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Abstract
Mitigation reduces the expected future damages from climate change,

but how does it affect the aggregate risk borne by future generations?
This raises the question of the ‘climate beta’, i.e., the elasticity of cli-
mate damages with respect to a change in aggregate consumption. In
this paper we show that the climate beta is positive if the main source
of uncertainty is exogenous, emissions-neutral technological progress,
implying that mitigation has no hedging value. But these results are
reversed if the main source of uncertainty is related to the carbon-
climate-response and the damage intensity of warming. We then show
that in the DICE integrated assessment model the climate beta is pos-
itive and close to unity. In estimating the social cost of carbon, this
would justify using a relatively high rate to discount expected climate
damages. However, the stream of undiscounted expected climate dam-
ages is also increasing in the climate beta. We show that this dominates
the discounting effect, so that the social cost of carbon is in fact larger
than when discounting expected damages at the risk-free rate.
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1 Introduction
Because most of the benefits of mitigating climate change arise in the distant
future, the choice of the rate at which these benefits should be discounted
is a crucial determinant of our collective willingness to reduce emissions
of greenhouse gases. The discount-rate controversy that has emerged in
the economic literature over the last two decades shows that there is still
substantial disagreement about the choice of this parameter for cost-benefit
analysis. One source of controversy comes from the intrinsically uncertain
nature of these benefits. It is a tradition in economic theory and finance to
adapt the discount rate to the risk profile of the flow of net benefits generated
by the policy under scrutiny. The underlying intuition is simple. If a policy
tends to raise the collective risk borne by the community of risk-averse
stakeholders, this policy should be penalised by increasing the discount rate
by a risk premium specific to this policy. On the contrary, if a policy tends
to hedge collective risk, this insurance benefit should be acknowledged by
reducing the rate at which expected net benefits are discounted, i.e. by
adding a negative risk premium to the discount rate.

This simple idea can easily be implemented through the Consumption-
based Capital Asset Pricing (CCAPM) theory developed by Lucas (1978).
Lucas showed that an investment raises intertemporal social welfare if and
only if its Net Present Value (NPV) is positive, where the NPV is obtained
by discounting the expected cash flow of the investment at a risk-adjusted
rate. This investment-specific discount rate is written as

r = rf + βπ,

where rf is the risk-free rate, π is the systematic risk premium and β is
the CCAPM beta of the specific investment under scrutiny. It is defined as
the elasticity of the net benefit of the investment with respect to a change
in aggregate consumption. This means that a marginal project, whose net
benefit is risky but uncorrelated with aggregate consumption, should be
discounted at the risk-free rate, because implementing such a project has
no effect at the margin on the risk borne by the risk-averse representative
agent. A project with a positive (resp. negative) β raises (resp. reduces)
collective risk and should be penalised (resp. favoured) by discounting its
flow of net benefits at a higher (resp. lower) rate.

The objective of this paper is not to offer a new contribution to the debate
about the choice of the risk-free rate, or of the systematic risk premium:
there have been many of these in the recent past (see Kolstad et al., 2014,
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for a recent summary). Rather, the aim of this paper is to discuss the
CCAPM β that should be used to value climate-mitigation projects. This
‘climate β’ should play an important role in the determination of the social
cost of carbon (i.e. the present social value of damages from incremental
carbon emissions), just as an asset β is known to be the main determinant
of the asset price. Indeed, over the last 150 years in the United States
financial markets have exhibited a real risk-free rate and a systematic risk
premium of around 1.6% and 4.8 percentage points respectively. Thus assets
whose CCAPM betas are respectively 0 and 2 should be discounted at very
different rates of 1.6% and 11.2% respectively.1

Howarth (2003) was one of the first papers to examine this question.
He pointed out that the net benefits of climate-mitigation projects should
be discounted at rf , provided those net benefits are expressed in terms of
certainty equivalents (which contains a risk premium). He went on to sug-
gest that the climate β is negative, but did not offer detailed analysis to
back up the suggestion.2 Weitzman’s (2007a) Review of the Stern Review
similarly highlighted the need for further investigation of the correlation
between mitigation benefits and consumption, while Aalbers (2009) situ-
ated the climate β within a broader set of theoretical conditions, according
to which climate-mitigation investments might be discounted at a lower
rate than other investments. Sandsmark and Vennemo (2007) provided the
first explicit investigation of the climate β. They constructed a simplified
climate-economy model, in which the only stochastic parameter represents
the intensity of damages – the loss of GDP – associated with a particu-
lar increase in global mean temperature. Given this set-up, large damages
are simultaneously associated with low aggregate consumption and a large
benefit from mitigating climate change. Hence this model yields a negative
climate β. Weitzman (2013) extends the idea that emissions abatement is
a hedging strategy against macro-economic risk, in particular invoking po-
tential catastrophic climate change and its avoidance. Most recently, Daniel
et al. (2015) have examined a similar problem in the more general context
of Epstein-Zin preferences. Their study also suggests a negative climate β,
since their estimation of the social cost of carbon is increasing in the degree
of risk aversion of the representative agent.

On the other hand, an alternative channel driving the climate β may ex-
1See Shiller’s dataset: http://www.econ.yale.edu/shiller/data.htm.
2In a later paper, Howarth (2009) takes the analysis beyond the scope of the standard

CCAPM and therefore of our paper by introducing to the model the concepts of reference
dependence and loss aversion. This leads to an additional ‘investment risk premium’
relating to gains/losses.
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ist. Nordhaus (2011) concludes from simulations with the RICE-2011 model
that “those states in which the global temperature increase is particularly
high are also ones in which we are on average richer in the future.” That is,
suppose that the only source of uncertainty is exogenous emissions-neutral
technological progress, which determines economic growth. In this context,
as long as growth is in some measure carbon-intensive, rapid technologi-
cal progress yields at the same time more consumption, more emissions, a
larger concentration of CO2 in the atmosphere and a larger marginal ben-
efit from fighting climate change, provided the damage function is convex
(as is classically assumed). This would yield a positive correlation between
consumption and the benefits of mitigation, i.e. a positive climate β. This
channel is not present in Sandsmark and Vennemo (2007) and Daniel et al.
(2015), because they assume a sure growth rate of pre-climate-damage pro-
duction and consumption.

In this paper, we attempt to encompass these two stories, as well as
other possible determinants of the climate β. We provide two complemen-
tary analyses. First, we explore analytical properties of the climate β in
a simplified model. As well as serving to develop intuition, the model al-
lows us to explore the role of the structure of climate damages, in particular
whether they are multiplicative, as standardly assumed, or additive. We
then estimate the climate β numerically using a dynamic integrated assess-
ment model (IAM) with investment effects on future consumption. Within a
Monte Carlo simulation of the DICE model, we introduce eight key sources
of simultaneous uncertainty about the benefits of climate mitigation and
about future consumption, and we measure the climate β for different ma-
turities of our immediate efforts to reduce emissions.3 We show that in
DICE, which has a multiplicative damage structure, the positive effect on
β of uncertain technological progress dominates the negative effect on β of
uncertain climate sensitivity and uncertain damages. Put another way, emis-
sions reductions actually increase the aggregate consumption risk borne by
future generations. This is in line with Nordhaus (2011), but we go beyond
it by explicitly computing the climate β, with the aim of contributing to the
debate about the discount rate appropriate for climate-mitigation projects.
Another advantage of our work is that we offer a characterisation of key
uncertainties in the DICE model that is strongly grounded in underlying
data and studies.

