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Abstract

A fully autonomous robot must obtain and interpret information about the en-
vironment to execute several tasks. The mobile robot mapping or SLAM problem is
closely related to these abilities. It consists of interpreting the information perceived
by its sensors in order to build map and localize itself in it. There are many other
robot skills that depend on this task; thus, it is one of the most important problems
to be solved by a truly autonomous robot. The objective of this work is to design
various specific tools related to the mapping problem in order to improve the auton-
omy of MANFRED-2, which is a mobile robot fully developed by the Robotics Lab
research group of the Systems Engineering and Automation Department of the Carlos
IIT University of Madrid.

The localization problem in mobile robotics can be defined as the search of the
robot’s coordinates in a known environment. If there is no information about the ini-
tial location, we are talking about global localization. In this work, we have developed
an algorithm that solves this problem in a three-dimensional environment using Dif-
ferential Evolution, which is a particle-based evolutionary algorithm that evolves in
time to the solution that yields the cost function lowest value. The proposed method
has many features that make it very robust and reliable: thresholding and discarding
mechanisms, different cost functions, effective convergence criteria, and so on. The
resulting global localization module has been tested in numerous experiments. The
high accuracy of the method allows its application in manipulation tasks.

If the environment information is given by laser readings, it is essential to correct
the local errors between pairs of scans to improve the map quality, which is called
registration or scan matching. We have implemented a scan matching algorithm
for three-dimensional environments. It is also based on the Differential Evolution
method. The high accuracy and computational efficiency of the proposed method
have been demonstrated with experimental results.

The last problem addressed here consists of detecting when the robot is navigating
through a known place (loop detection). After that, the accumulated error can be
minimized to give consistency to the global map (loop closure). We have developed
a loop detection method that compares features extracted from two different scans
to obtain a loop indicator. This approach allows the introduction of very different



characteristics in the descriptor. First, the surface features include the geometric
forms of the scan (lines, planes, and spheres). Second, the numerical features describe
other several properties (volume, average range, curvature, etc.). The algorithm has
been tested with real data to demonstrate its efficiency. All true loops are correctly
detected and no false detections are appreciated when the mobile robot is covering a
long trajectory. The results are similar or even better than those obtained by other
research groups. In addition, it is a more versatile method because it admits a wide
variety of scan properties and different weights in the comparison formula.

i



Resumen

Un robot completamente autonomo debe ser capaz de obtener e interpretar la in-
formacion del entorno para ejecutar diversas tareas. El problema de mapeado o SLAM
para robots moviles esta estrechamente relacionado con estas habilidades. Consiste
en interpretar la infomacién percibida por sus sensores para construir un mapa y
localizarse. Hay muchas otras tareas que dependen del mapeado, luego este es uno
de los problemas m&s importantes para un robot movil. El objetivo de este trabajo
es el desarrollo de varias herramientas especificas relacionadas con el mapeado de
entornos tridimensionales. Con ellas se mejorara la autonomia del robot manipulador
MANFRED-2, que es un robot moévil desarrollado integramente en el Robotics Lab
del Departamento de Ingenieria de Sistemas y Automética de la Universidad Carlos
[T de Madrid.

El problema de localizacién para un robot movil puede ser definido como la
busqueda de las coordenadas del robot dentro de un entorno conocido. Si no hay
informacion sobre la localizacién inicial, el problema se denomina localizacién global.
En este trabajo se ha desarrollado un moédulo que soluciona este problema para en-
tornos tridimensionales utilizando el algoritmo Differential Evolution, el cual es un
filtro evolutivo basado en particulas que evolucionan con el tiempo hacia la solucion
que tiene asociado un mejor valor para una funcién de coste dada. El algoritmo desa-
rrollado tiene diversas caracteristicas que lo hacen muy robusto y fiable: mecanismos
de umbralizacién y descarte, diferentes funciones de coste, criterios de convergencia
efectivos, etc. El modulo de localizacion global se ha probado en multiples experi-
mentos. La elevada precision de este método permite que el robot sea utilizado en
tareas de manipulacion.

Si la informacién del entorno viene dada por barridos de un ldser, es muy im-
portante que se pueda corregir el error local entre pares de barridos para mejorar la
calidad del mapa. Este proceso se conoce como registro o scan matching. Hemos
implementado un algoritmo que resuelve este problema en entornos tridimensionales.
Esta también basado en el Differential Evolution. Si se elige la funcién de forma ade-
cuada es posible resolver el problema de scan matching utilizando este método. La
elevada precision y la eficiencia computacional se han demostrado en los resultados
experimentales.
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El 1iltimo problema abordado aqui consiste en detectar cuando el robot esta nave-
gando por un entorno conocido. Después de esto se podra minimizar el error acu-
mulado para aumentar la consistencia del mapa. La tarea de deteccion se llama
usualmente deteccién de bucles, mientras que la minimizacién del error es el cierre
del bucle. Se ha desarrollado un algoritmo de deteccién que extrae las caracteristicas
mas importantes de dos barridos del laser para obtener un indicador que es usado
como umbral para detectar si el robot estd en un lugar que ha visitado previamente.
Nuestro método permite tener en cuenta caracteristicas muy diferentes. Primero, las
caracteristicas de superficie permiten incluir las formas geométricas presentes en el
barrido (lineas, planos y esferas). Segundo, las caracteristicas numéricas permiten
describir diversas propiedades (volumen, rango medio, curvatura, etc.). El algoritmo
ha sido probado con datos reales para demostrar su eficiencia. Todos los bucles
son detectados correctamente y no se aprecian falsos positivos cuando el robot esta
navegando por una trayectoria larga con varios bucles. Los resultados son pareci-
dos o mejores que los que obtienen otros grupos de investigacién. Ademds, este es
un método muy versatil pues admite multitud de variables y diferentes pesos en la
férmula de comparacion.
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Chapter 1

Introduction






Isaac Asimov was the first writer that used the word robotics. It was in his short
story “Liar!” published in 1941 in Astounding Science Fiction. However, Asimov
did not know that he was inventing the term. He assumed that robotics was the
science and technology of robots because electronics was the science and technology
of electrical devices.

I[saac Asimov (born Isaak Yudovich Ozimov, Petrévichi, USSR, January 2, 1920 -
New York, April 6, 1992) is one of the fathers of science fiction. He was a prolific writer
with more than 500 books, but also a professor of biochemistry in Boston University.
His informative science books were also very popular. He was especially interested
in the future and the planetary exploration, issues that he considered closely related
to robotics. In 1942, he formulated his Three Laws of Robotics in the short story
“Runaround”:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings, except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

It is amazing to think about how these thoughts of a science fiction writer of the
early twentieth century are closely related to the current research topics in this area.

The first person who used the word robot was Karel Capek. He was a Czech writer,
also considered one of the founders of science fiction. He wrote about a factory that
manufactured artificial people called robots in his play “R.U.R.” (Rossum’s Univer-
sal Robots, 1920). Nevertheless, Karel Capek declared that the man who actually
invented the word was his brother Josef Capek.

This science was included into a science fiction scope in the early twentieth century
because the level of technological development was too low. However, it is not true
today. Robotics is an important research area where important resources are invested
in research and development.

Robotics can be defined as the branch of technology that deals with the de-
sign, construction, operation, structural disposition, manufacture, and application
of robots (Oxford Dictionariedl)). It is related to other sciences such as electronics,
engineering, mechanics, mathematics, physics, and software.

William Grey Walter developed the first first electronic autonomous robot between
1948 and 1949. His first robots, Elmer and Elsie, are often described as tortoises
because they looked like these animals and their movement was slow. They were

'http://oxforddictionaries.com/definition/robotics
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capable of finding their way to a recharging station when the battery power was low.
Willam Grey’s work inspired subsequent generations of robotics researchers. The first
digitally operated and programmable robot installed in the industry was the Unimate
(1961). Its task consisted of lifting hot metal pieces from a die-casting machine and
stacking them. In Table the reader can see some historic examples of robots.

More recently, important advances have been made in the robotics research area.
Some of the most important examples are presented in Table [I.2]

An illustrative example of robots that have been designed by multiple research
groups is shown in Figure [1.1]

The number of industrial and commercial robots has increased substantially in
recent years. They can execute specific tasks more cheaply than human beings or
can work with high accuracy and reliability. They are also useful tools to be used
en dangerous environments which are not safe for human beings. Robots are used
in multiple areas: earth and space exploration, automotive industry, manufacturing,
transport, surgery, military industry, education research, etc.

Table 1.1: Historic robots.

Inventor (Year) Name Characteristics
Heron of Alexandria - Descriptions of more than 100 ma-
and others (First chines and automata, in Pneumat-
century AD) ica and Automata
Al-Jazari (1206) - Humanoid automata
Leonardo da Vinci ~ Mechanical knight Designs for a humanoid robot
(1495)
Jacques de Digesting Duck ~ Mechanical duck that was able to
Vaucanson (1738) eat, flap its wings, and excrete
Nikola Tesla (1898) Teleautomaton  First radio-controlled vessel
Westinghouse Elektro Humanoid robot exhibited at the
Electric Corporation 1939 and 1940 World’s Fairs
(1930s)
William Grey Walter  Elsie and Elmer  Simple robots exhibiting biological
(1948) behaviors
George Devol (1961) Unimate First installed industrial robot
KUKA Robot Group Famulus First industrial robot with six elec-
(1973) tromechanically driven axes
Victor Scheinman PUMA Programmable universal manipula-

(1975) tion arm. Unimation company




The countries with more operational stock of multipurpose industrial robots in
2010 (number of robots between parentheses) are enumerated in the following list

Table 1.2: Well-known robots.

Inventor (Year) Name Characteristics
Hiroshi Makino SCARA Robotic arm
(1978)
Waseda University =~ Wabot-2 Capable of playing the organ
(1984)
MIT (1989) Genghis Hexapodal robot
Carnegie Mellon Dante Dante II entered Mt. Spurr and sam-
University (1994) pled the gases within the volcano
David Barret, MIT  RoboTuna Designed to swim
(1996)
Dr. John Adler Cyberknife Surgery robot
(1994)
Honda (1996) P2 Humanoid robot
Mars Pathfinder Soujouner Semi-autonomous operations on the
mission (1997) surface of Mars
Sony (1999) AIBO Robotic dog capable of interacting
with humans
Honda (2000) ASIMO Most advanced result of their hu-
manoid project
MDA Space Canadarm?2 It was launched into orbit and at-
Missions (2001) tached to the International Space Sta-
tion
Northrop Grumman UAV  Global First autonomous non-stop flight over
(2001) Hawk the Pacific Ocean
iRobot (2002) Roomba Robotic vacuum cleaner
NASA (2003) Spirit and They landed on the surface of Mars.
Opportunity ~ Opportunity is still operating
Carnegie Mellon Stanley It won the 2005 DARPA Grand Chal-
University (2005) lenge
Cornell University  Starfish 4-legged robot. Self modeling and

(2006)

learning to walk after having been
damaged
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Pt Japan (285800), North America (173174), Germany (148195), Republic of Korea
(101080), Italy (62378), China (52290), France (34495), Spain (28868), and Taiwan
(26896).

After some ramblings and history, we are going to address the problem that has
been studied in this work.

There is not a unique definition for robot. According to the Oxford Dictionaryf, a
robot is a machine capable of carrying out a complex series of actions automatically,
especially one programmable by a computer. An autonomous robot can be defined
as a robot that can perform specific tasks in unstructured environments without
continuous human guidance. There are many kinds of robots with different types and
levels of autonomy. Besides, the level of autonomy needed by a robot depends on the
field and its tasks.

Zhttp://www.worldrobotics.org
3http://oxforddictionaries.com/definition/robot

Figure 1.1: Different robots.


http://www.worldrobotics.org
http://oxforddictionaries.com/definition/robot

A fully autonomous robot must have the following abilities: obtain information
about the environment, work for a long period without human intervention, move
throughout the environment without human assistance, avoid dangerous situations,
and maintain its own survival without breaking the previous rules. It may also learn
how to execute new tasks that are not included in the initial configuration.

It is very challenging to design a fully autonomous robot. A useful simplification
that is usually assumed is to consider specific workspaces. However, the problem is
still a difficult task because the variables that must be considered are often complex,
chaotic, and unpredictable. The final purpose is to design a robot capable of working
in a robust, reliable, accurate, and safe way.

The mobile robot MANFRED-2 (Figure has been fully developed by the
Robotics Lab research group of the Systems Engineering and Automation Depart-
ment of the Carlos IIT University of Madrid (UC3M). It is an autonomous mobile
manipulator designed to operate efficiently in environments where human manipula-
tion capabilities are required. This mobile manipulator uses a sensorial system based
on vision, thee-dimensional (3D) laser telemetry, and 3D time-of-flight data (laser
and RGB color) to perceive and model 3D environments. It includes navigation, lo-
calization, and obstacle avoidance modules in order to execute safely multiple tasks.

As said previously, a fully autonomous robot must obtain information about the
environment and learn or gain new capabilities. The mobile robot mapping problem is
closely related to these abilities. It consists of interpreting the information perceived
by its sensors in order to build map and localize itself in it. There are many other
robot skills that depend on this task; thus, it is one of the most important problems
to be solved by a truly autonomous robot. Although effective algorithms have been
implemented for static, structured, and small or medium-sized environments, it is
difficult to be successful in unstructured, dynamic, or large-scale environments.

The objective of this work is to design various specific tools related to the mapping
problem in order to improve MANFRED-2 autonomy. We are going to introduce these
tools in the following paragraphs.

The localization problem in mobile robotics can be defined as the search of the
robot’s coordinates in a known environment. If there is no information about the
initial location, we are talking about global localization. In this work, we have devel-
oped an algorithm that solves this problem in a 3D environment using evolutionary
computation concepts (Differential Evolution (DE) [I]). The method has been called
RELF-3D and has many features that make it very robust and reliable: thresholding
and discarding mechanisms, different cost functions, effective convergence criteria,
and so on. The resulting global localization module has been tested in numerous
experiments and the most important improvement obtained is the accuracy of the
method, allowing its application in manipulation tasks.

If the information is given by laser readings, it is essential to correct the local
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Figure 1.2: MANFRED-2: mobile manipulator developed by the Robotics Lab of the
UC3M.

errors between pairs of scans to improve the map quality (our robot uses a 3D laser
range finder), which is called registration or scan matching. We have implemented a
scan matching algorithm for 3D environments. It is based on the DE method, which
is a particle-based evolutionary algorithm that evolves in time to the solution that
yields the cost function lowest value. If the cost function is properly chosen, it is
possible to solve the scan matching problem using this method. The high accuracy
and computational efficiency of the proposed method have been demonstrated with
experimental results.

The last problem addressed in this work consists of detecting when the robot is
navigating through a known place. This task is often called loop detection. After that,
the accumulated error can be minimized to give consistency to the global map, which
is called loop closure. We have developed a loop detection method that compares
features extracted from two different scans to obtain a loop indicator. It has ben
called LPI. This approach allows the introduction of very different characteristics
in the descriptor. First, the surface features include the geometric forms of the
scan (lines, planes, and spheres). Second, the numerical features describe several



numerical properties: volume, average range, curvature, and so on. The algorithm
has been tested with real data to demonstrate that it is an efficient tool to be used
in mapping problems. The results are similar or even better than those obtained by
other research groups. The introduction of different types of features and weights in
the comparison formula, and the uncertainty band improve the algorithm performance
and make it a more versatile method because it admits different settings.

