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Université d’Avignon et des

Pays de Vaucluse

Membre du Jury

Giuseppe ARBIA Professor, Catholic University
of Sacred Heart

Membre du Jury
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Abstract

The combination of several socio-economic data bases originating from different administra-
tive sources collected on several different partitions of a geographic zone of interest into adminis-
trative units induces the so called areal interpolation problem. This problem is that of allocating
the data from a set of source spatial units to a set of target spatial units. At the European level
for example, the EU directive ’INSPIRE’, or INfrastructure for Spatial InfoRmation, encourages
the states to provide socio-economic data on a common grid to facilitate economic studies across
states. In the literature, there are three main types of such techniques: proportional weighting
schemes, smoothing techniques and regression based interpolation. We propose a theoretical
evaluation of these statistical techniques for the case of count related data. We find extensions of
some of these methods to new cases : for example, we extend the ordinary dasymetric weighting
method to the case of an intensive target variable Y and an extensive auxiliary quantitative
variable X and we introduce a scaled version of the Poisson regression method which satisfies the
pycnophylactic property. We present an empirical study on an American database as well as an
R-package for implementing these methods.

Keywords : areal interpolation, spatial disaggregation, pycnophylactic property, change
of support, polygon overlay problem.
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toujours correct et pour m’avoir fait sentir comme à la maison.
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Chapter 1

Introduction

1.1 Interpolation problem
The origin of this work is in a collaboration with a French administration, the Midi-Pyrenées

DREAL (Direction Régionale Environnement Aménagement Logement) about the merge of sev-
eral administrative databases with different spatial support. It was necessary for example to
disaggregate the number of housing units, originally available at the commune level, on a fine
regular square grid. Similarly, many administrative agencies nowadays are facing the problem of
merging information from different administrative origins collected on several incompatible par-
titions of the zone of interest into spatial units. An easy way to combine data on incompatible
supports is to align them on a common grid. For this reason, the EU directive ’INSPIRE’ (2007),
INfrastructure for SPatial InfoRmation, states principles to “give infrastructure for spatial infor-
mation to support community environment policies”. One of its objectives is to ensure that “it
is possible to combine spatial data and services from different sources across the community in
a consistent way and share them between several users and applications” and one requirement is
that reference data should “enable merging of data from various sources”.
The reasons for the existence of incompatible partitions is a historical lack of coordination be-
tween collecting agencies, each using its favorite spatial division. Another origin can be the
changes of administrative boundaries through time so that the combination of data from differ-
ent historical periods results in incompatible spatial supports. The support of spatial data refers
to the spatial domain informed by each characteristic. It is often that one needs to combine
national census statistics with other sources of data, for example in geomarketing or natural
sciences. Other examples of such situations arise when some planification task is undertaken
such as where a new school or store should be located and the planners need to transfer census
data to their particular catchment areas. Even when it is possible to reaggregate the data from
the individual level, this solution is time consuming and expensive and may raise confidentiality
problems. A way to combine data on several different supports is to align them on a common
grid and to reallocate all sources to this single target partition. This option (called ”carroyage”
in French) is currently being exploited in France at INSEE.
This problem is also referred to as the areal interpolation problem. More generally, the change
of support problem may involve point-to-point, area-to-point or point-to-area interpolation. For
example, the point interpolation problem is the case of a target variable available for a set of
point locations and needed at another location where the data is not available. Gotway and
Young (2002) describe these different types and give an overview of the methods. We will focus
here on the area-to-area case with a particular emphasis on disaggregation. A discussion of some
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methods relative to this framework can also be found in Goodchild et al. (1993) but we go one
step further in the degree of formalization and unification.
After introducing the vocabulary and definitions in section 1.3, we will see that there are three
main types of such techniques in Chapter 2. The first type is the family of proportional weighting
schemes, also called dasymetric methods, which are illustrated in Yuan et al. (1997), Voss et al.
(1999), Reibel and Bufalino (2005), Mennis and Hultgren (2006) and Gregory (2002). The
second type is made of regression based interpolation and can be found in Flowerdew et al.
(1991), Godchild et al. (1993), Flowerdew and Green (1993) for the simplest ones. The third
type comprises smoothing techniques which are described for example in Tobler (1979), Martin
(1989), Bracken and Martin and Bracken (1991), Rase (2001) and Kyriakidis (2004). The set of
methods can be classified by the type of variable they apply to (continuous or discrete, extensive
or intensive), the volume preserving property satisfaction (pycnophylactic property), the presence
of auxiliary information, and the use of simplifying assumptions. In this work we concentrate
on the simple methods which are the ones more likely to be adopted by practitioners and to
just give some of the main references for the more complex methods. We use a simulated toy
example to illustrate some of the methods. In order to ease the practitionner’s choice, we present
a synoptic table (Table 2.1) to summarize this classification. We believe that presenting the
methods in such a unified way can help the practitionners clarifying the relationships between
the very diverse presentations found in the literature. Note that a more detailed and lengthy
presentation for practitioners has been written for the DREAL (Vignes et al. (2013)). This work
of clarification also lead us to find extensions of some of these methods to new cases: for example
in section 2.2.1, we extend the ordinary dasymetric weighting method to the case of an intensive
target variable Y and an extensive auxiliary quantitative variable X and in section 2.2.2 we show
that the assumption of intersection units nested within control zones is unnecessary. Finally, this
approach helped us laying the groundwork for a future mathematical evaluation of the respective
accuracy of the methods in Chapter 3.

1.2 Accuracy issue
As mentioned above, one motivation of Chapter 2 is to be a first step for a further study of
the comparative precision of these prediction methods. Let us briefly summarize what can be
found in the literature so far. Overall one finds two types of point of views: methodological or
empirical. Unfortunately, there is not much from the methodological point of view since we only
found the work of Sadahiro (2000) who considers the point-in-polygon approach and compares
it to the areal weighting scheme. He uses a counting process with a fixed number of i.i.d. points
with a given density to model the target variable distribution. The target zone is modeled with
a fixed shape but a random position. The sources realize a tiling partition of the space with
geometric shapes (considered as unbounded to avoid boundary problems). The last step of the
evaluation is of an empirical nature. He finds that the accuracy of point-in-polygon depends upon
the target zone size (the bigger the better) and the concentration of the underlying distribution
of points. One needs a concentration of points around the representative point in an area of
at most 12-15 percent of the total for the point-in-polygon to compare favorably with the areal
weighting method, which is quite unrealistic in applications. He also studies the optimal location
of representative points which is found to be at the spatial median of the source zone.
The rest of this literature contains many papers of an empirical nature. The comparison of
areal weighting with the alternative dasymetric methods is found in Reibel and Bufalino (2005),
Voss et al. (1999), Mennis (2006), Fisher and Langford (1996), Gregory (2002). The dasymetric
methods are always found to have better performance than the simple areal weighting with

8



reported improvements up to 71 per cent in relative mean square error (Reibel and Bufalino
(2005)).
The comparison of regression methods with several alternatives is found in Flowerdew and Green
(1993), Flowerdew et al. (1991), Reibel and Agrawal (2007), Gregory (2002). Flowerdew et al.
(1991) find that the EM algorithm regression for the Poisson or binomial models performs better
than areal weighting by factors of 50−60 per cent (Poisson case) and 25−55 per cent (Binomial
case) in target deviance. Murakami and Tsutsumi (2011) compare their spatial regression method
to more classical regression approaches and find that their spatial lag model performs better.
Overall regression methods are found to perform better than dasymetric methods.
For the smoothing methods, Goodchild et al. (1980) compare areal weighting and Tobler’s py-
cnophylactic interpolation and they do not report any significant advantage for the smoothing
method. This may be due to the fact that “count density gradients are not in fact typically
smooth up to and beyond tract boundaries” (from Reibel and Agrawal (2007)).
Finally, it is important to point out that the only methods that come along with an accuracy
measure are area-to-point kriging and the hierarchical bayesian methods. We think that more
attention should be paid to systematic comparisons of the relative accuracies of all these methods
in the future.

In the document, our objective is to analyze the accuracy of the simple interpolation methods
with a methodological point of view.

Comparing the accuracy of the different methods is difficult because the relative accuracy
depends on several factors: nature of the target variable, correlation between the target and
auxiliary variables, shapes of zonal sets, relative size between the two zonal sets,... In order to
derive theoretical results, we need to consider simplifying restrictions. For this reason, in this
document, we first of all restrict attention to data obtained from counts (see Chapter 2): they
are frequent in the literature and cover most of the cases in the socio-economic applications.
We also restrict the comparison to the simplest classes of methods which are the dasymetric
and the regression ones. At last, we make the assumption that target zones are nested within
source zones. Indeed, this is not really a restriction since the intersections between sources and
targets are always nested within sources and it is immediate to go from intersection level to
target level by aggregating the predictions as we will see later. In Section 3.1, we define what
we mean by data obtained from counts and we introduce a mathematical model adapted to this
case. In order to illustrate the methods and check our theoretical results, we present a set of
simulated data that we use later. Finally, in section 3.2, we compare the relative accuracy of
areal weighting and dasymetric methods with finite distance results whereas in section 3.3, we
compare the relative accuracy of dasymetric and Poisson regression methods with asymptotic
methods. In both sections, we comment the results obtained on the toy examples presented in
Section 3.1. All proofs are in the appendix.

The aim of Chapter 4 is to derive some empirical guidelines of application for several areal
interpolation methods and confront the empirical evidence with some theoretical results of Chap-
ter 3 using the demographic database ‘US census 2010’ (Almquist et al. (2010)) available in an
R package. We concentrate on count related data and focus particularly on the following points.
The data is presented in section 4.1.1.

In section 4.1.2 we give some directives for the selection of a good auxiliary variable when there
is a choice. In section 4.1.2 we compare the accuracy of the regression methods. The regression
methods developed for the extensive case are different from the ones adapted to the intensive
case. Since it is easy to transform an extensive variable into a corresponding intensive one and
reversely, we explore in section 4.1.2 the question of whether it is best to use the extensive-type or
intensive-type regression method. Finally we investigate in section 4.1.3 the effect of the spatial
scale.
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An R-package including all functions for the implementation of the investigated methods is
programmed and presented in Chapter 4. The package contains options adapted to realistic
situations which are simplified in order to ease calculation of theoretical results.

1.3 Notation

Let us first introduce the terminology and notation used hereafter in the document. The
variable of interest that needs to be interpolated is called the target variable and it needs to
have a meaning on any subregion of the given space. YD will denote the value of the target
variable on the subregion D of the region of interest Ω. We restrict attention to the case of
quantitative target variables (see for example Chakir (2009) for the case of categorical target
variables).

In the general area-to area reallocation problem, the original data for the target variable is
available for a set of source zones that will be denoted by Ss; s = 1, · · · , S and has to be
transferred to an independent set of target zones that will be denoted by Tt; t = 1, · · · , T . The
variable YSs will be denoted by Ys for simplicity and similarly for YTt by Yt. The source zones
and target zones are not necessarily nested and their boundaries do not usually coincide. Figure
1.1 illustrates these two partitions of the region of interest.

S1

S3

S2

T1

T2
T3

T4 T5 T6

T7 T8
T9

Figure 1.1: Source zones, target zones and grid target zones.

With a set of source zones and target zones, one can create a set of doubly indexed intersection
zones As,t = Ss∩Tt, s standing for the index of the source zone and t for that of the target zone.
For simplicity, YAs,t

will be denoted by Ys,t. Figure 1.2 illustrates the partition with intersection
zones with a zoom on a particular target on the left. Many methods involve the areas of different
subregions (sources, targets or other). We will denote by | A | the area of any subregion A.
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A15

A25

A35

S1

S3

S2

Figure 1.2: Intersection zones.

Most of the methods will then first proceed to the interpolation of the data from the source
to the intersection and in a second step combine the interpolated intersection values to get the
target interpolated values. This combination step will require an aggregation rule: one needs
to explain how the value of the target variable Y on a zone Ω, YΩ, relates to the value of Y on a
set of subzones Ωk, k = 1, · · · p forming a partition of Ω. The literature distinguishes between two
types of aggregation rules. Let us start with two examples: population and population density.
The overall population PΩ of a region Ω is obtained by simple summation of the population
of each subregion PΩk

. Same is true for any counting variable and such variables are named
extensive. Otherwise stated, an extensive variable is a variable which is expected to take half
the region’s value in each half of the region. Now the population density YΩ of the region Ω can
be obtained from the densities of the subregions YΩk

by a weighted average with weights given
by wΩk

= |Ωk|
|Ω| , since

(1.1) YΩ =
∑
k PΩk

| Ω | =
∑
k

| Ωk |
| Ω |

PΩk

| Ωk |
=

p∑
k=1

wΩk
YΩk

.

This type of variable is called intensive with weights wΩk
. More generally linear aggregation

takes the general form

YΩ =
p∑
k=1

wΩk
YΩk

,

for a set of weights wΩk
. If all weights are equal to 1, the variable is called extensive and it

is called intensive otherwise. For variables such as population density, we will make use of the
following areal weights matrix: the (s, t) element of the areal weights matrix W is given by
the ratio ws,t = |As,t|

|Ss| which is the share of the area of source zone s that lies in target zone t.
Another example of intensive variable is given by the average price of housing units in a given
subregion for a data set of house prices. In this case, the weighting scheme is different and is
given by wΩk

= nk

n , where nk is the number of housing units in Ωk and n is the total number of
housing units n =

∑
nk. More generally, proportions and rates are intensive variables. Although

never really stated, the weights are not allowed to depend upon Y but they may be related to
another extensive variable Z by

(1.2) wΩk
= ZΩk

ZΩ
.
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In that case note that wΩ = 1 and that
∑
k wΩk

= 1. These notions of extensive/intensive
variables are also found in physics. Some variables are neither extensive nor intensive: the target
variable YA defined by the maximum price on the subregion A is neither extensive nor intensive.
Let us show that it is always possible to associate an intensive variable to a given extensive
variable by the following scheme. If Y is extensive, and if wA is a weighting scheme of the form
(1.2), the variable

(1.3) ỸA = YA
ZA

is intensive since

ỸΩ =
∑
k YΩk

ZΩ
=
∑
k

ZΩk

ZΩ

YΩk

ZΩk

=
∑
k

wΩk
ỸΩk

.

Reversely, if one starts from an intensive variable Y with weighting scheme wA of the form (1.2),
it can be transformed into an extensive variable by

(1.4) ỸA = ZAYA.

Indeed we have

ỸΩ = ZΩYΩ = ZΩ
∑
k

wΩk
YΩk

=
∑
k

ZΩk
YΩk

=
∑
k

ỸΩk
.

Depending on the relative sizes of sources and targets, the areal interpolation problem can be
rather of aggregation or disaggregation type. If sources are much smaller in size than
targets, one will recover a target value by aggregating sources that will fall inside this target and
possibly a few border intersections: this is an aggregation type. In the reverse situation a given
target will contain intersections of itself with possible several sources. An intermediate case is
when the sizes of sources are comparable to that of targets. Figures 1.3 and 1.4 illustrate these
cases. We will concentrate here on the disaggregation type.

T1

T2

T3

T1

T2

T3

Figure 1.3: Aggregation case.
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S1

S2

S3

S1

S2

S3

Figure 1.4: Disaggregation case.

One property which is often quoted is the so called pycnophylactic property. According to
Rase (2001), this name comes from the Greek words “pyknos” for mass and “phylax” for guard.
This property requires the preservation of the initial data in the following sense: the predicted
value on source Ss obtained by aggregating the predicted values on intersections with Ss should
coincide with the observed value on Ss. In the case of an extensive variable, this is equivalent to

Ys =
∑

t:s∩t6=∅

Ŷs,t.

In the case of an intensive variable with weighting scheme given by wA, this is equivalent to

Ys =
∑

t:s∩t 6=∅

ws,tŶs,t.

In the literature, one usually encounters this property for the extensive case.
One assumption which is often used to compensate for the absence of information is that of
homogeneity. For an extensive target variable, we will say that it is homogeneous in a given
zone A if it is evenly distributed within A, meaning that its value on a sub-zone of A is equal
to the share of the area of the sub-zone times its value on A. For an intensive variable, we will
use the same vocabulary when the variable is constant in each sub-zone of A. The two notions
indeed correspond to each other by the relationships (1.3) and (1.4).
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Chapter 2

Review of areal interpolation
methods

The areal interpolation problem has been studied widely in the literature because of the need
for socio-economic analysis. In the chapter, we attempt to classify and formalize the most used
and simple methods for the area-to-area case. Our aim is to give an overview of those methods
which then helps us to evaluate theoretically their accuracy.