In the next section we briefly review β in the context of Lucas’ CCAPM.
Section 3 describes our analytical model and its results. Section 4 describes

3See also Van den Bijgaart et al. (2013) for a recent Monte Carlo simulation of DICE.
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how we set up and run the DICE model in order to estimate the climate
β numerically. Section 5 sets out our numerical results. In Section 6, we
make the important point that a large positive climate β is almost certainly
not bad news for those who care about climate change – although it im-
plies a relatively higher discount rate on the benefits of climate-mitigation
projects, we identify the conditions under which it also raises the expected
(undiscounted) benefits of mitigation. These conditions hold. Section 6
concludes.

2 The CCAPM beta
In this section, we derive the standard CCAPM valuation principles as
in Lucas (1978). Consider a Lucas-tree economy with a von Neumann-
Morgenstern representative agent, whose utility function u is increasing and
concave and whose rate of pure preference for the present is δ. Her intertem-
poral welfare at date 0 is

W0 =
∑
t=0

e−δtE [u(ct)] , (1)

where ct measures her consumption at date t. Because ct is uncertain
from date 0, it is a random variable. We contemplate an action at date
0, which has the consequence of changing the flow of future consumption
to ct + εBt, t = 0, 1, ..., where Bt is potentially random and potentially
statistically related to ct. Because ε is small, the change in intertemporal
welfare generated by this action is equivalent to an immediate increase in
consumption by εNPV, where NPV can be measured as follows:

NPV =
∑
t=0

e−δtEBt
u′(ct)
u′(c0) =

∑
t=0

e−rttEBt, (2)

with
rt = δ − 1

t
ln EBtu′(ct)
u′(c0)EBt

. (3)

The right-hand side of equation (2) can be interpreted as the NPV of the
action, where, for each maturity t, the expected net benefit EBt is discounted
at a risk-adjusted rate rt, which is in turn defined by equation (3). In order
to simplify equation (3), we make three additional assumptions, which are
in line with the classical calibration of the CCAPM model:

1. For all states of nature, the elasticity of the net conditional benefit at
date t with respect to a change in consumption at t is constant, so
that there exists βt ∈ R such that E [Bt |ct ] = cβt

t .
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2. Consumption follows a geometric brownian motion with drift µ and
volatility σ, so that xt = ln ct/c0 ∼ N(µt, σ2t).

3. The representative agent has constant relative risk aversion γ, so that
u′(ct) = c−γt .

This allows us to rewrite equation (3) as follows:

rt = δ − 1
t

ln
E
[
e(βt−γ)xt

]
E [eβtxt ] . (4)

We now use the well-known property that if x ∼ N(a, b2), then for all k ∈ R,
E [exp(kx)] = exp

(
ka+ 0.5k2b2). Applying this result twice in the above

equation implies that

rt = δ +
(
βtµ+ 0.5β2

t σ
2
)
−
[
(βt − γ)µ+ 0.5(βt − γ)2σ2

]
= rf + βtπ, (5)

where the risk-free rate rf equals

rf = δ + γµ− 0.5γ2σ2, (6)

and the systematic risk premium equals

π = γσ2. (7)

Observe that both the risk-free rate rf and the systematic risk premium
π have a flat term structure in this framework. However, the risk-adjusted
discount rate rt may have a non-constant term structure, which is homoth-
etic in the term structure of βt.

Therefore later in the paper we shall be interested in estimating the term
structure (β1, β2, ...) of the climate β. This can be done by observing that
if E [Bt |ct ] = cβt

t , then βt is nothing other than the regressor of lnBt with
respect to ln ct :

lnBt = βt ln ct + ξt,

where ct and ξt are independent random variables. 1000 draws of the Monte-
Carlo simulation of the DICE model generate for each maturity t a series
(lnBit, ln cit)i=1,2,...,1000 , from which the OLS estimate of lnBt on ln ct gives
us the climate β associated with that maturity.
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3 A simple analytical model of the climate beta
In this section we derive the climate β from a simple analytical model. As
well as helping to formalize notions of what determines the climate β, we also
use the model to make an important point about the role of the structure
of climate damages, specifically what difference it makes to the climate β
that damages are multiplicative in most models such as DICE, as opposed
to additive.

Let us consider any specific future date t, and let Y represent global
economic output within the period [0, t] in the absence of climate damages.
Over timescales of decades to centuries, important recent papers in climate
science have shown that the increase in the global mean temperature T is
approximately linearly proportional to cumulative greenhouse gas emissions
(Allen et al., 2009; Matthews et al., 2009; Zickfeld et al., 2009; Goodwin
et al., 2015),

T = ω1E, (8)
where E stands for cumulative industrial greenhouse gas emissions from 0
to t and ω1 is a parameter called the carbon-climate response (CCR), com-
bining the response of the carbon cycle to emissions and the temperature
response to atmospheric carbon (i.e. including radiative forcing and climate
sensitivity, etc.). More complex models like DICE deal with these com-
ponents separately. Emissions are themselves proportional to pre-damage
production, so that

E = ω2Y − I0, (9)
where ω2 ∈ [0, 1] parameterises the carbon intensity of production, and I0
is an investment to reduce emissions at the margin.

We assume the damage index D is proportional to increased temperature
T at some power k:

D = αT k, (10)
where α calibrates the damage function. Parameter k turns out to play an
important role in the determination of the climate β in this model. It is
widely believed that there is a convex relationship between climate damages
and warming, i.e. k > 1.

At this stage, let us remain quite general about the way to model the
interaction between the damage index D and the index of economic devel-
opment Y :

Q = q(Y,D), (11)
where Q is post-damage aggregate output, and q is a bivariate function that
is increasing in Y , and decreasing in D, with Q(Y, 0) = Y for all Y . If
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c ∈ (0, 1] is the propensity to consume output in period t, then the model
yields the following reduced form:

C(I0) = cq
(
Y, αωk1 (ω2Y − I0)k

)
. (12)

We consider the β of a marginal emissions reduction project. The benefit or
cash flow of the project is

B ≡ ∂C

∂I0

∣∣∣∣
I0=0

= −cαωk1ωk−1
2 Y k−1qD(Y, hY k), (13)

with h = αωk1ω
k
2 . To sum up, our model characterises the statistical rela-

tionship between future consumption C = C(0) and future benefits B as a
function of a set of uncertain parameters, such as Y and ω1. This system is
given by the following two equations:

lnB = ln
(
cαMω

k
1ω

k−1
2

)
+ (k − 1) lnY + ln

(
−qD(Y, hY k)

)
,

lnC = ln c+ ln q
(
Y, hY k

)
.

(14)

How does β respond to the various uncertainties in this model? We
proceed one by one through each of the key sources of uncertainty.