This document is organized as follows. The state of the art is reviewed in Chapter
2l In Chapter [3| the global localization method is explained. The scan matching
and loop detection methods are presented in Chapter [4. The experimental results are
shown in Chapter 5| and, finally, the most important conclusions and future develop-
ments are summarized in Chapter [(] The experimental platform MANDFRED-2 is
presented in Appendix [4].
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Three different methods that solve three different problems are the main contri-
butions of this document. These problems are global localization, registration via
scan matching, and loop detection. The global localization problem can be defined
as the search of the robot’s coordinates relative to its environment, assuming that it
is provided by a map and there is no knowledge about the robot’s initial position.
The registration or scan matching consists of estimating the metric relation between
different scans in order to correct the robot’s pose. The laser scan matching (the
perceptive sensor is a laser scan) consists of the current scan pose correction until the
best overlap with the reference scan or model is achieved. It is basic to detect when
the robot is navigating through a previously visited place, which is usually referred
to as loop detection.

All these concepts can be included in the mapping or Simultaneous Localization
And Mapping (SLAM) problem. A typical statement assumed when designing an au-
tonomous robot is that there is no initial knowledge about the environment and the
map is gradually discovered during navigation. The perceptive sensor measurements
that are continuously received by the robot must be therefore related to previously
perceived ones and integrated in a consistent way. The result is a map representing
the environment characteristics. The relation between the newly acquired measure-
ments and the already built model must be known. In other words, the robot’s
location (localization problem) in the map must be known in order to incorporate
new measurements when exploring the environment. Therefore, incremental map-
ping and localization are connected concepts that can be studied together. This
problem, which is one of the biggest challenges in our field, is called SLAM.

The SLAM problem was originally developed by Leonard and Durrant-White [2]
basing on an earlier work by Smith et al. [3]. It consists of building a map of an
unknown environment while navigating through it at the same time, using this map.
The mapping is closely related to the SLAM problem because map-learning cannot
be separated from localization.

The state of the art of the topics studied in this thesis is discussed in this chapter.
Since all of them are related to the SLAM problem, this is the starting point from
which we start.

The robot has to interpret the information perceived by its sensors in order to
build map and localize itself in it. Despite significant progress in this area during the
last decades, it is still an open problem with great challenges.

The first question to be asked in robotic mapping is how complex the environment
representation must be regarding the available information. The map complexity can
be higher or lower depending on the robot purposes. For example, some blind insects
do not have a spatial representation of the world, but they survive because they have
developed a triggered response to the events that they perceive. However, it is not
the case of autonomous robots because they need a more complex representation of
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the environment to successfully execute their tasks. One possibility is to build a map
composed of the information obtained by the robot’s sensors from different locations.
This information must be merged into a global coordinate system. The environment
computation process of the human beings is commonly referred to as cognitive map.
A more complex representation is based on the construction of cognitive maps. These
maps allow the execution of different tasks (path planning, obstacle avoidance, events
memorization, danger evaluation) depending on the map information.

The path planning is a basic problem that is closely linked to mapping. It consists
of computing the best path from the starting point A to the final point B. The initial
and final locations can be given by coordinates or features depending on the map
type. The path planning algorithms are measured by different variables, such as:
time, computational complexity, distance, or energetic efficiency. The environment
characteristics must be considered when calculating an optimal path; thus, an efficient
motion requires a high knowledge about the environment. In general, if the mapping
algorithms provide us with efficient and robust maps, the possibility of finding optimal
paths will increase.

The information obtained by a mobile robot can be provided by idiothetic or
allothetic sources. The word idiothetic literally means self-proposition, while the
word allothetic means being centered in people or places other than oneself. In other
words, this information is usually provided by two types of sensors: proprioceptive
sensors, such as wheel encoders with motion information, and exteroceptive sensors,
such as laser range finders receiving environment information.

When the robot is under motion, it can measure its absolute position by different
methods. One option is to track the number of revolutions of its wheels. It uses
an idiothetic source with internal information. However, this information is strongly
influenced by a cumulative error that can grow quickly. The allothetic sources obtain
external information. This information is given by perceptive sensors such as cameras,
laser range finders, and sonars. The problem here is that two different places can
be perceived as the same (perceptual aliasing). It occurs in some cases where it is
not possible to distinguish between different locations considering only the external
information given by the exteroceptive sensors. For example, all the corridors may
look the same in an office building.

It is possible to classify the map as metric or topological depending on the internal
representation of the map:

e Metric map: it considers a n-dimensional space where the objects are placed
with precise coordinates. It is the most common representation for humans, but
it can be influenced by noise and it can be difficult to calculate the distances
accurately. These maps are addressed in this work.

e Topological map: it is based on the relations between places. The distances
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Figure 2.1: Madrid metro topological map and Lanzarote Island metric map.

between a set of different places are stored. The map is composed of a graph
with nodes (places) and arcs (paths).

An example of both maps is shown in Figure 2.1, The Madrid metro map is
composed of the underground stations (nodes) and the connections between them
(paths). The Lanzarote Island map contains a two-dimensional (2D) spatial model.

Many research groups have studied the mapping problem from a probabilistic
point of view [4] in order to deal with the uncertainty. For example, the map can
be divided into grids where each cell has a different occupancy probability. The map
is composed of three types of cells: free spaces, objects, and unknown places (high
uncertainty). This representation makes it possible to change the map resolution
when more accuracy is required.

According to the handbook of Siciliano and Khatib [5], the SLAM problem can
be divided into two different approaches. The first one is called full SLAM problem
and it is based on the estimation of the posterior probability of the whole path of the
robot together with the map:

p(Xt7m|Zt7Ut)7 (21)

where X, is the path up to time ¢; m is the map; Z; = {21, ..., 2;} contains the per-
ceptive sensors measurements (external information); and Uy = {uy, ..., u;} contains
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the motion information. It can be noticed that the variables of the right part are all
available. It is necessary to estimate X; and m.

The second one is the online SLAM problem. It consists of the estimation of the
current location of the robot:

p(ﬂft,m|Zt,Ut>, (22)

where x; is the robot’s pose (robot position and orientation) at the present time, not
being necessary to estimate the whole path.

As can be observed in Equations and 2.2} the robot needs two models in order
to successfully accomplish this task. The first one is a mathematical model that
converts wheel displacements or odometryﬁ information (u;) into robot’s locations
(x;), and the second one is a mathematical model that relates the sensor measurements
(z) to the robot’s locations and the map (m).

The mapping problem has been studied in the past considering a 2D world due
to the available sensors and the simplicity of this approach. However, the recent
developments make it possible to obtain a 3D representation suitable for multiple
applications. The computational cost when building a 3D world has been traditionally
considered as a drawback. However, there are now 3D sensors and powerful computers
that minimize this shortcoming. Besides, the model is much richer because it contains
a larger amount of information. Every aspect covered in this thesis is related to 3D
environments. Therefore, most of the related works cited in this chapter will focus
on this type of maps.

As said previously, various concepts related to the mapping problem have been
addressed in this document. An overview of the most significant SLAM algorithms
is given in Section [2.1]

We are talking about global localization when the map of the environment is
known but there is no a priori information about the robot’s pose. We have devel-
oped an algorithm that solves this problem obtaining a high accuracy. The global
localization methods are reviewed in Section 2.2

The mapping process has been divided here into several points that represent
the tasks that should be solved to generate a consistent map. These tasks are the
following ones:

1. Robot’s pose estimation: the robot’s pose with respect to the last one must be
computed, which means that the motion information has to be updated. An
odometry model is used to compute the robot’s pose according to the motion
information given by the wheel encoders. It is well-known that these measure-
ments eventually diverge. The accumulated error is specially important when

4Odometry can be defined as the use of data from moving sensors to estimate change in position
over time.
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the robot is located far away from the initial position. Hence, the accumulated
error should be corrected by other methods.

2. Pose correction via scan matching: the accumulated motion error when only
considering odometry information has to be corrected using the perceptive sen-
sor information. The pose is corrected by matching the last acquired scan
against the previous one. The scan matching methods can be regarded as local
localization methods because they compare single scans. A detailed review of
these methods is presented in Section [2.3]

3. Loop detection and loop closure: the model obtained is not consistent after
registration because the accumulated error due to local small errors can be very
important. If the robot can detect when it is navigating through a previously
visited place, it will be possible to minimize this error. The global map will
be more consistent. The detection task is usually referred to as loop detection,
and the global error minimization is called loop closure. The loop detection
methods related to our approach are described in Section [2.4]

There are several algorithms that correct the pose errors after registration [0} [7].
They distribute the accumulated pose error of pairwise registered scans in order
to build a consistent map once the robot has detected that it is in a pre-visited
place. However, the loop detection task is still an open problem in robotics.
That is the reason why this topic has been studied in this thesis.

A more detailed explanation of the mapping method will be given in Chapter [4]
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2.1 Mapping/SLAM

Mapping or SLAM is a very common topic in mobile robotics. It is very difficult
to review this subject without forgetting important contributions. Since this work
focuses on 3D environments, one possibility is to categorize the mapping algorithms
into subgroups depending on the map dimensions and the robot’s pose Degrees of
Freedom (DOF).

Depending on the map dimensions, there are planar (2D) and volumetric (3D)
maps. Besides, the SLAM approaches can be classified by the robot’s pose DOF.
A pose estimate in a 2D world contains three parameters that represent the robot’s
position (z,y) and orientation (¢). An example of this type of map is shown in Figure
2.2] If the environment is 3D, it can be necessary to define six different parameters:
the x, y, z coordinates, and the the roll, yaw, pitch angles. However, there are different
techniques to build volumetric maps considering the available sensors and the DOF
of the localization method:

e Planar localization method (3 DOF) combined with 2D perceptive sensors from
different angles.

e Six-dimensional (6D) pose estimate combined with 2D perceptive sensor.

Figure 2.2: Example of planar map obtained by Moreno et al. [§].
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e 6D localization method combined with 3D perceptive sensor.

All these methods are described in the following sections.

2.1.1 Planar mapping

Planar metric maps are often built using probabilistic techniques where there are
two sources of information: probabilistic motion and environmental perception with
uncertainty. It is possible to localize the robot by integrating both components. The
first approaches were carried out by Smith et al. [3] and Leonard and Durrant-Whyte

1.

The first question to be solved is how to estimate the robot’s pose. After that, the

map can be built. The consistency of the global map can be increased by detecting
known places. However, there is no guarantee of a correct model. There are different

techniques that solve the SLAM problem (a complete review can be found in the work
by Thrun [9]):

e Maximum Likelihood Estimation (MLE) [10, 11]:

It is a method for estimating the parameters of a statistical model according to
a fixed set of observations. It assumes that the robot’s pose can be given by a
statistical model. In general, the MLE method obtains the model parameters
that maximize the likelihood function. These parameters define a probability
distribution. In other words, the greatest probability is given to the observed
data. It can be very useful when the model can be defined by well-known
distributions such as the normal one. However, this method present difficulties
when the probability distribution is unsuitable or does not exist.

Expectation Maximization (EM) [12]:

The EM algorithm is an iterative method proposed by Dempster et al. [I3] that
finds maximum likelihood estimates of parameters in statistical models. The
method is composed of two steps. First, the Expectation (E) step computes the
expectation of the log-likelihood evaluated using the current estimates. After
that, the Maximization (M) step estimates the parameters that maximize the
expected log-likelihood found in the E step. These parameters will be used
again in the next iteration E step.

Extended Kalman Filter (EKF) [14]:

The EKF is the nonlinear version of the Kalman filter which linearizes about the
current mean and covariance. The EKF has been considered the most common

method in the theory of nonlinear state estimation. Most SLAM algorithms are
based on EKFs.
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A Kalman filter [15] is an optimal recursive data processing algorithm. It inte-
grates all information that can be provided to it. The Kalman filter computes
all available measurements (with uncertainty) to estimate the current value of
the unknown variables of interest.

e Sparse Extended Information Filter (SEIF) [16]:

The Extended Information Filter (EIF) is the dual of the EKF. Both algorithms
are computationally equivalent, but the EKF considers the covariance matrix
while the EIF considers the inverse covariance matrix, also known as information
matrix. The SEIF is a sparse variant of the EIF. The maps are represented by
graphical networks of features that are locally interconnected. The relations
between pairs of neighbor features and the robot’s pose relative to the map are
stored in the links between features.

There are also other approaches that are important in planar mapping. The
FastSLAM [17] method approximates the posterior probabilities (robot’s poses) by
particles. The method proposed by Lu and Milios [18] is based on the on the Iterative
Dual Correspondence (IDC) scan matching. This type of maps was also addressed
by our research group in the past [§]. We applied DE to planar SLAM.

2.1.2 Volumetric mapping

Planar localization method (3 DOF) combined with 2D perceptive sensors
from different angles

Some research groups have simplified the volumetric mapping by using 2D laser range
finders instead of 3D scanners. If the 2D scanner obtains information from different
angles, it is possible to obtain volumetric maps.

The first possibility is to mount one scanner horizontally and the other one ver-
tically. The second one obtains information in a vertical plane that is transformed
into 3D coordinates according to the robot’s pose that is computed depending on the
horizontal scan. The map accuracy depends on the robot’s pose estimation. This
method has been applied by Thrun et al. [I7] and Frith and Zakhor [19]. Zhao and
Shibasaki [20] have used two additional scanners shifted by 45° to reduce occlusions.

Other groups have developed rotating scanners for the same purpose. Although
they obtain complete information about the 3D world, they do not consider all the
six DOF in localization because the robot’s pose is obtained by sensors that use three
DOF (z,y,0). Wulf et al. [21] utilize a scanner that rotates around the vertical axis.
The 3D laser data are acquired while moving. The pose estimate is given by inertial
sensors, i.e. gyros.
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The algorithms developed in this work can use six DOF at maximum. However,
the map obtained by the experimental platform MANFRED-2 can be included into
this type of maps because the robot’s pose is given by three coordinates (z,y,8).
Therefore, all the experiments that use our robot will be simplified considering the
available information. This platform is described in Appendix [A] The motor mounted
laser scanner is shown in Figure [A.6] We have also included other experiments with
different data sets where the robot’s pose is given by six DOF.

6D pose estimate combined with 2D perceptive sensor

A different option consists of utilizing 2D laser scanners and 6D pose estimation
algorithms. This is sometimes used in mobile robot navigation systems. The Stanford
Racing Team [22] used this technique for high speed terrain classification in the
DARPA Grand Challenge, which is a race for driverless vehicles organized by the
Defense Advanced Research Projects Agency (research organization of the United
States Department of Defense). The participating vehicles must travel between two
different points of the United States (the first edition covered 240 km) without human
intervention. The location of the vehicle must be accurately estimated with expensive
Sensors.

6D localization method combined with 3D perceptive sensor

There are multiple research groups that focus on the mapping problem considering
that the robot is in 3D environments with six DOF'. This scene holds more information
than the 2D world. This strategy is appropriate for several tasks such as object
manipulation or grasping and robot motion and localization on natural surfaces. Due
to the available sensors and the increase of the computer computational capabilities,
this procedure must play an important role in SLAM for mobile robots.

It is important to distinguish between outdoor and indoor maps because there
are sensors, e.g. the GPS (Global Positioning System), that provide the mobile robot
with a precise measurement of its pose when it is located outdoors. This is not an easy
task when the mobile robot is located in an indoor environment. The measurements
are not accurate, so additional mechanisms should be implemented to improve the
map quality.

Nuchter et al. [23] have developed a mapping method based on the alignment
of 3D laser range scans using the Iterative Closest Points (ICP) [24] scan matching
method combined with a heuristic for loop detection and a global relaxation method.
Furthermore, they accelerate the data association process using k-d trees, which is a
technique that have also been applied to our methods and will be explained later in
this document. They have also implemented a data association system called “Cached
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Figure 2.3: 6D SLAM of an outdoor environment by Niichter et al. [25].

k-d tree Search”. Their recent work includes a city map [25], 26]. As can be observed
in Figures and they obtain impressive results.