Let us start by introducing the toy example that will be used to demonstrate some properties.
On Figure 2.1, we can see a square divided into 25 equal cells and three source regions made
of unions of cells. The Figure presents the values of an auxiliary variable X in the center panel
and the values of two target variables Y1 on the left and Y2 on the right. We can see that there
is inhomogeneity within sources. The target zones are visible on Figures 2.2 through 2.5 which
compare some methods through the targets prediction errors. Precisely, the areal weighting and
dasymetric methods for homogeneous and inhomogeneous cases are displayed in Figures 2.2 and
2.3, whereas Figures 2.4 and 2.5 draw the comparison between the dasymetric and regression
methods.

196204 156 136 113

163 135 112 116 113

144 108 91 112 107

143 95 112 96 85

131 111 88 91 92

122 91 67 60 58

75 58 36 32 31

71 32 21 15 11

51 31 22 8 9

56 30 9 10 5

117 115 73 57 41

80 56 30 31 34

61 25 22 13 17

63 37 15 11 8

62 28 11 8 6

Figure 2.1: Toy example. Data on cells. Y 1 (left), X (central), Y 2 (right)
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23.1%

Abs relative error

<=10
]10;20]
]20;40]
]40;100]
>100

Figure 2.2: Toy example. Target variable Y1: Areal weighting (left) and dasymetric with X
(right)
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Figure 2.3: Toy example. Target variable Y2: Areal weighting (left) and dasymetric with X
(right)
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Figure 2.4: Toy example. Target variable Y1: Dasymetric (left) and Regression (right)
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Figure 2.5: Toy example. Target variable Y2: Dasymetric (left) and Regression (right)

One early method cannot easily be classified as the others. It is called “point in polygon” and
we will describe it first. The others fall into three main classes: the class of dasymetric methods,
the class of regression methods and the class of smoothing methods.
Some methods use auxiliary information contained in the observation of an additional related
variable X to improve the reallocation. When this information is categorical, the level sets of this
variable define the so called control zones. The spatial support of this auxiliary information can
be at the source, target, intersection level or control levels. To expect that the use of X improves
the reallocation of Y , we need to believe that Y and X are correlated enough. This raises some
questions since Y as well as X are spatial variables hence they can be spatially autocorrelated
and it is unclear how to take this into account to correct the classical correlation measures.
Some methods require additional assumptions on the target variable, like for example Y is
homogeneous on the sources, or on targets, or the distribution of Y is known to be Poisson or
gaussian. We start with the most elementary methods requiring no additional information and
complexify progressively.

2.1 Elementary methods

2.1.1 Point in polygon

The centroid assignment method also called “point in polygon” allocates the source data Ys
to a target Tt if and only if the source polygon centroid is located within the target polygon.
The areal data is thus collapsed to a point datum via a representative point such as the centroid.
Voss et al. (1999) report that it is the least accurate method. Moreover, it does not satisfy the
pycnophylactic property.

2.1.2 Areal weighting interpolation

It can be applied to an extensive or intensive variable and does not require auxiliary informa-
tion. For an extensive variable, it is based on the homogeneity assumption that YA is proportional
to the area | A |. It thus consists in allocating to each subregion a value proportional to the
fraction of the area of the source that lies within that subregion. For s such that s ∩ t 6= ∅,
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(2.1) Ŷs,t = | As,t |
| Ss |

Ys.

After the combination step, this results in the following formula

(2.2) Ŷt =
∑

s:s∩t 6=∅

| As,t |
| Ss |

Ys.

For an intensive variable with areal weights, it is based on the assumption that Y is uniform on
the sources. It thus consists in allocating to the intersection As,t the value of Ys leading to

(2.3) Ŷs,t = Ys.

After the combination step, this results in the following formula

(2.4) Ŷt =
∑

s:s∩t6=∅

|As,t|
|Tt|

Ys.

It is easy to see that this method does satisfy the pycnophylactic property.
From now on, all subsequent methods require additional auxiliary information except in section
2.3.1.

2.2 Dasymetric weighting
Bajat et al. (2011) trace this method back to the 19th century with George Julius Poulett

Scrope in 1833 mapping the classes of global population density. The word dasymetry was
introduced in the English language by Wright (1936). The class of dasymetric weighting methods
comprises generalizations of areal weighting methods. In order to improve upon areal weighting,
the idea is to get rid of the assumption of the count density being uniform throughout the source
zones because this assumption is almost never accurate. For reflecting density variation within
source zone, they use other relevant and available informationX to distribute Y accordingly. This
approach should help allocating Ys to the small intersection zones within the sources provided
the relationship between X and Y be of a proportionality type with a strong enough correlation.
Of course it replaces the previous assumption by the assumption that the data is proportional to
the auxiliary information on any subregion. This raises the question of how to check the validity
of this assumption.
These methods are described in the literature for an extensive variable Y and an extensive
auxiliary information X. However it can be adapted to the case of intensive Y as we will see
below.
There are some classical examples of auxiliary information for socio-demographic count data or
other socio-economic trends coming from road structure or remotely sensed urban land cover
data. Yuan et al. (1997) observe a high correlation between population counts and land cover
types.
These methods satisfy the pycnophylactic property.
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2.2.1 Ordinary dasymetric weighting
It is assumed here that the auxiliary information is known at the intersection level and that

it is of a quantitative nature. It might seem difficult to find auxiliary information at intersection
level but the following example should convince the user that it is possible. Voss et al. (1999) and
Reibel and Bufalino (2005) propose to use the network of road segments with auxiliary variables
like length of roads or number of road nodes to allocate demographic characteristics such as
population or number of housing units,. The weight of a given subzone is then proportional to
the aggregate length of streets and roads in that subzone.
For the case of an extensive target variable with an extensive auxiliary quantitative variable X,
the following formulae extend (2.1) and (2.2) by substituting X for the area:

(2.5) Ŷs,t = Xs,t

Xs
Ys.

yielding after the combination step:

(2.6) Ŷt =
∑

s:s∩t 6=∅

Xs,t

Xs
Ys.

We propose to extend this method to the case of an intensive target variable with weights given by
wA = ZA

ZΩ
for a given variable Z and an extensive auxiliary quantitative variable X. We define the

corresponding extensive variables Ỹ and intensive variable ˜̃X by introducing the transformations
from intensive to extensive ỸA = ZAYA and from extensive to intensive ˜̃XA = XA

ZA
. The following

formula is obtained using the correspondence intensive-to-extensive given by (1.3) (see the annex
for a proof).

(2.7) Ŷt =
∑

s:s∩t6=∅

Xs,t

Xs

Zs
Zt
Ys.

Similar formulae can be obtained easily in the case Y extensive with X intensive and Y intensive
with X intensive.
Let us illustrate this method with the toy example introduced at the beginning of this chapter.
Figure 2.2 presents a comparison between the results of the areal weighting method and the
dasymetric method for target variable Y1. Figure 2.3 does the same for target variable Y2. In
each target we can see the true value of Y1 (left) and the value of the prediction (right) and the
relative prediction error below ( Ŷ1−Y1

Y1
). We can see that the dasymetric method yields better

results than areal weighting for variable Y2 because of the inhomogeneity within sources (indeed
the sum of squared errors is 10 percent smaller for dasymetric). However for variable Y1, for
which the level of inhomogeneity within sources is not as high, this is not the case and areal
weighting is doing better than dasymetric with a ratio of sum of squared errors of 48 percent.

2.2.2 Dasymetric weighting with control zones
This is the case when the auxiliary information is categorical, its level sets thus defining the

so called control zones. The most classical case, called binary dasymetric mapping, is the case of
population estimation when there are two control zones: one which is known to be populated and
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the other one unpopulated. It is assumed that the count density is uniform throughout control
zones. A first step estimates these densities Dc for control zone c by

D̂c =
∑
s∈c Ys∑

s∈c | Ss |
,

where s ∈ c may have several meanings (containment, centroid, percent cover). For this method,
it is often assumed in the literature that intersection units are nested within control zones in
which case the intersection zone prediction is given by

Ŷs,t =
| As,t | D̂c(s,t)∑

t′:s∩t′ 6=∅ | At′,s | D̂c(t′,s)
Ys,

where c(s, t) denotes the control zone which contains the intersection zone As,t. One can see
through this formula that this is the same as using ordinary dasymetric with the auxiliary
information being a first step crude estimate of variable Y based on the assumption that its
corresponding intensive variable (1.4) is constant throughout control zones. The assumption that
intersection units are nested within control zones is not so restrictive since it can be restated
as “the control zones are unions of intersections units”: control zone information being rather
coarse, they can be designed to respect this constraint. However let us prove that this assumption
is unnecessary. Indeed if one denotes by As,t,c the intersection between source zone s, target
zone t and control zone c, the following gives a prediction for the target values

Ŷt =
∑

s:s∩t 6=∅

∑
c | As,t,c | D̂c∑

t′
∑
c | As,t′,c | D̂c

Ys.

Mennis and Hultgren (2006) illustrate this approach with American census data using land cover
auxiliary information coming from manual interpretation of aerial photographs.

2.2.3 Two steps dasymetric weighting
This method aims at relieving the constraint of the ordinary dasymetric weighting that the

auxiliary information should be known at the intersection level, thus allowing a larger choice of
such information. It is assumed here that the information is known at the level of some control
zones which means that the auxiliary information has two components: a quantitative one and a
qualitative one. There is a constraint though on the control zones: they should be nested within
source zones. The first step is just an ordinary dasymetric step using control zones as targets and
the auxiliary information on control zones. In this case, the intersection level is the source-control
intersection which is the same as the control level since controls are nested within sources. The
second step performs areal weighting with the controls as sources (using the controls estimates
of the first step) and the original targets as final targets. The homogeneity assumption used in
the second step concerns the control level but since control zones are usually smaller than source
zones, the assumption is less constraining. Gregory (2002) presents the implementation of this
approach with historical British census data.
If controls are not nested within sources, the method can be adapted by adding an additional
step of areal weighting to distribute the control information on the control-source intersections.

2.3 Regression techniques
The dasymetric weighting schemes have several restrictions: the assumption of proportional-

ity of Y and X, the fact that the auxiliary information should be known at intersection level and
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the limitation to a unique auxiliary variable (exceptionally two in the case of two steps dasy-
metric). The regression techniques will overcome these three constraints. Another characteristic
of dasymetric method is that when predicting at the level of the As,t intersection only the areal
data Ys within which the intersection is nested is used for prediction and this will not be the
case for regression. In general the regression techniques involve a regression of the source level
data of Y on the target or control values of X. The regression without auxiliary information
of section 2.3.1 can be regarded as an extension of the areal weighting method since it relies on
the “proportionality to area” principle. The regression with control zones of section 2.3.2 is a
regression version of the dasymetric weighting with control zones of section 2.2.2. The regression
with auxiliary information at target level of section 2.3.3 can be compared to ordinary dasymetric
weighting of section 2.2.1.
These regression methods raise some estimation issues in the sense that very often the target
variable is non negative and therefore one would like the corresponding predictions to satisfy
this constraint. In order to solve this issue, people resort sometimes to Poisson regression (as
in Flowerdew et al. (1991)), or ordinary least squares with constraints on the coefficients (see
Goodchild et al. (1993)), or lognormal regression (see Goodchild et al. (1993)).

2.3.1 Regression without auxiliary information
A first idea discussed in Goodchild et al. (1993) consists in deriving a system of equations

linking the known source values Ys to the unknown target values Yt using an aggregation formula
and an additional assumption of homogeneity of the target variable on the target zones.
In the case of an extensive variable, the homogeneity assumption allows to allocate Y to inter-
section units proportionally to their area yielding the following system

Ys =
∑
t

Ŷs,t =
∑
t

|As,t|
|Tt|

Ŷt

For the case of an intensive variable, the homogeneity assumption is that Y is uniform on targets
and that its weighting system is given by areal weights. This yields the following relationship
between source and target values

Ys =
∑
t

|As,t|
|Ss|

Ŷs,t =
∑
t

|As,t|
|Ss|

Ŷt

These systems are then solved using an ordinary least squares procedure forced through the
origin provided the number of source units is larger than the number of target units. This last
condition is not satisfied for disaggregation problems. In that case, one can adapt the technique
by combining it with the use of control zones as in section 2.3.2.

2.3.2 Regression with control zones
Using control zones as in section 2.2.2, Goodchild et al. (1993) propose a two steps procedure

where the first step is the technique of section 2.3.1 with controls playing the role of targets.
The number of such control zones is handled by the user and hence can be forced to be smaller
than the number of sources thus relieving the constraint on the number of targets of section
2.3.1. The assumption of homogeneity on targets becomes homogeneity on controls hence it
not restrictive because the controls are usually built to reflect homogeneity zones for the target
variable. At the end of the first step, one can recover estimates of the target variable at the
control level. Using the the uniformity on control assumption, one gets from the control level to
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the control-target level. The second step in Goodchild et al. (1993) involves a simple aggregation
from the control-target intersections level to the target level with homogeneity weights. Yuan
et al. (1997) apply rather a dasymetric second step which they call “scaling” using the first step
target variable prediction as an auxiliary variable, thus enforcing the pycnophylactic property.
Reibel and Bufalino (2005) superimpose a fine grid on the set of source and target zones. They
first compute the proportion of each source zone corresponding to each land cover type and then
regress the target variable (population) at source level on theses proportions. With the estimated
coefficients, they can derive a coarse grid cell based map of the population surface. They rescale
these estimates to impose the pycnophylatic property. Then with an aggregation formula they
get population estimates for any combination of grid cells, namely for target regions.

2.3.3 Regression with auxiliary information at target level
This family of methods allow to use more than one auxiliary variable and of different natures

(quantitative or categorical, or a mixture of both). In Flowerdew et al. (1991), the emphasis is
on extensive target variables with a Poisson or binomial distribution (case 1 hereafter) and in
Flowerdew and Green (1993), it is on intensive target variables with a gaussian distribution (case
2 hereafter). In the gaussian case, it is assumed that the target variable YA on A is a sample
mean of some underlying gaussian variable measured on a number nA of individuals. Therefore
the intensive weights are given by (1.2) with ZA = nA and are approximated by areal weights
when the counts nA are not known. In case 1, we have Ys,t ∼ P(µs,t), and similarly in case 2 we
have Ys,t ∼ N (µs,t, σ

2

ns,t
) where the means µs,t are in both cases functions of some parameters β

and the auxiliary information at target level Xt. In case 2, moreover, it makes sense to assume
that Cov(Ys,t, Ys) = σ2/ns.

With the EM algorithm. Except for a variant in Flowerdew and Green (1993) (see paragraph
2.3.3), the interpolation problem is cast as a missing data problem considering the intersection
values of the target variable as unknown and the source values as known therefore allowing to
use the EM algorithm to overcome the difficulty.
The algorithm is initialized with areal weighting estimates for µs,t. The E-step consists in cal-
culating the conditional expectation of Ys,t given the known values Ys. In case 1, this yields the
following formula

(2.8) E(Ys,t | Ys) = µs,t∑
t′ µs,t′

Ys

which yields the following predictor Ŷs,t = µ̂s,t∑
t′ µ̂s,t′

Ys and it is clear that the pycnophylactic
property is satisfied.
In case 2, the corresponding formula is

(2.9) E(Ys,t | Ys) = µs,t + Cov(Ys,t, Ys)
V ar(Ys)

(Ys − µs) = µs,t + (Ys − µs)

where µs is obtained from the µs,t by applying the aggregation formula to the sources subdivided
into the intersections and by taking expectation on both sides yielding

(2.10) µs = E(Ys) = E

(∑
t

ns,t
ns

Ys,t

)
=
∑
t

ns,t
ns

µs,t.
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Therefore the E-step yields the following predictor Ŷs,t = µ̂s,t + (Ys − µ̂s), where the µ̂s,t come
from the previous step and the µ̂s from the estimation version of (2.10).
One can then check that this step enforces the pycnophylactic property since∑

t:s∩t 6=∅

ns,t
ns

Ŷs,t =
∑

t:s∩t 6=∅

ns,t
ns

µ̂s,t +
∑

t:s∩t6=∅

ns,t
ns

(Ys − µ̂s) = µ̂s + Ys − µ̂s = Ys.