3.1 The climate β when the main source of uncertainty is
related to exogenous economic growth

Suppose the only source of uncertainty is exogenous, emissions-neutral tech-
nological progress, captured in this simplified model by pre-damage produc-
tion Y . In this case a local estimation of β can be obtained by differentiating
the system (14) with respect to Y :

β ≈ d lnB/dY
d lnC/dY = q

qD

(k − 1)qD + Y qY D +DqDD
Y qY + kDqD

, (15)

where q and its partial derivatives appearing in this equation are evaluated
at
(
Y, hY k

)
. The approximation is exact when the uncertainty affecting Y

is small.
We calibrate this equation by considering two alternative damage mod-

els. In IAMs like DICE, damages are assumed to be multiplicative – propor-
tional to Y – which implies that for instance doubling income also doubles
absolute climate damages, all else being equal. We can represent this class
of model with the function

q(Y,D) = Y (1−D),
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Table 1: Calibration of the climate β using equation (16) when the source
of uncertainty is exogenous emissions-neutral technological progress.

k = 0.5 k = 1 k = 2 k = 3
D = 1% 0.50 1.01 2.04 3.09
D = 3% 0.51 1.03 2.13 3.31
D = 5% 0.51 1.06 2.24 3.56
D = 10% 0.53 1.13 2.57 4.50
D = 20% 0.57 1.33 4.00 12.00

where D is expressed in percentage points of aggregate income. In this
context, (15) simplifies to

β ≈ k(1−D)
1− (k + 1)D. (16)

In Table 1, we compute the climate β derived from this formula for reason-
able values of k and D. It is uniformly positive. Moreover, observe that for
damage of less than 5% of GDP,4 the climate β can be approximated by
k. In other words, when the main source of uncertainty is emissions-neutral
technological progress, the climate β is approximately equal to the elasticity
of climate damage with respect to the increase in global mean temperature.
Since the consensus in the damages literature is that k > 1, this implies
that the climate β is highly likely to be larger than unity, based on this
source of uncertainty. What is the intuition behind this result? It is simply
that faster technological progress serves as a positive shock to output and
consumption, which in turn leads to higher emissions (assuming ω2 > 0, i.e.
provided production is not carbon-free), higher total damages from climate
change and higher marginal damages, thus higher benefits from emissions
abatement. Future climate benefits of mitigation and future consumption
are positively correlated.

Obviously, the fact that damages are assumed to be proportional to pre-
damage aggregate income Y plays an important role in this calibration. It
is a built-in mechanism towards a positive β. Let us therefore consider an
alternative, additive damage structure with

q(Y,D) = Y −D,

where D measures the absolute level of damages expressed in consumption
4The literature on the total economic cost of climate change indicates that it might be

at most 5% of GDP when T = 3degC (Tol, 2009; IPCC, 2014).

9



units.5 In other words, for given warming, doubling pre-damage income has
no effect on absolute climate damage. However, the above intuition still
applies: increasing income/production results in an increase in emissions as
long as ω2 > 0, which in turn increases temperature and marginal climate
damages, if the damage function (10) is convex. So the benefit of mitigation
is increased accordingly. What difference then does the additive structure
make? When the only source of uncertainty is technological progress via Y ,

β ≈ (k − 1)(Y −D)
Y − kD

. (17)

It is interesting to compare Equations (16) and (17), i.e. our estimates of
β under multiplicative and additive damages respectively. These two equa-
tions are not immediately comparable in fact, because D is expressed in
percentage points in the former and in consumption units in the latter. If
we express the damage in Eq. (17) in percentage points, D% = D/Y , it can
be rewritten as

β ≈ (k − 1)(1−D%)
1− kD% . (18)

Eq. (18) is now directly comparable with Eq. (16) and it is clear that the
difference lies in replacing k in (16) with k − 1 in (18). Thus, the numbers
in Table 1 also apply in the additive case, except that all betas appearing in
this table should be reduced by 1. We summarise this result in the following
proposition:

Proposition 1. Suppose that the main source of uncertainty is emissions-
neutral technological progress, and that climate damages are small (D ≤
5%). Then in (a) the multiplicative case, the climate β can be approximated
by k, the elasticity of climate damages with respect to warming. In (b) the
additive model, the climate β can be approximated by k − 1.

When climate damages are large, there is no short-cut to using Equations
(16) and (18) in the multiplicative and additive cases respectively to estimate
the climate β. Either way, our analysis shows the classical multiplicative
model of climate damages has a built-in mechanism towards producing a
positive climate β, which is dampened in the additive model. In fact, our
analysis shows that there are two independent channels that generate a
positive β in the multiplicative case:

5The damage function (10) parameter α would need to be recalibrated in order to yield
the same absolute damages as in the multiplicative case, for given warming.
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• (convexity effect) An increase in Y results in higher cumulative emis-
sions E. This in turn increases marginal climate damage – thus the
marginal benefit of mitigation – if the damage function (10) is convex,
i.e. if k > 1;

• (proportionality effect) An increase in Y raises damages directly if
damages are proportional to Y .

We believe that these two explanations for a positive β in this context have
their own merit. The bottom line is that the climate β is positive in this
context.

3.2 The climate β when the main source of uncertainty is re-
lated to the carbon-climate-response and/or the damage
intensity of warming

By contrast, let us now suppose that the only source of uncertainty is the
CCR parameter, ω1. Differentiating the system (14) with respect to ω1 we
obtain

β ≈ d lnB/dω1
d lnC/dω1

= q

qD

qD +DqDD
DqD

, (19)

where q and its partial derivatives appearing in this equation are again
evaluated at (Y, hY k). The approximation is exact when the uncertainty
affecting ω1 is small. Exactly the same expression for β is obtained when
assuming that α rather than ω1 is uncertain, as examined by Sandsmark and
Vennemo (2007) and Daniel et al. (2015). Therefore Equation (19) shows
how uncertainty about the CCR and the damage intensity of warming affect
the climate β.

Observe that in both the multiplicative and additive models, qDD = 0,
so that this equation simplifies to

β ≈ q

DqD
, (20)

which is unambiguously negative. The intuition for this result is that a
higher CCR results in more warming for given cumulative carbon emissions,
which in turn yields at the same time higher marginal damage and lower
aggregate consumption. Therefore the uncertainty affecting the CCR results
in a negative correlation between B and C, and a negative climate β. Sim-
ilarly, a higher damage intensity of warming as captured by the parameter
α results in greater damages for given emissions, and so on.
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Proposition 2. The climate β is unambiguously negative when the main
sources of uncertainty are the carbon-climate response and/or the damage
intensity of warming.

This result is independent of whether climate damages are additive or
multiplicative in relation to aggregate consumption. For example, in the
multiplicative case q = Y (1 − D), the climate β is approximately equal to
−(1 − D)/D. The same approximation holds in the additive case.6 If we
expect climate damage of around 5% of GDP, we should use a climate β
of around -19. There is also an explanation for why the climate β is so
large in absolute value in this context. Take the limiting case ω1 = 0 as a
benchmark, and examine the impact of a marginal increase in its value. This
will have a marginal (negative) effect on log consumption, but an unbounded
effect on the marginal log benefit, since the initial benefit is zero. In other
words, fluctuations in ω1 yield limited relative fluctuations in consumption,
but wild relative fluctuations in marginal benefits. This yields a large β in
absolute value.

Overall, this analysis illustrates that uncertainty about technological
progress on the one hand and about the carbon-climate response and dam-
age intensity of warming on the other hand most likely have contrasting
effects on the climate β, the former positive, the latter two negative. This
explains the contradictory conclusions that can be found in the literature.
Sandsmark and Vennemo (2007) and Daniel et al. (2015) propose models,
in which there is no macro-economic uncertainty independent of climate
change. Sandsmark and Vennemo (2007) concluded that fighting climate
change has a negative CCAPM β. Daniel et al. (2015) corroborate the re-
sult of Sandsmark and Vennemo (2007), by showing that the social cost of
carbon is increasing in risk aversion in their model. But Nordhaus (2011)
contradicts these conclusions by modelling benefits of mitigation that are
positively correlated with aggregate consumption. We propose that this con-
tradiction rests in the fact that the Monte-Carlo simulations in Nordhaus
(2011) include a source of uncertainty about emissions-neutral technological
progress, and it can also be attributed in part to the fact that DICE/RICE
deploys a multiplicative damage structure.

