix presents results we obtain when combining network effects and switching costs,
as well as an analysis with heterogeneous consumers.

9In Section 7 we discuss how our results are affected when agents are instead heterogeneous.
10We consider the case where the qi are fixed over time (Sections 3 and 4) and also the case where

qualities change from one period to the next (Section 6).
11In a two-sided market, the nonfocal platform may adopt a “divide-and-conquer” strategy. Yet,

adopting this strategy places the nonfocal platform at a competitive disadvantage in a similar way
as in our model (see Caillaud and Jullien, 2001 and 2003).
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provided that network effects are strong enough.

Every period, each platform i sets a price pi(t), and then consumers decide which

platform to join for the current period. In what follows, a negative price is interpreted

as one below cost.12 The two platforms operate for T periods and discount future

profits by δ, where 0 ≤ δ < 1. There are no switching costs, so consumers’ current

payoff is not directly affected by past or future periods. Path dependency will arise

solely from belief formation.

Competition in an environment with network effects often results in multiple equi-

libria, and it is also the case here. Consider the allocation of consumers that emerges

for given prices. If qi − pi(t) > qj − pj(t) + β, then there is a unique consumers’

allocation in which all consumers join platform i. Yet if

|qA − qB + pB(t)− pA(t)| < β (1)

then there are two possible allocations: either all consumers join A or all join B. This

multiplicity makes it difficult to discuss dynamic competition in environments with

network effects, and several solutions have been proposed to address the issue. We

rely on the notion of pessimistic beliefs and a focal platform, as developed in Caillaud

and Jullien (2003), Hagiu (2006), and Jullien (2011). When prices in period t are

compatible with multiple allocations of consumers, we say that platform i is focal in

period t if the consumers’ allocation is such that each consumer buys from platform i if

it is not a strictly dominant strategy to buy from platform j and she is not indifferent

between the two platforms.13 As a consequence, under condition (1), all consumers

join platform i. But a nonfocal platform j can win the market if it sets pj low enough

such that qj − pj > qi + β − pi. By contrast the focal platform i can guarantee itself

to win by setting pi such that qj − pj < qi + β − pi. We assume that in any period

there is a focal platform.

In a dynamic model with t = 1, . . . , T , the identity of the focal platform in t > 1

may be related to the market’s history. In this paper we explore how allowing for such

historical dependency affects the market’s future outcomes, focusing on one-period

dynamics.

During each period t, the market outcome is expressed by a pair (wt, ft), where

12To allow for the possibility of negative prices, we must assume that agents who collect the resulting
subsidy do indeed join the platform to the benefit of other users.

13This second condition aims at ensuring existence of equilibrium by allowing the nonfocal platform
to sell in case of indifference. Indeed in all equilibria, prices will be such that consumers are indifferent
and their action is made in such a way that it supports the equilibrium.
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wt ∈ {A,B} is the identity of the active platform — i.e., the platform that wins the

market in t14 — and ft ∈ {A,B} is the identity of the focal platform in t. Note that

it is possible for the nonfocal platform to win the market. Based on their observation

of past outcomes, consumers form conjectures about the platform most likely to win

in the current period. These conjectures are assumed to converge to a single focal

platform. In t = 0, one of the platforms is arbitrarily set as the focal platform, which

we call platform A. The identity of the focal platform ft is always common knowledge

and is the only payoff-relevant variable in the next period. The dynamics of platform

focality is then obtained by assuming that in any period, the last period’s market

winner becomes focal.

As a benchmark case for our analysis, consider a static one-period game in this

environment. Network externalities may create market inefficiencies in the equilibrium

of a static game. Although A is the focal platform, it can be of higher or lower quality

than platform B. In an equilibrium in which a focal platform A wins, the losing

platform B sets the lowest price possible, pB = 0. Platform A sets qA−pA+β = qB−0

and earns pA = qA − qB + β. Hence, such an equilibrium exists if qA − qB + β > 0.

Likewise, in an equilibrium in which a nonfocal platform B wins, platform A sets

pA = 0 and platform B sets qB − pB = qA − 0 + β. Hence, such an equilibrium exists

if qA − qB + β < 0. Thus, if qA < qB yet qA > qB − β, then platform A wins despite

offering lower quality. It wins because it happens to be focal. This effect is called

excess inertia, and it leads to inefficient outcomes in equilibrium.

When there are multiple periods, a nonfocal platform may find it worthwhile to

win the market by setting negative price in an earlier period. Doing so would yield

the platform a negative current profit, but if the focal position is thereby captured

then those losses could be recovered in future periods. Hence, in a dynamic market

one could suppose that a higher-quality nonfocal platform is advantaged; after all,

should it become focal, its higher quality yields greater profit than can be generated

by a lower-quality platform. Hence the higher-quality platform has more incentive

to invest in capturing the market than the lower-quality platform has to invest in

defending its position. The focal platform anticipates this and strives to prevent the

nonfocal platform from capturing the market.

14Market sharing allocations — where some consumers join platform A while others join B —
are unstable. In such allocations, all consumers are indifferent between joining platforms A and B.
Therefore, any deviation by a marginal consumer will tip the market to a stable allocation in which
all consumers join the same platform. We therefore focus on allocation in which one of the platform
dominates the market.
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3 Dynamic game with finite horizon

In this section we consider the case of a finite time horizon and show that there exists

a unique subgame perfect Nash equilibrium. In this equilibrium, a high-quality but

nonfocal platform wins the market in the first period and maintains its acquired focal

position in all subsequent periods — provided that platforms care sufficiently about

the future (i.e., δ is high and the time horizon is long) or that the quality gap between

platforms A and B is sufficiently large. Otherwise, a low-quality platform that is focal

in the first period will maintain that position thereafter.

Suppose that the time horizon is T = 2. Our analysis will focus on the interesting

case, where network effects are sufficiently large with respect to the quality gap, β >

|qi − qj|, so that the focal platform wins a one-period game even with a lower quality

than the nonfocal platform.

Consider the last period, t = 2. Since in this period there is no future, the subgame

equilibrium is identical to the one-period benchmark described in Section 2. When

platform i is focal, it wins the market regardless of the quality gap; in this case, i earns

qi−qj+β while the nonfocal platform j earns 0. Observe that the focal platform’s last-

period profits are greater when it is the higher-quality platform; formally, qi−qj +β >

qj − qi + β when qi > qj.

We next turn to the first period, t = 1. Recall that we assume that platform A is

focal in the first period. Each platform takes into account that capturing the market in

this period will render it focal in the next period and earn it an additional profit of qi−
qj + β. An individual buyer, however, cannot affect the identity of the focal platform,

as it depends on the buyer’s beliefs concerning the behavior of other consumers.

Consider first an equilibrium in which A wins the market in the first period. The

lowest price that the losing platform B is willing to charge in period 1 is pB = −δ(qB−
qA + β). In order to convince buyers to join it, platform A must charge a price such

that qA + β − pA = qB − pB. Notice that the buyer’s expected payoff in period 2 does

not affect the buyer’s decision at time 1, because future payoffs depend only on future

network effects, i.e., on the buyer’s beliefs concerning the decisions of other buyers,

and therefore do not depend on the buyer’s choice of platform A or B in period 1.

Setting pA = qA + β − qB + pB in period 1 is the best reply of platform A only if

its profit is nonnegative. We thus have the condition

qA − qB + β − δ(qB − qA + β) + δ(qA − qB + β) ≥ 0. (2)

12



The same analysis applies to an equilibrium in which the nonfocal platform B

wins in the first period. In this equilibrium, the losing platform A charges a price

pA = −δ(qA − qB + β) and the winning platform B must earn a positive profit at

the best-reply winning price pB = qB − β − qA + pA. So now we have the following

condition:

qB − qA − β − δ(qA − qB + β) + δ(qB − qA + β) ≥ 0. (3)

Comparing conditions (2) and (3) reveals that for any set of parameters there exists

exactly one equilibrium (except for the degenerate case where profit is zero for both

platforms). In this unique equilibrium, a focal platform A wins in both periods if

qB − qA <
β

1 + 2δ
. (4)

Platform B wins in both periods otherwise. Hence, we conclude that the equilib-

rium is unique and has the following characteristics for a horizon T = 2.

(i) If the quality differential is smaller than β/(1 + 2δ), then the focal platform

(platform A) wins the market in any subgame. In this case, the focal platform

earns two-period profit of (1 + 2δ)(qA − qB) + β, which is higher than its profit

in a one-period game, qA − qB + β, if and only if it is of higher quality.

(ii) If the quality differential lies between β/(1 + 2δ) and β, then the focal platform

wins in a one-period game while the higher-quality platform wins in both periods

of a two-period game.

Thus a nonfocal platform B with superior quality can win the market in the two-

period case when it could not in the one-period case. The intuition for this result is

that the higher-quality platform has more to win in becoming the last period focal

platform. Since platforms care about the future and since B earns more profit (than A)

from being focal in the last period, it follows that platform B’s incentive to capture the

focal position in the first period is stronger than platform A’s incentive to maintain

its focal position. In particular, a high-quality but nonfocal platform can win the

market in the first period and maintain its focal position in all periods, when δ is high

enough and if the quality gap (qB − qA) is sufficiently large. In such cases, forward-

looking platforms eliminate the inefficiency that might otherwise emerge because of

the consumer coordination problem.

For longer horizon we can apply the same logic to solve the game backward and

extend the conclusions to any horizon. The following lemma characterizes how, for
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an arbitrary finite horizon, the equilibrium outcome depends on the parameters (all

proofs are in the appendix).

Lemma 1 (Subgame perfect equilibrium for arbitrary finite T ) For any set of

parameters qA, qB, β > |qA − qB|, and δ < 1, there exists a unique subgame perfect

equilibrium for arbitrary finite T . In the equilibrium outcome, the same platform wins

the market in all periods. The winning platform’s identity and its future discounted

profit depend on the parameters as follows.

(i) If |qA − qB| < β(1 − 2δ)/(1 − (2δ)T ), then the focal platform wins in any sub-

game and thus platform A being focal in the first period, it wins the market and

maintains its position with a total profit of

(qA − qB)
1− (2δ)T

1− 2δ
+ β.

(ii) If |qA − qB| > β(1 − 2δ)/(1 − (2δ)T ), then there exists an horizon T̂ < T , such

that the focal platform wins the market in any subgame of horizon less or equal

than T̂ , while the higher-quality platform wins the market in any subgame with

horizon larger than T̂ . Thus platform A wins (in all periods) if it has superior

quality, and then it earns

(qA − qB + β)
1− δT−T̂

1− δ
+ δT−T̂

(
(qA − qB)

1− (2δ)T̂

1− 2δ
+ β

)
,

while platform B wins (in all periods) if it has superior quality, and then it earns

(qB − qA + β)
1− δT−T̂

1− δ
+ δT−T̂

(
(qB − qA)

1− (2δ)T̂

1− 2δ
+ β

)
− 2β.

In each case, the losing platform earns zero profits.

The main qualitative results of Lemma 1 are the following. First, the same platform

wins the market in all periods, so the nonfocal platform wins the market in the first

period or never. Second, nonfocal platform B wins the market only if it has quality

advantage. Yet, platform A may win because it has a quality advantage, or it can

win despite offering lower quality, because it started with a focal position. The latter

occurs when 0 < qB−qA < β(1−2δ)/(1−(2δ)T ), and results in an inefficient outcome.

In all other cases, the higher-quality platform wins and so the equilibrium outcome is
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efficient. Observe that β(1− 2δ)/(1− (2δ)T ) is decreasing in T and δ, thus the set of

parameters under which the equilibrium outcome is inefficient, decreases as T and δ

increase — that is, as the future becomes more important to the platforms.

Thus, competition over multiple periods yields an efficient equilibrium outcome for

parameters under which in a one-period model, the lower-quality platform would win.

In this sense, there is less inefficiency when the time horizon increases. One might

therefore suppose that inefficiency would disappear altogether if the time horizon were

extended to infinity. However that is not always the case, as the following proposition

illustrates. In the proposition, we extrapolate the equilibrium outcome in Lemma 1

to the case where T →∞. For this purpose it is important to recognize that the ratio

(1 − (2δ)T )/(1 − 2δ) converges to 1/(1 − 2δ) for δ < 1/2, and approaches infinity for

δ > 1/2.

Proposition 1 (Subgame perfect equilibrium extrapolated for T →∞) As T

goes to infinity, the equilibrium eventually takes the following form.

(i) If |qA − qB| < β(1 − 2δ) or qA = qB then platform A wins every period because

it is initially focal, and its total profit converges to

qA − qB
1− 2δ

+ β.