In the M-step, the intersection values obtained at the previous E-step are considered as i.i.d.
observations from the Poisson P(µs,t) in case 1 and from the gaussian N (µs,t, σ

2

ns,t
) in case

2. Recall that in both cases, the intersection means are functions of some parameters β and
the auxiliary information at target level Xt plus possibly some information at intersection level
such as the area of the intersections. For example in case 1, Flowerdew et al. (1991) consider
population as target variable and geology as auxiliary information assuming that the population
density will be different in clay areas (λ1) and in limestone areas (λ2) so that µs,t = λt | As,t |,
where λt is either λ1 or λ2 depending on whether target zone t is in the clay or the limestone
area. One then performs maximum likelihood with a Poisson regression in case 1 and a weighted
least squares in case 2.

Without the EM algorithm. In case 2, Flowerdew and Green (1993) describe a simplified
alternative version in the case when one is ready to make the uniform target zone assumption.
Namely, since the auxiliary information X is available at target zone level, it does not hurt to
assume µst = µt. Let XT denotes the T × p design matrix where p is the number of explanatory
factors in X and T the number of targets, µS denote the S×1 vector of source values, µT denote
the T × 1 vector of target values, W denote the weights matrix whose elements are given by
ws,t = ns,t

ns
. If we combine the following information:

• the relation between Y and X at target level:

µT = XTβ,

• the aggregation equation µs =
∑
t
ns,t

ns
µs,t

• the uniformity at target level assumption µst = µt,

we get the following regression equation

(2.11) µS = WXTβ

between target means at source level and auxiliary information at target level. Using the data
at the source level YS and equation (2.11), we can estimate the parameters β by weighted least
squares with weights ns. Then µ̂t = Xtβ̂ is a prediction for Yt.

Let us consider again the toy example defined earlier to illustrate this technique adapted
to the case of Poisson regression. Figure 2.4 (resp 2.5) compares the results of this regression
technique with the dasymetric method based on the same auxiliary information for Y1 (resp Y2).
For Y1, the regression method is better than the dasymetric with a ratio of sum of squared errors
of 12 percent. For Y2 however, the dasymetric is better than the regression with a ratio of sum
of squared errors of 82 percent. The reason is that indeed the variable Y2 has been constructed
to be almost proportional to X (which is in line with the spirit of dasymetric) whereas Y1 is not.
Note that the dasymetric method uses more information than the regression method because
it uses the auxiliary value at intersection level whereas the regression method uses it at target
level.
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Alternative with control zone. In case 2, Flowerdew and Green (1993) consider another
alternative with a set of control zones assuming that auxiliary information is at control zone
level and that it is reasonable to believe that means are uniform on controls µs,c = µc. The same
arguments as above then yield the equations

µC = XCβ(2.12)
µS = WXCβ(2.13)

where XC denotes the C×p design matrix with C being the number of control zones, µC denotes
the C × 1 vector of control values, and W being the weight matrix at the source-intersection-
control levels. Using the data at the source level and equation (2.13), we can estimate the
parameters β by weighted least squares with weights ns. Then µ̂C = XC β̂ and using the
aggregation equation for target and control, one gets that Ŷt =

∑
c
nc,t

nc
µ̂c is a prediction for Yt.

Note that one needs two sets of weights ns,c

ns
and nc,t

nc
.

2.4 A short overview of more elaborate methods
2.4.1 Other regression methods

In this section, we briefly describe alternative regression methods. A detailed development of
these more sophisticated techniques would require much more tools and notations. Because one of
our objectives is to give priority to the practitioner point of view, we do not develop them in this
presentation but just give some of the main references. Murakami and Tsutsumi (2011) combine
Flowerdew and Green EM algorithm approach with a spatial econometrics regression model to
take into account spatial autocorrelation at the intersection unit level. Mugglin and Carlin (1998)
propose a hierarchical bayesian version of the Poisson regression method of Flowerdew et al.
(1991) with a Markov chain Monte Carlo estimation step and illustrate it on disease counts. The
advantage of the hierarchical bayesian approaches is that they provide full posterior distribution
estimates enabling accuracy evaluation but their approach requires that the spatial support of
the auxiliary information be nested within both targets and source units. Mugglin et al. (2000)
extend this approach introducing Markov random field priors on the source and target mean
parameters: this allows them to introduce some spatial autocorrelation in the model. They
illustrate their approach with population counts reallocation with 39 sources and 160 targets.
Huang et al. (2002) introduce multiresolution tree structured autoregressive models.

2.4.2 Smoothing techniques
Initially meant for visual display and exploratory analysis, smoothing techniques can solve

the point-to-point or the areal-to-point interpolation problems. By laying a fine lattice over the
study area and predicting the target variable at each lattice node, they enable mapping the
target variable. However they can be used as an intermediate step towards the areal-to-areal
interpolation in the sense that once a point prediction is obtained, it is enough to use aggregation
rules (integrate the point prediction) to obtain target zones predictions.
In this sense, choropleth mapping is a coarse interpolation technique which amounts, for the
intensive variable case, to allocate the areal data value to any point within the support of the
corresponding source unit.
Martin (1989) and Martin and Bracken (1991) propose an adaptive kernel density estimation
from the target variable values collapsed at the centroids of the source zones. This method is
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not pycnophylactic. A similar kernel based method is described in Grasland et al. (2000) with
a discussion of the relationship between the choice of the bandwidth parameter and the level of
aggregation of the initial information.
Tobler (1979) introduces a spline based approach for areal-to-point interpolation. His predic-
tor is a discrete approximation (finite difference algorithm) of the solution to an optimization
problem defining a type of interpolating spline with a smoothness criterion based on second par-
tial derivatives. He includes additional constraints such as non-negative point predictions and
mass-preservation. His choice of smoothness criterion has been criticized by Dyn et al. (1979).
In contrast with Tobler’s method which requires a regular grid of prediction points, Rase (2001)
adapts Tobler’s procedure replacing the regular grid by a triangulation of the space based on the
observed centroids locations, and using some kernel smoothing with inverse distance weighting
instead of splines.
Kyriakidis (2004) casts the problem into a geostatistical framework. Indeed the reverse problem
of point-to-area interpolation is solved by the block Kriging in geostatistics which is classical
due to mining practices: it is of interest for example to predict the total ore content of an
area knowing the point data values. Kyriakidis (2004) shows that the area-to-point problem
can be solved with similar methods but requires the modeling of all area-to-area and area-to-
point covariances. The resulting prediction satisfies the pycnophylactic property. Moreover he
proves that choropleth mapping, kernel smoothing and Tobler’s pycnophylactic method can be
viewed as particular cases of his framework, corresponding to various ways of specifying the
covariance model (choropleth mapping corresponding to the absence of correlation at the point
support level). A very interesting aspect of the method is that it offers a measure of reliability
(standard error of each point prediction). The method can accomodate constraints such as
maximum-minimum allowable value or prescribed value of the target variable: for example,
zero population value over water bodies or high altitude regions. The method can handle large
problems, possibly using moving local neighborhoods. Yoo et al. (2010) adapt it to accomodate
more general constraints such as non-negativity. However estimating point covariance from
areal data is difficult: it is possible for example with a maximum likelihood procedure based
on multivariate gaussian assumption. Liu et al. (2008) propose to combine this approach with
regression in an area-to-point residual kriging approach which can be used to disaggregate the
regression residuals. Other generalizations can be found in Kelsall and Wakefield (2002) with
log-normal kriging.
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Chapter 3

Accuracy

In the previous chapter, we classified areal interpolation methods into three groups: smooth-
ing, dasymetric and regression based methods. On one hand, the review gives a clear picture
about the simple available methods in literature, on the other hand, it prepares a mathematical
base for a further step: the comparison of these methods. This chapter is aimed to study theo-
retically the accuracy of those methods for the count variable. We first describe the concept of
count related data then introduce a model to study the case. The accuracy of methods will be
analyzed in the last two sections with two different approaches: finite distance and asymptotic.

3.1 Count variable and model

Most of economic data collected at regional level result from aggregating point data and are
only released in this aggregated form. Intuitively, let us say that a point data set is a set of
a random number of random points in a given region of geographical space. The collection of
corresponding numbers of such points in given subdivisions of this region is a count data set.
For example with census data, a population count on a given zone is the number of inhabitants
of the zone. This number is obtained from the knowledge of the addresses of these people. The
collection of coordinates of such addresses is the underlying point data set. Examples of areal
interpolation of population or subpopulation counts can be found for example in Goodchild et al.
(1980); Langford (2007); Mennis and Hultgren (2006); Reibel and Agrawal (2007). Other types
of counts are encountered frequently, for example number of housing units in Reibel and Bufalino
(2005). Another frequent type of count related variable is the number of points per areal unit
associated to a point data set: it is a density type variable. Examples of areal interpolation of
population densities can be found in Yuan et al. (1997); Murakami and Tsutsumi (2011). An
even more general type is when the variable is a ratio of counts such as number of doctors per
patient. There is an easy one to one correspondence between a count variable and a density
variable which allows to transform one type into the other so that any treatment of counts
can be extended to densities and reversely. A count variable belongs to the family of extensive
variables, which are variables whose value on a region is obtained by summing up its values on
any partition into subregions (aggregation formula hereafter). A density variable belongs to the
family of intensive variables, which are variables whose value on a region is obtained from values
on any partition into subregions by a weighted sum (see Do et al. (2015) for more details). In the
case of population density, the weights are given by the areas of the subregions of the partition.
In the remainder of this paper, we will concentrate on pure count variables.
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We introduce a model for an extensive count variable by assuming that there exists an un-
derlying (unreleased) Poisson point process ZY (in the population example, the positions of the
individuals of the population) and that the target variable Y on a subzone A is the number of
points of ZY in A. For a partition Ωi, i = 1, 2, ..., k of the region Ω, the aggregation property of
the extensive type is clearly satisfied

(3.1) YΩ =
k∑
i=1

YΩi .

With the proposed Poisson point process assumption, for any zone A, YA =
∑
i 1A(Zi) is a

Poisson distributed random variable with mean λA =
∫
A
λZY

(s)ds, where λZY
is the intensity of

the point process ZY .
This model implies that YA and YB are automatically independent for all disjoint couples of
subregions A and B due to the Poisson process nature. We could use point process models with
interaction effects while retaining the extensive property but we rather devote this article to this
first case, keeping the interaction case for further developments.
As we will see in the next section, some methods we want to compare (dasymetric and univariate
regression) make use of an auxiliary information. For the auxiliary variable X to be relevant,
there must be some relationship between the target variable and the auxiliary variable. In many
cases a categorical information is used such as land cover: Reibel and Agrawal (2007) and Yuan
et al. (1997) use land cover type data on a 30 meters resolution grid, Mennis and Hultgren
(2006) use 5 types of land cover obtained manually from aerial photography. Li et al. (2007)
just use a binary information such as unpopulated versus populated zones. Reibel and Bufalino
(2005) interpolate the 1990 census tract counts of people and housing using length of streets as
auxiliary information. Mugglin and Carlin (1998) exploit population to interpolate the number
of leukemia cases. The use of a continuous auxiliary information can also be found: Murakami
and Tsutsumi (2011) utilize distance and land price to predict population density. In the rest of
the paper, we concentrate on a single extensive auxiliary variable X that is also a count in order
to be able to consider the accuracy of all methods simultaneously (more details at the beginning
of section 3.3). Therefore it corresponds to another underlying point process ZX with intensity
λZX

.
The auxiliary variable X, has to be known at intersection level in the case of dasymetric and at
the target level in the case of regression. We need to write a formal relationship between our
target variable and the auxiliary information. The model we propose assumes that the following
relationship holds between Y given X: at the level of any subset A of the region, the conditional
distribution of YA given XA = xA is assumed to be

(3.2) YA | XA = xA ∼ P(α|A|+ βxA)

and this implies that the following relationship holds between the two underlying point processes
intensity functions

(3.3) λZY
(u) = α+ βλZX

(u),

where u is any location in Ω.
This relationship will be used at target level A = T and at source level A = S. This model in
its general form will be called auxiliary information model (AIM). In this model, the intensity
of ZY is driven by two effects: the effect of the auxiliary variable X and the effect of the area
of the zone. If we look at target level, the target variable is Poisson distributed with a mean
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comprising two parts E(YT ) = α|T |+ βxT : the first part α|T | reflects the impact of the area of
the zone T , whereas βxT is the impact of the auxiliary variable. The linearity of the expected
value of Y with respect to the area and to the auxiliary information is not canonical in a Poisson
regression model for counts but in our case it derives naturally from (3.3).
In sections 3.2.2 and 3.2.3, we introduce two sub-models of model (3.2) depending on the intensity
function λZY

. We consider the case of a constant intensity (homogeneous model) and the case
of a piecewise constant intensity (piecewise homogeneous model).
Concerning the regression based methods, there are several types of regression based methods
also involving auxiliary information that we presented in the chapter 2. Given the nature of
the target variable in our model (3.2), we concentrate on the Poisson regression presented in
Flowerdew et al. (1991) for the purpose of predicting population (which is an extensive variable)
with categorical auxiliary information. Based on model (3.2), a Poisson regression with identity
link is performed at source level yielding estimators α̂, β̂ for the parameters α and β.
The prediction of the target variable at intersection level is then obtained by

(3.4) Ŷ REGst = α̂|Ast|+ β̂Xst

and the final step aggregates intersections predictions at target levels. The regression based
methods can be considered as more powerful than the dasymetric methods in the sense that
they can incorporate multivariate auxiliary information and that the knowledge of auxiliary
information is only needed at target level and not at intersection level. However, the purpose of
this paper being to compare the accuracy of dasymetric methods and Poisson regression methods
from a methodological point of view and for the case of extensive count data, we therefore
concentrate on the unidimensional auxiliary count variable case.

Accuracy criterion
The accuracy assessment necessitates the choice of a prediction error criterion and of a geo-

graphic level. In this framework, examples of criteria are root mean square error or mean square
error (Sadahiro (1999), Reibel and Bufalino (2005),...) at regional level (that is the union of
all sources), or relative absolute error at target level (Langford, 2007). We denote by MET a
generic method of prediction and let MET be DAW for the areal weighting method, DAX for
the general dasymetric method, REG for the Poisson regression method and ScR for the scaled
regression method which will be presented later in section 3.3. We recall that we assume all
target zones are nested within source zones.
In section 3.2, we use mean square error at source level to compare the areal weighting and
dasymetric methods. For method MET, the source level error is then computed as follows

(3.5) ErMET
S =

∑
t⊂S

ErMET
t =

∑
t⊂S

E(ŶMET
t − Yt)2

and the overall regional error is

(3.6) ErMET =
∑
S

∑
t∈S

E(ŶMET
t − Yt)2

In section 3.3, we use mean square error at target level

(3.7) ErMET
t = E(ŶMET

t − Yt)2

to compare the dasymetric and Poisson regression methods.
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In general, we will also use the relative error criterion defined as

(3.8) ReMET
S =

√
ErMET

S

E(YS)

where ReMET
S is the relative error of method MET at source level for source S with method

MET .

3.2 Relative accuracy of areal weighting and dasymetric:
finite distance assessment

Let us briefly summarize the findings of the assessments found in the literature for the com-
parison of general dasymetric and areal weighting. For empirical assessments, several authors
report that the dasymetric method improves upon areal weighting. Depending on the context,
the improvement varies: Langford (2007) reports improvements of 54%, 57%, and 59% better
depending on the auxiliary information used; Reibel and Bufalino (2005) reports improvements
of 71.26% and 20.08% with street length auxiliary information for the two target variables: hous-
ing units and total population. For theoretical assessments, (Sadahiro, 1999, 2000) compares the
areal weighting interpolation and the point-in-polygon method with a theoretical model. We did
not mention yet the point-in-polygon method because it is a very elementary one consisting in
allocating a source value to the target which contains its centroid. Using a stochastic model, he
finds that the factors that impact the accuracy of the methods are the size and shape of target
and source zones, the properties of underlying points.
In this section, we prove some theoretical properties in subsection 3.2.1, with two particular cases
in 3.2.2 and 3.2.3.
Since targets are nested within sources, the predictors of the two methods depend only on the
source that contains the concerned target zone. For that reason, we focus on studying one source
zone denoted by S. For a target T in S, the two predictors are as follows

(3.9) Ŷ DAWt = |T |
|S|

Ys

and

(3.10) Ŷ DAXt = xT
xS
Ys.

3.2.1 General auxiliary information model

Lemma 3.2.1 gives the expression of the prediction bias and variance in model AIM for areal
weighting interpolation and dasymetric interpolation at target level.