6Indeed, assuming q = Y −D, equation (19) yields β ≈ −(Y −D)/D. This is equal to
−(1 −D%)/D%, where D% = D/Y is the damage expressed as a fraction of Y .
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4 Estimating beta with DICE
We now develop estimates of the β of CO2 emissions abatement using a mod-
ified version of William Nordhaus’ well-known DICE model. DICE couples a
neoclassical growth model to a simple model of the climate system. Output
of a composite good is produced using aggregate capital and labour inputs,
augmented by exogenous total factor productivity (TFP). However, produc-
tion also leads to CO2 emissions, which are an input to the climate model,
resulting in an increase in the atmospheric concentration of CO2, radiative
forcing of the atmosphere and an increase in global mean temperature. The
climate model is coupled back to the economy via a multiplicative dam-
age function, which is a reduced-form polynomial equation associating a
change in temperature with a loss in utility, expressed in terms of equiv-
alent output. The damage function in DICE implicitly takes into account
adaptation to climate change, so the planner is left with the possibility of
controlling savings/investment, as usual in a neoclassical growth model, and
the price/quantity of CO2 emissions abatement.

Our analysis is based on the 2013 version of the model, which continues
the gradual evolution of the model from previous versions. ‘DICE-2013R’
is extensively described in Nordhaus and Sztorc (2013), so we will limit our
discussion in this section to the modifications we have made. These surround
eight parameters in the model, which we randomise for the purpose of esti-
mating betas. These eight random parameters represent key uncertainties at
all stages in the climate-policy problem from baseline socio-economic devel-
opment and associated emissions, through the climate response to emissions,
to damages and costs of emissions abatement. Our parameter selection is
significantly informed by Nordhaus (2008), in which a similar set of eight
parameters was chosen for randomisation based on a review of earlier studies
with the model. It is also informed by Dietz and Asheim (2012), who modi-
fied Nordhaus’ set to take into account scientific evidence on the temperature
response to radiative forcing, and to allow for the possibility of steep convex-
ity of the damage function.7 But we build on both of these previous studies

7Anderson et al. (2014) is the most comprehensive example of stochastic modelling in
the DICE framework, randomising all 51 of the model’s parameters as part of a global sen-
sitivity analysis. Their results give reasonable support to our selection: depending on the
measure (e.g. social cost of carbon, atmospheric temperature in 2105, etc.), between 3/8
and 5/10 of the parameters, whose uncertainties most affected the value of the measure,
are in our set. However, these results do not constitute a definitive basis for selecting a
subset of parameters for our study: the problem Anderson et al. (2014) faced is that, for
many of the parameters, there are no meaningful data on which a probability distribution
might be calibrated. Therefore, to ensure consistency, an arbitrary support of +/- 5, 10
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by providing calibrations of the various probability distributions using the
latest data.

Table 2 summarises the set of random parameters used in this study,
including the data used for calibration. The distributions are assumed inde-
pendent and each is restricted to be either non-negative or non-positive as
appropriate. We implement a CO2 emissions reduction project by removing
one unit of industrial emissions in 2015. This amounts to one gigatonne
of CO2 (GtCO2), and since the atmospheric concentration of CO2 in 2015
is estimated by DICE to be c. 3167GtCO2, it may indeed be regarded as
a marginal reduction, consistent with the definition of β given above. We
assume that the marginal propensity to save is exogenous and we use Nord-
haus’ (2013) time series of values, whereby it varies over time, but is always
c. 0.23− 0.24. We take a Latin Hypercube Sample of the parameter space,
which has the advantage of sampling evenly from the domain of each prob-
ability distribution, with 1000 draws.

Initial growth rate of TFP As a neoclassical growth model, DICE al-
locates to TFP that portion of output that cannot be explained by capital
and labour inputs at their assumed elasticities (0.3 and 0.7 respectively). It
follows (e.g. Barro and Sala-i Martin, 2004) that TFP growth plays a very
significant role in determining GDP growth and therefore future consump-
tion and CO2 emissions (also see Kelly and Kolstad, 2001). As discussed in
Section 3, the effect of variation in TFP growth on β should be positive.

In line with Nordhaus (2008), we choose to randomise a parameter rep-
resenting the initial rate of TFP growth. The equation of motion for TFP
is

At+1 = At(1 + gAt )

where A is TFP and gA is the growth rate of TFP. In turn,

gAt = gA0

(
1 + δA

)−t
where δA is the rate of decline of TFP growth. Since δA is several times
smaller than gA0 , uncertainty about the initial growth rate has a lasting
impact. To calibrate a probability distribution over gA0 , we use data on
historical TFP growth. Since we are forecasting more than two centuries
into the future and want an appropriately broad range of outcomes for TFP,
we want a very long-run series of historical TFP growth, so we use data from

or 20% of the best-guess value was imposed on all parameters, even though data indicate
that for some parameters (e.g. climate sensitivity) the support is much wider.
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Table 2: Uncertain parameters for simulation of modified DICE-2013R.
Parameter Functional Mean Standard Source Effect on β

form deviation (likely)
Initial growth rate Normal 0.0084 0.0059 Maddison project +
of TFP (per year) and other sources

(see text)
Asymptotic global Normal 10854 1368 United Nations +
population (millions) (2013)
Initial rate of Normal -0.0102 0.0064 IEA (+)
decarbonisation (per year) (2013)
Price of back-stop Log-normal 260 51 Edenhofer et al. +
technology in 2050 (2010)
US$/tCO2(2010 prices)
Transfer coefficient in Normal* 0.06835 0.0202 Ciais et al. (-)
carbon cycle (per decade) (2013)
Climate sensitivity Log- 2.9 1.4 IPCC (-)
◦C per doubling logistic** (2013)
of atmospheric CO2

Damage function Normal 0.0025 0.0006 Tol*** (-)
coefficient α2 (% GDP) (2009)
Damage function Normal 0.082 0.028 Dietz and Asheim (-)
coefficient α3 (%GDP) (2012)
*Truncated from above at 0.1419. ***Truncated from below at 0.75. ***Including corrigenda published in 2014.

15



the US and UK over the period 1820-2010, compiled from multiple sources8.
Since DICE is an equilibrium model of long-term growth, we use a rolling 30-
year average of annual TFP growth (shorter rolling averages would overstate
the potential for fluctuations). A normal distribution fits the data best, with
mean and standard deviation as reported in Table 2.

Asymptotic global population Population growth is important in de-
termining the scale of the economy and hence aggregate CO2 emissions
(again see Kelly and Kolstad, 2001). Therefore an increase in population
growth has the same qualitative effect on β as an increase in TFP growth;
it increases β, since the scale effect increases aggregate consumption, emis-
sions, total climate damages and the marginal benefits of mitigation.

In DICE population grows according to the following equation of motion:

Lt+1 = Lt

(
L∞
Lt

)gN

where L is the population, which converges to the asymptotic global popu-
lation L∞ according to the growth rate gN .

We use the latest global population projections of the United Nations
(2013) to calibrate a probability distribution over L∞. According to these
projections, the world population will be at an approximate steady state of
10.85 billion in 2100 on the medium (fertility) variant, within a range of
6.75 billion on the low variant to 16.64 billion on the high variant. This is a
non-probabilistic range, which can be set against an emerging – though not
uncontested (Lutz et al., 2014) – field of probabilistic population forecast-
ing based on Bayesian methods (Raftery et al., 2012). According to these
forecasts, the UN’s low and high variants are very unlikely to eventuate (i.e.
they are suggested to be well outside the 95% confidence interval: Gerland
et al., 2014), because they assume fertility is systematically different to the
medium scenario in all countries. Taking this persective into account, we fit
a normal distribution to the UN population projections, such that the low
variant is three standard deviations away from the mean, with the result
that the high variant is even further from the mean.