(ii) Otherwise the higher quality platform wins every period and the profit of platform

A converges to

ΠA =
qA − qB + β

1− δ
if qA > qB,

while the profit of platform B converges to

ΠB =
qB − qA + β

1− δ
− 2β if qA < qB.

The losing platform earns zero profits.

[Figure 1 here]

Figure 1 illustrates which platform is active in equilibrium, depending on the pa-

rameters. It shows that the outcome of a subgame perfect equilibrium may be ineffi-

cient no matter how long the time horizon. When 0 < qB−qA < β(1−2δ), platform A

wins despite lower quality even under infinite time horizon. That being said, the prob-

lem of inefficiency due to excessive inertia arises less often as the time horizon increases
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in length. Furthermore, the inefficiency disappears if platforms care enough about the

future — that is, when δ > 1/2.

Thus, as we find in this section, the market can correct an inefficient miscoordi-

nation on the wrong platform when the consumers’ expectations depend on history.

In line with the general intuition, the efficient outcome emerges when platforms are

sufficiently forward looking, the quality gap is sufficiently wide, and the game is played

for a sufficient number of periods. One could point out, however, that in our moti-

vating examples (i.e., the markets for smartphones, videogames, etc) we can observe

inefficiency even if these conditions are satisfied. We have developed our results and

the general intuition for a finite horizon environment. When it is not known when

the last period will occur, it is more suitable to model the environment as an infinite

horizon competition. In the rest of the paper, we analyze the infinite horizon game,

and we identify two factors that may give rise to inefficient equilibria when platforms

are forward looking.

4 Markov perfect equilibria under infinite time hori-

zon

In Proposition 1, we characterized an equilibrium of the infinite game by extrapolating

the subgame perfect equilibrium of an arbitrary finite game. If the time horizon is

infinite, there may be other equilibria as well. In this section we identify Markov

perfect equilibria in the infinite game.15

Although the subgame perfect equilibrium identified in Proposition 1 is a Markov

perfect equilibrium, there exist other Markov perfect equilibria that cannot be found by

extrapolating any finite-game solution. These new equilibria often result in inefficient

outcomes for the same parameters under which the equilibrium of Proposition 1 is

efficient.

Every period t of the infinite game is characterized by the identity ft of the focal

platform, the state variable for that period. A Markov perfect equilibrium is charac-

terized by the strategies of each platform in all possible states and by the outcome in

each state. There can be only three pure-strategy equilibrium outcomes in a Markov

equilibrium: (i) platform A wins in both states, (ii) platform B wins in both states,

15As a further restriction, we assume that in any state, the losing platform does not choose a
price that would generate negative discounted profits in case it wins the market, for instance due to
unexpected demand shock.
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and (iii) the focal platform wins in both states.16

Next we characterize the strategies that support those equilibrium outcomes and

identify the range of parameters under which each equilibrium exists. We define the

value function V f
i as the equilibrium expected discounted profit of platform i when

platform f is focal.

For our concern about excess inertia, the most interesting equilibrium outcome

is when platform A wins in both states. In this equilibrium, the value function for

platform B is V B
B = V A

B = 0 because no customer joins that platform. Platform B

sets price pfB = 0, because it has no interest in winning with price pB < 0, given

that it cannot count on future profits to justify the investment required to capture the

market. When A is focal, it optimally sets pAA = qA − qB + β. Similarly, if platform B

is focal then A sets price pBA = qA − qB − β and B sets pBB = 0; if platform A were

to set a higher price, then platform B would maintain its market dominance and

secure nonnegative profits. Notice that as in the finite case, buyers only account for

their current payoff because an individual buyer cannot affect the identity of the focal

platform. Platforms, however, take into account the effect of their current prices on

the future focal position, because platforms can convince all buyers to switch from one

platform to the other.

We therefore have

V A
A = qA − qB + β + δV A

A and V B
A = qA − qB − β + δV A

A .

yielding:

V A
A =

qA − qB + β

1− δ
and V B

A =
qA − qB − (1− 2δ)β

1− δ
Moreover, incentive compatibility for platform A requires that V A

A ≥ δV B
A and

V B
A ≥ 0. It follows that this equilibrium exists whenever qA − qB ≥ β(1 − 2δ). After

a similar analysis for platform B, we arrive at our next lemma.

Lemma 2 There is an equilibrium in which platform i wins in both states if and only

if qi− qj ≥ β(1−2δ). The equilibrium prices are then pii = qi− qj +β, pji = qi− qj−β,

pjj = pij = 0.

According to Lemma 2, a nonfocal platform B can capture the focal position and

maintain it in all future periods provided qB − qA ≥ β(1 − 2δ). This inequality holds

16There is no equilibrium that supports the fourth possible pure-strategy outcome – namely, that
the nonfocal platform wins in both states.
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when B’s quality is substantially higher than that of A, when platforms are very

forward looking (so that δ is high), or when network effects (β) are weak. We remark

that, for δ > 1/2, the condition’s right-hand side becomes negative, which means

that an initially nonfocal platform B could win the market in every period even when

qB < qA. Such an equilibrium involves excess momentum and is inefficient.

Similarly, platform A can dominate the market forever when δ > 1/2, even if

qA < qB, as long as qA − qB ≥ β(1− 2δ). This equilibrium involves excess inertia and

is inefficient as well.

When δ = 1
2
, an equilibrium in which platform i wins exists if and only if qi ≥ qj,

regardless of β. Intuitively, for a nonfocal platform i to win, it needs to subsidize

consumers for the loss of β in the current period (recall that pji = qi − qj − β), and

gains from focality in all future periods δ
1−δβ (recall that pii = qi−qj+β). When δ = 1

2
,

δ
1−δ = 1, and the first subsidy equals the future benefits from focality. Consequently,

δ = 1
2

is a special case in which β does not matter: the condition for the equilibrium

depends only on the quality gap, qi − qj.
It is only when the time horizon is infinite that both equilibria with excess mo-

mentum and equilibria with excess inertia occur. The nature of these equilibria can be

understood as follows. Suppose that both platforms expect A to behave aggressively

in the future — in particular, to regain the focal position if it is ever lost. Then plat-

form B has no reason to sacrifice profit in the current period because it expects no

future gain from being focal. Faced with a weak competitor, will platform A decide

to be aggressive as expected? If A is focal then the answer is clearly Yes. But sup-

pose that A is not focal. Then the choice facing platform A is this: Should it make a

sacrifice today (by setting its price pA = qA − qB − β) in order to gain the benefit of

network effects β in the next period, or should it wait and make that sacrifice tomor-

row? If the discount factor is high enough, then the platform will opt for the sacrifice

today. Hence, the beliefs that platform A always win are fulfilled. Such an equilibrium

therefore involves a particular form of coordination failure among firms that does not

arise in the finite-horizon game, even as T →∞, because such an aggressive strategy

becomes not credible as the game’s end approaches.

One may wonder why platform B stays in the market if it doesn’t expect to sell in

at least one state. One possibility is that platform B is selling in some other markets

(it is common for platforms to be active in several markets at different prices), allowing

it to recover fixed costs. We also show in the online Appendix that our conclusion

that a platform may win focality in any state despite inferior quality does not rely
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on the other platform never selling. There we show how to extend the analysis to

heterogenous consumer preferences and that an equilibrium may exist where platform

A dominates the market in all states while platform B also obtains some positive profit

on the equilibrium path.

The remaining equilibrium to consider is one where the focal platform wins. Recall

that pfi denotes the price of platform i when f is focal in such an equilibrium. Since

the winning platform anticipates that it will be focal from the new period onward, we

have value functions

V i
i =

pfi
1− δ

and V j
i = 0.

The benefit of selling at a given date is pfi + δV i
i . It follows that the minimal

profit that platform i is willing to sacrifice today in order to capture the market is

−δV i
i . In such an equilibrium, the focal platform sets a price pii ≤ qi − qj + β − δV j

j

because otherwise the competing platform would set a price above −δV i
i and win the

market. Ruling out cases where pj < −δV j
j because winning at this price would not

be profitable for firm j,17 we obtain the equilibrium prices

pii = qi − qj + β − δV j
j and pij = −δV j

j .

In this equilibrium, the value functions solve the following equations:

(1− δ)V A
A + δV B

B = qA − qB + β,

(1− δ)V B
B + δV A

A = qB − qA + β,

yielding

V A
A =

qA − qB
1− 2δ

+ β and V B
B =

qB − qA
1− 2δ

+ β.

We can therefore draw the following conclusion:

Lemma 3 There is an equilibrium where the focal platform wins in every state if and

only if β |1− 2δ| ≥ |qB − qA|. Equilibrium prices are pii = (1− δ)V i
i and pji = −δV i

i .

We arbitrarily designated A as the first period’s focal platform; hence, for equilibria

in which the focal platform wins in every state, platform A wins every period.

For δ < 1/2 this equilibrium is the limit of the finite horizon equilibrium identified

in Proposition 1 where platform A maintains its focal position even when its quality is

17 Allowing prices pj < −δV j
j would not alter the existence conditions, but only the equilibrium

profits.
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lower than that of platform B. Suppose now that qB increases; that increase has two

positive effects on V B
B . First, a direct effect is that, since pBB = qB−qA+β−δpBA, taking

V A
A as given, platform B can attract customers with a higher price pBB; this implies

that V B
B will increase. Second, a strategic effect is that, since pAB = −δV B

B , platform A

knows that even when it is focal, it will compete against a more aggressive platform B

because the latter would gain more by capturing focality from A. This threat reduces

V A
A , which in turn increases V B

B because a nonfocal A will not compete aggressively

to capture the focal position. When δ < 1/2, both the direct effect and the strategic

effect increase V B
B while reducing V A

A .

When δ > 1/2, the equilibrium has several unusual features. First the focal plat-

form obtains the higher profit when it is of the lower quality. Moreover a platform’s

profit declines when its quality improves. In particular: as qB increases, platform A

reduces its price pBA because it anticipates that, after becoming the focal platform, it

will benefit from competing with a more efficient rival, another unusual feature of this

equilibrium. We remark that if δ > 1/2, a simple within period iterated best-response

dynamics would result in convergence to an equilibrium described in Lemma 2. In this

sense, we can say that, when δ > 1/2, an equilibrium where the focal platform wins

in every state is unstable. The same cannot be said either for this equilibrium under

δ ≤ 1/2 or, with any value of δ, for the equilibria described in Lemma 2.

Our next proposition summarizes the results of Lemmas 2 and 3.

Proposition 2 (Markov perfect equilibria) Suppose that platform A is focal in

period t = 1. Then:

(i) for qB − qA > β|1 − 2δ|, there exists a unique equilibrium in which platform B

wins;

(ii) for qB − qA < β(1− 2δ), platform A wins in all equilibria;

(iii) if δ > 1/2 and β(1 − 2δ) < qB − qA < β(2δ − 1), there exist multiple equilibria

and, of these, there is one in which platform B wins, and others in which A

wins.

[Figure 2 here]

Figure 2 illustrates which platform is active in equilibrium, depending on the pa-

rameters. It shows that, if both the discount factor and the quality differential are

low, then there is a unique equilibrium in which the focal platform A wins. Intuitively,
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for those parameter values the results of the dynamic game are the same as in the

static game. For a positive quality differential qB − qA and intermediate values of δ,

there is a unique equilibrium in which the most efficient platform wins the market and

maintains its position thereafter. However, for high discount factors and low quality

differential there exist multiple equilibria: some in which A wins and some in which

B wins. Observe that disregarding the Lemma 3 equilibria (because they are unlikely

to emerge) would not restore efficiency of the equilibrium in this parameter region;

the reason is that there are also two equilibria, including one in which the low-quality

platform wins, identified by Lemma 2. In both of these equilibria, one platform expects

to encounter low competitive pressure while the other renounces capturing the market

because it expects to encounter high competitive pressure — and these expectations

are self-fulfilling. In sum: if the discount factor is high, then each firm’s prospect

of capturing the focal position is not enough to outweigh the firms’ (self-fulfilling)

expectations of the competitive pressure each will face.

The results of this section suggest that in our motivating examples, even if plat-

forms are forward looking, the dominant platform may not necessarily be the platform

that consumers perceive as the one with the highest quality. In the battle for domi-

nancy in the market for smartphone operating systems or the market for videogames,

our results indicate that the platform with the lowest market share may not necessary

be the one that offers a poor base-quality. More importantly, market dominance may

not be related to the platforms’ base-quality even when platforms are forward looking.

5 The distinction between network effects and switch-

ing costs

Network effects in our model may appear, at first blush, to play the same role as

switching costs. In both cases, a consumer pays a cost when switching from one

platform to the other, which can be either direct switching costs or indirect through

the loss of network effects when switching to the nonfocal platform. This raises the

question of what is the qualitative difference between switching costs and network

effects, and how our results depend on our focus on network effects.