Lemma 3.2.1. In model AIM, the prediction biases and variances at target level of the areal
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weighting interpolation and dasymetric methods are given by

E(Ŷ DAWT − YT ) = βxS( |T |
|S|
− xT
xS

)(3.11)

E(Ŷ DAXT − YT ) = α|S|(xT
xS
− |T |
|S|

)(3.12)

V ar(Ŷ DAWT − YT ) = βxS( |T |
|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

)(3.13)

V ar(Ŷ DAXT − YT ) = α|S|( |T |
|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

).(3.14)

First note that the two biases have opposite signs, in other words, if the areal weighting interpo-
lation method underestimates then the dasymetric method overestimates and vice versa. This
fact can be interpreted as follows: while the true intensity comprises two effects, these methods
treat only one of them which causes the contrast. Although the signs of biases are opposite,
their absolute values are both proportional to |T |

|S|
− xT
xS

which measures the divergence between
the share of the auxiliary information in target T with respect to S and the share of the area
of T with respect to S. This divergence is also proportional to xS

|S|
− xT
|T |

and hence can be
viewed as a distance to proportionality between area and auxiliary information. The bias of the
areal interpolation method with its assumption of homogeneity is independent in the areal effect
α|S| but is proportional to the ignored auxiliary information effect, and reversely the dasymetric
method which focuses on the effect of the auxiliary information gets rid of the βxS in its bias
but is proportional to the ignored areal effect. We will build on this to propose a new method
in the next section.
The two variances have a common part βxT (1 − xT

xS
) + α|T |(1 − |T |

|S|
) which we can interpret

as the loss of information when transferring data from a large source zone to a smaller target
zone. For the remaining part, the same explanations as for the bias stands. Both variances have
a parabola shape with respect to xT (respectively to |T |) with a maximum at xT = 1

2xS , (resp.

|T | = 1
2 |S|): we can say loosely that the variances are maximum when the target zone is around

a haft of the source. They vanish when the target zone is either empty or coincide with the
source which makes sense. The reallocation to a larger target intuitively decreases the difficulty
of the disaggregation problem except that the error also depends on the expected number of
points so we should turn attention to relative error. If one divides the variances by the square of
the expected number of points in the target zone E(YT ), we can see that the relative error will
tend to zero as E(YT ) tends to infinity.
Since the dasymetric method is pycnophylactic, the bias at source level is zero. Lemma 3.2.2
reports the expression of the prediction variances in model AIM for areal weighting interpolation
and dasymetric interpolation at source level.
Lemma 3.2.2. In model AIM, the variances of the areal weighting and dasymetric methods at
the source level are

V ar(Ŷ DAWS − YS) = βxS
∑
T

( |T |
|S|
− xT
xS

)2 + βxS(1−
∑
T

x2
T

x2
S

) + α|S|(1−
∑
T

|T |2

|S|2
)(3.15)

V ar(Ŷ DAXS − YS) = α|S|
∑
T

( |T |
|S|
− xT
xS

)2 + βxS(1−
∑
T

x2
T

x2
S

) + α|S|(1−
∑
T

|T |2

|S|2
).(3.16)
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To get an insight at the impact of the number nT of the target zones, we consider the particular
case where all targets have the same size. In this case, |T |

|S|
= 1
nT

for any T , and we get

V ar(Ŷ DAWS − YS) = (1− 1
nT

)(α|S|+ βxS)

V ar(Ŷ DAXS − YS) = (1− 1
nT

)(α|S|+ βxS) +
∑
T

(x
2
T

x2
S

− 1
nT

)(α|S| − βxS).

It is obvious that the larger the number of the target zones, the larger the variances, which
agrees with our conclusion concerning the size of targets. Indeed, when the area of the target
zones gets smaller, the error on each target decreases but the total error at the source level gets
larger due to the effect of the number of the targets.
We are now ready to compute the mean square error difference between the two methods. We
introduce the following quantities which quantify, at the geographical level of a subregion A, a
relative contribution of each effect to the overall mean (respectively to the intensity):

IA(X) = βxA
α|A|+ βxA

.

IA(X) is the relative contribution of variable X and similarly IA(|.|) = α|A|
α|A|+βxA

is the relative
contribution of the areal effect.
The imbalance between the two effects is measured by the difference

∆A = IA(|.|)− IA(X) = α|A| − βxA
E(YA) .

This quantity ranges between −1 when there is a pure X effect and 1 when there is a pure areal
effect with a value of zero when the two effects are of equal size.
We can derive from lemmas 3.2.1 and 3.2.2 the expression of the absolute and relative errors of
the two methods at source level as a function of the relative contributions.

Theorem 3.2.3. In model AIM, the errors and relative errors of the areal weighting and dasy-
metric methods at the source level are

ErDAWS =IS(X)2E(YS)2D + IS(X)E(YS)(D +B) + IS(|.|)E(YS)C,(3.17)
ErDAXS =IS(|.|)2E(YS)2D + IS(|.|)E(YS)(D + C) + IS(X)E(YS)B,(3.18)

(ReDAWS )2 = IS(X)2D + 1
E(YS) [IS(X)(D +B − C) + C],(3.19)

(ReDAXS )2 =IS(|.|)2D + 1
E(YS) [IS(|.|)(D −B + C) +B],(3.20)

where D =
∑
T ( |T |
|S|
− xT
xS

)2, B = 1−
∑
T

x2
T

x2
S

, C = 1−
∑
T

|T |2

|S|2
are positive.

Note that B,C and D only depend on the geometry of the problem and the auxiliary information,
whereas the relative contribution terms and E(YS) depend on the coefficients α and β. It is
interesting to mention the symmetry between the two methods which stands clearly in these
formulas when we exchange the two contributions terms. One can derive from this theorem the
difference between the relative errors of the two methods
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(3.21) (ReDAWS )2 − (ReDAXS )2 = −D∆S(1 + 1
E(YS) )

which turns out to be clearly proportional to the imbalance term ∆S . Similarly, one can ap-
proximate the ratio of the two relative errors when E(YS) is large and D is not too small on the
target A = T and on the source A = S by

ReDAWA

ReDAXA

≈ IA(X)
IA(|.|) .(3.22)

This ratio roughly ranges from 0 to +∞ at the extreme cases of a pure X or areal effect showing
that one can outperform the other by a large amount.
Let us now turn attention to the difference between the two errors.
Theorem 3.2.4. The difference between the errors of areal weighting and dasymetric methods
on a target zone T is

ErDAWT − ErDAXT = ( |T |
|S|
− xT
xS

)2∆SE(YS)(E(YS) + 1).

The important conclusion of this result is that the sign of the difference in error agrees with the
sign of ∆S , i.e. the sign of (α|S| − βxS). Moreover, for ∆s < 0, as the effect of the auxiliary
information IS(X) gets stronger, the dasymetric method gets better and the difference between
the two methods larger.

This computation result leads to a very interesting consequence: if one of two effect dominates
on a given source, the related method wins on all target zones belonging to this source. It also
shows that two methods will have the same accurracy if the two effects are balanced or the
auxiliary variable is homogeneous.

The normalized difference between the two effects ∆S clearly determines which method is
the best.
At this point, it seems natural to look for a linear combination of these two predictors

Ŷ CT (w) = wŶ DAWT + (1− w)Ŷ DAXT ,(3.23)

which would combine their good properties. It turns out that in the class of linear combinations
of areal weighting and dasymetric predictors, the best predictor is given by the following theorem
Theorem 3.2.5. In model AIM, the best predictor in the sense of minimizing (with respect to
the weight w) the errors on any target zone T in the class (3.23) is

(3.24) Ŷ CT = Ŷ CT (w∗) = α|T |+ βxT
α|S|+ βxS

YS

for w∗ = α|T |
α|S|+ βxS

. Its error and relative error are respectively given by

ErCT = µT (µS − µT )
µS

(3.25)

(ReCS )2 = 1
4E(YS) [∆2

SD + 2∆S(C −B) +D + 2B + 2C],(3.26)

where µA = E(YA). Moreover, this predictor coincides with the best linear unbiased predictor in
model AIM.
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Because µT (µS − µT )
µS

= V ar(Ŷ DAXT − YT ) − µS(xT
xS
− µT
µS

)2 = V ar(Ŷ DAWT − YT ) − µS( |T |
|S|
−

µT
µS

)2, the prediction error of the best predictor is smaller than the variances of the other two
methods and the distance is all the more important that the auxiliary information is further from
homogeneity. Of course, the oracle predictor Ŷ CT is not feasible since it depends on the unknown
coefficients α and β of model AIM but we will use it as a benchmark tool on the one hand and
we will relate it later on to our new regression predictor. If we look at the error at the level

of source S, we have that ErCS = µS −
∑
T

µ2
T

µS
≤ µS −

µS
nT (S) , where nT (S) is the number of

targets in source S, and hence this predictor’s accuracy is worse when all targets have the same
expected number of points µS

nT (S) . It is interesting to note that the relative error (at source level

S) of the best predictor tends to zero as the expected number of points in the source S tends
to infinity, which was not the case for the dasymetric methods. For a fixed expected number of
points in a given source S, we can easily find the value of the imbalance ∆S which minimizes

the relative error of Ŷ CT ∆∗ = B − C
D

=

∑
T ( |T |
|S|

)2 − (xT
xS

)2

∑
T ( |T |
|S|
− xT
xS

)2
and thus derive a lower bound for

the relative error for a given geometry. Some of these results are illustrated in Section 3.4.
Because intuitively, it is natural to think that areal weighting should be outperformed by dasy-
metric when the underlying process is inhomogeneous, we consider the two cases of homogeneous
and piecewise homogeneous submodels.

3.2.2 Homogeneous model
Areal weighting interpolation is a simple and natural rule which is based on the assumption

that the target variable is homogeneous at source level. Indeed in model AIM, it is equivalent
to assume that the point process is homogeneous and its intensity is therefore constant (equal
to α > 0) leading to:

YA ∼ P(α|A|).

Substituting β = 0 in (3.11), (3.13), (3.15) we get the bias, variance and error in this case:

E(Ŷ DAWT − YT ) = 0

ErDAWT = V ar(Ŷ DAWT − YT ) = α|T |(1− |T |
|S|

)

ErDAWS = V arDAWS = α|S|(1−
∑
T

|T |2

|S|2
).

Since 1
nT
≤
∑
T

|T |2

|S|2
≤ 1, the error at source level is maximum when all target zones have

the same size, and minimal when there is a unique target which coincides with the source.
Substituting β = 0 in (3.24) leads to the conclusion that the best linear unbiased predictor in

the homogeneous AIM model is given by the areal weighting method which is a natural result.
Let us now turn attention to a very simple non homogeneous model to illustrate the intuitive
fact that the areal weighting interpolation method is not the best choice in a non homogeneous
situation.
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3.2.3 Piecewise homogeneous model
Suppose the source zone S comprises two homogeneous subzones C1 and C2 called control

zones with intensities α1 and α2 respectively. In this case, we get

YA ∼ P(α∗|A|),

where A ⊂ C∗ with ∗ = 1, 2. For simplification reasons, we assume the target zones to be nested
within the control zones. The results of lemmas 3.2.1 and 3.2.2 give in this case

E(Ŷ DAWT − YT )T :T⊂C1 = |T |
|S|

(α2 − α1)|C2|

E(Ŷ DAWT − YT )T :T⊂C2 = |T |
|S|

(α1 − α2)|C1|

V ar(Ŷ DAWS − YS) = α1|C1|(1−
∑

T :T⊂C1

|T |2

|S|2
) + α2|C2|(1−

∑
T :T⊂C2

|T |2

|S|2
)

ErDAWS = V ar(Ŷ DAWS − YS) +
∑

T :T⊂C1

|T |2

|S|2
(α2 − α1)2|C2|2 +

∑
T :T⊂C2

|T |2

|S|2
(α2 − α1)2|C2|2

The variance has a similar structure to the one of the homogeneous model. The bias clearly
shows that the difference between the two intensities of the subzones will drive the size of the
error.

3.3 Relative accuracy of the other methods: asymptotic
assessment

Let us now try to extend the comparison to the Poisson regression methods. This cannot be
done anymore by finite distance computations and so we introduce an asymptotic framework.
Model (3.2) yields at source level

(3.27) Ys ∼ P(α|Ss|+ βxs),

where xs =
∑
t:t∩s 6=∅ xst. Besides the Poisson regression predictor defined by (3.4), inspired by

Theorem 3.2.5, we propose a new predictor called scaled Poisson regression predictor defined as
follows

(3.28) Ŷ ScRst = α̂|Ast|+ β̂xst

α̂|Ss|+ β̂xs
YS ,

where α̂ and β̂ are the estimators of α and β obtained through the Poisson regression at source
level. Note that if model (3.3) contains only one of the two effects (that of X for example), then
it is easy to see that the predictor of the scaled regression method coincides with the dasymetric
method (corresponding to X):

Ŷ ScRT = β̂xT

β̂xS
YS = Ŷ DAXT .

In section 3.3.1, we establish the asymptotic properties of the estimators α̂ and β̂ and these
results will enable us to compare the predictors in section 3.3.2. Section 3.4 illustrates these
results on a toy example.
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3.3.1 Estimators of the regression coefficients
In this section, we adapt proofs from Fahrmeir and Kaufmann (1985) to establish the consis-

tency and asymptotic normality of the estimators α̂, β̂. We first need to describe an asymptotic
framework. To be realistic, we assume that the whole region Ω is fixed and that the number of
source zones nS (hereafter denoted by n) increases to infinity. In this section, the source zones
will be denoted by Sn,i : i = 1, 2, ..., n and Ω = ∪iSn,i. Because of the extensive property of
X, we also assume a similar property of Xn,i: the total auxiliary information on the region Ω
remains constant xΩ =

∑
i xn,i. In order to get a consistent regression however we need the

amount of information at source level to increase and we thus assume that the intensity of Y
increases with a rate kn −→∞ so that

YA ∼ P(α|̃A|+ βx̃A),

where |̃A| = kn|A|, x̃A = knxA.

Let γ =
(
α
β

)
, ZA =

(
|A|
xA

)
, Zn,i =

(
|Sn,i|
xn,i

)
. With these notations we have µA = γ′ZA, Z̃A =(

|̃A|
x̃A

)
= knZA and YA ∼ P(knµA). The true value of the parameter γ will be denoted by

γo =
(
αo
βo

)
.

The log likelihood function ln(γ), the score function sn(γ) and the information matrix Fn(γ) are
then given by

ln(γ) =
n∑
i=1

yn,i ln(γ′Z̃n,i)− γ′Z̃n,i − ln(yn,i!)

sn(γ) = ∂ln(γ)
∂γ

=
n∑
i=1

Z̃n,i

γ′Z̃n,i
yn,i − Z̃n,i

Fn(γ) = Covγ(sn(γ)) =
n∑

i=1

Z̃n,iZ̃′n,i
γ′Z̃n,i

.

Differentiation of the score yields

Hn(γ) = −∂sn(γ)
∂γ

=
n∑
i=1

Z̃n,iZ̃
′
n,i

(γ′Z̃n,i)2
yn,i.

Our asymptotic framework differs from that of Fahrmeir and Kaufmann (1985) in the sense that
at each step they have one new observation whereas in our case at each step all observations are
new and we have one more than at the previous step. For this reason, we modify slightly their
conditions and assume that

(C1) {Z̃n,i} ⊂ Z∀n, i where Z is a compact set.

(C2) λmin(
∑
i Z̃
′
n,iZ̃n,i) → ∞ as n → ∞ where λmin(W ) denotes the minimum eigenvalue of

the matrix W .

Condition (C1) is satisfied if there exists two positive numbers c1, c2 (note that ||Z̃n,i|| 6= 0) s.t.

(3.29) c1 < ||Z̃n,i|| < c2.
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In that case, the number of source zones increases with the rate of growth of the intensity at
a similar rate and the number of points in one source zone is quite stable during the change
process.
Under these conditions, we get the following asymptotic behavior for the Poisson regression
coefficients.

Theorem 3.3.1. Under conditions (C1) and (C2), the following statements holds for the Poisson
regression estimator γ̂n of γ

(i) γ̂n →p γo (weak consistency)

(ii) F
1/2
n (γ̂n − γo)→d N (0, I). (asymptotic normality)

In the next section, we use these results to study the asymptotic behavior of the predictors.

3.3.2 Predictors
In this section, we consider the asymptotic properties of the following two predictors: the

regression predictor (3.4) and the scaled regression predictor (3.28). We prove that the scaled
regression predictor Ŷ ScRT is asymptotically as accurate as the unfeasible oracle predictor Ŷ CT . We
also compare these two methods with areal weighting interpolation and dasymetric interpolation.