Triebel et al. [27] work with 3D maps building Multi-Level Surface (MLS) maps.
An elevation map stores the height of the corresponding area in each cell of a discrete
grid. The main shortcoming of this map is that it is not possible to represent vertical
structures with multiple levels. The MLS maps allow the storage of multiple surfaces
in each cell, making it possible to include bridges or buildings in the map. Their
experiments demonstrate that their method is convenient for representing large-scale
outdoor environments. Their results can be seen in Figure [2.5] where it is possible to
distinguish between elevation and MLS maps.

Cole et al. [28] demonstrate that the traditional methods used to solve the SLAM
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Figure 2.4: 6D SLAM of an outdoor environment by Borrmann et al. [20].

problem in planar environments can also be extended to perform 6D SLAM in more
difficult conditions, e.g. undulating outdoor areas. Their technique is based on the
registration of scans that are obtained from different places.

Sequeira et al. [29] have worked in the RESOLVE project to model interiors for
virtual reality and tele-presence. They have used a laser range finder called RIEGL.
The scan matching method adopted is the ICP.

Allen et al. [30] have worked in the AVENUE project for modeling urban envi-
ronments. The scanner that they have used is called CYRAX. They have designed a
feature-based scan matching approach for registering the 3D scans. However, in their

Figure 2.5: Elevation map (left) and MLS map (right) obtained by Triebel et al. [27].
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Figure 2.6: VRML model using 2D laser and panoramic camera by Biber et al. [35].

recent work the localization system does not make use of laser data [31].

Hebert’s group [32] have built maps using the Zoller+Frohlich laser scanner. They
have developed two different methods: surface matching between observations and
feature matching between individual features extracted from the observations. They
do not use odometry information or initial pose estimates.

Magnusson and Duckett [33] have proposed an alignment method that is based
on the Normal Distributions Transform (NDT) [34].

Other approaches

Another way to accomplish this is to use computer vision sensors such as CCD
(Charge-Coupled Device) cameras. Their principal disadvantage is that changing
light conditions make them difficult to use.

Biber et al. [35] have developed a mapping method based on a 2D laser scanner and
a panoramic camera. They use the laser scanner to solve the SLAM problem and to
extract walls. After that, the walls textures are built from the panoramic camera. The
model obtained after being exported to VRML (Virtual Reality Modeling Language)
format can be observed in Figure [2.6

The mobile robot by Se et al. [36] uses scale-invariant visual landmarks to localize
itself and build a 3D map at the same time. The 3D landmarks are tracked using
Kalman filters. The landmarks position and uncertainty are stored in a data base.
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2.2 Global Localization

In general, the autonomous robots that need to travel from an initial location to a
destination point must solve two fundamental problems: navigation and localization.
The robot is correctly localized when it can determine its position and orientation.
The navigation skill involves finding a feasible path and avoiding the obstacles. It is
straightforward that it is not possible to navigate without the localization module.
In robotics, these problems have been among the most important research areas for
the last decades.

The global localization systems can be separated into two different types depend-
ing on the information source: positioning systems and self-localization systems.

The positioning systems are based on signals emitted by an external source (bea-
cons). These signals are detected by the robot’s sensor system. A different possibility
is that the robot emits the signal that is captured by one or more sensors located in
the environment. These sensors communicate the location to the robot.

The positioning systems use different variants of triangulation methods to estimate
the robot’s location. You can find different types of positioning systems. The best
known is the GPS, which is a global navigation satellite system that returns location
and time information where there is an unobstructed line of sight to four or more GPS
satellites. It is more difficult to develop positioning systems for indoor environments
because a great number of emitters and receivers is required to have a good signal
coverage. Systems based on radio-frequencies (Wifi and Zigbee), vision, laser or
ultrasonics are obtaining promising results. Their main disadvantage is that they
depend strongly on the emitters and receivers positional distribution. Although it
is not necessary to have a detailed map, the beacons’ coordinates must be known «a
PTLOTI.

The self-positioning systems are based on sensor systems implemented in the
robot. They do not require external beacons because they use the measurements
obtained by the sensors. Some typical examples are localization modules based on
laser range finders that obtain 2D or 3D scans. This approach requires a predefined
map that is usually more complex than the map of the positioning systems. The
self-positioning systems have been studied in this document because it is a more in-
teresting problem from a theoretical point of view and our robot works in indoor
places.

The self-positioning associated problems depend on the initial information about
the map:

e Global localization and re-localization: there is an a priori knowledge about
the map.

e SLAM: there is no initial information and the robot is learning the map while
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navigating at the same time.

The localization problem can be separated into two different types depending on
the initial information about the robot’s location:

e Re-localization (or tracking) systems: they maintain a reliable estimate of the
robot’s position and orientation while it is navigating. It is assumed that the
initial position is known (with uncertainty) and the tracking algorithm objective
is to maintain a reliable estimate while the robot is executing a specific mission.
Most of the existing localization algorithms address this problem because it is
less complex than global localization. There are algorithms based on the EKF
that obtain good solutions. The Kalman filters were initially applied to re-
localization during the nineties [37, [38],39]. These methods are computationally
very efficient, but they require a good initialization and a good knowledge of
the statistical properties of the system.

e Global localization systems: these modules do not assume any initial knowledge
about the initial position and orientation. The search must be done not only in
a limited zone, which is sufficient for re-localization, but in the whole map (at
least in a large area). This problem is more difficult because the information
integration and the mathematical models are more complex.

There are different families of algorithms that can provide a solution to the global
localization problem in 2D maps:

e Bayesian-based methods: they operate in two steps. In a first step, movement
and perceptive probabilistic information are integrated into the a posteriori
density function. The estimate is computed in a second step according to a
specific criterion such as the maximum density point or the average value. These
methods focus on the generation of accurate models for the density function in
order to represent the most feasible areas. When the convergence is reached,
all the distribution is concentrated in a small area. This group of solutions
has been widely studied. Grid-based probabilistic filters [40)], 41], 42] and Monte
Carlo (MC) localization methods [43, [44] can be included here. Burgard et
al. [40] have studied the problem assuming that the robot is in a grid map
and Fox et al. [41] have developed a Markov localization module in dynamic
environments.

e Optimization-based methods: all the information is integrated to generate a
fitness or cost function that is minimized in each motion-perception cycle. The
estimate is the element with best fitness value. The DE [45] and Particle Swarm
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Optimization (PSO) [46] filters can be included here. Vahdat et al. [46] apply
two evolutionary methods (DE and PSO) and compare both of them with MC.

A global localization algorithm for 3D environments that is based on optimiza-
tion techniques (DE) has been developed here. In our previous work, it was
successfully applied to planar environments [45]. An example is shown in Fig-
ure [2.7, where an initially generated population evolves to the true solution

basing on the optimization of a fitness function.

e Hybrid methods (multi-hypotheses Kalman filters): these methods are not
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Figure 2.7: Global localization using optimization-based methods (Moreno et al. [45]).

It is based on DE. Population members in red and best solution in blue.
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purely Bayesian. Although they contain a set of solutions composed of nor-
mal probability distributions, the generation and elimination of solutions are
based not only on probability distributions but on decision trees and geometric
constraints. Some examples are [47, 48], 49 [50].

Most of these methods have been applied to 2D environments. If we talk about
the localization problem in a 3D map, we find less information in the literature. For
example, Kiimmerle et al. [51] have worked with MC in outdoor applications. They
apply a particle filter to estimate the full 6D state of the robot. These authors solve
the localization problem in outdoor environments by matching laser range measure-
ments to a given map of the environment using MLS maps.

Lingemann et al. [52] have developed an algorithm called HAYAT (High-speed And
Yet Accurate Indoor) that localizes the robot matching features between the data set
and the model set. Their contributions lie in fast filtering and extraction of natural
features in laser scans and a closed-form solution for computing the pose shift. Tsai
et al. [53] fuse inertial and ultrasonic sensors and apply an EKF-based algorithm to
estimate the current posture of a mobile robot navigating over indoor uneven terrain.
Lai et al. [54] have designed a non-linear method for a system composed of a laser
range finder and four artificial reflectors.

There are also many groups that are using computer vision techniques [55, [56,
57, B8, KI]. Se et al. [58] consider global localization as a place recognition problem,
and solve it by matching the SIFT (Scale-Invariant Feature Transform) [60] features
detected in the current frame to the pre-built SIFT database map. More recently,
a different descriptor called SURF (Speeded Up Robust Feature) [61] has been also
applied to object recognition. Ho et al. [56] demonstrate how the robot can perform
global localization using a panoramic mirror in conjunction with a rich 3D model of
the environment and a particle filter for localization. Royer et al. [57] also use a pre-
viously built map to compute robot localization in real time using vision algorithms.

Finally, it has to be remarked that the localization problem is a particular aspect
of the SLAM problem; thus, all the approaches related to SLAM (Section can be
enclosed in this section.
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2.3 Scan Matching

An important tool that must be developed when building consistent maps is the
registration or scan matching module. This is because the pose estimate considering
only motion information is not accurate enough and the local error must be minimized
comparing the last acquired perceptive measurements to the map. The current scan
pose is corrected until the best overlap with the reference scan or model is achieved.

There are different classifications of the scan matching methods. These classifica-
tions and some ideas about scan matching are introduced in the next paragraphs.

The first one depends on the environment dimensions. The scan matching methods
found in the literature can be developed to work with 2D or 3D data. The last case
is addressed in this work. The main difference between them is the computational
cost. The computational cost of the algorithms that use 3D data is higher because
they use more information.

There are also local [I§] and global [62] methods. The local methods match
single scans. The disadvantage of this approach is that the final map is inconsistent
because the accumulated error can be important. However, its advantage is that this
inconsistency can be minimized by relaxation mechanisms. The loop detection scope
is included here. It is possible to close the loop by minimizing the accumulated error
when it is detected. The global methods consider the current scan and the global
model. Their associated shortcoming is that one single mistake is fatal because a
wrong measurement can be included in the model, not being possible to correct this
error by additional mechanisms.

It is also possible to distinguish between feature-based, point-based, or mixed
approaches. The first case requires a feature extraction before the scan matching.
The most common features are line segments, planes, or corners. It is very important
to choose the correct features because they must be contained in the laser scan;
otherwise, the scan matching will not obtain the desired results. The point-based
approach does not require any distinguishable structure in the environment and the
mixed method seeks the correspondence between points and features. A point-based
local method has been developed in this work.

Some examples of point-based scan matching are detailed below:

o Iterative Closest Point (ICP):

The ICP method [63] is an algorithm that is used to minimize the spatial dis-
tance between two scans. The ICP is the most common scan matching method.
It is also used to reconstruct planar or volumetric surfaces using multiple scans,
to localize robots, etc.

This method is quite simple and its computational cost makes it possible to
use it in real-time. It receives two clouds of points, an initial estimate of the
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Figure 2.8: ICP scan matching by Nieto et al. [64]. Left: initial coordinates of the
scans. Right: results after scan matching.

translation and rotation, and the stopping criteria. It iteratively estimates the
transformation (translation, rotation) that minimizes the distance between the
clouds.

Besl and Mac Kay [24] have developed this method to register 3D shapes. It has
been successfully applied to SLAM. An example can be found in the Recursive
scan matching SLAM method developed by Nieto et al. [64]. An illustration of
their results for a pair of scans is shown in Figure [2.8|

Many variants of this method have been proposed. A very interesting compari-
son of several methods depending on different parameters such as the selection
and matching of points and the minimization strategy can be found in the work
by Rusinkiewicz et al. [65]. Some mechanisms of the registration method that
has been developed in this work are based on the ICP variant proposed by
Triebel et al. [27]. The cost function is changed in order to match points that
belong to similar surfaces.

Iterative Matching Range Point (IMRP):

The IMPR method, proposed by Lu and Milios [I§], is based on the limitation
of the maximum translation and rotation. The correspondences are found in a
neighborhood of the model, not considering the whole space.

e Iterative Dual Correspondence (IDC):
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The IDC method, also proposed by Lu and Milios [18], combines ICP and IMRP.
The translation is computed by the ICP method and the rotation is estimated
by the IMRP method. Their results are presented in Figure [2.9

e Polar Scan Matching (PSM):

The PSM method does not need to find correspondences between points. It
assumes that model and data are sorted in the same way and only points with
the same bearing are matched. Its advantage is that it is not necessary to
transform laser measurements into cartesian coordinates (the original distances
can be compared). This advantage is the key of the method proposed by Diosi
and Kleeman [66].

A different method was proposed by Weiss and Puttkamer [67]. It starts extracting
line segments that connect consecutive points. After that, it generates orientation
histograms of the line segments. These histograms are used to estimate the orientation
of the current scant with respect to the model scan. The translation is estimated by
calculating histograms of the points’ cartesian coordinates.

Thrun et. al [I7] consider that the free space in the current model will remain free
in the future. They increase the information that is extracted from the laser scan.

Biber et al. [34] have proposed an alternative representation based on the NDT.
The map is divided into cells and each cell is assumed to be defined by a normal
distribution that represents the probability of being a laser measurement (occupied
cell). The transformed scan is composed of a set of probability distributions that
can be used to match another scan. This method does not require the corresponding
points computation.
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Figure 2.9: IDC scan matching by Lu and Milios [I8]. Left: initial coordinates of the
scans. Right: results after scan matching.
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Another important task is to estimate the quality of the match. Lu and Milios
[18] assume that the scan points contain white Gaussian noise. They use this infor-
mation to estimate the uncertainty of the match. Bengtsson and Baerveldt [68] have
developed two different methods based on the calculation of the covariance matrix.
They differ in the calculation method.
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2.4 Loop Detection

The maps generated after registration are not consistent enough to conclude that the
mapping task has been successfully achieved. The small errors in the initial estimation
and the matched pairs can cause a huge accumulated error at the end of the robot’s
path. It is essential to improve the map consistency after registration. One way to
do it is to detect when the robot is navigating through a known place. After that,
the accumulated error can be minimized or eliminated.

Several feature-based techniques that have been successfully applied to loop de-
tection will be explained here. It is important to say that these techniques must be
rotation-invariant because the places have different appearances depending on the
robot’s orientation.

The sensors that are more commonly used in loop detection are cameras or 2D /3D
laser range finders.

Ramos et al. [69] have applied feature-based detection to close loops in unstruc-
tured, outdoor environments. These features are created from images and scans that
are used together. First, the laser scan is used to detect the region of interest. The
algorithm can work in real-time because only these regions are processed. The pro-
cess can be divided into four different parts: laser clustering, sub-image processing,
dimensionality reduction, and classification. They utilize non-linear probabilistic re-
gression models to match landmarks basing on position and appearance. They get
good performance in cases with not too many features. Their method has been tested
in the Victoria Park, which they define as an outdoor environment with dynamic ob-
jects, irregular terrain, and different illumination conditions. The available features
are sparsely planted trees. They have reported that their method is able to correctly
close loops of more than 400 m while associating 120 different features. An interest-
ing characteristic of their method is that it has the capacity to cope with occasional
failures. Their appearance models also correct erroneous position estimates.

Cummings and Newman [70], [71], [72] have developed an algorithm called FAB-
SLAM that is a probabilistic approach that detects known places basing on their ap-
pearance. FAB-SLAM analyzes new observations to identify seen and unseen places.
Their maps are represented by a set of visual words that are detected using a SURF
descriptor. The previously visited places are detected when a new image contains a
word that is already in the set. They have reported that their method avoids the
perceptual aliasing problem, is robust in visually repetitive environments, and can be
applied to online loop detection and closure. As can be observed in Figure [2.10] their
results are suitable in large outdoor environments. In their recent work [73], they
have obtained good results with trajectories of 1,000 km.

Two important methods for loop detection considering 3D surfaces have been
proposed by Johnson and Huber.
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Figure 2.10: FAB-SLAM method by Cummings and Newman [70]. The circular path
is traversed twice. It is composed of 2,474 images that cover a 2 km trajectory. The
images are collected from the yellow points. The seen places are marked in red and
joined by green lines.