In this section we abstract from network effects by developing an alternative model

in which β serves as switching costs (we return to studying network effects in the next

section). Platforms can price-discriminate between existing and switching consumers.

We show that in a one-period game, switching costs have the same consequences as
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focality with network effects and the equilibrium is identical to the one-period game in

our base model. However, in a dynamic game with infinite horizon, the main results

of Section 4 no longer hold in a model with only switching costs instead of network

effects.18 Therefore, the main conclusion of Section 4 is the result of network effects

and cannot be replicated with switching costs only.

Consider two platforms, A and B, that offer a base utility or quality, qA and qB,

where qB > qA. We abstract from network effects by assuming that there is one

buyer.19 If the buyer joined a platform in period t, he incurs a cost s when switching

to the other platform at t + 1, where s < qA < qB.20 At the beginning of the game,

the buyer is “born” on platform A. This is equivalent to our base-model assumption

that platform A is focal initially.21 Let pfi denote the price of platform i = {A,B}
when the buyer is on platform f and therefore has to pay s to switch from f to the

competing platform.

Consider first a one-period game. In an equilibrium in which platform A wins,

platform B charges pAB = 0, and platform A charges pAA such that: qA−pAA = qB−s−pAB.

Hence, platform A earns pAA = s− (qB − qA) > 0 and there is an equilibrium in which

platform A wins iff s > qB − qA. This condition is identical to the condition for the

focal platform A winning under network effects, i.e., β > qB − qA. In what follows,

suppose that s > qB − qA.

Consider now an infinitely repeated game. As before, at the beginning of t = 1

the buyer is “born” on platform A. The buyer and the two platforms discount future

payoffs by δ.

Let’s first consider a putative equilibrium equivalent to the Markov equilibrium

under network effects in which platform A wins in all periods whether it is “focal” or

not. In the context of switching costs, platform A attracts the buyer in every period

regardless of whether the buyer starts the period on platform B and needs to pay s to

switch to A, or the buyer starts the period on platform A. Define V f
i and U f as the

discounted sum of payoffs of platform i and the buyer, respectively, when the buyer is

on platform f .

In equilibrium, platform B charges pBB = pAB = 0. The price of platform A when

18In the supplementary material we show that the results hold qualitatively in environments with
both network effects and small switching costs.

19This is equivalent to assuming that platforms can price discriminate between new and old buyers.
20The assumption s < qA ensures that consumers gain positive utilities.
21Also in the terminology of Biglaiser, Crémer and Dobos (2013)
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the buyer starts the period on platform A, i.e., pAA, solves22

qA − pAA + δUA = qB − pAB − s+ δ(qA − pBA − s+ δUA). (5)

The intuition for this condition is that in equilibrium, both platforms expect that

even if platform B will win the incumbency position (that is, convince the buyer to

switch from A to B), it will not be able to maintain it in the next period. Therefore,

the buyer expects that if he will stay on platform A, he will earn qA − pAA at the

current period and then continue to stay with platform A in the next period and earn

UA (the left hand side). If however the buyer switches (the right hand side), the buyer

earns qB − pAB − s in the current period. In the next period, platform B will have an

incumbency advantage on this particular buyer but the prices will be such that the

buyer will find it optimal to switch back to platform A and will earn qA−pBA−s+δUA.

In the case the buyer starts a period on platform B, platform A sets such pBA to

attract the buyer, i.e., pBA, solves

qA − pBA − s+ δUA = qB − pBB + δ(qA − pBA − s+ δUA).

The value functions given the prices are defined by

V A
A =

pAA
1− δ

, V B
A = pBA + δV A

A and UA =
qA − pAA

1− δ
.

Substituting the prices into the value functions yields:

V A
A = −qB − qA

1− δ
+ s, V B

A = −qB − qA
1− δ

− s and UA =
qB

1− δ
− s.

Since qB > qA, the value V B
A is negative. Thus, under switching cost there is no

equilibrium in which platform A wins in both states. This result differs from the

network effect case, where such an equilibrium exists for qB − qA < β(2δ − 1); we

summarize the results at the end of this section.

Similarly, the value functions in the putative equilibrium in which platform B wins

every period, whether it starts as an incumbent or not, are

V B
B =

qB − qA
1− δ

+ s, V A
B =

qB − qA
1− δ

− s and UB =
qA

1− δ
− s.

22Notice that the buyer anticipates that the price that will prevail next period depends on the
current choice.
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Indeed, there is an equilibrium in which platform B wins in both states if and only

if qB − qA > s(1 − δ). In comparison with the threshold under network effects, i.e.,

qB − qA > β(1 − 2δ), under switching costs the parameter space that supports the

equilibrium in which platform B wins is smaller.

Next, consider a putative equilibrium equivalent to the Markov equilibrium under

network effects in which the focal platform wins. In such a putative equilibrium, prices

solve

pji = −δV i
i and qi − pii + δU i = qj − pij − s+ δU j,

Since market expectations are that the incumbent platform wins, these expecta-

tions also apply to the buyer. Therefore the buyer expects that if he switches from

platform A to B, then the next period equilibrium prices will be such that he will find

it optimal to stay with platform B forever.

Substituting the prices into the value functions yields

V i
i =

pii
1− δ

=
qi − qj
1− δ

+ s, U i =
qi − pii
1− δ

=
qj

1− δ
− s.

Therefore, such an equilibrium exists if and only if qB − qA < s(1 − δ). We sum-

marize these findings in the following observation.

Observation In the environment with only switching costs, i.e., β = 0 and s >

qB − qA > 0:

(i) if qB − qA < s(1− δ), there is a unique Markov equilibrium in which platform A

wins in all periods because it has the incumbency advantage at t = 1;

(ii) if qB − qA > s(1− δ), there is a unique Markov equilibrium in which platform B

wins in all periods because it has a quality advantage.

[Figure 3 here]

Figure 3 illustrates these results. Comparing this figure with Figure 2 shows that

there are two differences between switching costs and network effects. First, the region

in which platform A can win the market even when platforms are forward looking (the

region where β > 1
2

and 0 < qB − qA < β(2δ − 1)) vanishes under switching costs.

Therefore, the main result of Section 4 — that platform A can exploit network effects

in order to keep the focal position if δ is high — no longer holds if we reinterpret

network effects as switching costs. The second difference is that the cutoff value of
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qB − qA from which onward platform B wins shift upwards from qB − qA = β(1− 2δ)

under network effects to qB − qA = s(1− δ) under switching costs.

Here we highlight these two differences between network effects and switching costs

in a model with s > qB − qA > 0 and β = 0. In an online appendix, we illustrate

these two differences in a model with both β > 0 and s ≥ 0. We find that starting

with s = 0, an increase in s has two effects. First, consistent with the first difference,

the region in which platform A can win the market even when platforms are forward

looking decreases with s. Second, the cutoff value of qB − qA from which onward

platform B wins shifts upwards as s increases, which is consistent with the second

difference between network effects and switching costs.

The intuition for difference between network effects and switching costs is the

following. It is possible to think of network effects as endogenous switching costs

that other buyers inflict on an individual buyer. If all other buyers switch (stay), an

individual buyer “pays” switching costs if he stays (switches). As a consequence, with

network effects, a buyer cannot affect the identity of the focal platform in the next

period, which depends on market beliefs. In contrast, the regular switching costs are

costs that the buyer inflicts on himself whenever the buyer chooses to switch from one

platform to the other, regardless of the decisions of other buyers. Under switching costs

the buyer can determine the identity of the platform with the incumbency advantage

over himself in next period.

Therefore, replacing network effects with switching costs affects our results in two

ways. First, they eliminate the equilibria that arise due to excess momentum or

strong excess inertia. These equilibria depend on the buyers’ beliefs concerning the

participation of other buyers, which do not play a role in the absence of network

effects. This result highlights the role that network effects and consumer beliefs play

in shaping the market outcome, and illustrates why it is important to study network

effects in isolation from the standard switching costs. The second effect of switching

costs is that they increase the threshold in the quality gap between the two platforms,

from which onward platform B wins the market. Intuitively, with switching costs,

the buyer is less willing to switch from platform A to platform B, as doing so grants

platform B with an incumbency advantage over the buyer.
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6 Stochastic qualities

The analysis so far focused on the case where the qualities of the two platforms are

constant for an infinite time horizon. We saw that, in any equilibrium, the same

platform wins the market in all periods. In many markets for platforms we observe a

shift in leadership every few years that results from improvements in technology. Rapid

changes in leadership may give the impression that such markets are competitive and

therefore “work”, in sense that the platform with the best technological advancement

dominates. The main goal of this section is to investigate if this is indeed the case.

In this section we consider the case in which platform qualities stochastically change

between periods. We demonstrate the existence of an equilibrium in which each plat-

form has a positive probability of winning in each period. Our main finding is that

when the distribution of qualities is dispersed, there is a unique Markov equilibrium.

In this equilibrium, the best platform does not always win, and the probability that

the wrong platform wins may increase with δ and consequently social welfare may

decline with δ.

Suppose that the quality of each platform changes randomly from one period to

the next. At the beginning of each period, each platform observes the realization of

both its own quality and its competitor’s quality for that particular period. Then the

two platforms compete by setting prices.

We have shown in the previous sections that the equilibrium depends not on the

absolute value of each platform’s quality but rather on the difference between them.

Hence we suppose, without loss of generality, that Q ≡ qB − qA changes randomly

in each period — with full support on the real line — according to a probability

function f(Q) with cumulative distribution function F (Q). Our assumption of an

infinite support ensures that there will be an equilibrium in which each platform can

win the market with a positive probability.23 Suppose that Q has a mean µ > 0 such

that, on average, platform B is of higher quality than platform A; the case of µ < 0 is

symmetric.

Let Q̄A and Q̄B denote equilibrium cut-offs such that, if platform A is focal in

period t, it wins if Q ≤ Q̄A but otherwise cedes market dominance to platform B.

Conversely, if platform B is focal in period t, then it wins if Q ≥ Q̄B but otherwise

platform A wins.24 This equilibrium has the feature that, when A is the focal platform,

23This assumption is stronger than required because our results hold also when the support is finite,
provided it is wide enough. However, assuming infinite support facilitates the analysis and allows us
to avoid corner solutions.

24It is straightforward to see that any Markov equilibrium must have this form.
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it will win in every period as long as Q < Q̄A. Then, once there is a realization with

Q > Q̄A, platform B wins the market and becomes focal. Platform B will then

maintain its focal position in future periods as along as Q ≥ Q̄B , until there is a

realization of q with Q < Q̄B, such that platform A wins back its focal position. The

game repeats ad infinitum, with platforms “taking turns” at winning according to the

realization of Q.

Let V f
i denote the expected value function of platform i when platform f is focal.

To solve for the equilibrium, suppose that platform A is focal in period t and that the

quality difference has a particular realization Q. The lowest price that platform B is

willing to charge in order to win the market is −δV B
B +δV A

B . This claim follows because

B will earn the expected value V B
B from becoming focal in the next period, and earn

the expected V A
B from remaining nonfocal. Given the price of platform B, the highest

price that allows platform A to win the market is pAA = β −Q− δV B
B + δV A

B . Then A

earns pAA + δV A
A if it does indeed win (i.e., when Q ≤ Q̄A) or 0 + δV B

A if it loses (i.e.,

when Q > Q̄A). Hence we can write

V A
A =

∫ Q̄A

−∞
(β − q − δV B

B + δV A
B + δV A

A )f(q)dq +

∫ ∞
Q̄A

δV B
A f(q)dq.

Suppose now that platform A is nonfocal. Then the lowest price that platform B is

willing to charge to maintain its focal position is pBB = −δV B
B + δV A

B . If A wins, it sets

pBA that ensures that −pBA ≥ β − pBB +Q, which writes as pBA = −β −Q− δV B
B + δV A

B .

Then platform A earns pBA +δV A
A if it wins the market (i.e., when Q ≤ Q̄B) or 0+ δV B

A

if it does not win (i.e., when Q > Q̄B). Therefore,

V B
A =

∫ Q̄B

−∞
(−β − q − δV B

B + δV A
B + δV A

A )f(q)dq +

∫ ∞
Q̄B

δV B
A f(q)dq.

The cases of V B
B and V A

B are symmetric: platform B wins the market if Q ≥ Q̄B

when it is focal or if Q > Q̄A when it is not focal. Moreover, Q has a positive effect

on B’s profit. It follows that

V B
B =

∫ ∞
Q̄B

(β + q − δV A
A + δV B

A + δV B
B )f(q)dq +

∫ Q̄B

−∞
δV A

B f(q)dq,

V A
B =

∫ ∞
Q̄A

(−β + q − δV A
A + δV B

A + δV B
B )f(q)dq +

∫ Q̄A

−∞
δV A

B f(q)dq.