The first proposition is concerned with the pycnophylactic property, which is of interest in
the areal interpolation literature.

Proposition 3.3.2. The scaled Poisson regression predictor satisfies the pycnophylactic property
at source level. The ordinary Poisson regression predictor is pycnophylactic at region level and
asymptotically pycnophylactic at source level.

We now turn attention to the asymptotic behavior of the prediction error for the ordinary Poisson
regression predictor.

Theorem 3.3.3. The asymptotic normality of the prediction error of the Poisson regression
predictor at source level is given by

Ŷ REGni − Yni√
γ′oZ̃n,i

→d N (0, 1).

If we also assume a lower bound for Z̃T , the following similar result at the target level holds

Ŷ REGT − YT√
γ′oZ̃T

→d N (0, 1).

The next result is about the quadratic prediction error and relative prediction error of the Poisson
regression predictor.

Theorem 3.3.4. For any η > 0, there exists a sequence of sets {Qi}i : P(Qi)→ 1 such that

−η + γ′oZ̃T < E(Ŷ REGT − YT )21Qi < η + γ′oZ̃T .
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If the number of target zones contained in one source zone Sn,i is bounded, the error at source
level can be approximated by E(Yn,i) and hence because V ar(YT ) = E(YT ) = γ′oZ̃T , this theorem
says that the quadratic prediction error of the regression predictor is asymptotically equivalent
to the variance of the underlying process. In the same conditions, the relative error at source
level can be approximated by

(3.30) ReREGn,i ≈ 1√
E(Yn,i)

= 1√
αokn|Sn,i|+ βoknxn,i

.

Equation (3.30) shows that the relative error of the regression predictor is going to be small
when the number of points on a source zone is large. However, this number being bounded by
condition (C1), this relative error cannot converge to zero in this framework.
Let us now turn attention to the difference between the relative prediction errors of the Poisson
regression method and that of the areal weighting and the dasymetric methods. If the target
zones are nested within the source zones and the number of target zones contained in one source
is bounded, we get the following approximation at source level for the differences between the
relative errors of the methods when E(Yn,i) are large and when

∑
T ( |T ||Sn,i| −

|xt|
|xn,i| )

2 is not too
small:

[(ReREGn,i )2 − (ReDAWn,i )2] ≈ −1
4(1−∆n,i)2

∑
T

( |T |
|Sn,i|

− xT
xn,i

)2(3.31)

[(ReREGn,i )2 − (ReDAXn,i )2] ≈ −1
4(1 + ∆n,i)2

∑
T

( |T |
|Sn,i|

− xT
xn,i

)2.(3.32)

This result shows that, among the three methods: areal weighting, dasymetric and Poisson re-
gression, regression outperforms the other two methods asymptotically (negative sign). However,

from the proof in the annex, we can see that if ( |̃T |
|̃Sn,i|

− x̃T
x̃n,i

) = 0 then the regression is less

accurate than areal weighting and dasymetric asymptotically so that none of them is always
dominant.
The difference between the accuracy of the regression method and the other two methods depends
on the difference of ratios |T |xT

− |S|xS
: the higher this difference, the larger the difference between

regression and the other two.
The fact that the regression predictor doesn’t satisfy the pycnophylactic property is not a surprise
but the fact that it does satisfy this property on the whole region is interesting. The idea of
scaling to obtain the pycnophylactic property can be found also in Yuan et al. (1997) for ordinary
linear regression without theoretical justifications; we have extended it to the Poisson regression
case and provided some theoretical motivation for it.
We now turn attention to the scaled regression and prove it is better than the unscaled one and
that its accuracy can be approximated by that of the unfeasible oracle predictor.
The first lemma proves an asymptotic equivalence between the scaled regression predictor and
the unfeasible oracle predictor.

Lemma 3.3.5. For any target T ,

(3.33) Ŷ ScRT − Ŷ CT →p 0.

The next result is about the quadratic prediction error of the scaled Poisson regression predictor.
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Theorem 3.3.6. For any η > 0, there exists a sequence of sets {Qi}i : P(Qi)→ 1 such that

−η + Z̃T γo −
(Z̃T γo)2

Z̃n,iγo
< E(Ŷ ScRT − YT )21Qi < η + Z̃T γo −

(Z̃T γo)2

Z̃n,iγo
.

Since ErCT = Z̃T γo − (Z̃T γo)2

Z̃n,iγo
, this theorem shows that the quadratic prediction error of the

scaled regression predictor is asymptotically equivalent to the one of the oracle. Consequently,
the scaled regression method is the best among the areal weighting, the dasymetric and the
regression predictors. In the same conditions as in equation (3.30), one can derive the following
approximation for the relative error at source level

(3.34) ReScRS ≈ 1√
E(YS)

√
1−

∑
t∈s E(YT )2

E(YS)2 ,

and we see that
√

1−
∑

t∈s
E(YT )2

E(YS)2 measures the relative asymptotic efficiency between the re-
gression and the scaled regression. This result says that the larger gain of scaling will be obtained
in situations where the number of targets is small and they have heterogeneous sizes.

3.4 Simulated toy example
We devise a simple simulation to illustrate these results. On a square region Ω with 16× 16

cells, we build three systems of sources with respectively 4, 14, and 64 sources (see Figure 3.1).
We simulate two Poisson point processes (our auxiliary information) with an expected overall
number of points of 100, 000: X1 is very inhomogeneous (Gini coefficient of cell counts of 0.74
with 100,247 points) and X2 is very homogeneous (Gini coefficient of cell counts of 0.03 with
100,008 points).
Target variables are then generated following model (3.2). For each of the auxiliary variables,
we choose three couples of coefficients α, β to study the effects of imbalance so that we get six
different target variables. In order to study the asymptotic effect, we multiply the basic auxiliary
information by 4 in the case of 14 sources and by 16 in the case of 64 sources so that the ratio
kn/n = | Sn,i | /(n | Sn,1 |) is approximately independent of the number of sources n.

We then apply the four considered methods (areal weighting, dasymetric, Poisson regression
and scaled Poisson regression) to transfer the data from each of the three systems of source zones
to cell level which our target level here. For each case, we generate the data 1000 times, and
calculate relative prediction errors for each method and each iteration. Table 3.1 reports the
median relative errors in the case of 14 sources for auxiliary information X1 and X2 for some
choices of coefficients α and β.

Figure 3.2 shows the impact of the homogeneity, expected number of points and imbalance on
the difference between the error of DAW and the error of DAX. On the left panel, targets from
source S1 with the same level of imbalance and total expected number of points are shown and we
see that, in accordance with theorem (3.2.4), the difference between the two errors increases with
the level of inhomogeneity (solid line), and in accordance with equation (3.22), as D increases,
the ratio gets larger (dashed line), then stabilizes to its limiting value. The central panel shows
similarly the impact of E(YS) with the circles corresponding to targets of source S3 (circles,
imbalance of −0.8 and 23801 points) and source S1 (triangles, imbalance of −0.87 and 8073
points): the triangles are below the circles. In the right panel where circles belong to source S3
and triangles to source S2 (imbalance of −0.72 and 23938 points), we may select targets with the
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(a) Targets (b) 4 Sources

(c) 14 Sources (d) 64 Sources

Figure 3.1: Spatial polygons for targets and sources
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Figure 3.2: Comparison of DAW and DAX

same level of inhomogeneity and see that triangles are below circles due to the absolute value of
the imbalance.

Table 3.2 reports the median relative errors in the case of 4, 14 and 64 sources for auxiliary
information X2 and two sets of coefficients. The two tables also present the mean of the target
variables at target, source and also region level (because it appears in Theorem 3.3.4) and the
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MET Level E(Y ) DAW DAX REG ScR Oracle % Pos. ∆S

α = 100 Target 634 11.950 25.383 3.966 3.911 3.925 56 -0.924
β = 1 Source 25654 14.548 2.614 0.617 0.553 0.555 25 -0.738
X1 Region 503388 5.224 1.268 0.140 0.132 0.132 0.963

α = 600 Target 2634 4.233 47.301 1.936 1.906 1.920 56 -0.616
β = 1 Source 48278 10.230 10.048 0.455 0.422 0.420 25 -0.050
X1 Region 1015388 2.591 3.752 0.099 0.095 0.095 0.994

α = 1000 Target 4023 1.589 69.052 1.559 1.537 1.549 100 0.597
β = 0.1 Source 34907 1.597 16.289 0.531 0.497 0.501 100 0.876
X1 Region 1064099 0.265 5.966 0.097 0.094 0.094 1

α = 100 Target 1960 3.435 2.317 2.261 2.223 2.213 0 -0.627
β = 1 Source 16059 1.339 0.798 0.787 0.740 0.738 0 -0.596
X2 Region 502432 0.278 0.150 0.142 0.138 0.137 -0.585

Table 3.1: Relative prediction errors for the case with 14 sources (in percentages).

theoretical oracle prediction error as a benchmark (see Theorem 3.3.6). The last column of the
two tables report the imbalance at source level ∆S . At last the second to last column of Table
3.1 reports the percentage of targets (first line) and the percentage of sources (second line) with
a positive imbalance.

Let us first use Table 3.1 to study the influence of the imbalance ∆S . Concerning the sign
of ∆S , in the case α = 1000, β = 0.1 and auxiliary information X1, the sign of ∆S according to
theory should be favorable to the DAW method, which turns out to be true at all levels (target,
source, region). Similarly, in the case α = 100, β = 1 and auxiliairy information X2, the sign
is favorable to the DAX method and indeed it is true at all levels. If we now look at the case
α = 100, β = 1 and auxiliary information X1, the situation is more contrasted since the median
imbalance is negative but the maximum is positive. Indeed there are four sources on which the
imbalance is positive but they contain 56% of the targets and the result is that DAW is better at
target level whereas DAX is better at source and region levels. If we now compare the first two
sets of parameters, for α = 100, β = 1, the median imbalance is negative with a large absolute
value whereas for α = 600, β = 1, the median imbalance is negative but small in absolute value.
Consequently the theory is in agreement with the data in the first case but in disagreement in
the second one: one should not derive conclusions when | ∆S | is small.

The influence of the overall number of points E(YΩ), linked to the number of sources nS by
kn, is clear from both tables: the relative errors are decreasing functions of this number.

With Table 3.2, we can see the influence of the homogeneity of the auxiliary information.
We recall that X2 is rather homogeneous and X1 inhomogeneous and indeed the relative errors
for DAW and DAX are smaller for X2 than for X1 due to the term D from equation (3.21).
Note that this influence is much less when one compares the two regression methods. Let us
now turn attention to comparing the dasymetric methods and the regression ones. In the case
α = 100, β = 1 and auxiliary information X2, we see in Table 3.2 that for 64 sources the basic
regression is less good than DAX at target level and we can explain it by the fact that α is
small. However most of the time, the regression methods outperform DAX and DAW. In the
case α = 1000, β = 0.1, DAW is best for 4 and 14 sources but gets worse than the scaled
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MET n E(Y ) DAW DAX REG ScR Oracle ∆S

4
490 5.313 4.572 4.547 4.534 4.4815 -0.604

23874 0.850 0.656 0.654 0.650 0.641 -0.598
125608 0.377 0.287 0.286 0.284 0.280 -0.587

α = 100
14

1960 3.435 2.317 2.261 2.223 2.213 -0.627
β = 1 16059 1.339 0.798 0.787 0.740 0.738 -0.596
X2 502432 0.278 0.150 0.142 0.138 0.137 -0.585

64
7840 2.806 1.188 1.129 0.983 0.976 -0.627

31280 1.648 0.655 0.565 0.493 0.490 -0.591
2009728 0.230 0.083 0.071 0.062 0.061 -0.568

4
1039 3.087 4.476 3.133 3.122 3.087 0.922

49907 0.444 0.804 0.453 0.450 0.443 0.924
266000 0.193 0.361 0.196 0.196 0.192 0.926

α = 1000
14

4156 1.528 3.577 1.559 1.530 1.527 0.916
β = 0.1 33285 0.516 1.398 0.548 0.515 0.513 0.924
X2 1064035 0.095 0.307 0.097 0.095 0.094 0.926

64
16624 0.686 3.275 0.776 0.673 0.672 0.916
66488 0.344 1.955 0.387 0.337 0.336 0.925

4256013 0.043 0.272 0.048 0.042 0.042 0.93

Table 3.2: Relative prediction errors (in percentages) for auxiliary information X2.

regression for 64 sources. If we now compare the basic regression to the scaled regression, we
can compute from Table 3.2 the relative efficiency of the scaled regression with respect to the
basic regression and we see that it increases with the number of sources and reaches a value of
around 13% for 64 sources. Note that the scaled regression is very comparable to the benchmark.
Concerning the difference between the relative errors of dasymetric and the regression given by
equation (3.31), we see in Table 3.1 that for X1, the term

∑
T ( |T |
|S|
− xT
xS

)2 is large (because X1

is inhomogeneous) and that indeed the regression is always much better than DAX and DAW).

In the case of X2, the term
∑
T ( |T |
|S|
− xT
xS

)2 is small and one must then look at the influence of

the other term (1 + ∆S)2 or (1−∆S)2. In the case α = 100, β = 1, (1 + ∆S)2 is quite large and
thus the regression is better than DAX. In the case α = 1000, β = 0.1, (1 −∆S)2 is small and
the regression is worse than DAW.
We now turn attention to the robustness of the methods with respect to the model. As previously
with the same geometrical design, we generate two auxiliary information scenarios: X1 is as in the
previous simulation, and X3 is inhomogeneous and uncorrelated with X1 (correlation coefficient
of −0.16). A target variable Y is generated from X3 with the relationship YA ∼ P(600|A|+X3).
We transfer Y from the first set of 14 sources to the cells (Figure 3.1) by using areal weighting
interpolation, dasymetric interpolation with X1 and X3 as auxiliary variables, the regression
methods (REG and SCR) with the true model (areal effect and X3), a simple model with only
the areal effect, an auxiliary variable model with an irrelevant variable (with area and X1), an
auxiliary variable model involving an unnecessary variable (the area and both X1 and X3). Table
3.3 presents the results.

The most accurate method is the scaled regression with area and X3 (true model). Note
that the relative error for DAW and ScR with area only is the same which was expected since
we proved that in that case the two methods coincide. The regression methods for the model
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Methods Relative error
DAW 7.74
DAX with X3 9.49
REG with area and X3 2.66
ScR with area and X3 2.62
DAX with X1 14.70
REG with area and X1 10.48
ScR with area and X1 8.26
REG with area 10.62
ScR with area 7.74
REG with area, X1 and X3 2.66
ScR with area, X1 and X3 2.62

Table 3.3: Robusness of methods.

involving area plus X1 and X3 as auxiliary have the same errors (2.66% and 2.62%): in other
words using unnecessary variables in the regression does not decrease the accuracy. On the other
hand, if we use the regression with a wrong choice of auxiliary variable, it gives bad predictions
(10.48% and 8.26% for the model with area and X1, 10.62% and 7.74% for the model with only
areal effect). The dasymetric method with X3 is better than with X1 (9.49% vs 14.70%) which
makes sense because the correlation of the target variable Y with X3 is 0.998 while with X1 it is
of −0.159 however we see that despite the strong correlation between Y and X3 the dasymetric
method with X3 is not so good because the areal effect is strong. The scaled regression is
always better than the regression method and the scaled regression in the case of areal effect
model yields the same result as the areal weighting interpolation method. Finally, the difference
between scaled and unscaled regression is larger when the wrong auxiliary variable is used as one
can see comparing the regressions using area and X1 and the regressions using area and X3.
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Chapter 4

Application and R-package

In this chapter, we present an application with a very rich data set UScensus2000. Since
the database provides many information about counts at several levels of zonal systems, it fits
with the conditions we have studied in Chapter 3. The application is not only illustrating the
theoretical results in Chapter 3 but also leading to many new questions. Besides comparisons
between the dasymetric and regression based methods according to the selection of auxiliary
variables, the size and relative size of the spatial supports (the source and the target zones), we
also consider comparing two types of regressions: Poisson and gaussian by using the transfor-
mation proposed in the Chapter 2. Our application is done using functions from an R-package
presented in Section 4.2. The package provides all simple methods corresponding to those in
Table 2.1.