Johnson [74] has developed a method based on “spin images”, which he defined
as local feature descriptors that represent the local surface shape around an oriented
point. First, an oriented point of the surface is considered. After that, several param-
eters of the neighbor points are calculated. Finally, the spin image of this oriented
point is composed of the accumulation of the neighbor points on the surface. This
method requires to calculate correspondences between points. The loops are detected
when two surfaces share many corresponding points. Johnson wrote that he chose
this name because “the image generation process can be visualized as a sheet spinning
about the normal of a point”. The results are accurate enough to obtain the whole
models of objects. Besides, their method can also be applied to object recognition in
environments with clutter and occlusions.

A similar method that is also based on spin images was proposed by Huber [75].
He has developed a global registration algorithm that is closely related to the loop
detection problem. Firstly, a model graph is built by registering (scan matching)
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Figure 2.11: Feature-based loop detection using the NDT (Magnusson et al. [76]).
Left: histogram. Right: laser scan. The thin black lines correspond to the directions.
The cones are scaled according to the number of points.

all scan pairs using spin images. This model is used to detect correct and incorrect
matches. The surface consistency is improved by computing sequences of matches.
Huber has used this method to automatically build models of various types of scenes.

A detailed explanation of a geometric descriptor for 3D metric maps can be found
in the work developed by Magnusson et al. [76]. Our loop detection method is based
on their work. The environment is divided into cells and each one is represented by its
NDT (eigenvectors are calculated for each cell and features are defined depending on
the relationship between them). Each feature contains the number of cells that belong
to an specific surface. The laser range data are described with feature histograms
based on the surface orientation and smoothness, and the loops are detected by
matching feature histograms. A visual example of the histogram is represented in
Figure 2.11]

As said in the cited paper, it is necessary to define an efficient descriptor which
has to be rotation-invariant. This descriptor compares two different scans using a
specific formula that returns a difference value. This value is compared to a threshold
to determine if the loop exists. Their method is able to detect loops without false
positives (Figure [2.12)).

Granstrom et al. [77] have used a machine learning algorithm called AdaBoost
[78] to learn a classifier from previously extracted features. The feature descriptor
is composed of 41 different features, all of them invariant to rotation. The first
33 are numeric values representing different properties such as: volume, difference,
curvature, centroid, etc. This type of features has also been included in the loop
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Figure 2.12: Loop detection by Magnusson et al. [76]. There are no false positives
and all loops are detected.

detection algorithm defined in this work. The last nine are range histograms with
different bin sizes. Their descriptor gets good performance when detecting loops from
pairs of scans. However, a previous training is needed to build the classifier. A huge
data set is necessary to build a robust descriptor. Therefore, it can be difficult to
utilize this method in exploration or SLAM.

Bosse and Roberts [79] have developed a histogram-based technique for planar
maps with two main components. The first one is an orientation histogram used
to compute the rotation difference. The second one is a set of projection histograms
that determine the distance between scans. The loops are detected by multiplying the
peak value of the orientation histogram by the peak value of the projection histograms
and comparing the result with a threshold. In Figure 2.13] their method results are
shown in a large outdoor environment.

Finally, we have developed a loop detection algorithm that extracts the most
important features from two different 3D laser scans in order to obtain an indicator
that is used to detect when the robot is visiting a known place. Our approach allows
the introduction of very different characteristics in the descriptor. First, the surface
features include the geometric forms of the scan (lines, planes, and spheres). Each
component is equal to the number of elements that belong to each feature. These
components are similar to the features calculated by Magnusson’s method. Second,
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Figure 2.13: Loop detection by Bosse and Roberts [79]. Left: map before loop
detection. Right: map corrected by loop detection.

the numerical features are values that describe other several numerical properties of
the measurements: volume, average range, standard deviation of range, etc. This
idea was taken from the work by Granstrém. The algorithm has been tested with
real data to demonstrate that it is an efficient tool to be used in mapping problems.
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There are many tasks in which an autonomous robot needs to know accurately
where it is to carry them out successfully. The localization problem is crucial in
robotics and can be defined as the search of the robot’s coordinates relative to its
environment, assuming that it is provided by a map. For instance, it is required to
execute a geometrical path successfully during navigation. We can distinguish be-
tween two different situations: the re-localization problem (the robot knows its initial
position, at least approximately) and the global localization problem (no knowledge
about the robot’s initial position). The second case will be studied in this work.

In our first approaches, we tried to solve the referred problem in a 2D map with
an evolutionary filter [45]. The algorithm developed was called ELF (Evolutionary
Localization Filter) and solves the global localization problem in a satisfactory way.
Due to the available sensors and the accuracy requirements of certain tasks, the ex-
tension to 3D environments and an improvement in the method were developed after
that [80]. In our ELF approach it was assumed that the robot was in a 2D map, and
three parameters were estimated, corresponding to the position (x,y) and orientation
(0). We are now working on 3D maps, and four coordinates that represent the co-
ordinate system of MANFRED-2 must be calculated, corresponding to the position
(x,y, z), and horizontal orientation (). The DOF stated is 4 for simplicity (because
MANFRED-2 works in 4 DOF) but the robot could work in 6 DOF (x,y, 2z, ¢, 0,1)
that represent position and orientation (roll, pitch, and yaw) when the map is three
dimensional. The current method can be easily expanded to 6 DOF without increas-
ing the computational cost.

The new algorithm has been called RELF-3D (Rejection Evolutionary Localiza-
tion Filter in Three Dimensions). A detailed explanation of its final version and a
complete study of the last developments and experimental results are presented in
this document. This has been published in [81].

The RELF-3D method is based on the representation of the robot’s location by
a set of possible location estimates weighted by a fitness function. The state is
recursively estimated using a set of results selected according to the weight associated
to each possible solution included in the set. The solutions set evolves in time to
integrate the sensor information and the robot motion information. The adaptation
engine of the RELF-3D method is based on an evolutionary adaptation mechanism,
which combines a stochastic gradient search together with a probabilistic search to
find the most promising pose candidates.

Our research group is working on the development of the experimental platform
MANFRED-2 (Figure [1.2). This robot has some built-in sensors which have been
used in this work.

The first one is a laser range finder (SICK PLS), which provides us with 3D in-
formation about the environment. The original sensor measurements are 2D, but
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Figure 3.1: Corridor of the Department of Engineering Systems and Automation of
the UC3M and corresponding laser reading.

we have added a motor that lets it rotate up and down, being able to obtain mea-
surements in three dimensions. To understand this, imagine that the laser rotation
movement is like a pan-tilt camera. The maximum horizontal (tilt) resolution, which
is the minimum distance between two consecutive measurements within a scan in
two dimensions, is 0.25°, and the amplitude of a 2D scan is 190°. The vertical (pan)
resolution, which is the minimum distance between two consecutive 2D scans, is 1°.

The 3D laser reading is used by our localization module to try to locate the robot
in a familiar environment. A typical environment and a real 3D laser reading can be
seen in Figure We have also implemented a simulated laser which works in 13
vertical scans separated by 5°, and each vertical scan contains 61 horizontal readings
separated by 3°.

However, we need more information to address our problem completely. When the
robot moves (the global localization problem has been solved, but the re-localization
problem starts), we need information about this movement. In order to get it, the
robot is also equipped with an optical encoder (HEDS-5540), a sensor necessary to
obtain the odometry information. This information gives us an idea about the move-
ment but has several drawbacks: the precision is very low and the error accumulates
with the time.
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3.1 Localization Problem Formulation and Solu-
tion

From a Bayesian point of view, the localization problem can be formulated as a
probability density estimation problem where the robot seeks to estimate posterior
distribution over the space of its poses conditioned on the available data. The robot
pose at time ¢ is defined as z;.

The sensor data can be divided into two groups: environment measurements given
by the perceptive sensors and pose information obtained by the motion sensors (en-
coders). The available information at time ¢ is defined as:

Y, = {ZO:taul:t} = {ZO7U0, 21, ULy -eey Zt—1, Ut—1, Zt}7

where zp.; contains the perception sensor measurements and u.; contains the odom-
etry information. The components z; and u; contain the information at time t.

The posterior probability density function can be defined as p(z;|Y;, m), where m
is a known variable that represents the map of the environment. The term m will not
be included from now on.

It is assumed that the process has the Markov property in order to estimate
p(z¢|Y;,m). A stochastic process has the Markov property when the probability dis-
tribution of the futures states does not depend on the past states but on the present
state.

The recursive determination of the posterior probability density can be computed
in following two steps:

e Measurement update. Applying Bayes’s rule to the last element of the measure-
ment vector Y; and assuming that the observation z; is conditionally indepen-
dent of the previous measurements given the state x;, yields

P(Zt’l’ta Yz-ffl)p(xtp/z-ffl)

Pz Y7) oalVios)

_ plalr)p(@|Yio)

N p(z|Yie1) (3.1)
p(zlY) = /Wp(ztla:t)p(a;tm_l)dxt, (3.2)

where the denominator of Equation (3.1]) is obtained by marginalization.

e Prediction. The effect of a time-step on the state given the observations up to
time ¢ is obtained by observing that
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plaal¥) = [ plelen up(ed¥ida, (33)

where the assumption that the process x; is Markovian, and then x;,; is inde-
pendent of Y;, has been considered.

Equations B.2] and provide the solutions to the bayesian recursive esti-
mation problem. In general, the multidimensional integrals of these equations have
no explicit analytical solutions when the models are not linear or Gaussian. It is
necessary to describe p(z;. 1|z, uy) and p(z|zy).

The first conditional probability p(xy 1|2, us) is often named probabilistic motion
model. This probability distribution will be obtained from the state space model of
the mobile robot:

T =[x, w) + vy,

where v; is the motion noise. The motion model is a probabilistic generalization of
the robot kinematics. It is described by a posterior density of the next possible states
x4 given the state x; and the control input u;. The motion noise is typically modeled
as gaussian and it is added to the movement information.

The second conditional probability p(z;|z;) is often named probabilistic observa-
tion model. The uncertainty about the environment information perceived by sensors
is expressed by this measure:

Zt = h(l’t) + €¢,

where €, quantifies the perceptive sensor noise. It is typically modeled as a gaussian
which is added to the distance weighted by the sensors. Since it is assumed that
the map is known and the robot’s pose is z;, it is possible to estimate z; computing
the measurements that should be observed when the robot is situated in x;. The
observation model p(z;|z;) describes the posterior density over the possible sensor
measurements z;.

Different types of filters are obtained depending on the representation method
of the probability density function p(z;|Y;). Before the explanation of the proposed
method, it is advisable to know a little bit about them. It is necessary to evaluate
integrals to apply the Bayesian recursive filter. These integrals can be initially evalu-
ated because they are composed of known functions which are defined in the problem.
However, it is laborious to know the component that will be used in the next iter-
ation a priori probabilities. It is because the estimate is used in the next iteration
and it has an associated error. The next iteration inputs will be composed of a prior:
values that are not known analytically. Besides, one of the main disadvantages of the
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Figure 3.2: Approximations of probability density functions: (a) Mixture of Gaus-
sians, (b) Piecewise, (c) Monte Carlo.

numerical integration in a n-dimensional space is the associated computational cost.
It can be observed that the computational requirements grow exponentially with the
state dimension.

There are different methods that approximate the Bayesian estimate function by
an equivalent problem (Figure . The common idea is that the propagation of
the continuous density function p(z;|Y;) is replaced by the propagation in a finite set
distributed over the region of interest. These methods are the following ones:

e Mixture of Gaussians: the whole distribution is approximated by a sum of
weighted Gaussian distributions, thus the integrals are conceptually replaced
by sums. The posterior density function is equal to the weighted sum of the
probabilities induced by each Gaussian function:

N

p(It|Yt) ~ Z%N(fﬂt;ﬂuag)a (3-4)

i=1

where 7; is the weight of the Gaussian distribution 7, y; is the mean, and o? is
the variance.
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The advantage of this approach is that the multiplication and convolution of
Gaussian distributions generate Gaussian distributions. It has been successfully
applied by several authors[49, 39, 50]. The Multi-Hypothesis EKFs can be
included in this type. It is not possible to apply traditional EKF's to multimodal
distributions. One possibility is to utilize an independent EKF to track each
possible pose.

Piecewise approximation: the state space is divided into cells and the probabil-
ities are referred to each region [40], 41} 82]. The density function is calculated
for each node of the cell grid, thus the integral is approximated by a finite sum
of the cell probabilities:

N

pladYe) ~ D p(@ylYi)di(z — 7). (3.5)

i=1

Each one of the N points of the grid has an associated probability p(xi|Y;). This
technique starts with an uniform probability distribution over the grid and then
the integral is replaced by the sum of the cell probabilities.

MC approximation: this method is based on particles. There are multiple
groups that utilize this idea [43], [44], [83]. The probability distributions are
replaced by a set of N sampled points that are called particles. These particles
are sampled according to the probability distributions. It is possible to replace
the integrals by sums of weighted samples. The particle set is distributed over
the state space and the posterior density function can be defined as:

N
plad¥y) ~ S wid(e, i), (3.6)
i=1

where w! are the normalized weights.

The most important shortcomings of this method are the computational cost
and the relatively slow convergence of the algorithm.

The previously explained probabilities (Equations|3.2|and are used to estimate

the solution of the localization problem, but they are difficult to handle in general
problems that are not linear or Gaussian. FEach candidate parameter value in R”
yields a value of p(z!|Y;), reflecting the posterior probability of the robot pose given
the data up to time t. The density function is calculated using all the available
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information about the system, but it needs to be weighted according to a given
criterion to determine an estimate Z; of the true pose value. Different estimates can
be obtained depending on the cost function that is chosen to discriminate between
poses. Two common choices are the Least Squares Method (LSM) and the Mazimum
A Posteriori (MAP) estimator.

The solution of the LSM is defined as

¥ = argmin /w(xt — ) p(x|Y)) (2 — 2})da = /W rp(x|Yy)dx.  (3.7)

¥
Ty

The optimal estimate calculated by the LSM is the conditional mean. Since the
posterior probability distribution is multi-modal in the global localization problem,
the estimate of the LSM is inconvenient.

The localization algorithm that we have developed, which is probabilistic but not
Bayesian-based, concentrates on obtaining the better MAP estimator:

FMAP — arg max p(z|Yr). (3.8)

This approach is less dependent on statistical assumptions, has a simpler imple-
mentation, is robust from a statistical point of view, and has a lower computational
cost than Bayesian methods.

3.1.1 Localization as a M AP optimization problem

The localization problem is basically an optimization problem, where the robot seeks
to estimate the pose which maximizes the posterior probability density:

FMAP - = arg mgxp(xt 1Y)

(
(

= argmaxp(z \z)p(we|me—1, ue—1)p(@0—1|Yi—1)

= arg mgxp 2t fﬂﬂm Ug—1, Yt71)p(33t|90t71> Ug—1, thl)

t

t
= argmax 1 pCzlz:) T p(zilzi1, wi1)p(20). (3.9)
i=1 i=1

This expression requires the definition of p(z;|z;) and p(x;|x;_1,u;—1). These prob-
ability distributions will be obtained from the state space model of the mobile robot.

The MAP estimate expression can be easily stated as an optimization problem
subject to constraints (the motion and observation models of the robot). The MAP
estimate is the solution of the following problem under noise conditions:
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t t
ji\MP = argmax H p(zi|r;) H p(xi|2i1, ui—1)p(z0), (3.10)
i=1 i=1
where p(z;|x;) expresses the observation density function including the perceptive
sensor noise, and p(x;|z;_1,u;_1) defines the motion density function considering the
motion sensor noise. Equation can be modified by taking logarithms:

t t
FMAP = arg mgX[Z p(zilz:) + Y plailzioy, uimy) + log p(ao)]. (3.11)

i=1 i=1
In general, this function has not an analytical solution in optimization problems
that are neither Gaussian nor linear, and it has to be solved iteratively in order to
avoid the difficulties associated with the optimization problem. These difficulties are:

1. It is highly non-linear. The observations and the motion information have non-
linear components that are propagated to the density function.