Next consider the equilibrium Q̄A and Q̄B. The equilibrium Q̄A is such that, for
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Q = Q̄A, a focal platform A is indifferent between capturing the market or not, taking

the equilibrium future value functions and the price of platform B as given. That is,

β − Q̄A − δV B
B + δV A

B + δV A
A = δV B

A .

Note that the condition for making the nonfocal platform B indifferent between

winning and losing is equivalent to the condition just stated. Analogously, the equilib-

rium Q̄B should be such that, for Q = Q̄B, a nonfocal platform A is indifferent between

capturing the market or not, again taking the equilibrium future value functions and

the price of platform B as given. Thus,

−β − Q̄B − δV B
B + δV A

B + δV A
A = δV B

A .

Once again, this condition is equivalent to the condition for making the focal plat-

form B indifferent between winning and losing.

The last six equations define the equilibrium values of V A
A , V B

A , V B
B , V A

B , Q̄A

and Q̄B. In our next proposition, we use these equations to derive a sufficient condition

for the equilibrium values of Q̄A and Q̄B to be unique.

Proposition 3 (Unique solutions to Q̄A and Q̄B) When 4βmaxq f(q) < 1, there

is a unique equilibrium with values of Q̄A and Q̄B characterized as follows:

(i) if δ = 0, then Q̄A = β and Q̄B = −β;

(ii) Q̄A − Q̄B = 2β for all δ.

The condition 4βmaxq f(q) < 1 requires that the quality gap be sufficiently dis-

persed and that network effects not be too high. These conditions ensure that a non-

focal platform can always overcome its competitive disadvantage provided its real-

ized quality is sufficiently high, and that there exist unique equilibrium values of Q̄A

and Q̄B. Proposition 3 also shows that, when evaluated at δ = 0, the equilibrium

cut-offs are Q̄A = β and Q̄B = −β. It is intuitive that, when δ = 0, the equilibrium

is identical to the one-period benchmark in which a focal platform wins as long as its

quality advantage outweigh the value of network effects.

We now study the effects of δ, β, and µ on the equilibrium values of Q̄A and Q̄B.

Toward that end, we make the simplifying assumption that f(Q) is symmetric and

unimodal around µ. That is: f(µ+x) = f(µ−x); and f(Q) is weakly increasing in Q
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for Q < µ and weakly decreasing in Q for Q > µ.25 We also assume the uniqueness

condition of Proposition 3, i.e., that 4βf(µ) < 1.

Proposition 4 (Effects of δ, β, and µ on Q̄A and Q̄B) Suppose that f(.) is sym-

metric and unimodal around µ and that 4βf(µ) < 1. Then:

(i) Both Q̄A and Q̄B are decreasing in δ, and if F (0) < 1/4 then Q̄A < 0 when δ is

sufficiently high.

(ii) Both Q̄A and Q̄B are decreasing in µ (holding constant the distribution of Q−µ).

(iii) If δ < 1/2, then Q̄A is increasing and Q̄B is decreasing in β; if F (0) < 1/4 and

δ is close to 1, then Q̄A is decreasing in β.

[Figure 4 here]

Figure 4 illustrates part (i) of Proposition 4. The figure reveals that an increase

in δ need not increase the probability of the current period’s higher-quality platform

winning. To see why, consider first the case where platform B is focal. Then, at δ = 0,

the value is Q̄B = −β and Q̄B decrease with δ. Therefore, as δ increases, a focal B

is more likely to win the market even when its quality realization is lower than plat-

form A’s, which implies that the probability of the “wrong” platform winning increases

with δ. Now consider the case in which A is focal. Then, when δ is low, an increase

in δ makes it less likely that a focal platform A will be able to maintain its focal

position with quality realization that is lower than that of platform B, because Q̄A is

decreasing in δ. However, if δ is sufficiently high and if F (0) < 1/4, then Q̄A crosses

the horizontal axis, thus becoming negative and falling further below 0 as δ increases.

In this case, platform A can lose the market even if it is focal and has higher quality

realization than platform B (when Q̄A < Q < 0). Therefore, the probability of the

“wrong” platform (i.e., one with lower quality realization) winning increases with δ

when either A or B is focal.

The intuition underlying these results is as follows. Recall that a platform’s ex-

pected profit depends on its current profit and the probability of maintaining its focal

position in future periods. Since µ > 0, we know that B is more likely to have higher

quality realization than A in future periods. As δ increases, platform A takes into

25This is a sufficient but not a necessary condition for the results to follow. Those results may hold
also when f(Q) is neither symmetric nor unimodal — provided that f(Q) places higher weights on
positive than on negative values of Q, in which case B is more likely than A to be the focal platform
in future periods.
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account that its chances of winning in future periods is lower and thus will have less

incentive to compete aggressively in the current period. At the same time, platform B

takes into account that it is more likely to win in future periods and so will have

more incentive to compete aggressively in the current period. These effects increase

B’s competitive advantage over A even when the former has lower quality realization

than the latter. If F (0) < 1/4, then µ is sufficiently high for platform B’s competitive

advantage to prevent platform A from capturing the market even when A is focal and

offers a higher quality than does B.

These considerations also account for part (ii) of the proposition. As µ increases,

it becomes more likely that platform B will have higher quality realization in future

periods. Hence B’s incentive to win in the current period increases, so both Q̄A and Q̄B

decrease.

According to Proposition 4(iii), if δ is not too high then an increase in the strength

of network effect makes it more likely that the focal platform wins. This result is

similar to that in the one-period case. A stronger network effect increases the strategic

advantage of being focal because it then becomes easier for the focal platform to attract

consumers. But if δ is sufficiently high and if F (0) < 1/4, then a stronger network

effect reduces the ability of focal platform A to retain its focal position. In this case

we can see that an increase in the network effect increases the incentive of a nonfocal

platform B to capture the market, because B is more likely than before to maintain

its focal position, due to its higher expected quality.

We now turn our attention to social welfare. Our first question is whether social

welfare is higher when platform B or rather when platform A is focal. Given that

B is expected to be of higher quality than A, one could expect that social welfare is

higher when platform B is focal. Yet according to Proposition 4, the probability of

platform B winning despite platform A’s higher quality realization increases with δ, a

fact that may well offset the previous effect.

In order to investigate this issue, we normalize qA to 0 and so qB = Q. Let W̄ i,

(i = A,B) denote the recursive expected social welfare when platform i is focal in

period t; thus

W̄A =

∫ Q̄A

−∞
(β + δW̄A)f(q)dq +

∫ ∞
Q̄A

(β + q + δW̄B)f(q)dq,

W̄B =

∫ ∞
Q̄B

(β + q + δW̄B)f(q)dq +

∫ Q̄B

−∞
(β + δW̄A)f(q)dq.
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We normalize welfare and let W i = (1 − δ)W̄ i denote the average expected per-

period welfare. Maximizing W i is equivalent to maximizing the total welfare. Our

next proposition details the results from comparing WA with WB.

Proposition 5 (Effect of δ on the per-period social welfare) Suppose that f(.)

is symmetric and unimodal around µ and that 4βf(µ) < 1. Then the following state-

ments hold.

(i) When evaluated at δ = 0, we have WB ≥ WA; and WA is locally increasing in δ

while WB is locally decreasing in δ.

(ii) There is a cut-off value δ′ (0 ≤ δ′ ≤ 1) such that WB > WA for δ ∈ (0, δ′) and

WA > WB for δ ∈ (δ′, 1). A sufficient condition for δ′ < 1 is F (0) < 1/4.

(iii) When evaluated at δ = 1, we have WA = WB.

Observe that the case where Q is distributed uniformly along a finite interval is a

special case of the symmetric and unimodal distribution in which f(Q) is constant. In

this case δ′ = 0, so that WA > WB for δ ∈ (0, 1) and WA = WB for δ = 0, 1.

Part (i) of the proposition states that WB is greater than WA for low values of δ. In

this case, the cut-offs Q̄A and Q̄B are close to their one-period levels: a focal platform A

wins if Q < β , and a focal platform B wins if Q > −β. Because Q is more likely to be

positive than negative, welfare is maximized when B starts out as the focal platform.

But part (i) also shows that, for low values of δ, WB is decreasing in δ whereas WA

is increasing in δ. This follows because, as platforms become more patient, it becomes

more likely that a focal platform B will win despite having quality realization lower

than A, which reduces WB. According to part (ii) of Proposition 5(ii), if platforms

are sufficiently patient (i.e., if δ is sufficiently high) and if platform B is significantly

more likely than platform A to be of higher quality (F (0) < 1/4), then social welfare is

higher when A is the initial focal platform because otherwise B would have too much

of a competitive advantage and so would win more often than it should. We remark

that these results do not show that social welfare is maximized when platform A

is focal in all periods. Rather, they imply that — in the first period only — it is

welfare maximizing to start the dynamic game with platform A as focal even though

platform B is of higher quality on average.

The results obtained so far suggest that social welfare when platforms are impa-

tient might be greater than when platforms are patient. For the general distribution

function, however, the comparison between WA and WB evaluated at δ = 0 and δ = 1
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is inconclusive. In an online appendix, we show that under a uniform distribution, so-

cial welfare when δ = 1 is lower than when δ = 0 (i.e., WA|δ=0 = WB|δ=0 > WA|δ=1 =

WB|δ=1 ). As for consumer surplus, on the one hand an increase in δ creates the

inefficiency described above: the “wrong” platform is more likely to win. On the other

hand, patient platforms tend to compete more aggressively by setting lower prices.

This second effect increases consumer surplus. The overall effect of δ on consumer

surplus is therefore inconclusive. The online appendix shows that with a uniform dis-

tribution, consumer surplus in increasing with δ when µ is close to zero. Intuitively, in

this case the first effect vanishes (as both platforms have the same expected quality)

and the second effect decreases prices and hence increases consumer surplus.

This section may explain changes in leadership and evaluate their effects on welfare.

The observation that the markets for smartphones and videogame consoles witnessed

changes in leadership alongside with technological leaps may give the impression that

such markets are efficient. However, the main conclusion if this section is that when

the beliefs dynamics that we consider is at place, the low-quality platform in a given

generation may win. More importantly, the probability that the wrong platform wins

may increase the more platforms care about the future, resulting in a decrease in

welfare. For business strategy, this result indicates that given the belief structure of

our model, positive expectations concerning future quality provides a platform with

a substantial competitive advantage, that may outweigh the current low quality. The

platform that is expected to be high quality in the future finds it less costly to win the

dominant position today. Such expectation decreases the incentive of the platform’s

competitors to fight aggressively and win the focal position today, as the competitors

do not expect to maintain the focal position in the future.

7 Conclusions

In platform competition, offering the highest-quality product may not be enough to

dominate the market. When there are network externalities, a platform’s success de-

pends not only on quality but also on consumers’ beliefs that other consumers will

join it. In a static model, a focal platform that has such a beliefs advantage may dom-

inate the market despite offering lower quality; the result is an inefficient equilibrium.

We ask whether this inefficiency can be eliminated in a dynamic game with a long

time horizon.

In a model with long but finite time horizon we find that, indeed, the better
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platform wins and the efficient outcome is achieved when the future matters. More

specifically, a higher-quality entrant can overcome the incumbent’s network effect ad-

vantage. The future matters when both the time horizon is long and the discount

factor is high. But if the discount factor is low, platforms are less concerned about the

future and so the competition more nearly resembles a static game; in this case, ineffi-

ciency may persist even for a time horizon extended to infinity. We conclude that for a

finite horizon social welfare is (weakly) increasing in the extent to which platforms are

forward-looking, because forward orientation makes it more likely that consumers will

be served by the higher-quality platform. Intuitively, a high-quality platform has more

to gain by being focal in the game’s final period than does the low-quality platform,

which means that it will have more incentive to compete aggressively in early periods

toward the end of capturing (or retaining) the focal position.

Once we modify the model to capture more realistic features, we find new sources

of inefficiency even if the discount factor is high. A finite time horizon entails that

platforms know when the last period occurs; if that is not known, then it is better to

model it as an infinite horizon. Markov equilibria in the infinite game replicate those

in the finite-horizon game extended to infinity. For high discount factors, however,

additional and inefficient Markov equilibria arise in which the lower-quality platform

dominates the market in all periods. These inefficient equilibria do not emerge in an

alternative model in which switching costs replace network effects, because then each

buyer’s decision does not relay on the beliefs regarding the decisions of other buyers.