4.1 Application

4.1.1 Data
The UScensus2000 database contains data from the US decennial census at several different

geographic levels (in particular: states, counties, tracts, block groups and blocks). The package
contains functions for aggregating the demographic information at any of these levels. It is
therefore highly adapted to test areal interpolation techniques. Since all considered variables
are available at all geographical levels, we will be able to assess the accuracy of the considered
interpolation methods based on the true target values on the selected target zones.

Following Almquist et al. (2010), we choose to work with the target variable corresponding to
the number of house owners in a given zone for the extensive case. We also select a corresponding
intensive variable which is the percentage of house owners, the weights being given by the num-
ber of households in the given zone. As potential auxiliary information, we use the covariates
presented in Almquist (2010) which are the number (resp: percentage) of non hispanic white,
of non hispanic black, of non hispanic asian, of hispanic, of married households with children in
the population. The first four percentages are with respect to the population whereas the last
one is with respect to the number of households. As far as spatial scale is concerned, we decide
to use three different scenarios in the state of Ohio. The first scenario is the disaggregation of
the target variable from county level (source) to tract level (target) for the whole of the state of
Ohio. Ohio has 88 counties and 2941 tracts so that on average one county contains 33 tracts.
The second and third scenario use the county of Franklin as the whole region. Franklin counts
284 tracts, 887 block groups and 22826 blocks. The second scenario is the disaggregation of the
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target variable from tracts (source) to block groups (targets) in the county of Franklin. In this
case, one track contains on average 3 block groups. The third scenario is the disaggregation of
the target variable from tracts (source) to blocks (targets) and in that case one tract contains
on average 80 blocks. A particular feature of these scenarios is that in all cases the target zones
are nested within the source zones.

We first perform some exploratory analysis of the variables at source and at target levels.
At the county level (source) for the whole Ohio, all extensive variables are strongly positively
correlated whereas the corresponding intensive variables are much less correlated and display
some negative correlations. For example the percentage of white is negatively strongly correlated
with the percentage of black (-0.97) but the percentage of hispanic has no clear linear relationship
with other intensive variables. At the tract level (source) on Franklin county, the correlations are
smaller. More precisely, the number of house owners is still strongly positively correlated with
population, number of households, number of whites and married households with children, but
not clearly correlated with number of blacks, number of asians and hispanic. For corresponding
intensive variables, correlations are smaller than 0.4 except for percentage of white and percentage
of blacks which are srongly negatively correlated (-0.97). On Franklin, correlations at tract level
are very similar to correlations at block group level (target).
Besides the scaled regression method for the Poisson case mentioned in the previous chapter, we
propose here to do the same for gaussian regression of intensive variables by using the empirical
conditional expectation of Yt given the source values, i.e. for t ⊂ S

(4.1) Ŷ SCLt = ̂E(Yt | Y1, · · · , YS) = Ŷ REGt − Ŷ REGs + Ys,

where Ŷ REGt and Ŷ REGs are the fitted values for Yt and Ys respectively and where Ŷ REGs is
simply given by the aggregation rule Ŷ REGs =

∑
t⊂s wt:t⊂sŶ

REG
t .

Another approach for this problem is to use an EM-algorithm strategy as done in Flowerdew
and Green (1993) for the Poisson case and in Flowerdew and Green (1993) for the Gaussian case.
Indeed the areal interpolation can be considered as a missing data problem with target values
as missing data. We can summarize the steps as follows: the expectation step (E-step) is either
(3.28) or (4.1) and yield values for the targets and the maximization step is the regression at
target level based on models mentioned in Section 2.3.3.

4.1.2 Results
Table 4.1 summarizes the notations used for presenting the results. To illustrate the meaning

of this table, let us take two examples. The indices have two or three positions: for example
“Dhh” or “I.Dhh”. When necessary, an additional index in position one will indicate either the
intensive/extensive nature or the spatial support depending upon background.
In positions 2 and 3 (potentially after the dot), an index “Dhh” means that we are using the
dasymetric method (D) with the auxiliary information percentage of households (hh). An index
“I.Dhh” specifies moreover that it is for the intensive target variable (percentage of house owner).
In positions 2 and 3, an index “Ebe” means that we are using the regression method with the EM
algorithm (E) for the best model choice (be) (independent variables are chosen by AIC criteria).
An index “B.Ebe” specifies moreover that it is for the with blocks as target zones.
At source level, the criterion for evaluating the quality of methods is the relative error of predic-
tion

es =

√∑
t⊂s(Ŷt − Yt)2

Ys
.
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Meaning Notation Index Position
Dependent Intensive I. 1Variables Extensive E.
Spatial Block B. 1support Block group Bg.

Dasymetric D

2Methods Regression R
Scaled regression S
EM E
number/percentage of white w

3

number/percentage of black b
Independent number/percentage of asian a
variables number/percentage of hispanic h

number/percentage of married with children m
population p
households hh
area aa
full (all variables) f
best variable choice be

Table 4.1: Notations

Auxiliary information selection

The choice of a good auxiliary information is an important question for areal interpolation in
practice. First of all, it is unclear whether a choice of variables which is good for the regression
step will be the best for predicting target values. On the other hand, it it difficult to devise a
prediction-targeted criterion adapted to this situation: indeed, one does not observe any target
value hence it is not straightforward to extend cross-validation to this case. By lack of a better
alternative, we have chosen to use a variable choice strategy based on the AIC criterion. Note
this selection has been performed using the R package MASS (Ripley et al. (2015)) for gaussian
regression and the R package glmulti (Calcagno et al. (2010)) for Poisson regression.

We compare several dasymetric methods obtained by using the different auxiliary information
at our disposal using scenario 1 (Ohio) for the extensive case. Table 4.2 displays the corresponding
median error criterions showing that it is very important to select the best auxiliary information
since the relative error can vary from around 3 percent to 30 percent. The second row displays
the correlations and the non monotonicity of these numbers shows that one should not trust
correlation to select an auxiliary information. Figure 4.1 presents the boxplots of the source errors
for the best dasymetric (here: based on the number of whites), the worst dasymetric (here: the
number of blacks) and an intermediate case corresponding to areal weighting interpolation. We
see that not only the best choice outperforms the other ones by far but also that the variability
accross sources is quite high for these choices.

Comparison between different regression methods

In this section, we focus on comparing the different methods using scenario 1 (Ohio) for the
extensive case. The implementation of the Poisson regression approach presents some peculiari-
ties. The first one is about the choice of link function. The usual choice for Poisson regression is
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Dw Dm Dp Dhh Dh Daa Da Db
error 2.76 3.10 3.14 3.75 14.97 21.95 22.87 31.31

correlation 0.99 0.99 1 1 0.88 0.02 0.93 0.95

Table 4.2: Performance of the dasymetric method for each auxiliary information

Daa Dw Db
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Figure 4.1: Dasymetric methods for Ohio - extensive approach

the logarithm link leading to E(Y ) = exp(
∑p
i=1 βiXi) and it is the so called natural link in this

generalized linear model. However we argue in Do et al. (2014b) that the identity link is more
adapted when relating such extensive variables to auxiliary extensive variables. For example, it
seems more natural that the number of house owners is proportional to the population rather
than to be exponentially related to the population. Moreover, empirically, the AIC criterion is
1000 times bigger for the log link specification.

The second one is about the constant term. With the identity link, it does not make sense
to include a constant in such a model because a constant is not an extensive variable.
Figure 4.2 presents the boxplots of the counties error criterions for the state of Ohio and for the
Poisson regression performed on the number of house owners. Table 4.3 presents the correspond-
ing median error criterions.
The order of magnitude of the errors is around 3 percent and they are very comparable. The
selection of variables strategy selects the model without the variables married household with
children and area but it seems that keeping a full model does not make a big difference. We

Sbe Ebe Sf Ef Rbe Rf
3.069 3.069 3.193 3.196 3.482 3.594

Table 4.3: Median error criterions - Poisson regressions for Ohio
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Figure 4.2: Poisson regression methods for Ohio - extensive approach

see that the scaled regression tends to perform better in general, and even better than the EM
approach. However, it turns out that the best of the regression methods gets a 3.069 error
criterion and does not outperform the best dasymetric obtained in the previous section with a
2.764 error criterion.

Intensive versus extensive approach

For the purpose of interpolating the target variable number of house owners, we have the
choice between two strategies. The first one is to work on the raw variable which is extensive
and use a Poisson regression approach. The second one is to work on the percentage of house
owners, use a gaussian regression approach and transform back the predicted percentages into
counts using the knowledge of population on targets if known. In a different situation when this
knowledge is not guaranteed, a more complex method is available which disaggregates separately
numerator and denominator of this percentage using extensive variables methods. In this section
we compare the first two approaches only, the last one giving results very similar to the second
one in our case. We use scenarios 1 and 2. For Ohio in scenario 1, Figure (4.3) shows that the
best method is the dasymetric method with auxiliary information given by the number of whites
applied to the count target variable number of house owners. For Franklin in scenario 2, the
right panel of Figure 4.6 shows again that the best result is obtained when working with the
count variable rather than the percentage and it is obtained by the regression on the best subset
of auxiliary variables. We also see that scaled gaussian regression that we introduced in section
4.1.1 is the second best.

4.1.3 Spatial scale
In this section, we examine the effect of spatial scale on the areal interpolation problem. For

this we compare scenarios 2 and 3 on the county of Franklin. Figure 4.4 (respectively Figure 4.5)
presents the distributions across sources of the error criterion in the case of disaggregation of the
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Figure 4.3: Best methods for Ohio - intensive and extensive approaches

extensive variable number of house owners (respectively of the intensive variable percentage of
house owners) at block level and at block group level. Tables 4.4 and 4.5 display the corresponding
median error criterions.

B.Sf B.Dw Bg.Sbe Bg.Sf B.Sbe Bg.Dw B.Rf B.Rbe Bg.Rf Bg.Rbe
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Figure 4.4: Methods for the extensive case for Franklin

For the extensive case, the best model strategy selects the model without the variables number
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B.Sf B.Dw Bg.Sb Bg.Sf B.Sb Bg.Dw B.Rf B.Rb Bg.Rf Bg.Sb
8.884 8.962 8.964 9.041 9.097 10.041 10.178 10.246 17.808 17.969

Table 4.4: Performance of the methods in the extensive case
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Figure 4.5: Methods for the intensive case for Franklin

of blacks and area. For the intensive case, the best model is the full model.
We note that the best accuracy for Franklin is around 10% whereas it is around 3% for Ohio.
The two situations are difficult to compare because even though the number of targets per source
is 33 for Ohio and is between 3 for scenario 2 on Franklin and 80 for scenario 3 on Franklin, on
the other hand, there are larger numbers of house owners on the sources of Ohio than the sources
of Franklin and the sizes of sources and targets are different.
When we compare scenarios 2 and 3 on Figure 4.6, we see that disaggregation to blocks is
more accurate than to blockgroups. Even though the second problem seems easier because the
blockgroups are coarser than blocks, one should not forget that the auxiliary information is used
at target level resulting in a larger amount of information used for blocks. The medians of source
error criterions at block level are thus slightly smaller and the variances are much smaller.
Finally, it turns out that the scaled regression methods always outperform the unscaled ones and
that the improvement is stronger at block group level than at block level because the information
is poorer at block group level. Indeed before scaling the regression methods at block group level
were much worse than at block level and the scaling almost wipes off this difference.
Figures 4.7 and 4.8 present map of Franklin county. Figure 4.7 shows the errors of the three

Bg.Sf B.Dw B.Sf Bg.Dw B.Rf Bg.Rf
8.993 10.24 10.684 11.102 11.761 17.013

Table 4.5: Performance of the methods in the intensive case
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Figure 4.6: Comparison of block (left) and blockgroup (right) levels for Franklin - intensive and
extensive variables

methods at source level (284 tracts). The two methods: DAX with the auxiliary variable ”num-
bers of white people” (left panel) and the scaled regression (right panel) seem equivalent whereas
the worst methods among the three ones is the regression (center panel). We also see that larger
errors locate around the center of Franklin where tracts are smaller. This fact might indicate
spatial dependence which we need to study more in future work.

Relative error (%)
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Figure 4.7: Errors on Franklin county: DAX with white (left), Regression (center) and scaled
regression (right)

A focus on the center of Franklin is displayed in Figure 4.8 that presents the true number
of house owners at target level (upper left panel), the disaggregation with the DAX method
using the number of white inhabitants as auxiliary information (upper right panel, the choice
of this particular variable has been optimized), the disaggregation with a regression (obtained
after selecting the best set of auxiliary information variables including number of whites, blacks,
hispanics and married couples, in the lower left panel) and the scaled regression with the same
auxiliary information on the lower right panel. The three disaggregations seem satisfactory
except for one tract for which the prediction gets negative for the two regression methods and is
not good for the DAX either despite being positive.
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Figure 4.8: Center of Franklin county: True counts (upper left), DAX with white (upper right),
Regression (lower left) and scaled regression (lower right)

4.2 Package

Even though the need for interpolating data is big, there is no easy package to implement these
available methods. This package aims to give simple functions which correspond to the classified
methods and enable practitioners without deep knowledge about statistics or mathematics to
select and utilize a suitable method based on their available data.

The package includes the functions of the methods presented in the table 2.1. They are
named daw, dax, dax2step, rwo, reg corresponding to the areal weighting, original dasymetric,
2-step dasymetric (dasymetric with control zones), regression without auxiliary information and
regression with auxiliary information. In addition, the scaled regression is also programmed with
the name scr.

Each function depends on several inputs: First point, we need to provide the spatial supports:
sources, targets, and controls (if available), then define the target variable Y , the auxiliary
variables X (if necessary), the nature of these variables (extensive or intensive), the weights
for each intensive variables (if any - areal as default). The format for the sources must be a
SpatialPolygonsDataFrame with observations of Y . The format for the targets and controls
must be either SpatialPolygonsDataFrame or SpatialPolygons. The target variable is obviously
defined on the sources. Spatial support of the auxiliary variables differs according to the methods:
dax requires the availability of X at the intersection level Ast which is quite strict. In general,
the dax2step is more often used instead because it loosens condition about the spatial support
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of X. In order to implement dax2step, the controls containing the values of X are necessarily
provided. On the other hand, the spatial level of X for the case reg is quite flexible: it might
be the target, the control or the intersection zones. However, scl needs availability of X on all
the intersection zones. We hence use the same technique in the dax2step to ease the constraint:
apply daw to interpolate X into the intersections if necessary. The choice of algorithms for each
method is determined by the nature of the variables Y,X so the nature is necessary to be set. We
recall all intensive variables are linked to their weights, the default weights are the ones defined
by the area zone. When all the variables are set, the functions are simply programmed based on
the formulae in the previous chapters.

S1

S2

S3

T1 T2

T2 T4

Figure 4.9: scaling option case

There is an option named ”scaling” which points out if ”zone-scale” step is used. Zone-scale
is a technique which is offered when the union of the target zones T = ∪tTt and the union of the
sources S = ∪sSs don’t coincide (see Figure 4.9). Indeed, when those unions are different, the
aggregation formulae

(4.2) Ys =
∑

t:t∩s6=∅

Yst

and

(4.3) Yt =
∑

s:s∩t 6=∅

Yst

are no longer correct if
Ss 6= ∪t:t∩s 6=∅Ast

and
Tt 6= ∪s:s∩t6=∅Ast.

Because the aggregation on the sources (4.2) is never used for the areal weighting and dasy-
metric method, so the scaling option of daw, dax functions is applied for the targets which are
not nested within the union S.

Precisely, for the areal weighting interpolation method, if one believes that the un-overlapped
zone (the part of Tt outside S) has similar property as the overlapped one (Tt ∩ S), we propose
a zone-scale step as follows: for the extensive case

(4.4) Ŷ DAWt = |Tt|
|Tt ∩ S| Ŷ

DAW
Tt∩S
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and for the intensive case, we keep the same value on Tt ∩ S.
If one believes that the target variable is null on the region outside S (for instance if the

target variable is population or population density and the region outside S is in the ocean,
hence that region is not populated), the extensive case predictors are kept, but the intensive one
is necessarily scaled as follow: if the weights Z of the intensive target variable Y are available

(4.5) Ŷ DAWt = Zt∩S

Zt
Ŷ DAWt∩S

where Zt∩S =
∑
s:s∩t 6=∅ Zst. When Z is not available, 4.5 is replaced by

(4.6) Ŷ DAWt = |Tt ∩ S|
|Tt|

Ŷ DAWTt∩S

We emphasize that the scaling option is yes when the neighbor of S is believed to be similar
to S and no if there is a ”zero” value on that adjacent region. The default is yes.