Initial rate of decarbonisation While growth in CO2 emissions is pro-
portional to growth in GDP in integrated assessment models such as DICE,

8Bolt and van Zanden (2013); US Census Bureau; US Bureau of Economic Analysis;
Feinstein and Pollard (1988); Matthews et al. (1982). We would like to acknowledge
the help of Tom McDermott and Antony Millner in collecting these data, although the
resulting estimates are our responsibility.
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the proportion is usually assumed to decrease over time due to changes
in economic structure away from carbon-intensive production sectors, and
to decreases in the emissions intensity of output in a given sector. These
are baseline trends, i.e. achieved without the imposition by a planner of a
price/quantity constraint on emissions.

A priori, variation in the rate of decarbonisation has an ambiguous effect
on β. For a given path of output, an increase in the rate of decarbonisation
reduces the benefits of mitigation, because it lowers emissions and hence
total and marginal climate damages. But the path of output is not given;
lower damages increase current income and hence they increase capital in-
vestment, future output and consumption, emissions and total damages.
This is the added dimension of a dynamic model like DICE. So while there
is no doubt that an increase in the rate of decarbonisation increases con-
sumption9, what happens to the benefits of mitigation depends in principle
on the balance between the negative effect on marginal damages of a reduc-
tion in emissions intensity and the positive effect on marginal damages of an
expansion in production. However, given that in DICE capital depreciation
is 10% per annum while the savings rate is c. 0.23-0.24, in practice it might
be thought unlikely that the positive effect on marginal damages that goes
via investment exceeds the negative, direct effect.

In DICE, ‘autonomous’ decarbonisation is achieved by virtue of a vari-
able representing the ratio of emissions/output, which decreases over time
as a function of a rate-of-decarbonisation parameter:

EINDt = σt(1− µt)Yt (21)

where EIND represents industrial CO2 emissions, µ is the control rate of
emissions set by the planner, Y is annual output, and σ is the ratio of
uncontrolled emissions to output, given by

σt+1 = σt(1 + gσt )

where gσ < 0 is the rate of decline of emissions to output, given by

gσt = gσ0 (1 + δσ) t

with the initial rate of decline of emissions to output being gσ0 , subject
itself to a rate of decline of δσ < 0. Similar to TFP, δσ is around an
order of magnitude smaller than gσ0 , so the latter is key in driving long-run
uncertainty about declining emissions intensity.

9Instantaneous damages are a fraction of current output, and investment is a fraction
of output after damages.
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To calibrate a distribution over gσ0 we use data from the International
Energy Agency (IEA, 2013), which provides the ratio of global CO2 emis-
sions from fossil fuels to real global GDP for the period 1971-2011, a period
in which planned emissions reductions (i.e. through µ) were trivially small
at the global level. Again, we partly smooth annual fluctuations by tak-
ing a five-year rolling average. The resulting data are fit best by a normal
distribution with mean and standard deviation as reported in Table 2.

Price of the backstop technology While β is a measure of the correla-
tion of the marginal benefits of emissions abatement with consumption, and
therefore abatement costs do not play a direct role in its calculation, they
nonetheless play an indirect role, since the emissions scenario on which the
mitigation project is undertaken involves non-trivial abatement, even in the
baseline that represents ‘business as usual’. Variation in abatement costs in-
creases β: an increase in abatement costs, for a given quantity of abatement,
decreases income/consumption, but by decreasing income it also decreases
industrial emissions in the long run, due to the same investment effect at
play in the case of autonomous decarbonisation. This reduces the benefits
of mitigation.

In DICE the total cost of abatement as a percentage of annual GDP, Λ,
is determined by

Λt = θ1,tµ
θ2
t (22)

where θ1 and θ2 are coefficients. The time-path of θ1 is set so that the
marginal cost of abatement at µt = 1 is equal to the backstop price at t.
Hence randomising the backstop price is a way to introduce uncertainty into
abatement costs.

We use the findings of an important recent inter-model comparison study
(Edenhofer et al., 2010) to update and characterise uncertainty over the
backstop price. Edenhofer et al. (2010) assess the cost of limiting warming
to below 2degC in five global energy models. A scenario that stabilises
the atmospheric stock of CO2 at 400ppm requires zero emissions by around
2050, so we can use the models’ estimates of marginal abatement costs in
2050 as a measure of the backstop price at that time. Marginal costs range
from $150/tCO2 to $500, with an average of $260, all at today’s prices.
Since the distribution of cost estimates is asymmetric, we use a log-normal
distribution. We set the mean to $260 and posit that the probability of
the lowest and highest estimates is 1/1000. We use a comparable emissions
scenario in DICE to retrieve, for each value of the backstop price in 2050,
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the value of the backstop price in 2010, the initial period.

Transfer coefficient in the carbon cycle There are numerous uncer-
tainties, many of them large, about the behaviour of the climate system in
response to carbon emissions (e.g. IPCC, 2013). In the structure of DICE’s
simple climate model, these can be grouped into (i) uncertainties about the
carbon cycle, which render estimates of the atmospheric stock of CO2 for a
given emissions scenario imprecise, and (ii) uncertainties about the relation-
ship between the stock of atmospheric CO2 and global mean temperature.
Note that together these two uncertainties make up the carbon-climate re-
sponse in Section 3.

The atmospheric stock of carbon in DICE is driven by the sum of indus-
trial emissions from (21) and exogenous emissions from land-use. A system
of three equations represents the cycling of carbon between three reservoirs,
the atmosphereMAT , a quickly mixing reservoir comprising the upper ocean
and parts of the biosphere MUP , and the lower ocean MLO:

MAT
t+1 = Et+1 + φ11M

AT
t + φ21M

UP
t

MUP
t+1 = φ12M

AT
t + φ22M

UP
t + φ32M

LO
t

MLO
t+1 = φ23M

UP
t + φ33M

LO
t

where total emissions of CO2 to the atmosphere are E, and the cycling of
CO2 between the reservoirs is determined by a set of coefficients φjk that
govern the rate of transport from reservoir j to k per unit of time. We follow
Nordhaus’ (2008) uncertainty analysis by randomising φ12, the coefficient for
the transfer of carbon fromMAT toMUP . However, we make use of the lat-
est scientific findings from the IPCC’s Fifth Assessment Report (Ciais et al.,
2013) to calibrate φ12. In particular, φ12 may be calibrated by inspecting
evidence on the percentage of a pulse of CO2 emissions that remains in the
atmosphere after 100 years. According to the standard parameterisation of
DICE-2013R, this would be c. 36%, but the evidence from multiple climate
models collected by Ciais et al. (2013) suggests a mean of 41%, with 54% at
+2 standard deviations and 28% at -2 standard deviations. We calibrate φ12
accordingly, however to ensure the DICE carbon cycle maintains physically
consistent behaviour at all values of φ12, we must set the lower bound at
31% removed. Table 2 provides details.
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Variation in φ12 also has an ambiguous a priori effect on β. Consider
a decrease in φ12, which means that more CO2 emissions remain in the at-
mosphere. Under these circumstances, if to begin with we take the path of
‘potential output’ as given, then as the simple model from Section 3 showed,
more atmospheric CO2 means increased total damages, hence consumption
is reduced and the marginal benefits of mitigation are increased. This would
reduce β. However, the investment effect means that the path of potential
output is not given; reduced income at a particular point in time due to
greater damages results in lower investment, which depresses future output.
This reduces future consumption too, but because it reduces future CO2
emissions there is a countervailing, negative effect on the benefits of mitiga-
tion. As before, we might expect this countervailing investment effect to be
small in comparison with the direct positive effect on the marginal benefits
of mitigation.