2. The environment symmetries make the objective function multimodal. The ob-
jective function admits a high number of solutions at initial stages. It is specially
important in highly symmetrical environments like offices and buildings. If the
robot is stopped, the results depend only on >i_, p(z;|r;). This component
presents a high number of potential solutions in this type of environments.

3. Another source of symmetries is originated by the sensor limitations. The range
and angular resolution of the sensor add observation symmetries.

A set of possible solutions has to be initially generated to solve Equation [3.11]
This set has to be maintained or modified according to the perceptive and motion
information included in the cost function. The problem can be simplified if it is
assumed that the initial distribution is a Gaussian because the optimization problem
is now unimodal. It is even possible to obtain an analytical solution. This solution
will be equivalent to the well known EKF in tracking problems.

The objective function to maximize will be noted as fo(x;) from now on. The
problem consists of estimating the pose Z; that maximizes fo(z;) given all possible
poses that satisfy the conditions z;11 = f(zy,us) + 14 and z, = h(x;) + €. In other
words, it is necessary to find the optimal value between the feasible solutions. A pose
is feasible if the constraints f and h are satisfied. There are multiple optimal values
at initial stages, thus the method has to be capable of handling multiple solutions.
The Bayesian methods use the posterior density function. However, the method that
is proposed here uses a different approximation. The main idea is to keep all feasible
solutions. The solution set will evolve in time to the true solution according to the
available information.
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3.1.2 Recursive formulation of the optimization problem

The MAP problem formulation described by Equation [3.11]is not efficient from a com-
putational point of view. In order to implement the global localization algorithm in a
robot, a recursive formulation is required. The objective function can be reformulated
in a more convenient form:

t

t
fo(It)Zzlogp(Zz’|$i) + ZP(%‘W—L u;—1) + log p(xo)
i—1 i=1
-1

=log p(z|a;) + D log p(zilz;)
i=1
t—1
+p(xe| izt ui—1) + Zp(xz’uifl; u;—1) + log p(xo)

=1

=log p(zt|x;) +log p(we| i1, ur—1) + folwi1) (3.12)
The MAP optimization problem can be written as

gMAP — arg mgx[logp(zﬂxt) +log p(xe|zs_1,ui1)]. (3.13)
Then, by perturbing and searching new solutions to Equation |3.13, we obtain a
recursive version of the MAP estimate.
An evolutionary algorithm that obtains the MAP estimate for the global localiza-
tion problem is presented in the next section.
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3.2 Evolutionary Localization Filter (RELF-3D)

The global localization algorithm is based on evolutionary optimization techniques.
These techniques are probabilistic, but without derivatives or probability density
functions to estimate the best solution to the localization problem. The evolutionary
method that we have implemented is explained in this section. The original method
has been improved with different ideas that are also explained here.

In our evolutionary algorithm, there are elements that correspond to possible so-
lutions, and the fitness function value represents the error between real and estimated
data. The method is population-based and each population member represents a pos-
sible solution (pose) to the global localization problem. The fitness function compares
real data received by sensors (observation vector from real pose) with estimated data
that must be obtained by sensors when the robot is located in the candidate pose.
It is possible to estimate the measurements that must be observed from candidates
because the map is known. The population set will evolve in time to the true solution
by minimizing the cost function.

The stochastic search of the robot’s coordinates is done using the DE method
proposed by Storn and Price [I] for global optimization problems over continuous
spaces, which is explained in this section. In order to do that, the reader can see
Algorithm [} Besides, a complete explanation of the DE algorithm can be found in
our published work [45].

First of all, it is necessary to comment on some details about the environment
and the robot’s characteristics.

The environment has been modeled geometrically as an occupancy grid map in
three dimensions and the robot’s pose (the robot’s pose is defined as the robot’s posi-
tion and orientation: z, y, z, and yaw) is represented with the cartesian coordinates
and the horizontal orientation. In most of our experiments, each cell is a cube of 12.1
cm side and the whole map contains 500 x 119 x 25 = 1,487,500 cells. It represents
a 3D environment with a 871 m? area and a height of 3 m. If we want to determine
the robot’s localization, four coordinates must be estimated, defining a state space
with four DOF in a 3D map. It is necessary to remark that it is also possible to work
with six DOF (including roll and pitch) without increment of the computational cost.
The environment considered from now on will have four DOF because the mobile
manipulator MANFRED-2 works in a environment that can be modeled using this
assumption. The simulated environment and the whole algorithm have been imple-
mented using MATLAB, developed by MathWorks. More information can be found
in Section

The search starts with a population of Np candidates (the algorithm is population-
based and Np represents the number of elements), which are introduced in the lo-
calization module and evolve with time to the best solution. Each candidate is a
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Algorithm 1 RELF-3D
1: function RELF — 3D(...)

2 fori=1: Np do

3 estimated_dist_3d(i) < dist_est_3d(...)

4 cost(i) < fitness_3d(estimated_dist_3d(i), real _dist_3d)
5: end for
6
7
8
9

while (CONVERGENCE CONDITIONS) do
for i =1: Np do

MUTATION
: CROSSOVER
10: SELECTION with THRESHOLDING
11: estimated_dist_3d(i) < dist_est_3d(...)
12: cost(i) < fitness_3d(estimated_dist_3d(i), real _dist_3d(1))
13: > cost function value calculation for next generation
14: end for
15: DISCARDING
16: lerror, ind_best| <— min(cost)
17: bestmem < pop(ind_best)
18: conv_conditions_checking(...)
19: end while
20: end function > return bestmem, error and population

possible solution to the global localization problem (the robot’s pose, with 4 DOF).
The initial population size can be chosen randomly or it can be generated by an ini-
tialization method. Most of population-based methods select the initial population
size in an empirical way basing on several experiments. However, an initialization
method based on the information contained in the observation vector has also been
implemented here. It will be explained in detail in Section [3.2.6]

For each candidate, its associated fitness function is calculated (line 2 to 5 of
Algorithrn. The fitness function is a key component of the method. It compares real
data received in a laser reading with estimated data from a candidate solution. The
estimated data have been sorted to configure the observation vector, with 13 vertical
scans separated by 5° and 61 horizontal readings separated by 3°. The localization
algorithm returns the population member that yields the lower value of the objective
function. Since the cost function compares the observation vector of the candidate
with the true observation vector, the best candidate will be that one with a lower
fitness function value. It means that the observation vector obtained from the best
candidate looks like the observation vector obtained from the true pose.

The main loop starts in line 6. If one of the convergence conditions is satisfied,
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the localization process ends successfully. In other words, the solution set evolves
with time to the true solution. The convergence conditions must be chosen in order
to decide the best moment to stop. The algorithm must stop when the true pose is
reached.

Another loop, which contains the evolutionary search, starts in line 7. It consists
on a generation of a new population for the next generation. In a single iteration
the algorithm is executed to obtain the next candidates, evolving with time to the
correct pose. The basic part of the evolutionary search is composed of three oper-
ators: mutation, crossover, and selection. Two additional mechanisms that improve
the characteristics of the algorithm have also been developed: thresholding and dis-
carding.

The most important parts of of the evolutionary method introduced in the previous
paragraphs are explained in the following sections.

3.2.1 Mutation, crossover, and selection

There are three different operations that are applied to the whole population at each
iteration in order to generate the population set for the next generation. First, the
population candidates are perturbed to create the mutated population (mutation).
After that, the crossover increases the population diversity. Finally, the selection
mechanism is responsible of choosing the best candidates to be part of the next
generation. This process is explained in this section.
The initial population is perturbed to generate a variation v; according to the
following expression:
v; = aF + F(af — ), (3.14)

C

where 2%, 2F and z* are parameter vectors chosen randomly from the population at

iteration k and are different from running index (this x is not the cartesian coordinate
but the element of population, defined by four coordinates). The scale factor, F' €
(0,1%), is a real and constant factor that controls the amplification of differential
variations (z§ — z¥). It controls the population evolution rate. This factor has an
empirical upper limit equal to 1. This value has been assumed because there are
no cases where the optimization problem best solution is achieved with F' > 1. It is
possible to solve optimization problems with ' > 1, but all cases that are successfully
solved obtain better performance with F' < 1. If F' = 1, it is not possible to distinguish
between the following combinations of vectors:

oF = of ¢ P(af —2F) = af + P2k — 2. (3.15)

c

An example of the perturbation process in a 3D space can be seen in Figure
. There is an initial parameter vector x¥ and the perturbation is done with three
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Figure 3.3: New population member generation for a single candidate.

random candidates and the constant factor F', generating the new parameter vector
vF. The population set is represented with points and there are circles with different
sizes that represent the basin of attraction of the local minimum (depending on the
cost function value). The objective is that the candidates evolve to the smaller circle,
selecting the best candidates.

The perturbation process is repeated Np times generating a perturbed popula-
tion that is composed of the candidates to be the population members in the next
generation. However, they are not the final candidates because the population will
be modified again by the crossover mechanism.

The vector with index a represents the base vector that is moved by the differ-
ential variation. The most common versions of DE use a random vector within the
population. It could be changed in order to obtain a different perturbed vector. It
is possible to select the best population member instead of zF. The current imple-
mentation allows both possibilities: random mutation and mutation from the best
candidate. The first choice is more robust because it maintains the population di-
versity and is applied in general situations. However, the mutations from the best
candidates are faster and they could be applied in some situations, such as the robot
is situated in a place that is very easy to identify, or tracking tasks after a successful
localization.

The random selection considers that all vectors have the same probability of being
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chosen. However, it is possible to pick vectors more than once per generation. It
will cause that other vectors are never chosen. This method is known as Roulette
Wheel Selection (RWS). The RWS method generates Np random vectors without
restrictions. It can be seen as a roulette wheel with equally sized slots that represent
the population members. Each vector has the same chance of being chosen. In many
Genetic Algorithms (GA), the slot size is proportional to the solution quality. It
means that better solutions have wider slots. A classic roulette is assumed in basic
DE.

There is a different approach called Stochastic Universal Sampling (SUS) that
provides a more representative population sample because it guarantees that all vec-
tors are selected once. The relation between SUS and RWS can be explained with
a roulette game. Instead of playing Np different times, the SUS method plays just
once. The roulette slots are equally sized. The first vector is given by the roulette
result. The second one is the slot that is next to the first one. The third one is next
to the second one, and so on. In this case, all slots will be consecutively selected.

Different behaviors will be obtained depending on ¢, a, b, and c. If b = ¢, then the
differential variations will be zero and the base vector will not be mutated:

v = 2t (3.16)

When b or ¢ is equal to a, it is not possible to distinguish between some recombi-
nations. This coincidence occurs on average once per generation in the RWS method.
If the base index a is equal to the target index ¢, then the diversity is decreased and
the crossover can be seen as a mutation of the target vector.

In order to increase the diversity of the new generation, the crossover is introduced.
The term recombination is used when two or more vectors are exchanged or merged
to create one or more trial vectors. Price et al. [84] define the discrete recombination,
also known as crossover, as “an operation in which trial vector parameters are copied
from randomly selected vectors”. The DE method applies the crossover mechanism

to combine current population members (z¥) with perturbed vectors (vF). This op-

(2
eration is applied to the whole population to form a new population set composed of
trial vectors. These trial vectors are the candidates to be the population members
for the next generation.

There are different ways to implement the crossover operation. An example can
be observed in Table[3.1] The first row contains the parameter indexes. The crossover
operation is applied to vectors 1 and 2. The first method is called one-point crossover.
It is based on a randomly generated crossover point (it is equal to three in the ex-
ample). The parameters are chosen from the first vector until the crossover point is
reached. After that, the parameters are taken from the second vector. The exponen-
tial crossover has also an starting point, but it is based on different concepts. The
parameters are chosen from the first vector until the starting point is reached. The
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Table 3.1: Different crossover operations.

Vector Parameters 1 2 3 4 5 6
Vector 1 10 30 5 65 3 13
Vector 2 ) 6 12 45 20 32
One-point (Cr point: 3) 10 30 5 45 20 32
Exponential (Cr point: 2) 10 6 12 45 3 13
(r1 < Cr) (rg < Cr) (r3 > Cr)

Binomial 10 6 5 65 20 32

(r1 < Cr) (rg > Cr) (r3 < Cr) (rg < Cr) (rs > Cr) (r¢ > Cr)

parameter of the second vector is taken for this parameter (it is the second parameter
in the example). After that, the parameters are generated by comparing the crossover
value (Cr) to a uniformly distributed random number between 0 and 1 that is gener-
ated anew for each parameter (r;). If r; < Cr, the parameter is taken from the second
vector. If r; > Cr, this parameter and all remaining parameters are taken from the
first vector. Syswerda [85] defines the uniform or binomial crossover as “a process in
which independent random trials determine the source for each trial parameter”. The
crossover is uniform because each parameter has the same probability of being taken
from a given vector. This method compares r; to Cr for each parameter. If r; < Cr,
the parameter is taken from the first vector; otherwise, the parameter is taken from
the second one. The crossover probability C'r can present different values. The most
common choice is C'r = 0.5.

The binomial crossover has been implemented in this method. The trial vector is

denoted by uf = (uly,uf,, ..., uf )" and its components are

(3.17)

i E .
27]’

& {vk ; ifpﬁj <Cr,

U — /L).] ’
otherwise,

where pi-f ; 1s a randomly chosen value from the interval [0,1] for each parameter j
of the population member i at iteration k, and Cr is the crossover probability and
constitutes the crossover control variable. The random values pﬁ ; are made anew for
each trial vector i.

It is necessary to be careful about the selection of the crossover probability. It can
also be considered as a mutation rate because the trial vector composition depends
on this value. The crossover method also influences the population diversity. In
general, a low Cr corresponds to a low population diversity. There are many GA
that, on average, choose one mutated parameter per trial vector [86]. In this case, the
crossover rate is equal to 1/D. Zaharie [87] has also studied the crossover probability.
She concluded that the best results are obtained with low Cr. Storn and Price [1]
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found that there are two different intervals with optimal performance (0 < Cr < 0.2
or 0.9 <Cr<1).

The application of a selection mechanism tends to reduce the diversity of a pop-
ulation, whereas mutation increases it. The amplification factor F' has an important
influence on the population diversity. Zaharie [87] has published and interesting pa-
per that studies F' depending on C'r and Np. She has found a lower limit for F.
If F' is smaller than the limit, the population can converge even without a selection
mechanism. In her experiments, Zaharie computes the population diversity depend-
ing on the DE parameters. The algorithm will converge prematurely when the trial
population is less diverse than the current population.

She demonstrated that the population variance expected value after mutation and
crossover is equal to

(2F?Cr — 2Cr/Np + Cr*/Np + 1)Var(pop), (3.18)

where Var(pop) is the population variance before mutation and crossover. The term
2F?Cr —2Cr/Np + Cr?/Np + 1 must be greater than one in order to increase the
population diversity. Analyzing Equation [3.18 the critical values will satisfy the
following equality:

2F* —2/Np + Cr/Np =0, (3.19)

Solving this equation, she concluded that the theoretical critical value was F.;; =
0.1341 for Np = 50 and Cr = 0.2. However, she also estimated an empirical critical
value equal to 0.3.

The selection mechanism is responsible of choosing the best candidates for the
next generation. It can be applied to two different stages in the evolutionary process.

First, it is possible to use it during mutation or crossover [88]. Some individuals
have higher probabilities to be mutated because they present best fitness values. This
strategy is often used by breeders and botanists that want to improve the offspring.
The best candidates have more chances of surviving. However, this approach requires
an initial knowledge about the problem because the fitness value limits must be
known. This strategy has not been adopted in this work. Each vector has the same
chance of being selected for mutation.