The case of the regression methods is more complicated because the aggregation steps (4.2),
(4.3) are both necessary. We hence use zone-scale technique in order to simplify the regression
equation by the following process: when S 6≡ T, instead of implementing the regression on the
original systems of zones, we restrict the implementation on a new system of zones which are the
projections of the originals on U = S

⋂
T. More precisely

(4.7) T ′t = Tt ∩U and S′t = Ss ∩U

We then apply zone-scale if the neighbor of U is similar to itself in order to get value of Y
on the new source zones and to recover the original target zones after the regression.

Functions
daw Areal weighting interpolation method

Description

Function that predicts the values of the target variable on target zones by the areal interpo-
lation method.

Usage

daw<-function(sources, targets, y, nature=”extensive”, scaling=TRUE)

Argument

sources a SpatialPolygonsDataFrame containing the source polygons as well as the values
of the target variable on the source zones

targets a SpatialPolygons or a SpatialPolygonsDataFrame
y target variable name
nature nature of target variable (extensive and intensive)
scaling zone-scale option
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Value

Vector of target variable values on target zones.

dax Dasymetric method

Description

Function that predicts the values of the target variable on the target zones by the dasymetric
method when an auxiliary variable is available on the intersection zones.

Usage

dax<-function(sources, targets, y, st.df, x, Z.y=NULL, Z.x=NULL, scaling=TRUE)

Argument

sources a SpatialPolygonsDataFrame containing the source polygons as well as the values
of the target variable on the source zones

targets a SpatialPolygons or a SpatialPolygonsDataFrame
y target variable name
st.df a data.frame containing the values of the auxiliary variable on the intersection zones
x auxiliary variable name
Z.y weights for an intensive target variable. NULL corresponds to the extensive case
Z.x weights for an intensive auxiliary variable. NULL corresponds to the extensive case
scaling zone-scale option

Value

Vector of target variable values on target zones.

dax.2step 2-step dasymetric method

Description

Function that predicts the values of the target variable on the target zones by the dasymetric
method when an auxiliary variable is available on the control zones.

Usage

dax.2step<-function(sources, targets, controls, y, x, Z.y=NULL, Z.x=NULL, algo=”1daw”,
scaling=”none”)
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Argument

sources a SpatialPolygonsDataFrame containing the source polygons as well as the values
of the target variable on the source zones

targets a SpatialPolygons or a SpatialPolygonsDataFrame
controls a SpatialPolygons or a SpatialPolygonsDataFrame containing auxiliary variable
y target variable name
x auxiliary variable name
Z.y weights for an intensive target variable. NULL corresponds to the extensive case
Z.x weights for an intensive auxiliary variable. NULL corresponds to the extensive case
algo number of daw step used
scaling zone-scale option

Value

Vector of target variable values on target zones.

rwo Regression without auxiliary information method.

Description

Function that predicts the values of the target variable on target zones by the regression
based method when there is no auxiliary variable.

Usage

rwo<-function(sources, targets, y, nature=”extensive”, scaling=TRUE)

Argument

sources a SpatialPolygonsDataFrame containing the source polygons as well as the values
of the target variable on the source zones

targets a SpatialPolygons or a SpatialPolygonsDataFrame
y target variable name
nature nature of target variable (extensive and intensive)
scaling zone-scale option

Value

Vector of target variable values on target zones.
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Chapter 5

Perspective and conclusion

We have described the main classes of methods for the area-to-area spatial interpolation problem
including proportional weighting schemes also called dasymetric methods, smoothing techniques
and regression based interpolation. As we pointed out in the introduction, we have focused on
the basic methods which are more likely to be adopted by practitioners, and a summary of the
main characteristics of these methods can be found in Table 2.1.
We have not addressed in the review the case of categorical target variable. Chakir (2009)
propose a technique for reallocating multinomial type data (namely land use shares) given sam-
pled information at a disaggregated level and observation of aggregated land use shares with a
generalized cross-entropy approach.
In terms of implementation of these methods in usual softwares, there is not much available.
Bloom et al. (1996) describe their implementation of areal weighting from Flowerdew et al.
(1991) with Mapinfo. With R, it is possible to use the “pycno” package by C. Brundson. From
our experience with some real data cases, we believe that in large size real applications, the
more sophisticated methods are not yet manageable because of size problems and are far too
complicated to communicate to the public offices typical users. Simplicity and convenience
considerations are certainly the prime arguments for the best choice.
In Chapter 3 we have analyzed the accuracy of four areal interpolation methods: areal weighting
interpolation, dasymetric interpolation, Poisson regression and scaled Poisson regression for the
case of count data. We have introduced a model based on an underlying Poisson point pattern to
be able to evaluate the accuracy of the different methods. We have proposed a scaled version of
the Poisson regression method resulting in the enforcement of the pycnophylactic property. Areal
weighting interpolation and dasymetric interpolation have been compared with a finite distance
approach and the regression methods have been compared together and with the previous ones
with an asymptotic approach.
We found out that one shouldn’t rely on the correlation of the target variable and the auxiliary
variable or on the homogeneity of the target variable to decide between areal interpolation or
dasymetric but we should also take into account the relative imbalance between the areal effect
and the auxiliary effect. A strong areal effect leads to the dominance of the areal weighting
interpolation and a strong auxiliary effect is in favor of the dasymetric method. Moreover, the
imbalance index allows to approximate the ratio of the two relative errors and their lower bounds
as the number of points on the source zones gets large. We establish the formula for the best
linear predictor (therefore better than the areal weighting and the dasymetric), which leads to
the introduction of the scaled regression method.
For the comparison of areal weighting and dasymetric, a combination of several factors explains
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the complexity of the behavior: the size of sources, the auxiliary information, the number and
size of target zones, . . . The error at source level is better when sources are divided into a smaller
number of target zones. A large number of points makes the error at source level worse but
improves the accuracy of the relative error. These two types of errors have the same behavior
as a function of the imbalance index. The impact of the expected number of points and of the
inhomogeneity on the comparative advantage of the methods should not be forgotten: indeed
when we have several sources, the sign of the imbalance index may vary from source to source and
the overall effect, being an aggregate of the source level effect, will also depend on the magnitude
of the source error differences which is driven by the expected number of points and by the
inhomogeneity. We proved that the accuracy of the unfeasible composite predictor is decreasing
when the expected number of points are similar on all targets and this fact extends to scaled
regression (due to the approximation results).
To be able to include the regression methods in the comparison, we need to resort to some
asymptotic approach. We propose an asymptotic framework and prove that the Poisson re-
gression prediction error is equivalent to the variance of the underlying process and for the
scaled regression, it is approximated by the composite’s prediction error. These results show
the regression predictor is not automatically better than the areal weighting interpolation or the
dasymetric method, but when the number of points at source level is large, it is in general better.
Finally the scaled regression turns out to be the best one among the considered methods. These
results are confirmed by our simulation study of the last section. The robustness with respect to
the model is also considered. The simulations show that a model with extra auxiliary variables
doesn’t create any loss while missing variables or unrelated variables (in place of the correct
ones) decrease the accuracy of all methods.
We used the very rich database from R-package UScensus2000 to illustrate the theoretical meth-
ods in Chapter 4. We should keep in mind that this study has a particular geometry due to the
nesting of targets into sources. In a more general case, some border effects will interplay but we
believe that, as long as the size of targets is much smaller than the size of sources (disaggregation),
the results should not be very different.
We would like to emphasize the three main conclusions of this study. About the choice of auxiliary
variable for the dasymetric method we have seen that the performance can vary wildly from one
choice to another so this choice is crucial. The second one is that sometimes dasymetric can be
better than scaled regression which means that it might be more important to select one good
auxiliary information rather than throwing a lot of weakly related variables in the regression.
The last one is that scaled regression is very close to the EM algorithm (and much simpler) and
often even better.
Because of the lack of an easy implemented package about areal interpolation methods, we
started programming an R-package including all the most basic and popular methods. There is
a detailed guideline that helps users to determine easily properties of their data that lead to the
choice of appropriate methods. The functions also cover the practical case which is displayed by
the option scaling where some targets contain zones outside the union of the sources.
There remain many open questions. We already considered the extensive variable case using
a Poisson point pattern model and got many interesting results. A similar approach for the
intensive case can be studied. Instead of using a Poisson point process, we think it can be
possible to use a marked point process to analyze the accuracy of intensive variables. In addition,
we have been working with parametric models. We think one potential approach might be the
semi- parametric models. Indeed, our target attribute might have parametric relationship with
some variables and non-parametric relationship with other variables. In a future research, the
assumption about the existence of an underlying process is kept but instead of modeling the
process’s intensity to be linearly correlated, we assume it depends on two types of auxiliary
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variables: one group is linearly linked and the other has non-parametric connection with the
target variable. There is another question for the areal interpolation problem which is the
selection of variables. Usual criteria are difficult to adapt here because prediction is done for a
statistical unit (target) different from the unit used in the regression step. Works needs to be
done to look for an appropriate tool to choose a good variable for the dasymetric methods or a
good set of variables for the regression methods.
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Chapter 6

Appendix

We present in the appendix all proofs for the dasymetric method, those of the areal weighting
interpolation method use the same arguments.

Proof of Lemma 3.2.1 and Lemma 3.2.2

From (3.10) and the properties of a Poisson point process we have

E(Ŷ DAXT − YT ) = E(xT
xS
YS − YT ) = xT

xS
(α|S|+ βxS)− (α|T |+ βxT ) = α|S|(xT

xS
− |T |
|S|

).

Taking into account the independence of two disjoint target zones with the fact that the
target T is a portion of the source S the variances of each method are given as follows

V ar(Ŷ DAXT − YT ) = V ar(xT
xS
YS − YT ) = x2

T

x2
S

V ar(YS) + V ar(YT )− 2xT
xS
Cov(YS , YT )

= x2
T

x2
S

E(YS) + E(YT )− 2xT
xS
V ar(YT ) = α|S|( |T |

|S|
− xT
xS

)2 + βxT (1− xT
xS

) + α|T |(1− |T |
|S|

).

Summing up the variances at target level with the fact that
∑
T
|T |
|S| =

∑
T
xT

xS
= 1, we get

the variances at source level in Lemma 3.2.2

Proof of Theorem 3.2.3

From Lemma 3.2.1 and the fact that α|S| = IS(|.|)E(YS), βXS = IS(X)E(YS) we have

ErDAWT = IS(X)E(YS)( |T |
|S|
− xT
xS

)2 + IS(X)E(YS)(xT
xS
− x2

T

x2
S

) + IS(|.|)E(YS)( |T |
|S|
− |T |

2

|S|2
)

+ IS(X)2E(YS)2( |T |
|S|
− xT
xS

)2

ErDAXT = IS(|.|)E(YS)( |T |
|S|
− xT
xS

)2 + IS(X)E(YS)(xT
xS
− x2

T

x2
S

) + IS(|.|)E(YS)( |T |
|S|
− |T |

2

|S|2
)

+ IS(|.|)2E(YS)2( |T |
|S|
− xT
xS

)2.
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If the expectation of the number of points is sufficiently large, we can approximate the ratio of
the two errors (the relative errors) as follows

ErDAWT

ErDAXT

≈ IS(X)2

IS(|.|)2 ,
ReDAWT

ReDAXT

≈ IS(X)
IS(|.|) .

At source level, we get a similar result by adding up errors on all target zones using the fact that∑
T

|T |
|S|

=
∑
T

xT
xS

= 1 :

ErDAXS = IS(|.|)E(YS)
∑
T

( |T |
|S|
− xT
xS

)2 + IS(X)E(YS)(1−
∑
T

x2
T

x2
S

) + IS(|.|)E(YS)(1−
∑
T

|T |2

|S|2
)

+ IS(|.|)2E(YS)2
∑
T

( |T |
|S|
− xT
xS

)2

⇒ ReDAXS = 1
E(YS) [IS(|.|)(1−

∑
T

xT
xS

)2 + IS(X)(1−
∑
T

x2
T

x2
S

) + IS(|.|)(1−
∑
T

|T |2

|S|2
)]

+ IS(|.|)2
∑
T

( |T |
|S|
− xT
xS

)2.

Using the relationship IS(|.|) + IS(X) = 1, the above results prove Theorem 3.2.3.

Proof of Theorem 3.2.4

Lemma 3.2.1 yields

ErDAW
T − ErDAX

T = V ar(Ŷ DAW
T − YT ) + [E(Ŷ DAW

T − YT )]2 − V ar(Ŷ DAX
T − YT )− [E(Ŷ DAX

T − YT )]2

= ( |T ||S| −
xT

xS
)2 (βxS − α|S|)

(βxS + α|S|) ((βxS + α|S|+ 1)(βxS + α|S|) = ( |T ||S| −
xT

xS
)2∆S(E(YS) + 1)E(YS).

Proof of Theorem 3.2.5

We calculate the error of the oracle predictors then minimize with respect to w to find the
optimal w∗

Ŷ CT = wŶ DAWT + (1− w)Ŷ DAXT = [w |T |
|S|

+ (1− w)xT
xS

]YS := uYS

Bias2
T = [E(Ŷ DAWT − Ŷ DAXT )]2 = (uµS − µT )2

V arT = V ar(uYS − YT ) = u2µS + µT − 2uµT
ErT = u2µS(µS + 1)− 2uµT (µS + 1) + µ2

T + µT

u∗ = argminuErT = µT
µS
⇔ w∗ = α|T |

α|S|+ βxS
.

Substituting the w∗ in (3.23) we get the oracle predictor (3.24).
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The bias, variance and error of the above oracle predictor are calculated as follows

Bias =E(Ŷ CT − YT ) = 0

ErCT = V ar(Ŷ CT − YT ) = V ar(µT
µS

YS − YT ) = x2
T

x2
S

µS + µT − 2xT
xS
µT − µS(xT

xS
− µT
µS

)2

= V ar(Ŷ DAXT − YT )− µS(xT
xS
− µT
µS

)2 = V ar(Ŷ DAWT − YT )− µS( |T |
|S|
− µT
µS

)2.

Since YT |YS ∼ Bi(YS ,
E(YT )
E(YS) ), we have E(YT |YS) = E(YT )

E(YS)YS = Ŷ CT . This shows that the
oracle predictor is the best linear predictor.

Proof of Theorem 3.3.1

It is easy to see that Eγ(sn(γ)) = 0,Eγ(Hn(γ)) = Fn(γ). We further simplify the notations and
use sn, Fn, Hn,E instead of sn(γo), Fn(γo), Hn(γo),Eγo

. It is clear that the matrix Hn is positive
definite and therefore the log likelihood function is concave which leads to a unique minimum. In
the sequel, we also need the square root F 1/2

n of the symmetric matrix Fn, i.e. F 1/2
n F

1/2
n = Fn.

To prove the theorem, we will prove the following lemmas

Lemma 6.0.1. Under conditions (C1) and (C2), the normed score function F
−1/2
n sn is asymp-

totically normal

(6.1) F−1/2
n sn →d N (0, I).

Lemma 6.0.2. Under conditions (C1) and (C2), for all δ > 0

(6.2) maxγ∈Nn(δ)||Vn(γ)− I|| →p 0,

where Nn(δ) = {γ : ||F 1/2
n (γ − γo)|| ≤ δ}, Vn(γ) = F

−1/2
n Hn(γ)F−1/2

n .

Lemma 6.0.1 is proved by using the Lindeberg-Feller theorem.
Indeed, for τ fixed with τ ′τ = 1, considering the triangular array

zn,i = τ ′F−1/2
n

Z̃n,i

γ′Z̃n,i
(yn,i − γ′Z̃n,i)

we have E(zn,i) = 0,
∑
i V ar(zn,i) = 1. We will show that the Lindeberg condition is satisfied,

i.e. for any ε > 0

(6.3)
∑
i

E(z2
n,i1|zn,i|>ε)→ 0

as n→∞.
Let an,i = τ ′F

−1/2
n

Z̃n,i

γ′Z̃n,i
, because z2

n,i = a2
n,i(yn,i−γ′Z̃n,i)2 , E(z2

n,i1|zn,i|>ε) = a2
n,iE((yn,i−

γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε
|an,i|

) , yields

∑
i

E(z2
n,i1|zn,i|>ε) =

∑
i

a2
n,iE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε

|an,i|
)

≤ (
∑
i

a2
n,i)supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε

|an,i|
).
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Moreover, condition (C1) yields that there is a positive number K1 s.t. 1
γ′Z̃n,i

< K1,∀(n, i),
hence ∑

i

a2
n,i = τ ′F−1/2

n

∑
i

Z̃n,iZ̃
′
n,i

(γ′Z̃n,i)2
F−1/2
n τ < K1τ

′F−1/2
n

∑
i

Z̃n,iZ̃
′
n,i

γ′Z̃n,i
F−1/2
n τ = K1.