Climate sensitivity Studies that deploy stochastic versions of DICE have
overwhelmingly fixed on the climate sensitivity parameter as a means of
rendering uncertain the temperature response to atmospheric CO2. Cli-
mate sensitivity is the increase in global mean temperature, in equilibrium,
that results from a doubling in the atmospheric stock of CO2 from the pre-
industrial level. In simple climate models, it is indeed critical in determining
how fast and how far the planet is forecast to warm in response to emissions.
Variation in climate sensitivity has an ambiguous – but likely negative – ef-
fect on β, with the causal mechanisms being very similar to those at play in
the carbon cycle. Higher climate sensitivity means higher damages, lower
consumption and higher benefits of mitigation for given output, but with
lower income comes lower investment, lower future output and therefore a
counter-balancing negative effect on future emissions that tends to reduce
the benefits of mitigation.

The equation of motion of temperature in DICE is given by:

Tt+1 = Tt + κ1

[
Ft+1 −

F2×CO2

S
(Tt)− κ2

(
Tt − TLOt

)]
where Ft+1 is radiative forcing, which depends on the atmospheric stock of
CO2, F2×CO2 is the radiative forcing resulting from a doubling in the atmo-
spheric stock of CO2 from the pre-industrial level, S is climate sensitivity,
TLO is the temperature of the lower oceans, κ1 is a parameter determining
speed of adjustment and κ2 is the coefficient of heat loss from the atmosphere
to the oceans. Calel et al. (forthcoming) contains a detailed explanation of
the physics behind this equation.
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The latest IPCC report (IPCC, 2013) provides a subjective probability
distribution for the climate sensitivity, which is the consensus of the panel’s
many experts. According to this distribution, S is ‘likely’ to be between
1.5 and 4.5degC, where likely corresponds to a subjective probability of
anywhere between 0.66 and 1. It is ‘extremely unlikely’ to be less than
1degC, where extremely unlikely indicates a probability of ≤ 0.05, while it
is ‘very unlikely’ to exceed 6degC, where this denotes a probability of ≤ 0.1.
Dietz and Stern (2015) find that a log-logistic function has the appropriate
tail shape to fit these data10 (taking the midpoints of the IPCC ranges), and
set the scale and shape parameters of the distribution such that the mean S
is 2.9degC, and the standard deviation is 1.4degC. In addition, we truncate
the distribution from below at 0.75degC in order to again ensure that the
DICE climate model exhibits physically consistent behaviour.

Damage function Damages are one of the most contestable elements of
IAMs (see most recently Pindyck, 2013; Stern, 2013) and, by virtue of its
accessibility and simplicity in this regard, DICE has become the common
means to give expression to competing views. Much of the debate stems from
the inability to constrain a reduced-form damage function at global mean
temperature increases of more than 3degC, due to the lack of underlying
studies. Antipodes in the literature are given by the traditional quadratic
form of Nordhaus (2008; 2013) at one end, and at the other end the damage
function with an additional term in Weitzman (2012), which is nearly to the
seventh power.

Our damage function takes the following multiplicative form:

Dt = 1/
(
1 + α1Tt + α2T

2
t + (α3Tt)7

)
where D is aggregate damages as a percentage of GDP and αi, i ∈ {1, 2, 3}
are coefficients. We specify both α2 and α3 as random parameters (α1 = 0
as usual). The former coefficient enables us to capture uncertainty about
damages that is represented by the spread of data points provided by the
existing literature at warming of between 2 and 3degC. In particular, we use
the literature review of Tol (2009) to calibrate α2, which gives it a mean
of 0.0025 and a standard deviation of 0.0006. α2 is also equivalent to the
stochastic parameter in the model proposed by Sandsmark and Vennemo
(2007). The coefficient α3 may be calibrated so as to capture the difference
in subjective beliefs of modellers about how substantial damages may be at

10That is, the log-logistic function has the lowest root-mean-square error of any distri-
bution fitted.
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higher temperatures. We follow Dietz and Asheim (2012) in specifying a
normal distribution for α3 that spans existing suggestions, in that at three
standard deviations above the mean total damages approximate Weitzman
(2012), while at three standard deviations below the mean they approxi-
mately reduce to standard quadratic damages. Further details can again by
found in Table 2.

An increase in damages reduces consumption and increases the bene-
fits of mitigation for a given path output gross of climate damages, which
decreases β. However, we must once again be mindful of the investment
effect that could reduce future output (gross of climate damages), emissions
and therefore benefits of mitigation, so the overall qualitative effect of an
increase in damages on β cannot be determined a priori, although we might
suppose it to be negative.

5 Results
Using the 1000 draws of the Monte Carlo simulation as the source of vari-
ation, we can calculate the instantaneous consumption β of CO2 emissions
abatement. As a function of time, we can then plot its term structure.

Define the benefits of emissions abatement as its avoided damages, in
particular as the difference in consumption with and without removing
1GtCO2. Since the marginal propensity to save is exogenous in our model,
the benefits of abatement B are then given by

Bt = Ct − CREFt

Bt = s (1−Dt)Yt − s
(
1−DREF

t

)
Y REF
t

where C denotes consumption, REF denotes reference outcomes before
1GtCO2 is removed, and s is the marginal propensity to save. Note that
output here is net of abatement costs from (22).

β is then the covariance between the natural logarithm of reference con-
sumption and the natural logarithm of benefits, divided by the variance of
reference consumption:

βt =
cov

[
lnCREFt , lnBt

]
var

[
lnCREFt

] (23)

The discussion above gives us reason to suppose that, in a dynamic model,
the β of CO2 emissions abatement might depend on the path of growth and
emissions. Many of the parameter choices we have already described will
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impact on this, for instance the initial growth rate of TFP and the initial
rate of decarbonisation. But one set of exogenous variables that we must still
choose is the set of emissions control rates, {µt} in (21). Therefore in Figure
1 we plot the term structure of β for two different emissions-control scenarios.
The first scenario corresponds to the baseline in DICE-2013R, ‘business as
usual’. According to this scenario, µt rises gradually from 4% in 2015 to
14% in 2100 and 54% in 2200. The point made previously about emissions
abatement being non-trivial even in the baseline is amply illustrated by these
numbers. The second scenario is an example of a path in which emissions
reductions are deep: it is the so-called ‘Lim2T’ scenario from DICE-2013R,
in which the planner seeks to limit global warming to no more than 2degC.
In Lim2T, µt is already 33% in 2015 and it hits the maximum of 100% in
2060.11

The headline result is that on both emissions scenarios β is positive: over-
all, given the various uncertainties we specify, there is a positive correlation
between consumption and the benefits of emissions abatement. The mag-
nitude of β is quite similar on what are two very different emissions paths,
albeit the term structure has a somewhat different profile. If 1GtCO2 is re-
moved from the baseline, β starts at 1.15 and falls monotonically but in two
distinct stages to 0.83 in 2230. If 1GtCO2 is removed from Lim2T instead,
β also starts at 1.15, falls to a minimum of just below 1.01 in 2125, before
nudging back up fractionally by the end of the horizon.

What is behind these results? We can use two methods of answering this
question. First, we can regress the components of β, i.e. lnCREFt and lnBt,
on the full set of uncertain parameters. This should tell us about the relative
effects of the different parameters when they vary simultaneously. Second,
we can repeat the basic analysis, but focus on each parameter individually.
In particular, we hold the parameter in focus to a single value equal to
its mean in Table 2, while allowing the other seven parameters to vary
according to their distributions. This demonstrates the effect of eliminating
uncertainties one by one. The dual of such an analysis would be to look
at each random parameter in turn, holding the other seven parameters at
a single value, however doing so can, for some parameters, lead to very low
variances in lnCREFt and unrealistically large absolute values of β.