Second, it can be applied to choose the next generation members comparing the
current generation to the trial vectors. This concept is called survivor selection or
replacement.

There are many Evolutionary Algorithms (EA) that apply the selection mecha-
nism to both stages. This option can cause premature convergence to a local optimum.
GA typically uses the selection mechanism during the mutation stage, whereas DE
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and other EA utilize the survivor selection. The survivor selection has been imple-
mented in this work. It is highly dependent on the cost function. It determines how
the population set evolve with time to the true solution.

The new member of the population u¥ is compared to z¥ to decide whether or not
vector u¥ should become a member of generation i+ 1. If the vector u¥ yields a better
value for the objective fitness function than x¥, then it is replaced by u**!; otherwise,
the old value x¥ is retained for the new generation. The population set at iteration
1+ 1 is determined by applying the survivor selection to the whole population.

The general ideas of the previous mechanism (mutation, crossover and selection)
are well known and can be found in literature [88] [I]. The population set will evolve
according to these ideas until the convergence conditions are satisfied. After that, the
algorithm has converged to the true solution (robot’s true location). Two additional
mechanisms (thresholding and discarding) have been implemented in order to improve
the characteristics of the evolutionary method. The convergence criteria and the
fitness function are extremely important for the evolutionary method. These concepts

will be explained in the following sections.

3.2.2 Thresholding mechanism

The selection operator has been modified in order to improve the method perfor-
mance. A thresholding mechanism that avoids the premature convergence in noisy
optimization problems has been implemented.

EA and, in general, population-based methods, have become very popular due to
its applicability and implementation simplicity. One of the most important short-
comings of these methods is the premature convergence and the lack of robustness in
noisy optimization problems. If DE is compared with other population search-based
methods (for example, GA), it shows some weakness. This behavior has been studied
by Krink et al. [89]. There are two different aspects with a negative influence: the DE
method implements a greedy search strategy and the DE mechanisms for generating
new potential solutions are less stochastic than other EA.

These disadvantages are significant when the difference between the candidate
solution fitness value and the current population element fitness value is smaller than
the fitness variance originated by the noise.

The idea of thresholding is to reduce the eagerness of the algorithm by rejecting
those new solutions that do not improve the previous hypothesis in a pre-specified
magnitude 7. This idea is not new and has already been applied to evolutionary
computation problems [90]. The threshold can not be a fixed magnitude, because
this unit depends on the noise variance and the fitness distance to the optimal fitness
value. The noise variance might be estimated, but it is not easy to estimate the
second factor.
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First, the fitness value difference between the population member z¥ and the can-
didate member uf is calculated. Then, this difference is compared with a predefined
threshold value 7 in order to determine if the improvement shown by u” is not caused
by the noise. If this condition is met, the target vector ¥ is replaced by u¥ in the
next generation; otherwise, z¥ is kept into the population. The selection mechanism
is modified and the following expression is obtained:

LA {va if f(af) = fuf) >, (3.20)

i x%: otherwise,

where f(x¥) is the fitness function value of the current population member, and f(u¥)
represents the fitness function value of the trial vector.

In conclusion, if the improvement in the fitness function is bigger than the variance
(or the standard deviation, depending on the selected units), it can be considered that
it is not caused by the noise, and the new member can be introduced in the population.

The algorithm convergence and robustness in noisy optimization problems and the
comparison between the current method and the initial method without thresholding
has been published in our recent work [91].

In our experiments, we have chosen a value that depends on the sensor noise
because the thresholding mechanism tries to avoid the optimization in the noise band.
The threshold 7 is equal to Sy fF, where Sy is the sensor noise (percentage over the
distance weighted) and fF is the fitness function value for the ith population member
in the kth iteration. This value has been chosen empirically. For example, when the
sensor noise is 3% over the distance weighted, a simple and adaptive threshold level
of 7 = 0.03fF has been adopted to reject the offspring solution generated by fF. In
spite of its simplicity, it works quite efficiently.

This selection mechanism decreases considerably the eagerness of the DE algo-
rithm and also its speed of convergence. As a consequence of thresholding, the al-
gorithm rejects a high quantity of new solutions and accepts only those solutions
which present a clear improvement in the fitness function. Besides, the algorithm
has no longer the ability of preserving good solutions if they show a slow evolution
towards the optimal value. A compromise could be achieved by always keeping the
best offspring solution into the population regardless its improvement size. Finally,
the selection mechanism with thresholding is expressed as

uf if f(xF) — f(uf) > 7,
oh = Quk it ub = uf A fuF) < f(2F), (3.21)
x¥; otherwise,

where uf__, is the best candidate solution in the offspring population.

The stochastic robustness of the algorithm, its computational cost, and the iter-
ations to converge present worse values, so another mechanism (discarding) must be
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incorporated to reduce this negative influence.

3.2.3 Discarding mechanism

The use of a thresholding band tends to decrease the convergence speed of the al-
gorithm, particularly at initial stages due to the rejection of the offspring that does
not improve the previous hypothesis enough (below the threshold band). A discard-
ing mechanism has been introduced to increase the speed of the algorithm while
maintaining the stochastic advantages in terms of robustness of thresholding. This
procedure is explained in our published work [91]. The idea is to determine the worst
fitness individual of the new population and substitute it by a new solution close to
a better one. In order to do that, a percentage of elements to be discarded is chosen,
not only one (for example, 5%). In order to avoid concentrating the discarded solu-
tions around the best existing individual, one of the members of the population with
its fitness value located in the first half of the fitness ranking is selected randomly.
This selected solution plus a relatively small random component is adopted as a new
offspring.

The discarding mechanism is important at early stages of the optimization process,
where errors are important, and it is not so interesting at final steps, where the
population is close to the solution.

In the following, the discarding mechanism incorporated to the localization filter
is formally addressed.

In spite of the robustness and high-accuracy of the DE-based localization algo-
rithm, a large number of generations are still needed to converge to a solution due to
the high rejections rate introduced by the thresholding operator. For this reason, an
acceleration mechanism is proposed to enhance the convergence speed of the proposed
method.

The discarding mechanism is based on the idea of replacing a small percentage
of the worst elements of the trial population with better ones closer to better ranked
solutions. In order to avoid premature convergence, each discarded individual is
replaced by a candidate solution randomly selected among the fittest individuals of
the current population plus a random perturbation value.

Consider a population P* of Np candidates sorted according to its cost value in
increasing order:

PF = {:U]f,...,:zzl-“,...,x’fvp}, (3.22)

7

where f(zF) < f(2%,,). These are the candidates to form the population at iteration
k + 1 obtained after the selection plus thresholding process.

Let W* C P* be a subpopulation of P* containing the § elements (& represents
the percentage of the population that will be discarded) of the population with worst
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Algorithm 2 Schematic version of the RELF-3D
1: PF=0 « initialization

2: evaluation of P*

3: while termination criteria # true do

4: PvF + differential mutation of P*
Pu* + binomial crossover of Pv*
evaluation of Pu*
P*1! « selection with thresholding of (Pu* U P*)
Pk+1 ¢ discarding (P*+1)

9: k+—k+1
10: end while

fitness function values:

wk :{x]fvpfﬂl,...,xf,...,xlfvp}, (3.23)

and let S* C P* be a subpopulation with the 8 elements of the population with best
fitness function values:

Sk = {x’f,...,xf,...,x%}, (3.24)

with 5> 4.

A J-size population W* is built with candidate solutions randomly chosen among
the elements of S*. Since diversity must be preserved in order to efficiently explore
the search space, a random noise is added to the new candidate solutions as follows:

Wk = {281 = {2¥ + o}, (3.25)

where w = {1,...,}, a is a Gaussian distributed noise value, z¥ € S* and the index
s is a random number chosen within [1, 3]. Finally, the elements in W* are discarded
and replaced in the population by the components of W* when the cost function value
of the corresponding element in W* is better.

Two conditions must be met for the discarding mechanism to work properly.
First, the population size has to be large enough to assure diversity but not too large
to increase the computational cost. Second, the § value has to be set to a small
percentage of the population; otherwise, there is the risk of being trapped in a false
optimal value, especially in noisy environments.

To sum up, a schematic version of the evolutionary filter is listed in Algorithm [2]
where P*, Pv*, and Pu¥ are the current, mutated, and trial population at generation
k, respectively.
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3.2.4 Fitness function

The survivor selection mechanism is responsible of choosing the best candidates to
form the population of the next generation. As a reminder, it compares the current
population members (z¥) to the trial members (uf) and the best candidates are
selected. The tool that is used to decide if one solution is better than another one is
the fitness or cost function. Each population member has an associated fitness value
that represents how good the solution is.

Analyzing its value, it is possible to know if the solution of the global localization
problem is admissible. That is the reason why the cost function value is employed by
the stopping criterion to finish the evolutionary search.

The cost function compares laser data obtained from the robot true pose to laser
data from the pose estimates. The localization algorithm minimizes the error and
evolves to the true solution. As an example, the sensor considered in various ex-
periments is a simulated laser that works in 13 vertical scans separated by 5°, and
each vertical scan contains 61 horizontal readings separated by 3°. The localization
method applies the fitness function aligning the current scan (estimated pose) with
the reference scan (real pose). The population evolves to the correct location because
the matching error is minimized.

The reference scan is obtained from the robot true pose. If the algorithm is
working in a simulated environment, these measurements are obtained by emitting
laser beams in the desired directions until the first object in the map is detected. The
laser scan is composed of a distances set. It is possible to do it because it is assumed
that the map is known. The second scan is obtained from the candidate solutions
(estimated poses). The idea is the same used to compute the laser scan from the true
pose in a simulated map. Assuming that the map is known, the robot is situated in
the estimated pose (population member) and the laser beams are emitted obtaining
the measurements. It has to be done from each population member every time the
cost function is called.

An example can be observed in Figure [3.4 The simulated indoor environment
is shown in the left part of the figure, whereas the laser reading from the true pose
is represented in the right part of the figure. The measurements from the candidate
poses are taken after situating the robot in different places of the simulated map.

The matching method applied in this work avoids searching for point associations
by simply matching points with the same bearing, which is called PSM [66].

According to the MAP optimization problem formulation, the natural choice for
the loss function is:

fo(zy)=log p(z|z;) + log p(ze|xs—1,u—1) + folzi1). (3.26)

This expression contains the probability distribution of the observations error
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Figure 3.4: Simulated environment and laser scan from the true pose.

p(z¢|x;) and the probability distribution of the motion error p(xy|x;_1,u;—1). An
additional variable is used to incorporate the previous information about the robot’s
pose ol 1).

The cost function can be rewritten to be consistent with the terms used to explain
the evolutionary algorithm in Sections [3.2.1] and [3.2.2}

fo(zh)=log p(#'|z}) + log p(zt|zi™, ol 1) + fo(2!™h), (3.27)

where the odometry information is now expressed by o so as not to confuse it with
the trial population members (the letter u is used with them). For simplicity reasons,
the term t is a superindex. This function returns the cost value of an individual of
the population.

If it is assumed that the observation error can be described by a Gaussian prob-
ability distribution with zero mean and known variance (N(0,0?)), the integration
of the individual probabilities of the laser beams into a probability density function
(assuming conditional independence between the individual measurements) results in:

N Ns 1 (z;.fz"fj)2
p( ) =11 p(zi l20) = 1] ommime ™~ 27 (3.28)
Jj=0 ]

where N is the number of sensor observations.
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If it is also assumed that the motion error is a Gaussian distribution with zero mean
and known covariance matrix (A(0, ¥,,)), the motion error probability p(zt|! ™", of ™)

(g
can be expressed as:

p($§|$§_1, O;—l) _ 1 6—1/2(:1: —it) St (at —zt)T’ (329)

| X (2m)"

where 7! is obtained from the estimated state 2! and the odometry measure o
This expressions has been included in the cost function to obtain a close formula.

There are many possibilities when choosing a suitable objective function to solve
the recursive optimization problem. Assuming that the sensor measurements are
Gaussian-distributed, one of the most common choices as a basis for the estimate is
the L2-norm. In that case, the objective function to be minimized by the evolutionary
algorithm for a point of the state space included in the population z! could be given
by the following expression:

t—1 t—1

. (zé_éfj)z | P NN P
fra(zh) = S+ (= 22 (2 — 2)7 (3.30)
= 20 2
where 2" = (2},..., 24 )" is the observation vector given by the 3D laser scanner at
instant ¢, 2/ = (2/,,...,2{ y.)" are the expected observations for that measurements

if the robot was situated in x!, #' is the estimated true pose (if it exists, in time t),
¥, is the covariance matrix of the state error, o2 is the observation error variance,
and Ny is the sensor size or, in other words, the number of laser beams contained
in a laser scan. We have considered that the laser error is Gaussian-distributed over
the distance weighted. The second term of the expression depends on the estimated
pose #!, which does not exist at the beginning, and could not be unique, because the
robot could start from different poses. It is straightforward that the second term of
the right part could be estimated as a function of the distance between the candidate
pose and all the viable ones, but it will complicate too much the fitness function
evaluation, adding also an statistical component.

In order to accelerate the calculation, we will not include in the fitness function
the information given by the distance between the candidate pose and the estimated
pose until the algorithm has converged to one single pose (it is considered that the
algorithm has converged when all candidate poses are in a sphere of constant radio
around the best one). Besides, the information is not stable when including distance
information due to abrupt changes in the estimate. Excluding this term, the fitness
function before convergence will be given by the following expression:

N _ét 2

N
falat) = 3 G2l =32

=0

Q‘Mw

(3.31)

.
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_ (k>
where v; = (2] — 2

sensorial data.
Following are some factors in global localization that make this fitness function
difficult to manage:

k

i 1) represents the discrepancy between the observed and predicted

e The range and accuracy of the sensor and the number of sensors limit the
possibility of distinguishing between different poses, leading the fitness function
to a high number of global maxima.

e The geometrical similarities in the environment due to the repetition of the
space distribution originates the presence of a high number of possible robot’s
pose solutions to the mean square loss function.

The loss function defined in this way provides us with an optimization mechanism
which obtains an unstable parameter solution and, by extension, an unstable filter.
The evolutionary filter can move from one local minimum to another, originating
abrupt changes in the pose estimate. This problem comes from the fact that we are
not using all the information we know about the system in the loss function. In fact,
we only use the observation model to predict the sensor measurements at each posi-
tion, and these predicted measurements together with the actual measurements are
introduced in the loss function to evaluate the robot’s pose estimate. The instability
originated by the existence of multiple solutions to the loss function cannot be solved
by considering only the available sensor observations.

In practice, the assumption of Gaussian observation noise is arguable. On the one
hand, the presence of non-modeled obstacles, both static and mobile, lets us notice
that the Gaussian probability distribution can be convenient, but in practice the
distribution tail is too optimistic. Besides, the least squares method is not completely
satisfactory when the noise model is not exactly known or the model is contaminated
with other probability distributions.

The absolute error (L1-norm) may be an appropriate measure in some situations.
For example, it presents a better performance with high errors originated in outliers
or contaminated measures. If the L1-norm is not derivable, then it is necessary to
apply linear programming methods to obtain a solution to the optimization problem
(it does not happen in this method). Based on MC studies, the use of the L1-norm
has been recommended when the errors follow one of these distributions: Laplace,
Cauchy, mixture of normal and uniform, and contaminated normal.

If we assume that the observation error can be described by a Laplace error dis-
tribution, this distribution has the following form

Flalp,3) = 5 esp(— ) (332
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with mean p and variance 2)\2, usually referred as location and scale parameters, and
typically denoted as L(p, \).

If we apply this probability distribution to model the observation noise, we obtain
an L1-norm loss function to optimize:

No |t — 5t | Ny,
§=0 z j=0 7%

where v; = (z;t — 2f]) represents the discrepancy between the observed and predicted
sensorial data.