We also consider a scenario where the platforms’ qualities change stochastically

from period to period, which allows each platform to win any period with some prob-

ability. Here, the more the platforms are forward looking the less likely it is that even

a high-quality platform will overcome its nonfocal position. This is because, if one

platform is of higher quality on average than the other, then dynamic considerations

give it more incentive (than in a static setting) to capture the market or to main-

tain its focal position, even if in the current realization it has lower quality. At the

extreme, it is possible for a focal platform with higher quality realization to lose its

dominance — provided that platforms are sufficiently forward looking. This finding

indicates that, when qualities are stochastic, social welfare may decline as platforms

become less myopic.

Our paper considers homogeneous consumers, which raises the question of how

these results might be affected by the presence of heterogeneous consumers. When

consumers differ in their valuations for different platforms, a focal position becomes
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less important for consumers. Armstrong (2006), for example, considers a continuum

of consumers that differ in their preferences for two competing platforms. He shows

that if the two platforms are sufficiently horizontally differentiated then for given

platforms’ prices, there is a unique allocation of consumers, such that each platform

has a positive market share. Jullien and Pavan (2014) reach the same conclusion

assuming that there is enough dispersion in beliefs about platforms’ ability to attract

consumers. Halaburda and Yehezkel (2016) show that the qualitative futures of focality

follows to an extension with loyal and non-loyal consumers. Yet, the importance of

focality is decreasing in the extent to which consumers are loyal to a specific platform.

Applying the intuition behind these three papers, it is reasonable to expect that

increasing consumer heterogeneity reduces the effect of focality on platform profits;

hence platforms will be less inclined, in that case, to compete in the current period so

as to secure a future focal position.

Of course, real-life consumers are heterogeneous. Nevertheless, our motivating

examples reveal that, in many markets for platforms, an important role is played by

consumers’ coordination problems and by platform focality. As this paper addresses

the effect of dynamic considerations on the focal position of platforms, our assumption

of homogeneous consumers provides us with a tractable model for determining the net

effect of that market position. Moreover we show in the online appendix that our key

finding that inefficient equilibria where the same platform wins the market for any

history can be extended to cases with heterogeneous demand.

Our model also abstracts both from the presence of an installed base. Many mar-

kets with network effects are influenced by this factor, which constitute an additional

force capable of driving excess inertia and resulting in an equilibrium where the lower-

quality platform dominates for extended periods. Nonetheless, we abstract from in-

stalled base so that we can highlight the role of coordination problem as a driving force

of excess inertia. While any market that exhibits network effects is affected not only

by customer expectations but also by installed base, those markets are not all affected

to the same extent. In the market for video-game consoles, for example, excess inertia

is indeed likely driven by consumer expectations. New generations of the platforms

are clearly distinguished from the previous ones by technological jumps, and backward

compatibility seldom has limited appeal. In other markets, such as smartphones and

computer operating systems, an installed base may play a more important role. These

differences may explain the more frequent leadership changes observed in the market

for video-game consoles compared with the market for computer operating systems.
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Even so, expectations and thus focality affect the market dynamics for the latter types

of environments, too. We have demonstrated that, independently of other factors, it

may lead to excess inertia and hence to reduced social welfare.
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Figure 1: Active platform in subgame perfect equilibrium when T →∞
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Figure 2: Equilibrium configuration
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Figure 3: Equilibrium configuration with switching costs
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Figure 4: Effect of δ on Q̄A and Q̄B when F (0) < 1/4
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Appendix

Proof of Lemma 1

Let Πf
i (T ) be the total discounted profit of platform i when platform f is focal at date

t = 1 and there are T periods. And let pfi (t) be the price set by platform i in period t

when platform f is focal during this period.

To win in t = 1, the focal platform A needs to set pAA(1) ≤ pAB(1) + qA − qB + β,

and set such pAA(1) that would force pAB(1) ≤ −δΠB
B(T − 1). That is, platform A wins

when it sets

pAA(1) ≤ pAB(1) + qA − qB + β = −δΠB
B(T − 1) + qA − qB + β,

in which case it earns

ΠA
A(T | A wins in t = 1) = qA − qB + β − δΠB

B(T − 1) + δΠA
A(T − 1). (6)

Notice that calculated in such a way the profit under the condition of winning may be

negative. Then, the optimal action is to cede the market and earn no profit. Therefore,

the profit from unconditionally optimal actions is Πf
i (T ) = max{Πf

i (T | i wins in t =

1), 0}. Using similar logic,

ΠA
B(T | B wins in t = 1) = qB − qA − β − δΠA

A(T − 1) + δΠB
B(T − 1)

= −ΠA
A(T | A wins in t = 1). (7)

Let Π̂f
i (T ) ≡ Πf

i (T | i wins in t = 1). Then Πf
i (T ) = max{Π̂f

i , δΠ
j
i (T −1)}. Notice

that Πf
i (T ) is bounded from below by 0, while Π̂f

i (T ) is not.

Suppose that Π̂i
i(k) > 0 for both i = A, B and k = 1, . . . , T − 1. Then from (6) we

obtain26

Π̂i
i(T ) = qi − qj + β − δΠ̂j

j(T − 1) + δΠ̂i
i(T − 1)

= (qi − qj)
T∑
k=1

(2δ)k−1 + β = (qi − qj)
1− (2δ)T

1− 2δ
+ β. (8)

26This follows from applying the same formulas recursively in

Π̂i
i(T − 1)− Π̂j

j(T − 1) = 2(qi − qj) + 2δ[Π̂i
i(T − 2)− Π̂j

j(T − 2)] = 2(qi − qj)
T−1∑
k=1

(2δ)k−1 .
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The fraction 1−(2δ)T

1−2δ
is positive and increasing with T . Therefore, Π̂i

i(T ) is also

monotonic. When qi− qj > 0, then Π̂i
i(T ) is positive and increasing. Conversely, when

qi − qj < 0 then Π̂i
i(T ) is decreasing and when qi − qj < −β 1−2δ

1−(2δ)T
, it may even be

negative.27 And once it is negative, it stays negative for all larger T .

Now, suppose (qi − qj)1−(2δ)T

1−2δ
+ β < 0. By the monotonic properties of 1−(2δ)T

1−2δ
, it

may only happen for qi < qj, and there exists Ti ≤ T such that (qi−qj)1−(2δ)Ti

1−2δ
+β < 0

and either (qi− qj)1−(2δ)Ti−1

1−2δ
+β > 0 or qi− qj +β < 0. In the latter case, Ti = 1. That

is, Ti is the shortest time horizon for which it is not worth capturing the market. For

time horizon Ti and shorter, Π̂i
i(T ) for i = A,B can be calculated using (8) — but not

for longer horizons.

In what follows we make use of the following intermediate result:

Intermediate claim: If Π̂i
i(T ) < 0 then, for all T ′ > T, Π̂i

i(T
′) < 0.

Proof of the intermediate claim. Suppose Ti > 1. By definition of Ti, Π̂i
i(Ti−1) >

0 (and given by (8)), and

Π̂i
i(Ti) = qi − qj + β − δΠ̂j

j(Ti − 1) + δΠ̂i
i(Ti − 1) < 0. (9)

Now Π̂i
i(T ) for T > Ti can no longer be calculated using (8). We need to apply (7)

directly:

Π̂i
i(Ti + 1) = qi − qj + β − δΠj

j(Ti) + δΠi
i(Ti) = qi − qj + β − δΠ̂j

j(Ti)

since Πj
j(Ti) = Π̂j

j(Ti) and Πi
i(Ti) = 0.

By properties of (8), Π̂j
j(Ti) > Π̂j

j(Ti− 1). From Π̂i
i(Ti) < 0, we have δΠj

j(Ti− 1) >

qi−qj +β+δΠ̂i
i(Ti−1) > qi−qj +β. Thus δΠ̂j

j(Ti) > qi−qj +β and Π̂i
i(Ti+1) < 0 —

and so forth for each T > Ti.

This completes the proof of the intermediate claim. �

Thus, for T > Ti, Πi
i(T ) = 0. Moreover, Πj

j(T ) = Π̂j
j(T ) also can no longer be

27This also implies that one of the Πi
i(T ) must be positive. A negative Π̂i

i(T ) for some T implies

qi − qj < 0, and qj − qi > 0 implies Π̂j
j(T ) > 0 for all T .
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calculated using (8). Applying (7) directly:

Πj
j(Ti + 1) = qj − qi + β + δΠj

j(Ti),

Πj
j(Ti + 2) = qj − qi + β + δ(qj − qi + β) + δ2Πj

j(Ti).

More generally, for any T > Ti we have

Πj
j(T ) = (qj − qi + β)

T−Ti∑
t=1

δt−1 + δT−TiΠj
j(Ti)

= (qj − qi + β)
1− δT−Ti

1− δ
+ δT−Ti

(
(qj − qi)

1− (2δ)Ti

1− 2δ
+ β

)
.

Notice that for the case when Ti = 1, Πj
j(T ) reduces to (qj − qi + β)1−δT

1−d .

Now, using those properties of Πi
i(T ), for i = A,B, we can consider following cases.

(i) |qA − qB| < β 1−2δ
1−(2δ)T

Then both Π̂A
A(k) and Π̂B

B(k) are positive for all k = 1, . . . , T . Since platform A

is focal in t = 0 and Π̂A
A(T ) is positive, the platform never cedes the market and

its profit is ΠA
A(T ) = Π̂A

A(T ) = (qA − qB)1−(2δ)T

1−2δ
+ β (by (8)).

(ii a) qA − qB > β 1−2δ
1−(2δ)T

That is, (qB−qA)1−(2δ)T

1−2δ
+β < 0, and thus, by the arguments above, there exists

a T̂ = TB < T . This means that Π̂B
B(T ) < 0; that is, platform B would not find

it worthwhile to win the market even if it was focal, given A’s quality advantage.

Platform A wins the market, but the prices it charges and profit depend on TB,

as derived earlier:

ΠA
A(T ) = (qA − qB + β)

1− δT−TB
1− δ

+ δT−TB
(

(qA − qB)
1− (2δ)TB

1− 2δ
+ β

)
.

(ii b) qB − qA > β 1−2δ
1−(2δ)T

Now there exists a T̂ = TA < T . That is, Π̂A
A(T ) < 0; in other words, it is

not worthwhile for platform A to defend the market in t = 1, given the quality

advantage of platform B. Then platform B wins the market in t = 1, becomes

the focal platform and keeps the market for the rest of the time horizon. To win

the market, in t = 1, platform B sets pAB(1) = qB − q −A− β, while platform A

sets pAA(1) = 0. In the next period, platform B is the focal platform with quality

advantage and with T −1 period time horizon. Thus, the discounted total profit
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is as that of platform A in case (ii), with relabeling the platforms and length of

the time horizon. That is:

ΠA
B(T ) = qB − qA − β + δ

[
(qB − qA + β)

1− δT−1−TA

1− δ
+ δT−1−TA

(
(qA − qB)

1− (2δ)TA

1− 2δ
+ β

)]
= (qB − qA + β)

1− δT−TA
1− δ

+ δT−TA
(

(qB − qA)
1− (2δ)TA

1− 2δ
+ β

)
− 2β.

This completes the proof of Lemma 1.

Proof of Proposition 1

The proof follows immediately from extrapolating the outcome of Lemma 1 to T →∞.

Proof of Lemma 2

For an allocation where the platform i wins in both states to be an equilibrium, it

is both necessary and sufficient that V i
i =

qi−qj+β

1−δ ≥ δV j
i = δ

qi−qj+(2δ−1)β

1−δ ≥ 0 which

gives the condition. Moreover there is no other equilibrium where platform i wins in

both states because such an equilibrium requires that firm j prices are zero in both

states, implying unique best-reply prices for platform i.

This completes the proof of lemma 2.

Proof of Lemma 3

For an allocation where the focal platform wins in every state to be an equilibrium, it

is both necessary and sufficient that V A
A ≥ 0 and V B

B ≥ 0. Given our restriction that

a platform does not choose a price that would be unprofitable if it won the market,

the equilibrium is uniquely defined by the above conditions.

Proof of Proposition 2

The Lemma 1 result that the same platform wins in all periods (for constant quantities

qA and qB) holds for infinite game as well. Therefore, there are no other equilibria

than those in which either platform i or a focal platform always wins.

Under the condition of (i), Lemma 2 implies that the only equilibrium outcome is

one where platform B wins in both states and this equilibrium is unique. The condition

of (ii) rules out the possibility that platform B wins in both states, hence the result
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follows from our assumption that A is initially focal. Under the condition of (iii),

Lemmas 2 and 3 identify 3 equilibria: either the same platform wins in both states or

the focal platform wins in each states.