The results of our regression analyses can be found in Tables 3 and 4.
Table 3 regresses lnCREFt on the random parameters for a sample of five

11While the different assumptions we make in this study about, for example, climate
sensitivity mean that Lim2T is no longer guaranteed to deliver warming equal to 2degC,
for the purpose of estimating β it is a perfectly good example of a stringent mitigation
scenario.
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Figure 1: The term structure of βt for two contrasting emissions scenarios.
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Table 3: OLS regression of ln
(
CREFt

)
on the set of random parameters.

2020 2065 2115 2165 2215
constant 4.120 4.864 5.298 5.555 5.722

(0) (0) (0.001) (0.004) (0.008)
Initial growth rate 0.062*** 0.362*** 0.613*** 0.767*** 0.86***

of TFP (0) (0) (0.001) (0.004) (0.009)
Asymptotic global 0.024*** 0.096*** 0.118*** 0.117*** 0.112***

population (0) (0) (0.001) (0.004) (0.008)
Initial rate of 0 -0.002*** -0.013*** -0.043*** -0.083***
decarbonisation (0) (0) (0.001) (0.004) (0.008)

Price of back-stop 0 0 0 0.001 0
technology in 2050 (0) (0) (0.001) (0.004) (0.008)

Transfer coefficient in 0* 0.002*** 0.005*** 0.013*** 0.021***
carbon cycle (0) (0) (0.001) (0.004) (0.008)

Climate sensitivity 0*** -0.007*** -0.029*** -0.083*** -0.149***
(0) (0) (0.001) (0.004) (0.008)

Damage function -0.001*** -0.004*** -0.011*** -0.02*** -0.028***
coefficient α2 (0) (0) (0.001) (0.004) (0.008)

Damage function 0 0 -0.004*** -0.027*** -0.056***
coefficient α3 (0) (0) (0.001) (0.004) (0.008)

R2 0.999 0.999 0.998 0.969 0.915

time-periods across the modelling horizon, while Table 4 does the same for
lnBt. In both cases, notice that the overall fit of the model is very good. On
one level this is unsurprising, since the eight random parameters constitute
the only source of variation in the dependent variable. However, it might
still have been true that the simple, linear model of main effects that we
specify is a poor fit of the data, indicating that second- or higher-order
interactions are key. This is not the case.

Looking at the coefficient estimates, where all the parameters have been
standardised to aid interpretation, the Tables show all but one of the pa-
rameters have the effect on β that we anticipated. In particular, a one
standard-deviation increase in TFP growth has a large, positive and highly
statistically significant effect on both lnCREFt and lnBt, thus exerting a
large positive effect on β. An increase in population growth also has a
positive and significant effect on lnCREFt and lnBt, but its standardised
coefficients are substantially smaller. Working against TFP and popula-
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Table 4: OLS regression of ln (Bt) on the set of random parameters.
2020 2065 2115 2165 2215

constant -8.263 -5.419 -4.801 -4.595 -4.507
(0.003) (0.009) (0.013) (0.015) (0.017)

Initial growth rate 0.062*** 0.387*** 0.675*** 0.868*** 0.962***
of TFP (0.003) (0.011) (0.015) (0.017) (0.019)

Asymptotic global 0.019*** 0.095*** 0.121*** 0.123*** 0.115***
population (0.003) (0.009) (0.013) (0.015) (0.016)

Initial rate of 0.003 0.038*** 0.069*** 0.08*** 0.053***
decarbonisation (0.003) (0.01) (0.014) (0.016) (0.018)

Price of back-stop 0.004 0.009 0.01 0.012 0.015
technology in 2050 (0.003) (0.009) (0.013) (0.015) (0.016)

Transfer coefficient in 0.006** -0.087*** -0.139*** -0.136*** -0.102***
carbon cycle (0.003) (0.009) (0.013) (0.015) (0.016)

Climate sensitivity 0.09*** 0.434*** 0.676*** 0.795*** 0.793***
(0.003) (0.009) (0.013) (0.015) (0.017)

Damage function 0.252*** 0.236*** 0.206*** 0.176*** 0.155***
coefficient α2 (0.003) (0.009) (0.013) (0.015) (0.016)

Damage function 0.002 0.016* 0.112*** 0.198*** 0.211***
coefficient α3 (0.003) (0.009) (0.013) (0.015) (0.016)

R2 0.901 0.818 0.849 0.86 0.844
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tion growth, increases in climate sensitivity, α2 and α3 have a negative and
significant effect on lnCREFt , while having a positive and significant effect
on lnBt, thus reducing β. Increasing climate sensitivity has a particularly
large effect on lnBt, but tempering this is the fact that none of these three
parameters has an effect on lnCREFt that is anything like as substantial as
TFP growth. This explains clearly why β is positive overall. Increasing the
initial rate of decarbonisation and the transfer coefficient in the carbon cycle
have statistically significant effects on lnCREFt and lnBt, but they are small
in one or both cases. Increasing the transfer coefficient in the carbon cycle
reduces β, while increasing the initial rate of decarbonisation also reduces β,
because it exerts a negative effect on lnBt (since the rate of decarbonisation
is negative, interpretation of the regression coefficients requires the signs to
be reversed). This is the only case in which the dynamic, ‘investment’ effect
outweighs the direct effect. The price of the backstop technology does not
have a significant effect on either element.

These analyses also help us explain why β has a slightly different term
structure on the Lim2T emissions scenario than it has on the baseline. On
Lim2T the atmospheric concentration of CO2 is much lower than on the
baseline, so the effects of climate sensitivity, α2 and α3 on lnCREFt and
particularly lnBt are lower, meaning that the effect of TFP growth comes
out still more strongly. Consequently β does not decline after the beginning
of the next century.

Figure 2 comprises a panel of eight charts, each of which plots the term
structure of β when uncertainty about a single parameter is removed. For
the sake of brevity, we focus on the baseline scenario. By far the largest
difference in the term structure of β is created when uncertainty about TFP
growth is removed. Without it, β starts at around only 0.6 and falls to a min-
imum of -2.14 in 2180. This confirms that uncertainty about TFP growth
is pivotal in producing an overall positive β. By contrast, when TFP un-
certainty is included, eliminating other uncertainties makes relatively little
difference to β. It is possible only to discern the effect of climate sensitivity
on depressing β later in the modelling horizon (that is, when uncertainty
about climate sensitivity is eliminated, β holds up at around 1.05-1.1, rather
than falling to 0.83), and the effect of α2 on initial values of β.
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Figure 2: The term structure of βt on the baseline scenario as a function of
N − 1 random parameters.
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6 Nota Bene: a large climate beta is in fact good
news for proponents of strong climate mitiga-
tion

The climate β is positive and large. This means that when estimating the
social cost of carbon, one should use a rate larger than the risk free rate to
discount the flow of future expected marginal damages. This effect unam-
biguously reduces the social cost of carbon. This is because fighting climate
change has no hedging/insurance value for risk borne by future generations.
On the contrary, it increases the risk they will face. On the face of it this
is bad news for proponents of strong and immediate action to reduce green-
house gas emissions.