Obviously, the use of the Ll-norm is independent of the model if we consider
the loss function simply as a loss function to optimize, independently of the noise
model. Due to the optimization method we use is not derivative-based, the L1-
norm optimization problem can be solved easily and the computational cost is not
substantially different from the cost of solving other loss functions.

A comparison between the L1-norm and the L2-norm has been published in [92].

3.2.5 Convergence conditions

There are some situations where it is easy to know if the optimization process has
converged to the optimal solution. For example, if the optimization problem consists
of satisfying several constraints, the algorithm converges when all constraints are
satisfied. Nevertheless, it is not easy to define optimal convergence criteria in multi-
modal or multi-objective optimization problems. An optimization problem is multi-
objective when there are several objective functions. A multi-modal problem can
be defined as a problem with multiple good solutions, i.e., optimization problems
with multiple local minima. Besides, it is not easy to quantify the optimal value for
the fitness functions. The termination criteria of the RELF-3D are described in this
section.

Many different parameters can be included in the convergence conditions of the
EA depending on the optimization problem characteristics. A brief review of the
most important ones is given below:

e Fitness function value: the fitness function optimal value can be know or can
be estimated in some cases. In these cases, this value represents how good the
solution is. However, there are many other cases where this value cannot be
used because it is not possible to estimate an optimal value.

If the optimal value is known, the termination criterion will depend on the
distance between the best member fitness value and the optimal value (d,).
Different distances can be fixed resulting in different behaviors.
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e Number of iterations: a different variable that can be used as a termination
criterion is the number of iterations or generations. This factor can be applied
when the fitness function optimal value is unknown. It is possible to choose an
upper-limit of iterations or a number of iterations without changes in the cost
value of the best population member (N). It is not an advisable criterion when
the optimal value is known because the algorithm may be stopped before the
minimum is reached.

The variable N has to be fixed empirically. This factor depends on the conver-
gence speed of the optimization method. For example, DE has lower conver-
gence speed than other EA, so N has to be larger.

e Population characteristics: it is also possible to choose characteristics associated
to population members as convergence conditions. A typical example is the
difference between the cost function value of the best element and the cost
function value of the worst candidate (dy,). This variable can cause premature
convergence in some situations. For example, if the limit is set to 100 and
the distance to the optimal value is also around 100, the convergence condition
can be satisfied with high values in the fitness function of the best candidate.
The convergence is premature because the algorithm can converge to better
solutions. If this factor is used together with the distance to the optimal value,
it is advisable to choose dj,, much lower than d,,.

e Time limit: the amount of time can be chosen as a convergence condition. In
this case, the termination criteria do not depend on the fitness function values
or the number of iterations. This factor is closely related to the computational
cost. If the optimization process is heavy from a computational point of view,
it can be a good idea to limit the time.

e Human monitoring: the optimization process can be stopped manually depend-
ing on several factors: best fitness value, number of iterations, time limit, and
so on. However, it is not a criterion that can be utilized in our field.

It would be interesting for us to find an expected value for the cost function. In
order to do this, we have noticed that there are two effects that influence the cost
function: the measurement noise and the estimation error. If we obtain a perfect
estimation, the second effect can be eliminated, but an error introduced by the noise
will always exist. Hence, it is possible to estimate the expected value of the objective
function when it is close to the true value E(fy). We have to remark that it is the
fitness function value in the real position.

Two different fitness functions were described in Section The first one is
given by the L2-norm:
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N t_At'Q Ns 1,2
fra(z) = Z(ijz ;z_joj (3.34)

j=0

If we observe the term Z 0 V2 /o? of the last expression, the components 1/2 Jo? are
random variables with a standard Normal distribution N(0,1), and the sum follows
a Chi-Square probability distribution with Ny DOF. This probability distribution,
which is well known and tabulated, has an average of N, and a variance of N/2.
Therefore, the expected value of the objective function we are trying to minimize is

Blfia) = [ fa)p)d = N,/2 (3.35)

This expression tells us that even if the pose that we are evaluating was the correct
pose of the robot, and due to measurement errors that occur in the sensor during the
environment perception, the expected value of the objective function is N/2.

The determination of a stopping condition for the algorithm brings us back to
what was discussed above, because once we know the best expected value of the
objective function, it is possible to establish a stopping condition based on some of
the statistical parameters associated with this objective function.

As we have concluded that our cost function can be approximated by a Chi-Square
with Ny DOF, it is straightforward to associate the objective function value with a
given probability. In other words, an objective function value f;_, with probability
1 —p means that the optimum value has a probability 1 —p of being below f;_,. These
values are often found tabulated in statistical literature for some typical quantiles and
a given number of DOF.

If the fitness function is the L1-norm, the function to minimize takes the following
form:

t S, |2 Af j 4L Vj’
Jj=0 Z j=0 7%

As in the L2-norm case, it is required to calculate the expected value E[fr;] when
the pose under evaluation is the true one and the noise is a Normal distribution with
zero mean and standard error deviation A,. The expected minimum fitness value can
be easily calculated and will be

1/] dyj

E[le]Z/_J:Ole( d’/—/+ooi
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Besides, we have chosen other simple criteria that have been used experimentally
in certain situations. This criteria do not ensure convergence but may lead to good
results in less time. If one of the following convergence conditions is satisfied, the
localization process finishes:

e Number of iterations without changes in the fitness function value of the best
estimation is bigger than a constant.

e Number of iterations without changes in the fitness function value of the worst
estimation is bigger than a constant.

e Number of iterations without changes in the difference between the fitness func-
tion value of the best estimation and the fitness function value of the worst
estimation is bigger than a constant.

3.2.6 Initial population size determination

If we analyze the population-based global localization algorithms from a practical
point of view, one of the most important limitations consists of the estimation of an
optimum size of the initial population [93]. MC methods require a precise adjustment
of the number of particles, optimization-based methods also need an estimation of the
initial population (if they are population-based), and a certain number of hypotheses
must be generated in multi-hypotheses Kalman filters. The initial population size is
very often adjusted empirically for a given environment and it requires a large number
of trials and experiments.

A solution to the initialization problem in a population-based evolutionary global
localization filter is developed in this thesis. It automatically generates a number of
elements for the initial population based on the environment size and the amount
of information contained in the first observation of the mobile robot. The efficiency
of the proposed method and its capabilities have been tested in a simulated indoor
environment.
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Related Work

Different families of algorithms focus on the global localization problem: Bayesian-
based methods (grid-based probabilistic filters and MC localization methods can be
included here), optimization-based methods (DE and PSO filters), and hybrid meth-
ods (multi-hypotheses Kalman filters). A large amount of examples can be found in
the literature [40, 94] [4T], 88| B9, [58]. It is very common to use particle-based methods
to solve this problem because they are robust and their applicability has widely been
demonstrated. These approaches use a number of elements that are sampled over
the space as candidates to be the true solution. Most of them use a fixed number of
elements and the initial number is estimated empirically. These two characteristics,
which have rarely been studied by groups working on this field, make these algo-
rithms inefficient from a computational point of view. Marchetti et al. [95] provide a
systematic analysis of particle-based localization methods, and Kiimmerle et al. [51]
apply a particle filter to estimate the full 6D state of the robot.

If we talk about an adaptive number of elements, Fox [96] changes the size of the
particle filter on-the-fly depending on the error and Koller and Fratkina [97] adjust
the number of samples according to the likelihood of observations. Grisetti et al. [9§]
improve the performance of their method by re-sampling and reducing the number of
particles.

Finally, there are not many groups working on information theory and its appli-
cation to mobile robotics. Bourgault et al. [09] maximize the map information by
simultaneously maximizing the expected Shannon information gain (Mutual Informa-
tion) on the occupancy grid map and minimizing the uncertainties of the vehicle’s pose
and map features in the SLAM process. Grocholsky [100] has studied information-
theoretic models for coordination and cooperation. Rocha et al. [L01] address the
mapping problem through a probabilistic approach based on information theory.

Initialization problem

The initialization problem consists of the development of a method capable of ob-
taining an appropriate number of elements for each situation. This number must
satisfy two conditions: it must be large enough to ensure that the global localization
algorithm converges to the true pose, and it must be close to the minimum value
that ensures a robust convergence (because the computational cost increases with the
size). It is easy to check the first condition empirically, but it is more difficult to deal
with the second one.

However, it is too early to explain it completely, and we will progressively introduce
the reader to this subject.

This problem has been solved empirically in our previous experiments. The al-
gorithm has been tested in a given environment in order to obtain the appropriate
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population size to be used in the initialization phase. The robot is situated in dif-
ferent positions and the population size is changed to obtain a value that ensures
convergence to the true solution.

There are some factors that affect the initial population size required to localize
the robot successfully:

e The environment size: it is intuitive that the environment size is a crucial
factor because the number of elements required to localize the robot success-
fully will be larger for larger environments. After the experiments, it can be
ensured that this is the factor that most influences the calculation of a suitable
population size.

e The environment symmetries: symmetries exist when there are different
places within the environment where the robot receives similar observation vec-
tors. For instance, office buildings are highly symmetrical because they contain
many offices of the same size and appearance. It is straightforward that the
population size required to localize the robot increases with the number of sym-
metrical places, because these similar places require a minimum effective set
of poses to manage them properly. According to the experiments carried out,
this number is in the range of 20 — 25 candidates for each possible pose. It is
important to remark that this number can vary from one place to another in a
single map. For example, if there are six similar offices, the number required to
localize the robot in one of these rooms will be six times higher than the number
required when the robot is situated in the corridor (assuming that there are not
symmetrical places in the corridor). Therefore, it can be concluded that the
initial population requirements increase with the number of symmetries.

e The sensors information: the number of symmetries of the environment
depends on the information given by the sensors. If the robot does not receive
enough information, the number of symmetries could increase. It is strongly
related to the sensors resolution. For example, imagine an empty office with
four different corners and a door. If the robot is looking at one corner, there
are four possible locations, while if it is facing the door and it is open there is
only one option. The robot’s position and orientation within the environment,
the sensors range, and the type of sensor have an important influence on the
population size requirements.

e The size of the basin of attraction of the global minimum: if the basin
of attraction of the global minimum is small, it will be more difficult to achieve
the goal, and the population size must be larger. There are two different charac-
teristics with an important influence on this aspect. The first one is the number
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Figure 3.5: Three consecutive laser beams over a grid map.

of discontinuities (for example, the discontinuities originated by columns), be-
cause they originate abrupt changes in the cost function and also in the local
minima basin. The second one is the size of the observed area. If the robot is
situated in a small room, it will be more difficult to localize it because the basin
of attraction of the global minimum will be generally smaller. It will be easier
to find a big basin of attraction in a larger area.

Sensors information

The first question to be solved is how to compute the information that is received
by the mobile robot. This information is contained in the observation vector. This
question is one of the keys of the method, and it should be taken into account that
the global localization algorithm is grid-based and the information is obtained by a
laser range finder.

The mobile robot is initially situated in an unknown place of the environment
and it receives the observation vector, which is composed of laser readings. Three
consecutive laser beams (z;_1, 2;, z;41) are shown in Figure

The laser beam projection over the grid map contains information about the occu-
pation probability of the cells that are crossed by it. This information is traditionally
used in mapping methods to estimate the occupancy probability of each cell of the
map.

The designed algorithm focuses on the information contained in each measure-
ment. In this sense, it is considered that each crossed cell has a piece of information
and the most important ones are the measurements with a low entropy. A low entropy
means that there are significant evidences about the occupation of the cell, because
the probability of being occupied or not is high. Figure|3.5{shows that the cells whose
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center is close to the laser beam (crossed by the laser beam) are filled. These cells
have a very high or a very low occupancy probability and the information contained
in the laser reading is referred to these cells. The number of cells crossed by a laser
beam is used to develop a first idea about the quantity of information contained in
this measurement. The information contained in the observation vector z;; can be
expressed as

N
z Zit 1

I(zig) = p_1(m;) ~ [—] : (3.38)
jz::l 7= V4 N,N,

where [ is the information, m; represents the jth cell, N, is the number of cells
crossed by the laser beam, d is the cell size used in the map, and N, and N, are
the map dimensions in cells. It is straightforward that the information contained in a
given measurement is linked to the range. The larger the measurement, the larger the
information about the environment contained in it. The total amount of information
contained in a whole scan can be expressed as

(3.39)

Expression [3.39] shows that the information contained in a scan, which depends
on the sensor nature, is equal to the area covered by the sensor scan divided by
the total area of the map (the information has been normalized). N, represents the
number of laser beams of the observation vector. For example, the area covered
by an ultrasonic sensor is larger than the area covered by a laser beam (but the
accuracy is higher in the second case). It is necessary to introduce more factors in
Expression to obtain a better estimate of the laser scan information. The first
one is the overlapping between sensors (two consecutive laser beams). Comparing two
consecutive laser beams, there are some cells read by both scans. These overlapped
cells do not give more information, and they should be introduced only once in the
estimation formula. Such objective can be reached through the estimation of the
overlapping between scans.

Sensor overlapping

The overlapping between two consecutive laser beams (i and i + 1, separated by
a®) can be seen in Figure . The laser readings contain information about those
cells whose center distance to the laser beam is smaller than d/2. The overlapped
area is defined by the polyhedron O — py/ — p; — po. If « is small enough, the area will
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Figure 3.6: Overlapping between two consecutive laser beams.

be defined by the triangle ps// — p; — pof. The distance between po/ and pso// is d and
the distance from ps/ to p; is [. The overlapped area is basically defined by d and [.
The first factor (d) depends on the beam width and it will be assumed that it is
equal to the cell size of the map.
The second factor (I) can be obtained as | = d/tan« and some values can be
calculated for different angular resolutions and a fixed cell size equal to d = 12 cm:

e v =05°=1=13.75 m.
e o =1°=1[="7.006 m.

e 0 =3"=1[=2.03m.

It is clear that the overlapping will be more significant with a higher angular
resolution. It is because there are more cells that are crossed by both laser beams
and the angular distance between them is smaller.

The maximum overlapped area between two consecutive laser readings is equal to
A,, = d-1/2. But different levels of overlapping are found depending on the measured
distances z;; and z;41,. In the first case, when both values are over [, the area is the
maximum one (A,,). In the second case, when at least one of the measurements is
smaller than [, this maximum value is not reached.

The effective area (Aessi41) covered by the laser beam depends on the overlapped
area and is equal to

Ziv1d — [%]; if z; > 1 and z;,1 >,
d d(l—2m)?
2 2

o (3.40)

~

Acprivt = {

]; otherwise,
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where z,, is the minimum of z; and z;,; and the terms in brackets are the overlapped
areas. When one measurement is smaller than [, the overlapped area is not maximum
and a portion of the previously defined triangle must be extracted. This area is
defined by the triangle of sides I’ = [ — z,, and d’. The quotient between d’ and I is
constant: d'/lI' = d/I, thus the area is equal to d’ - 1'/2 =d - 1"*/2l.

Initial population formula

An estimate of the information contained in the sensor measurements at a given time
is obtained in the previous paragraphs. This value is a measure of how complete
the information about the environment is. It is necessary to obtain an expression
that calculate the population size that is introduced in the population-based global
localization algorithm. An empirical method based on the previous concepts has been
developed in this work. It depends on the effective area covered by the laser scan and
the total area of the environment. Therefore, this number will be proportional to the
next expression:

Ay did,
p s N
Acir SN Apri

The effectiveness and robustness of this method will be demonstrated with exper-
imental results. A 2D laser scan of 61 laser measurements separated by 3° is used
as sensor and the cell size is equal to 12.1 cm/side. It originates an overlapping of
2.28 m affecting 19 cells. When the observed area is larger, the estimated number
will be smaller, and viceversa. For instance, when the robot is situated in a corner,
most of the measured cells are overlapped and the effective area will be small. The
number of potential perceptive equivalences is high (all corners are similar) and the
total number of equivalent poses rises very fast.