The following table summarizes the result:

(i) (ii) (iii)

qB − qA > β|1− 2δ| qB − qA < β(1− 2δ) β(1−2δ) < qB−qA < β(2δ−1)

δ < 1/2 qB−qA > β(1− 2δ) |qB − qA| < β(1− 2δ) ∅
|1−2δ| = 1−2δ B wins by Lem 2 and A wins by Lem 3,

or qA−qB > β(1− 2δ)

and A wins by Lem 2

δ > 1/2 qB−qA > β(1− 2δ) |qB − qA| < β|1− 2δ| because β(1− 2δ) < qB − qA
|1−2δ| = 2δ−1 B wins by Lem 2 and A wins by Lem 3, B wins by Lem 2,

> 1−2δ or qA−qB > β(1− 2δ) because qA − qB > β(1− 2δ)

and A wins by Lem 2 A wins by Lem 2,

because |qB − qA| < β|1− 2δ|
A wins by Lem 3

Proof of Proposition 3

Directly from the formulas for V A
A , V B

A , V B
B , V A

B , and conditions for Q̄A and Q̄B, we

obtain

Q̄A − Q̄B = 2β.

Moreover,

V A
A =

∫ Q̄A

−∞
(Q̄A − q)f(q) dq + δV B

A ,

V B
A =

∫ Q̄B

−∞
(Q̄B − q)f(q)dq + δV B

A =
1

1− δ

∫ Q̄B

−∞
(Q̄B − q)f(q) dq

and

V B
B =

∫ +∞

Q̄B

(q − Q̄B)f(q) dq + δV A
B ,

V A
B =

1

1− δ

∫ +∞

Q̄A

(q − Q̄A)f(q) dq.
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The optimality condition is then

Q̄A = β − δV B
B + δV A

B + δV A
A − δV B

A ,

which can be rewritten as

Q̄A = β + δφ(Q̄A), (10)

where

φ(Q̄A) =

∫ +∞

Q̄A

(q − Q̄A)f(q) dq +

∫ Q̄A

−∞

(
Q̄A − q

)
f(q) dq

−
∫ Q̄B

−∞
(Q̄B − q)f(q) dq −

∫ +∞

Q̄B

(q − Q̄B)f(q) dq.

Integrating by parts yields

φ(Q̄A) = −2β + 2

∫ Q̄A

Q̄A−2β

F (q)dq. (11)

Now we have

φ′(Q̄A) = 2
(
F (Q̄A)− F (Q̄A − 2β)

)
,

φ(−∞) = −2β,

φ(+∞) = 2β.

These properties imply that Q̄A > β+δφ(Q̄A) for Q̄A =∞ and that Q̄A < β+δφ(Q̄A)

for Q̄A = −∞. Hence there is a unique solution to Q̄A if Q̄A−β−δφ(Q̄A) is increasing

in Q̄A i.e. if δφ′(Q̄A) < 1. We observe that δφ′(Q̄A) < 1 when

2δmax
q

(
F (q)− F (q − 2β)

)
< 1.

In this case, the equilibrium is unique. This is the case for all δ and if 4βmaxq f(q) < 1.

Finally, notice that when evaluated at δ = 0, the solution to Q̄A = β + δφ(Q̄A) is

Q̄A = β.

This completes the proof of Proposition 3
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Proof of Proposition 4

Proof of part (i): Since Q̄A = β + δφ(Q̄A),

∂Q̄A

∂δ
=

φ(Q̄A)

1− δφ′(Q̄A)
.

From the proof of Proposition 3, if 4βf(µ) < 1 then 1− δφ′(Q̄A) > 0. To see that

φ(Q̄A) < 0 for all Q̄A ≤ β, suppose first that Q̄A < µ. Then

φ(Q̄A) = −2

∫ Q̄A

Q̄A−2β

(
1

2
− F (q)

)
dq < 0,

where the inequality follows because symmetric and unimodal distribution (SUD) im-

plies that for all Q < µ, F (Q) < 1/2. Next, consider µ < Q̄A ≤ β. Then:

φ(Q̄A) = −2

∫ µ−(Q̄A−µ)

Q̄A−2β

(
1

2
− F (q)

)
dq − 2

∫ µ+(Q̄A−µ)

µ−(Q̄A−µ)

(
1

2
− F (q)

)
dq < 0,

where the first term is negative because Q̄A > µ > 0 and SUD implies that F (µ −
(Q̄A − µ)) < F (µ) = 1

2
and the second term equals 0 because SUD implies that

F (µ + x) − 1
2

= 1
2
− F (µ − x). Since φ(Q̄A) < 0 we have ∂Q̄A

∂δ
< 0, and since

Q̄B = Q̄A − 2β it follows that ∂Q̄B

∂δ
< 0.

Next, Q̄A < 0 if

0 > β + δφ(0),

which holds for δ large if

−β > φ(0) = −2β
(
1− 2F (−2β)

)
+

∫ 0

−2β

(−2q)f(q) dq = −2β + 2

∫ 0

−2β

F (q) dq

or if

β > 2

∫ 0

−2β

F (q) dq.

This inequality holds for all β if F (0) < 1/4.

Proof of part (ii): Let F (Q;µ) denote the F (Q) given µ. We have:

∂Q̄A

∂µ
=

2
∫ Q̄A

Q̄A−2β

(∂F (Q;µ)
∂µ

)
dq

1− δφ′(Q̄A)
< 0,

where the inequality follows because SUD implies that F (q;µ) is decreasing in µ.
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Proof of part (iii): We have:

∂Q̄A

∂β
=

1− 2δ + 4δF (Q̄A − 2β)

1− δφ′(Q̄A)
> 0,

where the inequity follows because 1 − 2δ + 4δF (Q̄A − 2β) > 0 if δ < 1
2
. Since

Q̄B = Q̄A − 2β, it follows that

∂Q̄B

∂β
= −

[
1 + δ(2− 4F (Q̄A))

1− 2δ(F (Q̄A)− F (Q̄A − 2β))

]
< 0,

where the inequality follows because the numerator in brackets is positive when δ <
1
2

(since F (Q̄A) < 1) and because the denominator is positive when δ < 1
2

(since

F (Q̄A)− F (Q̄A − 2β) < 1). When F (0) < 1/4 and δ = 1, we have

∂Q̄A

∂β

∣∣∣∣
δ=1

=
−1 + 4F (Q̄B)

1− φ′(Q̄A)
<
−1 + 41

4

1− φ′(Q̄A)
= 0,

where the inequality follows because F (Q̄B) < F (0) < 1/4.

This completes the proof of Proposition 4.

Proof of Proposition 5

Solving for WA and WB, we obtain

WA = β +
(1− δ + δF (Q̄B)

∫∞
Q̄A qf(q) dq + δ(1− F (Q̄A))

∫∞
Q̄B qf(q) dq

1− δF (Q̄A) + δF (Q̄B)
,

WB = β +
δF (Q̄B)

∫∞
Q̄A qf(q) dq + (1− δF (Q̄A))

∫∞
Q̄B qf(q) dq

1− δF (Q̄A) + δF (Q̄B)
.

First consider WA. Solving the derivative of WA with respect to δ and then

evaluating at δ = 0 yields

∂WA

∂δ

∣∣∣∣
δ=0

= (1− F (Q̄A))

(∫ ∞
Q̄B

qf(q) dq −
∫ ∞
Q̄A

qf(q) dq

)
− f(Q̄A)Q̄A∂Q̄

A

∂δ

= (1− F (β))

∫ β

−β
qf(q) dq − f(β)β

∂Q̄A

∂δ
,

where the equality follows from the substitutions Q̄A = β and Q̄B = −β. By our

assumption of SUD,
∫ β
−β qf(q) dq ≥ 0 (proof available upon request), implying the the

first term is nonnegative. Since Proposition 4 shows that Q̄A is decreasing in δ, the
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second term is positive implying that ∂WA

∂δ
|δ=0 > 0.

Next consider WB. Solving the derivative of WB with respect to δ and then

evaluating at δ = 0, we have

∂WB

∂δ

∣∣∣∣
δ=0

= −F (Q̄B)

(∫ ∞
Q̄B

qf(q) dq −
∫ ∞
Q̄A

qf(q) dq

)
− f(Q̄B)Q̄B ∂Q̄

B

∂δ

= −F (−β)

∫ β

−β
qf(q) dq + f(−β)β

∂Q̄B

∂δ
,

where the equality follows from the substitutions Q̄B = −β and Q̄A = β. Again by

our assumption of SUD,
∫ β
−β qf(q)dq ≥ 0, implying the the first term is nonpositive.

Since Proposition 4 shows that Q̄B is decreasing in δ, the second term is also negative

implying that ∂WB

∂δ
|δ=0 < 0.

Now we consider the gap WB −WA:

WB −WA =
(1− δ)(

∫∞
Q̄B qf(q)dq −

∫∞
Q̄A qf(q)dq)

1− δF (Q̄A) + δF (Q̄B)
=

(1− δ)
1− δF (Q̄A) + δF (Q̄B)

M(Q̄A),

where

M(Q̄A) =

∫ Q̄A

Q̄A−2β

qf(q)dq.

Since 1 ≥ F (q) ≥ 0 and 0 ≤ δ ≤ 1, it follows that sgn(WB −WA) = sgn(M(Q̄A)).

Consider first δ = 0 such that Q̄A = β. Then, SUD implies M(β) =
∫ β
−β qf(q)dq ≥

0 and WB −WA ≥ 0. Second, consider δ = 1. Then WB −WA = 0
1
M(Q̄A), where

M(Q̄A) is finite; hence WB −WA = 0.

Next, we turn to 1 > δ′. We distinguish between two case, F (0) < 1/4 and

F (0) > 1/4, which will be analyzed in turn.

Case 1: F (0) < 1/4. In this case, Proposition 4 implies that there is a cutoff, δ′′

where δ′′ is the solution to Q̄A = 0, such that Q̄A > 0 for δ ∈ [0, δ′′) and Q̄A < 0 for

δ ∈ (δ′′, 1]. For all δ ∈ [δ′′, 1], M(Q̄A) < 0 because Q < 0 for all Q ∈ [Q̄A − 2β, Q̄A].

For δ ∈ [0, δ′′), M(Q̄A) is decreasing with δ. To see why:

∂M(Q̄A)

∂δ
= [Q̄Af(Q̄A)− (Q̄A − 2β)f(Q̄A − 2β)]

∂Q̄A

∂δ
.

The term inside brackets is positive for all δ ∈ [0, δ′′] because Q̄A ≥ 0 and f(q) > 0

and because Q̄A ≤ β implies that Q̄A−2β ≤ β−2β = −β < 0. Since Q̄A is decreasing

in δ, we have ∂M(Q̄A)
∂δ

< 0.

To summarize, M(Q̄A) ≥ 0 for δ = 0, M(Q̄A) is decreasing with δ for δ ∈ [0, δ′′),
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and M(Q̄A) < 0 for δ ∈ (δ′′, 1]. Hence there is a unique cutoff δ′ < δ′′ such that

M(Q̄A) > 0 for δ ∈ [0, δ′) and M(Q̄A) < 0 for δ ∈ (δ′, 1]. Since sgn(WB −WA) =

sgnM(Q̄A), this implies that WB > WA for δ ∈ [0, δ′) and WB < WA for δ ∈ (δ′, 1).

Case 2: F (0) > 1/4. In this case, Q̄A > 0 at δ = 1. Notice that M(Q̄A) is

decreasing with δ for all δ ∈ [0, 1] (the proof that ∂M(Q̄A)
∂δ

< 0 requires only that

Q̄A > 0 which holds in Case 2 for all δ ∈ [0, 1]). However, unlike Case 1, now M(Q̄A)

at δ = 1 can be either positive or negative. It will be positive if Q̄A at δ = 1 is

sufficiently higher than 0, in which case M(Q̄A) > 0 for all δ ∈ [0, 1] and so WB > WA

for all δ ∈ [0, 1). In this case δ′ = 1. Note that M(Q̄A) can be negative at δ = 1 if

Q̄A at δ = 1 is sufficiently close to 0, in which case at δ = 1; then M(Q̄A) < 0 and so

WB > WA for δ ∈ [0, δ′) and WB < WA for δ ∈ (δ′, 1), as in Case 1.

Remark on uniform distribution. If the distribution is uniform, then M(Q̄A) = 0

at δ = 0 and M(Q̄A) < 0 otherwise. This implies that WA > WB for all δ ∈ (0, 1) and

WA = WB otherwise.

This completes the proof of Proposition 5.
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1 Heterogeneous consumers

In this appendix, we extend our model to show:

i) how to extend the concept of focal platform to the case of heterogenous con-

sumers.

ii) that a Markov equilibrium may exist where a low-quality platform A stays or

becomes focal in all states while platform B also obtains positive profits. Hence,

platform B has an incentive to remain active in the market even though it does

not win the focal position.