But beware, this is not the end of the story! Remember that the climate
β is the elasticity of climate damages with respect to changes in aggre-
gate consumption: E [Bt |ct ] = cβt

t . Thus, in the absence of any uncertainty
about future consumption, a large β is linked to a large benefit in a growing
economy. Moreover, since the benefit is convex in ln ct when βt is positive,
the uncertainty affecting future log consumption raises the expected bene-
fit. The two effects work together to raise the expected future benefit to be
discounted. More precisely, given the assumptions set out in Section 2, we
have that the unconditional expectation of the future benefit equals

EBt = cβt
0 Eeβtxt = cβt

0 e
(βtµ+0.5β2

t σ
2)t. (24)

With constant β, EBt is exponentially increasing in t when the trend of
growth µ is positive. Moreover, the larger is βt, the larger is the growth rate
of the expected benefit. The intuition is as follows. The elasticity of ben-
efits with respect to changes in consumption has two reinforcing effects on
EBt. First, if trend growth is rapid, highly elastic investments will benefit
more from economic growth. Second, the benefit is a convex function of the
growth rate xt of consumption. By Jensen’s inequality, the uncertainty af-
fecting economic growth raises the expected benefit. Because this convexity
is increasing in the elasticity βt, this effect is increasing in βt. The com-
bination of these two effects may dominate the discounting effect. Indeed,
combining equations (5) and (24) implies that

NPV =
∑
t=0

cβt
0 exp

[
(−rf + βt

(
µ− γσ2

)
+ 0.5β2

t σ
2)t
]
.

This is increasing in βt if βt is larger than γ − (µ/σ2). This result is sum-
marized in the following proposition.
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Proposition 3. Consider an asset with maturity-specific constant betas,
i.e., an asset whose future benefit Bt|t≥0 is related to future aggregate con-
sumption ct|t≥0 in such a way that for all t there exists βt ∈ R such that
E [Bt |ct ] = cβt

t . Under the standard assumptions of the CCAPM, the value
of this asset is locally increasing in βt if it is larger than the difference be-
tween relative risk aversion and the ratio of the mean by the variance of the
growth rate of consumption.

Over the last century in the United States, we observed µ ≈ 2% and
σ ≈ 4%. If we take γ = 2, as suggested by Kolstad et al. (2014) on normative
grounds, this implies that γ−(µ/σ2) ≈ −10.5. Alternatively, to acknowledge
the equity premium puzzle we might take γ = 10, so that we obtain γ −
(µ/σ2) ≈ −2.5. Because most actions yield benefits with an elasticity with
respect to a change in aggregate consumption larger than either of these
two numbers, we conclude that the NPV of most investment projects is
increasing in their CCAPM β. The idea is that the mean growth rate of
consumption has been so much larger than its volatility in the past that the
effect of a larger β on the expected benefit is much larger than its effect on
the discount rate, thereby generating a positive effect on NPV.

7 Conclusion
In this paper we have studied the sign and size of the climate β, using both
a simple analytical model and an empirically grounded Monte Carlo simula-
tion of the DICE model. Using the DICE model also enabled us to take into
account the effects on the climate β of investment. As long as the structure
of climate damages is multiplicative, our results strongly suggest that the
climate β is positive. In particular, our numerical modelling with DICE sug-
gests it is positive and close to unity throughout the next two centuries and
that this holds on two fundamentally different emissions paths, business-as-
usual and a path that involves deep cuts with the aim of keeping the global
mean temperature below 2degC. The overwhelming driver of these results is
uncertainty about technological progress across the whole economy – total
factor productivity. Rapid TFP growth is simultaneously associated with
higher marginal benefits of emissions reductions and higher consumption.
Uncertainty about climate sensitivity and the damage intensity of warming
provide a countervailing effect that tends to reduce β, but it is dwarfed by
the effect of TFP uncertainty.

Naturally the validity of our numerical estimates is affected by the well-
known weaknesses shared by all IAMs (e.g. Pindyck, 2013; Stern, 2013). And
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our estimates patently depend on how TFP uncertainty is calibrated, but
they are consistent with previous studies looking at the relative importance
of productivity assumptions (Kelly and Kolstad, 2001; Nordhaus, 2011). It
is important to remember that we allow for fat-tailed climate sensitivity and,
unlike Nordhaus (2011), for large convexity of the damage function, two of
the principal sources of risk of catastrophic climate damages.

If the nature of climate damages is better represented by an additive
structure, then our analytical model shows that the conditions required for
a positive climate β are stricter. This raises the question of whether climate
damages are better represented by an additive or multiplicative structure?
The basic assumption embodied in a multiplicative damage structure is of
course that damages are a constant fraction of output, for given warming
and damage intensity. By contrast, with an additive structure the share
of damages in output, for given warming and damage intensity, decreases
as output increases, and vice versa. Therefore it is related to the so-called
‘Schelling conjecture’ that developing countries “best defense against climate
change may be their own continued development” (Schelling, 1992, p6). The
empirical study closest to answering this question about the structure of
damages is Anthoff and Tol (2012), which uses the FUND IAM to estimate
the income elasticity of damages on the temporal dimension, disaggregated
by region and impact type (other IAMs cannot be used for this purpose of
course, because they assume a multiplicative structure). They found income
elasticities ranging from less than minus one to more than one, however in
most regions at most times it is greater than zero and often greater than
one. There is therefore little support for an additive damage structure,
except at very low income levels, where overall damages are dominated by
health impacts that fall with development. More research is clearly required
on this issue

Understanding the implications of our findings for climate-change eco-
nomics requires understanding the dual role played by β in determining the
NPV of mitigation, as set out in Sections 2 and 6. It is most straightforward
to observe that positive β implies the future benefits should be discounted
at a relatively higher rate. How much higher?

Two approaches can be followed to answer this question, with radically
different conclusions. Both approaches use the CCAPM rule r = rf + βπ.
The first approach consists in using the systematic risk premium π that has
been observed in markets, for instance in the United States over the last
century, which has been around 5% (see Gollier (2012), chapter 12). For a
project with approximately a unit β, this means the efficient discount rate
for that project should be three percentage points higher than the risk-free
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rate. The second approach is model-based rather than market-based; one
uses the CCAPM formula π = γσ2 to estimate the risk premium, where
σ2 is the volatility of consumption growth estimated in DICE. According to
our simulations, σ2 = 0.3 percents on average over the period 2015-2230,
so we obtain a risk premium of only 0.6 percents if we accept a coefficient
of relative risk aversion γ = 2, which much of the existing literature would
suggest (Kolstad et al., 2014). This leads to a much smaller impact of the
positive climate β on the risk-adjusted climate discount rate.

The large discrepancy between these two recommendations may be ex-
plained in part by the fact that our modelling incompletely captures aggre-
gate consumption risk in the real world; we smooth some of the year-to-year
volatility in historical productivity growth for the purposes of estimating
trend growth (as described in Section 4), and the only novel risk we incor-
porate is climate change. More generally, however, the discrepancy may be
seen as a manifestation of the well-known “equity premium puzzle”. Three
decades of research on this financial puzzle suggests that the model-based
CCAPM approach fails to capture many dimensions of the real world, in
particular the existence of structural uncertainties and fat tails (Weitzman,
2007b). Although including these dimensions in our model is beyond the
reach of this paper – a new concept of β will need to be developed to accom-
modate these features – we are inclined to accept this position. We then
conclude that a large positive climate β is important for discounting the
future benefits of mitigating climate change.

Is this bad news for those who believe, like us, that climate change should
be a primary source of concern for humanity today? Not at all: it is good
news, as it will raise the NPV of the future benefits of reducing emissions to-
day. Remember, a large positive β implies at the same time a large expected
benefit, and a high rate at which to discount it, with an ambiguous overall
effect. However, we have shown in Section 6 in the Gaussian framework
that NPV is increasing in β in its plausible domain, whether one estimates
it with a market- or model-based approach. Thus, the large climate β es-
timated in this paper justifies using a social cost of carbon that is greater
than when discounting expected marginal damages at the risk-free rate. It
is wrong to think that a negative climate β is the friend of strong action to
reduce carbon emissions.
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