In addition, conditions (C1) (C2) lead to maxi
ε

|an,i|
→ ∞ as n→∞, hence for any M > 0,∃n1

s.t. ∀n > n1

supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε
|an,i|

) ≤ supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|>M )

≤ supi
√

E((yn,i − γ′Z̃n,i)4E(1|yn,i−γ′Z̃n,i|>M ) ≤ supi

√
E((yn,i − γ′Z̃n,i)4V ar(yn,i − γ

′Z̃n,i)
M2

= supi

√
γ′Z̃n,i(1 + 3γ′Z̃n,i)

γ′Z̃n,i
M2 <

K2

M
.

Hence supiE((yn,i − γ′Z̃n,i)21|yn,i−γ′Z̃n,i|> ε
|an,i|

) → 0 as n → ∞, where the existence of K2 is
derived from condition (C1). The argument yields the (6.3). So Lemma 6.0.1 holds.
Proof of Lemma 6.0.2

Using the same notation in the proof of Lemma 6.0.1, τ fixed s.t. τ ′τ = 1, let bn,i =
τ ′F

−1/2
n Z̃n,i, the equation (6.2) can be rewritten as

(6.4) τ ′(Vn(γ)− I)τ = An +Bn + Cn,

where An =
∑
i b

2
n,i( 1

(γ′Z̃n,i)2 − 1
(γ′

oZ̃n,i)2 )(yn,i−γ′Z̃n,i), Bn =
∑
i b

2
n,i

1
(γ′

oZ̃n,i)2 (yn,i−γ′Z̃n,i), Cn =∑
i b

2
n,i( 1

γ′Z̃n,i
− 1

γ′
oZ̃n,i

).
We will prove that the three terms converge in probability to 0 as n tends to ∞. To prove

the convergence of Bn, we first study its properties. We have

E(Bn) = 0

V ar(Bn) =
∑
i

b4n,i
1

(γ′oZ̃n,i)4
V ar(yn,i − γ′Z̃n,i) =

∑
i

b4n,i
1

(γ′oZ̃n,i)4
γ′Z̃n,i

≤
∑
i

b2n,i
1

γ′oZ̃n,i
sup
i

b2n,i

(γ′oZ̃n,i)3
γ′Z̃n,i = sup

i
b2n,i

1
(γ′oZ̃n,i)3

γ′Z̃n,i < K3 sup
i
b2n,i.

Because of the boundedness of (γ′oZ̃n,i)3 and the definition of Nn(δ), γ′Z̃n,i is bounded when n
is large enough, moreover, supi b2n,i → 0 due to the condition (C1) (C2), therefore Bn →p 0.

We can use similar argument to prove An →p 0, Cn → 0, and this shows that the lemma 6.0.2
holds.

Proof of Proposition 3.3.2

Let znij ∼ P(γ′oZn,i)− γ′oZn,i := z̃n,i, j = 1, 2, ..., kn i.i.d .
This yields

∑
j znij = Yn,i − γ′oZ̃n,i. We have E(znij) = 0,

∑
j V ar(znij) = γ′oZ̃n,i.

We will prove that this array satisfies the Lindeberg-Feller condition, i.e. ∀δ > 0,
∑
j E(z2

nij1|znij |>δ)→
0, as n → ∞. Indeed,

∑
j E(z2

nij1|znij |>δ) = knE(z̃2
n,i1|z̃n,i|>δ) = E(u2

n,i1|un,i|>
√
knδ

), where
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un,i =
√
knz̃n,i. Because Eun,i = 0, Eu2

n,i = V arun,i = knV arz̃n,i = γ′oZ̃n,i < ∞. Moreover
kn →∞ as n→∞, we have E(u2

n,i1|un,i|>
√
knδ

)→ 0 as n→∞.
From the Lindeberg-Feller theorem we get Yn,i−γ′

oZ̃n,i√
γ′

oZ̃n,i

→d N (0, 1). This proof can be applied

at the target level, i.e. YT−γ′
oZ̃T√

γ′
oZ̃T

→d N (0, 1).

Proof of Theorem 3.3.3

The pycnophylactic property of the scaled regression predictor is obvious. To prove the pycno-
phylactic property of the regression predictor at region level, we sum up regression predictors
over source zones

Ŷ REGΩ =
∑
i

∑
T :T⊂Sn,i

Ŷ REGT =
∑
i

∑
T :T⊂Sn,i

γ̂nZ̃T = γ̂′nZ̃Ω.

Recall that γ̂ is the solution of the score equation sn(γ) = 0, i.e.
n∑
i=1

Z̃n,i

γ̂′Z̃n,i
yn,i − Z̃n,i = 0⇒

n∑
i=1

γ̂′Z̃n,i

γ̂′Z̃n,i
yn,i − γ̂′Z̃n,i = 0⇔

n∑
i=1

yn,i − γ̂′Z̃Ω = 0⇔ γ̂′Z̃Ω = yΩ.

That is, the regression predictor satisfies the pycnophylactic property on the region Ω.
To study the pycnophylactic property of the regression predictor at source level, we consider

Ŷ REGn,i − Yn,i. We have

Ŷ REGn,i − Yn,i = γ̂′nZ̃n,i − Yn,i = (γ̂′n − γ′o)Z̃n,i − (Yn,i − γ′oZ̃n,i)
= F−1/2

n F 1/2
n (γ̂′n − γ′o)Z̃n,i − (Yn,i − γ′oZ̃n,i).

The first term converges to 0 in distribution due to the conditions (C1), (C2) and the theorem
3.3.1. The second term is different from 0, even asymptotically (Proposition 3.3.2).

Moreover, because of the boundedness of Z̃n,i, the above argument yields the result of The-
orem 3.3.3.

If Z̃T is bounded below, a similar result at target level holds.

Proof of Theorem 3.3.4

For any target T , the error of the regression predictor on the target is
E(Ŷ REGT − YT )2 = E(γ̂′nZ̃T − γ′oZ̃T )2 + E(γ′oZ̃T − YT )2 − 2E(γ̂′nZ̃T − γ′oZ̃T )(γ′oZ̃T − YT ).

From Theorem 3.3.1 and condition (C1), for any η1 > 0,∃ε > 0 s.t.when n is sufficiently large
E(γ̂′nZ̃T − γ′oZ̃T )21||γ̂n−γo||<ε < η1(6.5)

||2E(γ̂′nZ̃T − γ′oZ̃T )(γ′oZ̃T − YT )1||γ̂n−γo||<ε|| < η1.(6.6)

As we proved in Theorem 3.3.3 (γ̂′nZ̃T − γ′oZ̃T )→p 0, we have P(||γ̂n − γo|| < ε)→ 1 as n→∞.
In addition E(γ′oZ̃T − YT )2 = γ′oZ̃T . Hence there is n1 s.t.

E(γ′oZ̃T − YT )21||γ̂n−γo||≥ε < E(γ′oZ̃T − YT )4P(||γ̂n − γo|| ≥ ε) < η1

for n > n1. In other words, γ′oZ̃T − η1 < E(γ′oZ̃T − YT )21||γ̂n−γo||>ε < γ′oZ̃T .
This implies ∀η > 0,∃ε > 0, n1 s.t. for n > n1

−η + γ′oZ̃T < E(Ŷ REGT − YT )21||γ̂n−γo||<ε < η + γ′oZ̃T(6.7)
with a remark that P(||γ̂n − γo|| < ε)→ 1 as n→∞.

Combining (6.5), (6.6), (6.7) we get Theorem 3.3.4.
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Proof of equations (3.31)

We rewrite the error of the areal interpolation and dasymetric for the asymptotic model. For
a target T ⊂ Sn,i, from (3.25), (3.26), and Lemma 3.2.1 we have

ErDAXT = γ′oZ̃T −
(γ′oZ̃T )2

γ′oZ̃n,i
+ γ′oZ̃n,i(

x̃T
x̃n,i
− γ′oZ̃T

γ′oZ̃n,i
)2 + α2 |̃Sn,i|

2
( |̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2.

A similar argument as in the proof of theorem 3.3.4 shows that, for any η1 > 0, ε > 0, ∃n1 s.t.
∀n > n1

ErDAXT − η1 < E(Ŷ DAXT − YT )21||γ̂n−γo||<ε < ErDAXT .

With ε chosen as in theorem 3.3.4, let Qi = {||γ̂n − γo|| < ε}, we have

γ′oZ̃T − ErDAXT − η < E(Ŷ REGT − YT )21Qi − E(Ŷ DAXT − YT )21Qi < γ′oZ̃T − ErDAXT + η + η1

for all n > n1. Moreover,

γ′oZ̃T − ErDAXT = βx̃n,i
x̃2
T

x̃2
n,i

+ α|̃Sn,i|
|̃T |

2

|̃Sn,i|
2 − α|̃Sn,i|(

|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2 − α2 |̃Sn,i|
2
( |̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2.

Taking the sum over all target zones which belong to Sn,i then scaling the sum by E(Yn,i) and
calculating the differences in terms of ∆n,i = ∆Sn,i

, we have

4
∑
T γ
′
oZ̃T − ErDAXT

E(Yn,i)2 = 4 1
E(Yn,i)

[ βx̃n,i
E(Yn,i)

∑
T

x̃2
T

x̃2
n,i

+ α|̃Sn,i|
E(Yn,i)

∑
T

|̃T |
2

|̃Sn,i|
2 −

α|̃Sn,i|
E(Yn,i)

∑
T

( |̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2]

− 4( α|̃Sn,i|
E(Yn,i)

)2
∑
T

( |̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2

= 2 1
E(Yn,i)

[(1−∆n,i)
∑
T

x2
T

x2
n,i

+ (1 + ∆n,i)
∑
T

|T |2

|Sn,i|2
−

− (1−∆n,i)
∑
T

( |T |
|Sn,i|

− xT
xn,i

)2]− (1 + ∆n,i)2
∑
T

( |T |
|Sn,i|

− xT
xn,i

)2.

Using the same calculation for the areal weighting interpolation method, we have

4
∑
T γ
′
oZ̃T − ErDAWT

E(Yn,i)2 = 2 1
E(Yn,i)

[(1−∆n,i)
∑
T

x2
T

x2
S

+ (1 + ∆n,i)
∑
T

|T |2

|Sn,i|2
−

− (1−∆n,i)
∑
T

( |T |
|Sn,i|

− xT
xn,i

)2]− (1−∆n,i)2
∑
T

( |T |
|Sn,i|

− xT
xn,i

)2.

If ( |̃T |
|̃Sn,i|

− x̃T
x̃n,i

) = 0 then the regression is less accurate than areal weighting and dasymetric

asymptotically. If this difference increases, the difference between the regression and the other two
methods gets smaller and then the regression method can do better than the other two methods.
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Indeed, for example when xT
|T |

=
βxSn,i − α|Sn,i|

2β|S| , this yields T, xT satisfy ( |̃T |
|̃Sn,i|

− x̃T
x̃n,i

) 6= 0,

we have (γ′oZ̃T )2

γ′oZ̃n,i
− 1

γ′
oZ̃n,i

β2x̃2
n,i(

|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2 = 0.

Therefore, γ′oZ̃T − ErDAWT = −β2x̃2
n,i(

|̃T |
|̃Sn,i|

− x̃T
x̃n,i

)2 < 0.

Choosing η, η1 to be sufficient small, the regression predictor is asymptotically better than the
areal weighting interpolation predictor. A similar result for the case of the dasymetric predictor
can be proved similarly.

We therefore proved that none of the considered three methods is always dominant.

Proof of Lemma 3.3.5

Assume T ∈ Sn,i, the difference between the predictors of scaled regression and oracle pre-
dictor is given by

Ŷ ScRT − Ŷ CT = γ̂′nZ̃T

γ̂′nZ̃n,i
Yn,i −

γ′oZ̃T

Z̃n,iγo
Yn,i = (γ̂′n − γ′o)

γ̃′nZ̃n,iZ̃T − γ̃′nZ̃T Z̃n,i
(Z̃n,iγ̃n)2

Yn,i

= (γ̂′n − γ′o)F−T/2n FT/2n Yn,i
γ̃′nZ̃n,iZ̃T − γ̃′nZ̃T Z̃n,i

(Z̃n,iγ̃n)2
,

where γ̃n belongs to the segment of γ̂n and γo.
From Theorem 3.3.1, Proposition 3.3.2, and conditions (C1), (C2), we have

FT/2n (γ̂n − γo)→d N (0, I), F−T/2n

Yn,i − Z̃Sn,i
γo√

Z̃Sn,iγo

→d 0, γ̃
′
nZ̃n,iZ̃T − γ̃′nZ̃T Z̃n,i

(Z̃n,iγ̃n)2
bounded,

In other words, Ŷ ScRT − Ŷ CT →p 0.

Proof of Theorem 3.3.6

Because of the boundedness of Z̃n,i, upper boundedness of Z̃T , there exists

M = supZ̃T ,Z̃n,i,γ∈B(γo,1)||
Z̃n,iγnZ̃T − Z̃T γnZ̃n,i

(Z̃n,iγn)2
||E(Y 2

n,i),

where B(γo, 1) = {γ : ||γo−γ|| < 1}. Since γ̂n−γo →p 0, the sequence γ̂n, n = 1, 2, ... is bounded,
therefore for any ε > 0, when n is large enough

supZ̃T ,Z̃n,i,γ̃∈segment(γo,γ̂n)||
Z̃n,iγ̃nZ̃T − Z̃T γ̃nZ̃n,i

(Z̃n,iγ̃n)2
||E(Y 2

n,i)1||γ̂n−γo||<ε < M

For any η > 0, there is an ε > 0 s.t.

E(Ŷ ScRT − Ŷ CT )21||γ̂n−γo||<ε = E(|| Z̃n,iγ̃nZ̃T − Z̃T γ̃nZ̃n,i
(Z̃n,iγ̃n)2

||2||Yn,i||2||(γ̂n − γo)||21||γ̂n−γo||<ε) < M2ε2 < η.
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Evaluating the error on the set {||γ̂n − γo|| < ε}, we have

E(Ŷ ScRT − YT )21||γ̂n−γo||<ε = E(Ŷ ScRT − Ŷ CT )21||γ̂n−γo||<ε + E(Ŷ CT − YT )21||γ̂n−γo||<ε

− 2E(Ŷ ScRT − Ŷ CT )(Ŷ CT − YT )1||γ̂n−γo||<ε

Moreover

E(Ŷ CT − YT )21||γ̂n−γo||<ε ≤ E(Ŷ CT − YT )2 = V ar(Ŷ CT − YT ) = Z̃T γo −
(Z̃T γo)2

Z̃n,iγo
.

With the same argument as in theorem 3.3.4, when n is large enough

E(Ŷ CT − YT )21||γ̂n−γo||<ε = E(Ŷ CT − YT )2 − E(Ŷ CT − YT )21||γ̂n−γo||≥ε > Z̃T γo −
(Z̃T γo)2

Z̃n,iγo
− η.

Using a similar argument as above, we can prove ∀η > 0,∃ε > 0 and n large enough such that

||E(Ŷ ScRT − Ŷ CT )(Ŷ CT − YT )1||γ̂n−γo||<ε|| < η

In other words

−3η + Z̃T γo −
(Z̃T γo)2

Z̃n,iγo
< E(Ŷ ScRT − YT )21||γ̂n−γo||<ε < 2η + Z̃T γo −

(Z̃T γo)2

Z̃n,iγo
.

Note that P(||γ̂n − γo|| < ε)→ 1 as n→∞ and the theorem holds.
Summing up all the target contained in the source Sn,i with the assumption that the number of
targets nested within one source is bounded, we have

ErScRn,i =
∑

T⊂Sn,i

E(Ŷ ScRT − YT )2 ≈
∑

T⊂Sn,i

[Z̃T γo −
(Z̃T γo)2

Z̃n,iγo
] = ˜Zn,iγo −

∑
T

(Z̃T γo)2

Z̃n,iγo
.

This approximation yields

ReScRn,i =

√∑
T⊂Sn,i

E(Ŷ ScRT − YT )2

E(YSn,i
) ≈ 1√

˜Zn,iγo

√
[1−

∑
T⊂Sn,i

(Z̃T γo)2

(Z̃n,iγo)2
].
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