1.1 Static analysis

Let us assume that the market stays covered but the perception of the quality dif-

ferential between the two platforms varies across consumers. More precisely, consider

our base model and suppose that the quality differential q = qB − qA is heteroge-

nous, distributed in the population (of size 1) according to a distribution F on a

support
(
q, q̄
)

which may be infinite. Then if all consumers with quality differen-

tial below q̂ join platform A, the relative gain in value of joining platform B is

q + β (1− F (q̂)) − βF (q̂) . Thus, at any period, possible allocations of consumers

1



are the solutions to DA = F (q̂) , where DA is the demand for platform A and1

q̂ + β (1− 2F (q̂)) = pB − pA,

or q̂ = q̄ ≤ pB − pA + β,

or q̂ = q ≥ pB − pA − β.

With a general distribution F , for some range of prices, there may be multiple

allocations of consumers that constitute consumers’ best responses to the prices and

strategies of other consumers (henceforth “outcomes”). The concept of focality then

implies that consumers coordinate on the outcome that yields the largest demand for

the focal platform.

We may then extend our analysis by assuming that in any period t the platform

that sells the most in the current period becomes focal in the next period.

To illustrate how focality shapes demand, suppose that the distribution of q has

density f (q) where f is continuous unimodal with a peak at µ > 0. The slope of

q + β (1− 2F (q)) is 1 − 2βf (q). Assume network effects are strong enough that

2f (µ) β > 1. Then the function q + β (1− 2F (q)) is not monotonic. More precisely,

defining q1 and q2 as the smallest and the largest roots of

1 = 2βf (qi) ,

the function q + β (1− 2F (q)) is

increasing on q < q1,

decreasing on q1 < q < q2,

increasing on q > q2.

We conclude that if ∆2 = q2 +β (1− 2F (q2)) < pB − pA < ∆1 = q1 +β (1− 2F (q1)),

there are three possible outcomes for the allocation of consumers. This is illustrated in

Figure 1 which shows the function for a normal distribution and µ = 1. On the range

(∆2,∆1), the intermediate outcome is unstable. Then focality selects the allocation

with q̂ > q2 if platform A is focal, and the allocation with q̂ < q1 if platform B is focal.

The figure shows the respective marginal consumers.

Notice that when platform A is focal (thick red curve), there is a discontinuous

1Akerlof, Holden and Rayo (2018) analyze a similar demand system.

2



Figure 1: the function q + β (1− 2F (q))

jump in its demand at pB − pA = ∆2. Moreover, provided that β is large or µ is small,

the value of ∆2 is negative so that despite lower quality on average, a focal platform

A may sell more that its competitor at higher prices, a feature that was key in our

analysis.

1.2 Illustration

We now use an example to illustrate how the static and the dynamic analyses extend

to heterogeneous consumers.

Consider a distribution F on (µ − 1, µ + 1) that consists of a constant density

f < 1/2 and a mass point 1− 2f at µ, where we assume that 2βf < 1.

This is a limit case of a unimodal distribution when the peak goes to infinity. Then

q + β (1− 2F (q)) is increasing linearly except for a downward discontinuity at µ :

q + β (1− 2F (q)) = q + β (1− 2f) + 2βf (µ− q) if µ− 1 ≤ q < µ,

q + β (1− 2F (q)) = q − β (1− 2f) + 2βf (µ− q) if µ < q ≤ µ+ 1.

Let us first consider a one-period game where platform A is focal. Firms set prices
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pA and pB, and consumers with q < qA join the focal platform, where:

pB − pA =qA + β (1− 2f) + 2βf
(
µ− qA

)
if µ− 1 + β < pB − pA < µ− β (1− 2f)),

qA =µ− 1 if pB − pA < min (µ− 1 + β, µ− β (1− 2f))

pB − pA =qA − β (1− 2f) + 2βf
(
µ− qA

)
if µ− β (1− 2f) < pB − pA < µ+ 1− β

qA =µ+ 1 if pB − pA > max (µ+ 1− β, µ+ β(1− 2f)) .

Let us consider a candidate outcome with DA = F
(
q̂A
)
, µ < q̂A < µ+ 1 and p̂AB−

p̂AA = q̂A−β (1− 2f)+2βf
(
µ− q̂A

)
. Consider the choice of price by platform A. Hold-

ing the price pB constant, choosing pA in the range
(
p̂AB − µ− 1 + β, p̂AB − µ+ β (1− 2f)

)
amounts to choosing q̂ in the range (µ, µ+ 1) with the profit

ΠA =
(
p̂AB − q̂ + β (1− 2f)− 2βf (µ− q̂)

)
(1− f + f (q̂ − µ)) ,

which is concave. The first order condition for the price of A is then

− (1− β2f)
(
1− f + f

(
q̂A − µ

))
+ p̂AAf = 0.

Similarly, given p̂AA, choosing a price pB in the range
(
p̂AA + µ− β (1− 2f) , p̂AA + µ+ 1− β

)
yields concave profit

ΠB =
(
p̂AA + q̂ − β (1− 2f) + 2βf (µ− q̂)

)
f (1 + µ− q̂)

leading to the first-order condition

(1− β2f) f
(
1 + µ− q̂A

)
− p̂ABf = 0.

Adding the two first-order conditions together yields

− (1− β2f)
(
1− f + f

(
q̂A − µ

))
+ (1− β2f) f

(
1 + µ− q̂A

)
+
(
p̂AA − p̂AB

)
f = 0.

Using p̂AB − p̂AA = q̂A − β (1− 2f) + 2βf
(
µ− q̂A

)
, we obtain

q̂A = µ+
(1− 2βf) (2f − 1) + β (1− 2f) f − fµ

3 (1− 2βf) f
, (1)
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which lies between µ and µ+ 1 if

−f − 1 + 3βf

f
< µ <

(1− 2f) (3fβ − 1)

f
.

This holds for a small µ if
f + 1

3
> βf >

1

3
. (2)

Prices are then

p̂AA = (1− 2βf)
F
(
q̂A
)

f
=

2− f (1 + 3β + µ)

3f
> 0, (3)

p̂AB = (1− β2f)
1− F

(
q̂A
)

f
=

1 + f (1− 3β + µ)

3f
> 0, (4)

where the inequalities follow because whenever µ < q̂A < µ+ 1, then 1 > F
(
q̂A
)
> 0.

Given these prices, platform A cannot profit from reducing the price below p̂AB−µ−1+β

as this would not raise demand above 1. Platform A cannot profit from increasing the

price above p̂AB − µ + β(1 − 2f), because doing so would result in a discontinuous

decrease in platform A’s demand.2

Consider now platform B. It has no profitable deviation for prices above p̂A + µ−
β (1− 2f), because profit is concave on the relevant range. Setting pB < p̂A + µ −
β (1− 2f) is not profitable if p̂A + µ− β (1− 2f) < 0, which holds for µ small if

2− f
6 (1− f)

< βf . (5)

As 2−f
6(1−f) >

1
3
, we conclude that this an equilibrium for µ small if

f + 1

3
> βf >

2− f
6 (1− f)

. (6)

Since f < 1
2
, (6) holds only when β > 1, which we assume in what follows.

To conclude, we find that when the conditions (6), f < 1
2
, β > 1 and 1 > 2βf

hold, there is a static equilibrium in which platform A is focal. Prices are given by

(3) and (4), and both platforms gain a positive market share. Notice that the range

of parameters satisfying these conditions is nonempty.

2The optimal deviation on this range can be shown to be at p̂AB − µ+ β(1− 2f) which can not be
optimal as pA slightly below this level induces an upward jump in demand.
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1.3 Dynamic analysis

Still assuming a uniform distribution with a mass-point, we can now extend our analy-

sis to a dynamic case. In particular the next result shows that with an infinite horizon

and patient firms, there exists a Markov equilibrium where platform A stays focal in

any state. In this equilibrium, when platform A is focal in a certain period, both

platforms set the static Nash prices defined in the previous section:

pAA = p̂AA, pAB = p̂AB, and qA = q̂A.

And both platforms gain positive market share (i.e., µ − 1 < q̂A < µ + 1). When

platform B is focal in a certain period, then in equilibrium

pBA = −µ− β (1− 2f) , pBB = 0, and q̂B = µ+ 1.

That is, the nonfocal platform A sets a negative price (recall that f < 1
2
), dominates

the entire market, and becomes focal in the next period.

Notice that this equilibrium is qualitatively similar to the equilibrium in our base

model. In both cases, platforms set the static prices when A is focal, and platform A

sets a negative price when it is nonfocal. The main difference is that here, the losing

platform B has an incentive to remain active. When it is nonfocal, platform B gains

positive market share. When it is focal, platform B earns zero profits in the current

period — followed by positive profits in all future periods — making it worthwhile for

platform B to remain active.

The Markov equilibrium is characterized by pji , D
j
i , q

j and V j
i , where i is the

platform and j the focal platform. The equilibrium profit is

V j
i = pjiD

j
i + δV A

i ,

where Dj
A = 1 −Dj

B = F (qj). The equilibrium values are V j
A = pjAF (qj) + δV A

A and

V j
B = pjB (1− F (qj)) + δV A

B .

To solve for this equilibrium, suppose first that platform A is focal. Platform B

plays its short-term best-response because it expects that even if it gains the focal

position, in the next period it will earn zero profits. Platform A plays its short-term

best response as well, because doing so is enough to maintain its focal position. We

therefore conclude that when platform A is focal, the equilibrium prices are the same
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as in the static case. The value functions are

V A
A =

p̂AAF
(
q̂A
)

1− δ
> 0 and V A

B =
p̂AB
(
1− F

(
q̂A
))

1− δ
> 0 .

Notice that static Nash equilibrium conditions ensure that firm i would not deviate

from such an equilibrium when A is focal if V A
i ≥ V B

i , because the deviation profit

gain would be smaller than in a static game. We will see below that this is the case

for both platforms.

Suppose now that platform B is focal. By our assumptions that 2fβ < 1 and

β > 1, we have µ + β(1 − 2f) > µ + 1 − β and µ − 1 + β > µ − β(1 − 2f). This

implies that at the equilibrium prices pBA = −µ − β (1− 2f) and pBB = 0, pB − pA >
max (µ+ 1− β, µ+ β(1− 2f)), and therefore q̂A = 1 + µ and platform A dominates

the market. Platform B would not deviate because winning the market in the current

period would require a negative price and would delay by one period the time where

it can sell at positive prices. Platform B cannot profitably deviate to a higher price,

because it will not gain positive market share. Firm A could deviate by setting non-

negative price and lose focality, but the profit would be δV B
A which is less than V B

A

and thus not profitable if V B
A > 0. Thus this is an equilibrium if

µ+ β (1− 2f) < δ
p̂AAF

(
q̂A
)

1− δ
⇐⇒ µ+ β (1− 2f)

µ+ β (1− 2f) + p̂AAF (q̂A)
< δ < 1,

which holds for large δ.

This shows that excess inertia equilibria — where despite lower quality one platform

would price aggressively and win back its focal position had it lost it — are robust to

demand heterogeneity. It also shows that in this situation the nonfocal platform can

survive with a positive market share.

We conclude this Appendix by pointing out that a similar reasoning would show

that by contrast, for high discount factors, a Markov equilibrium where in any state the

focal platform stays focal does not exist with demand heterogeneity. This confirms that

this type of equilibrium should be expected only if firms are not too forward-looking.
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2 Network Effects and Switching Costs

This extension shows that when platforms can price-discriminate between existing and

switching consumers, the results of Section 4 (existence of Markov perfect equilibria

under infinite time horizon where the same platform always wins, even if it is of lower

quality) also hold in a setting with both network effects and switching costs. Moreover,

this section highlights how network effects and switching costs differently affect the

results.

Consider our base model and suppose that consumers experience both network

effects, β, and switching costs, s. We maintain our assumptions that qA > s ≥ 0

and β ≥ qB − qA ≥ 0. We allow platforms to price discriminate between existing

and new consumers. And we explore the existence of Markov equilibria where on the

equilibrium path all consumers buy from the same firm (which becomes focal). For

consistency with our base model, we distinguish between the equilibrium and out-of-

equilibrium prices. Consider the out-of-equilibrium scenario in which all consumers

are on a focal platform i, and there is one consumer on platform j. Define pii as the

price of the focal platform i to consumers on platform i, and p̃ii as the price of the

focal platform i to the consumer on platform j, if such a consumer exists. Likewise,

define pij as the price of the nonfocal platform j to consumers on the focal platform i,

and p̃ij as the price of the nonfocal platform j to the consumer on platform j, if such

a consumer exists. Notice that pij has the same interpretation as in our base model,

while p̃ij is the out-of-equilibrium price in the case where only one consumer switched.3

In what follows, we say that a Markov equilibrium is consistent with focality if at

any date (a) the platform that wins the market becomes focal next period, and (b)

the nonfocal platform cannot win the market if holding constant the Markov strate-

gies of the platforms, there exists another outcome of the (dynamic) subgame where

consumers (strictly) prefer to buy from the focal platform. Rephrasing, it means that

consumers may buy from the nonfocal platform in equilibrium only if there is no

other outcome where consumers prefer to buy from the focal platform. And thus, a

nonfocal platform, in order to be active in the market needs to price in such a way

that it eliminates all alternative outcomes in which consumers prefer to buy from the

focal platform. This is a relatively strong notion of focality which aims at showing

that even with patient firms, inefficiencies may prevail in the long-run due to network

3As one consumer is of mass 0, we assume that other consumers are not affected when a single
consumer deviates from equilibrium path, but for consistency of prices we assume that each platform
optimizes the prices set for this deviating consumer (as it would be the case with a finite but large
set of consumers).
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externalities and incumbency advantage.

We are interested in establishing the existence of an equilibrium where platform i

wins the market in all periods irrespective of whether it is focal or not, and would

find it optimal to win back a consumer in the event the consumer had switched to the

competing platform.

Consider an equilibrium in which platform A wins when it is focal and when it

is not. In this equilibrium, platform B charges pBB = pAB = 0 because as in our base

model, platform B cannot hold on to consumers at time t+ 1 even if it were to attract

them at time t. As for platform A, it needs to set prices that satisfy

qA − pAA + β + δUA ≥ qB − pAB − s+ δ(qA − p̃AA − s+ β + δUA), (7)

where

U i =
qi − pii + β

1− δ
.

The left-hand side is the consumer’s utility from staying in platform A, given that

all other consumers stay with A. If a consumer switches to B, the consumer expects to

be alone in the current period. Then, in the next period, the focal platform A charges

this consumer p̃AA which convinces this consumer to switch back to A. Then, once back

on A, the consumer stays with A in all future periods.

To ensure that these expectations are rational, a focal platform A should be able

to attract the deviating consumer back from the nonfocal platform B. That is:

qA − p̃AA + β − s+ δUA ≥ qB − p̃AB + δ(qA − p̃AA − s+ β + δUA), (8)

and p̃AB = 0. That is, if a consumer switched in period t−1 from a focal platform A to

B, while A remains focal at the beginning of period t, platform B cannot hold on to this

consumer; even at p̃AB = 0, the consumer prefers to switch back to the focal platform A,

over waiting another period and only then switch. Notice that platform A’s profit from

attracting back this marginal consumer is negligible, because of our assumption of price

discrimination between existing and switching consumers and because consumers have

continuum mass. Yet, to ensure that beliefs are consistent, the equilibrium requires

that this marginal change in platform A’s profit should be positive.

Suppose now that platform A is nonfocal. A consumer joins the nonfocal plat-

form A if it is worthwhile to do so given the beliefs that all other consumers stay with

platform B in the current period, and that this consumer will switch back in the next
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period to the focal platform B:

qA − pBA − s+ δ(qB − p̃BB + β − s+ δUB) ≥ qB − pBB + β + δUB. (9)

Notice that such a one-period deviation is the least beneficial deviation. Whatever

benefit the consumer gets from being on A is short-lived and she quickly needs to incur

another switching cost. Note that if it is beneficial for a customer to deviate for one

period, it will be even more beneficial to deviate and stay with A for longer. That

is, we demand from the nonfocal platform to be so attractive that users still want to

incur switching costs even if they can benefit only for one period. We impose such a

strong condition in the spirit of part (b) of the focality definition as stated above. If

condition (9) holds there does not exist any equilibrium in which consumers want to

stay with B this period, even if they expect other consumers to stay with B.

Finally, consider the out-of-equilibrium outcome in which platform B is focal at

period t, and a consumer switched to A at period t− 1 and is alone in A. Notice that

when conditions (1) to (3) hold, the deviating consumer knows that all customers of

platform B are switching to platform A and will stay there forever. Hence despite B

being focal, this consumer stays with A if it is worthwhile to do so given the beliefs that

everybody else joins platform A (this is in the spirit of divide and conquer strategies).

We therefore need that

qA − p̃BA + β + δUA ≥ qB − p̃BB − s+ δ(qA − p̃AA + β − s+ δUA), (10)

and p̃BB = 0.

Binding conditions (7) - (10) along with the 4 conditions pBB = pAB = p̃BB = p̃AB = 0

define the 8 equilibrium prices. Solving, we have

pAA = β − (qB − qA) + s(1− δ), p̃AA = β − (qB − qA)− s(1 + δ), (11)

pBA = −β − (qB − qA)− s(1 + δ), p̃BA = β − (qB − qA) + s(1− δ).

This equilibrium exists when the following conditions hold. First, a focal plat-

form A earns positive value from wining the market; that is, A profitably wins the

competition described by equation (7), i.e.,

V A
A (s) ≡ pAA

1− δ
=
β − (qB − qA)

1− δ
+ s ≥ 0. (12)
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Second, a focal platform A earns positive profit from attracting a consumer that

moved to a nonfocal B in the previous period, and then keeps this consumer in all

future periods; that is, A profitably wins the competition described by equation (8):

p̃AA +
δ

1− δ
pAA =

β − (qB − qA)

1− δ
− s ≥ 0. (13)

Third, a nonfocal platform A earns positive profit from winning the market at

period t, and then becoming focal in period t + 1 onward; that is, A profitably wins

the competition described by equation (9):

V B
A (s) ≡ pBA + δV A

A =
β(2δ − 1)− (qB − qA)

1− δ
− s ≥ 0. (14)

Fourth, a nonfocal A earns positive profit from keeping a consumer that switched

from B to A in the previous period, given that A becomes focal in the next period

onwards; that is, A profitably wins the competition described by equation (10):

p̃BA +
δ

1− δ
pAA =

β − (qB − qA)

1− δ
+ s ≥ 0. (15)

Notice that as s → 0, then V A
A (s) and V B

A (s) converge to V A
A and V B

A in our base

model without switching costs. Also, as in our base model, the binding condition from

among (12), (13), (14) and (15) is V B
A (s) ≥ 0. Hence, such an equilibrium holds iff

V B
A (s) ≥ 0 ⇐⇒ qB − qA < β(2δ − 1)− s(1− δ). (16)

Recall that in our base model with only network effects, when qB > qA, this

inefficient equilibrium exists iff δ > 1
2

and qB − qA < β(2δ − 1) (cf. Section 4 in our

model). Yet, this equilibrium vanishes in a model with only switching costs (Section

5 in our model). Condition (16), which takes into account both network effects and

switching costs, is a combination of these two polar cases. As s → 0, condition (16)

converges to qB − qA < β(2δ − 1). Moreover, as s increases, this condition becomes

tighter, implying that the region in which platform A wins whether it’s focal or not

shrinks. This result is consistent with the findings of our paper — that the inefficient

equilibrium emerges at high values of δ because of network effects and not switching

costs. In a model with both β > 0 and s > 0, β has a positive effect on condition (16)

while s has a negative effect.

Consider now an equilibrium in which platform B wins whether it’s focal or not.

The analysis is symmetric to the analysis above, and we find that such an equilibrium
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exists iff

V A
B (s) ≥ 0 ⇐⇒ qB − qA > β(1− 2δ) + s(1− δ). (17)

Recall that in our base model with only network effects (Section 4), this equilibrium

holds when qB − qA > β(1 − 2δ). When the model only has switching costs (Section

5), this equilibrium holds when qB − qA > s(1 − δ). Condition (17) is a combination

of these two conditions. Intuitively, switching costs make it more difficult for a high-

quality but a nonfocal platform to win the market. This result is again consistent with

the findings of our base model.

3 Stochastic Qualities with a Uniform Distribu-

tion: Welfare and Consumer Surplus

This appendix extends Section 6. We study how δ affects welfare and consumers’ sur-

plus. The following corollary shows that when the stochastic qualities are distributed

according to a uniform distribution, average per-period social welfare is lower when

δ = 1 than when δ = 0. In contrast, consumer surplus is increasing with δ at least

when µ is sufficiently close to 0.

Let S̄i (i = A,B) denote the expected consumer surplus when platform i is focal

in period t, and let Si = (1 − δ)S̄i denote the average per-period expected consumer

surplus. Recalling the definitions of WA and WB in the paper, we obtain the following

result:

Corollary 1 (Welfare and consumer surplus under uniform distribution) Let

Q be uniformly distributed along the interval [µ − σ, µ + σ], and suppose that σ > 2β

and 0 ≥ µ < σ + 2β
2

σ
− 3β. Then WA > WB for all 0 < δ < 1 and SA > SB for all

0 ≤ δ < 1. Moreover, WA|δ=0 = WB|δ=0 > WA|δ=1 = WB|δ=1. Yet, SA and SB are

increasing with δ when µ→ 0.

Proof:

Substituting F (Q) = Q−µ+σ
2σ

into equation (11) from the proof to Proposition 3

yields:

Q̄A = β − 2δµβ

σ − 2δβ
and Q̄B = −β − 2δµβ

σ − 2δβ
.

To ensure that Q̄B > µ − σ, we need σ to be large enough that σ > 2β and 0 ≥ µ <
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σ + 2β
2

σ
− 3β. The recursive expected social welfare functions are then

W̄A =

∫ β− 2δµβ
σ−2δβ

µ−σ
(β + δW̄A)

1

2σ
dq +

∫ µ+σ

β− 2δµβ
σ−2δβ

(β + q + δW̄B)
1

2σ
dq,

W̄B =

∫ µ+σ

−β− 2δµβ
σ−2δβ

(β + q + δW̄B)
1

2σ
dq +

∫ −β− 2δµβ
σ−2δβ

µ−σ
(β + δW̄A)

1

2σ
dq.

Therefore,

WA = (1− δ)W̄A

=
1

4

(
4β − β2

σ
+ σ +

µ(4δ2β2(2β − 3σ)− σ2(µ+ 2σ) + δβσ(5µ− 4β + 10σ)))

(δβ − σ)(σ − 2δβ)2

)
,

WB = (1− δ)W̄B

=
1

4

(
4β − β2

σ
+ σ + 2µ+

(µ(8(−1 + δ)δ2β3 + δβ(5µ− 4(−1 + δ)β)σ − µσ2))

(δβ − σ)(σ − 2δβ)2

)
.

The gap WA −WB can now be written as

WA −WB =
2(1− δ)δµβ2

(σ − δβ)(σ − 2δβ)
.

As σ > 2β (by assumption), WA −WB > 0 for all 0 < δ < 1, and WA −WB = 0

for δ = 0 and δ = 1. Moreover,

WA|δ=0 −WA|δ=1 =
µ2β2(2σ − β)

σ(σ − β)(σ − 2β)2
> 0

where the inequality follows because, by assumption, σ > 2β and µ > 0.

Turning to consumer surplus, we have

S̄A =

∫ β− 2δµβ
σ−2δβ

−∞
(β − pAA + δS̄A)

1

2σ
dq +

∫ ∞
β− 2δµβ

σ−2δβ

(β + q − pAB + δS̄B)
1

2σ
dq,

S̄B =

∫ ∞
−β− 2δµβ

σ−2δβ

(β + q − pBB + δS̄B)
1

2σ
dq +

∫ −β− 2δµβ
σ−2δβ

−∞
(β − pBA + δS̄A)

1

2σ
dq.
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Substituting the prices from Section 6,

SA = (1− δ)S̄A

=
1

4

(
2µ+ 4β(1 + δ)− 4µ(µ+ β(1− δ))

σ − δβ
− 3β2

σ
− σ − 10δµ2β

(σ − 2δβ)2
+
µ(3µ+ 8(1− δ)β)

σ − 2δβ

)
,

SB = (1− δ)S̄B

=
1

4

(
2µ+ 4β(1 + δ)− 4µ(µ− β(1− δ))

σ − δβ
− 3β2

σ
− σ − 10δµ2β

(σ − 2δβ)2
+
µ(3µ− 8(1− δ)β)

σ − 2δβ

)
.

We have

SA − SB =
2(1− δ)µβσ

(σ − δβ)(σ − 2δβ)
.

Hence, SA > SB for all δ < 1. Moreover,

∂SA

∂δ

∣∣∣∣
µ=0

=
∂SB

∂δ

∣∣∣∣
µ=0

= β > 0.

Notice that SA and SB are continuous in µ. Hence, they are increasing with δ as

long as µ is not too high.

This completes the proof of Corollary 1.
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