There are other factors influencing the initial estimation of N,. Some of them,
such as symmetries, cannot be easily computed, but the effect of the discontinuities
and the sensor noise can be introduced in the formula.

Discontinuities effect

The previously explained method works efficiently in environments without strong
discontinuities, but it will not be robust enough with a large number of strong dis-
continuities. This will be explained using Figure [3.7 The robot is located at point
3 facing the wall and there is a column which does not let it have a complete view
of the wall. An unidimensional localization is considered for simplicity. There are
two strong discontinuities when the robot receives the information about the column
and the wall. The cost function values observed in the lower part of the figure are
obtained checking different hypotheses from different positions. There is a local min-
imum in the correct position, but it is situated between two local maxima. This kind

(3.41)
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Figure 3.7: Discontinuity effect on the fitness function minimum.

of abrupt local minimum requires a high-density sampling to reach the basin.

Different and strong discontinuities can be found in higher dimensions (x,y, @),
thus it is necessary to detect them to increase the population size.

A way of dealing with this problem is to check the number of strong discontinu-
ities in the initial scan and use this number as a factor to increase N,. The factor
introduced is equal to kg = (ng— 1), where ngy is the number of strong discontinuities.
It has been assumed that a strong discontinuity appears when the difference between
two consecutive measurements is over the 40% of the measurement and more than
30 cells. The number of strong discontinuities of the laser scan is calculated and the
correction value is introduced in the initial population estimation expression:

Amap
Acss

N,

p

=kyq (3.42)

Noise effect

Another effect to be considered is the observation noise level, because it increases
the differences between measurements and the basin of attraction is also affected.
This effect is similar to the discontinuities one, because the population requirements
increase with the noise. A multiplicative factor k, is also introduced in the estimation
formula. This factor is equal to k,, = 14+/0, where o is the average standard deviation
of the measurement noise, which has zero mean and a standard deviation equal to
the o % over the laser distance. The updated formula will be

Amap
Acrr

N, = kpkg=mer. (3.43)
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The effectiveness of the empirical formula used to determine the initial population
will be evaluated in different simulated environments under noise levels which are
considerably worse than the noise levels of commercial laser devices.
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3.3 The Localization Method

A global localization method based on evolutionary concepts (RELF-3D) that solves
the problem in a robust and efficient way using 3D sensor data has been developed.
The evolutionary filter, which is the engine of this method, has been explained in
the previous section. The whole localization module is described in this section.
A simulation of the localization method implemented in the robot can be seen in
Algorithm [3}

Algorithm 3 GLOBAL LOCALIZATION METHOD
: PARAMETERS INTRODUCTION
real_dist_3d < dist_est_3d(...) > Laser simulation
pop <— start_pop(...)
dir_desp <~ NULL
while dir_desp # end do
[bestmem, error, pop] < RELF-3D(...)
move_robot < VALUFE > robot’s displacement
bestmem < bestmem + move_robot
real_position < real_position + move_robot(1 + error_pos)
real_dist_3d < dist_est_3d(...) > Laser simul.
fori=1: Np do
pop(i) < pop(i) + move_robot(1 + error_pos x random(1))
13: end for
14: end while

— = =
Mo 2

The robot is located at a place in the environment. This location is represented by
three spatial coordinates and the orientation in the horizontal plane. It is important
to remark that our method works in 3D environments with a maximum of six DOF (z,
y, z, roll, pitch, and yaw), but there are cases where we can assume the hypothesis
that the localization could be solved in less dimensions. For instance, when the
environment is plane and the robot has a fixed height, we can consider the z coordinate
as a constant value. Our robot works in a 3D map with four DOF.

We do not have any information about the location of the robot, thus the place
can be considered randomly. The mobile robot receives the information in a 3D laser
reading. Our method is now working with simulated data, and the reading is done
in line 2 of the algorithm from the true location of the robot. The 3D laser scan is
generated by obtaining the laser beam projections from the true location within the
simulated map.

After that, an initial population is generated, covering the map randomly (line
3). That population contains Np possible candidates. The population size can be
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an empirically adjusted fixed number or it can be generated by the initialization tool
described in the previous section.

When the laser reading has been done, the main loop starts (line 5), working in
the following way: the robot tries to locate itself on the map (we have called it step)
and, in order to do that, the evolutionary algorithm (line 6) is executed, returning
the estimated solution, the error, and the final population. The reader can observe
that the evolutionary algorithm described in the previous section is called in line 6
by the global localization module.

The concept step will be used several times, and we will explain what it means in
our context. A step can be regarded as the moment in time at which the robot uses a
single 3D laser scan to locate. When it receives another scan and motion information,
a new step starts. In other words, we say the robot is located in a single step when
the robot uses information from a single 3D laser scan, without considering movement
information. If the robot moves to another site and takes another scan, it uses more
information to locate (the second laser scan and the movement information). In that
case we say it is in the second step.

Once the localization process in a step has finished, the robot starts moving. The
robot location and the best estimate are moved according to that displacement (with
an added error, lines 8 and 9) to integrate the movement information. The sensor
makes a new laser reading (line 10) and receives odometry data. Then the possible
locations are displaced according to the odometry (with an error, too, lines 11-13)
and the localization process in the second step starts, but now with the results of the
first one in the initial population. It is obvious that the localization process is easier
in this case, because there is more information. When the second step finishes, the
third step starts, and so on.

The algorithm is running continuously while the robot moves within the environ-
ment, thus the robot’s pose is autonomously updated. We have simulated that the
robot has completed its task introducing an end in line 5. According to Algorithm [3]
the loop finishes when an end is introduced in the movement variable, which means
the robot is turned off or the movement is over and the robot is successfully localized.

It is necessary to define several parameters before the execution. These parameters
can be fixed offline or they can be manually introduced before execution (line 1). They
can be a constant number or adaptive values that depend on different factors. The
most important ones, with a critical influence on the behavior of the algorithm, are
listed below:

e Population Size.

It is also necessary to introduce the initial number of elements. It is critical
and depends on the environment size. When the robot is localized, the needed
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number is smaller, and we can reduce it with a positive influence in the com-
putational cost.

Another problem is how to determine the population number for a given envi-
ronment. On one hand, the number depends on the map size. On the other
hand, there is another important element: the symmetries. The symmetries
originated by the robot’s position and its perception capabilities can multiply
the potential number of equivalent maxima. This number can vary from one
in the most favorable case to more than 50, as we have observed in our exper-
iments. The required population number can change dramatically because a
certain number of population elements are required to maintain an hypothesis
until new data are perceived.

It is commonly known that non-linear population-based global optimization
algorithms can easily and prematurely converge to point estimates that are not
globally optimal. It can be originated by a lack of population diversity, the
slowness of the search algorithm, or the existence of a local minima in a multi-
modal objective function. The first two problems can be addressed by increasing
the population size, but the third one is more difficult. First, the function can
be multi-modal, so the algorithm will not converge until the multi-modality
disappears. Second, if the noise level rises, a fictitious multi-modality induced
by the noise level can appear.

As a reminder, this parameter can be generated by an initialization method

(Section [3.2.6)).

e Mutation Amplification Factor (F) and Crossover (C7).

F' is a real and constant factor that controls the amplification of differential
variations in the perturbation of the parameter vector (mutation). In this doc-
ument, the experiments are done with /' = 0.85. The value of C'r controls the
crossover and is fixed to 0.75 experimentally. Both variables were explained in

Section [3.2.11

We have also adopted an adaptive adjustment of the perturbation amplification
factor F'. This mechanism tries to maintain a high amplification factor while
the population has not converged to the promising areas (a wide scope search
is required) and to limit the algorithm search scope when the population set is
distributed in the most feasible areas.

e Upper Limit of Iterations.

There is also an upper limit for the number of iterations per step, which is an
added feature designed to track the robot faster when it is not necessary to
localize it in a single one. It is faster because we use more information (several
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laser readings and odometry information), and it can be changed to obtain
different results. For example, 15 iterations per step makes the algorithm go
faster, but we need more steps to obtain a good localization. Nevertheless, 500
iterations make the algorithm go slowly, but we can localize the robot in a single
step.

Tracking.

Once the localization process has finished in a satisfactory way, the robot knows
exactly its position. Our problem is now converted into the tracking problem.
In other words, the robot will need to be continuously localized, updating its
pose after small changes of position.

In order to do that online, the population number is reduced drastically when
the fitness function of the best estimate is under a threshold, which means that
the robot is localized. We have chosen 10 as the population size after that.
This reduction implies an impressive advance in the computational cost. In
each motion cycle the robot can now update its pose accurately and quickly.
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An autonomous robot must obtain information about its surroundings to accom-
plish multiple tasks that are greatly improved when this information is efficiently
incorporated into a map. Some examples are navigation, manipulation, localization,
and so on. This mapping problem has been an important research area in mobile
robotics during the last decades. It does not have a unique solution and can be
divided into multiple sub-problems.

The goal is that an autonomous robot can build a map and localize itself in it.
The environment is composed of physical objects and the robot needs to obtain a
truly representation of the world perceived by its sensors.

Different aspects of the mapping problem have been described in Chapter 2| This
work is focused on various problems that are connected to this subject. Summarizing,
the main problem consists of the generation of consistent and robust maps considering
the available information. This mapping process has been divided here into several
stages that represent the tasks that should be solved in order to generate consistent
maps. These tasks are the following ones:

1. Robot’s pose estimation: the robot’s pose (position and orientation) with re-
spect to the last one must be computed. The movement information has to be
updated.

The purpose of our autonomous mobile robot is to work in indoor environments
where it is not possible to use external signals or sources such as the GPS. There
are two options to estimate the robot’s pose. The first one is to detect known
features using the sensor information. It implies a priori knowledge about the
world. The second idea, which has been adopted here, is the incremental inte-
gration of the motion information (wheel encoders). The encoders information
is transformed into wheel displacements. After that, an odometry model is used
to compute the robot’s pose from the wheel displacements. This model will be
explained in detail later in this document. It is well known that the pose esti-
mation using only odometry information is not accurate enough because of the
accumulated error. Hence, these errors should be corrected by other methods.

2. Pose correction via registration: the accumulated error when considering only
proprioceptive sensors (robot’s pose estimation defined in the first point) has
to be corrected using the exteroceptive sensor information. It is crucial to
obtain a good estimate of the metric relation between different scans (our robot
works using a 3D laser range finder), which is often called registration or scan
matching. The pose is corrected by matching the last acquired scan with the
previous one.

3. Loop detection and loop closure: the model obtained is not consistent after
registration because the accumulated error due to local small errors can be still



84 Chapter 4. 3D Mapping

very important. It is basic to detect when the robot is navigating through a
previously visited place, to check the global error and to minimize it in order
to give consistency to the global map. The detection task is usually referred to
as loop detection, and the global error minimization is called loop closure.

This chapter is focused on two aspects of the mapping process: registration and
loop detection.

We have implemented a scan matching algorithm for 3D environments. It is
based on the DE algorithm (particle-based evolutionary algorithm that evolves in
time to the solution that yields the cost function lower value). If the cost function is
properly chosen, it is possible to solve the scan matching problem using this method.
The high accuracy and computational efficiency of the proposed method have been
demonstrated with experimental results.

The loop detection problem is also addressed in this thesis. We have developed
a loop detection method that compares features extracted from two different scans
to obtain a loop indicator. This approach allows the introduction of very different
characteristics in the descriptor. First, the surface features include the geometric
forms of the scan (lines, planes, and spheres). Second, the numerical features describe
several numerical properties: volume, average range, curvature, and so on. The
algorithm has been tested with real data to demonstrate that it is an efficient tool.
All true loops are correctly detected without false detections. Besides, it is a versatile
method that admits different parameters and settings.

This chapter is organized as follows. A review of the mapping process is given in
Section In Section [£.2] the scan matching method is explained. Finally, the loop
detection algorithm is presented in Section
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4.1 Mapping Method

The mapping task for mobile robots is an open problem with different solutions and
descriptions depending on many factors: available sensors, techniques applied, type
of environment, etc. There is neither a standard way to accomplish it nor a unique
description. In this section, this problem is described according to the techniques
used here. A flow chart of the mapping process presented in the following paragraphs
can be observed in Figure 4.1} It will be explained below, but some aspects related
to this task are described before.

> ROBOT MOTION
PERCEPTION
laser reading
wheel encoders information
The whole map since
the last loop is
The last scan is corrected POSE ESTIMATION corrected
and integrated into the 4
global map l
1 REGISTRATION
scan-matching LOOP CLOSURE
i 3
NO YES
LOOP
DETECTION?

Figure 4.1: General mapping process. Laser measurements and odometry information
are computed after the robot motion. The robot’s pose is estimated considering
motion information. After that, it is corrected via registration. Finally, the loop
detection algorithm gives consistency to the map by correcting the accumulated error
when a pre-visited place is detected.
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Figure 4.2: 3D laser reading obtained by MANFRED-2, which is an experimental
platform fully developed by the Robotics Lab of the Carlos III University of Madrid,
Spain. It has been recorded inside a lab of the university campus. It is composed of
approximately 45000 points. All units in cm.

The first aspect to consider is the map dimensionality, which depends on the
available sensors. We have assumed that the mobile robot works in a 3D world. The
exteroceptive information is measured by a 3D laser scan (an example can be observed
in Figure and the motion information is computed by wheel encoders. The DOF
in this type of environment is six in the most general case. Three DOF represent the
position, which will be given in cartesian coordinates, and the other three compute
the orientation.

Therefore, the robot’s pose is defined by the following coordinates: position (Pt =
(x,y,2)) and orientation (O = (p,0,1)) (roll, pitch, and yaw angles), resulting in the
following variable:

P = ('Z‘7y’ 27 <I07 07 w)? (4’]‘)

where P is the robot’s pose.

Each movement in the described space is composed of a translation plus a rota-
tion. The translation is given by the cartesian coordinates Tra = (dx,dy,dz). The
orthogonal matrix that describes a clockwise/left-handed rotation with Euler angles
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@, 6, 1Y, and x-y-z convention, is given by

) —cpsh + spsbcy  spsi + cpsOcy
Rot = | sy cpc) + spsls)  —spc) + cpshsy | . (4.2)
—s6 cOsp cpct

The notation has been simplified (ce means cos(p)).
Each movement from an initial position to a final one can be calculated computing
a translation plus a rotation:

Ptfinal = Rot x Ptinitial + Tra. (43)

Working directly with 3D data provided by the laser scan is not efficient from a
computational point of view. A 3D laser reading can be composed of more than 45000
points when using a maximum resolution. The scan size is reduced in a preprocessing
phase in order to increase the computational efficiency, but without losing the capa-
bility of obtaining good matching. The following steps have been implemented: res-
olution decrease, median filtering, range correction (elimination of outliers), distance
filtering (points located close together are joined into one point), and segmentation
(elimination of those elements that are far away from the rest). The computational
cost is decreased, approximately, by 50 times by introducing data reduction.

The reader is now prepared to understand the mapping method described in Figure
[4.1] Several stages must be followed to generate a consistent model of the robot’s
surroundings.

It has been considered that the Robot Motion stage is the starting point of the
diagram, which means that the mapping process starts at this point. The reason of
this choice is that the sensor reading is done after robot motion[]. In other words, the
robot is moving around the environment and it stops. After that, its sensors receive
environment information from this location. This information is incorporated into
the model using the mapping method, thus the global map is updated with newly
obtained measurements. The robot can continue exploring the environment when
this information has been efficiently incorporated into the model and a consistent
map has been generated and/or updated.

First, the robot’s pose changes with respect to the last one must be computed and
the laser reading is received in the Perception stage. The mobile robot is equipped
with encoders that measure wheel displacements. The environment information is
contained in a 3D laser reading in the same way described before.

The Pose Estimation stage consists of converting the measured wheel speed into
a vehicle displacement using the kinematic model of the robot. The robot’s pose is

5There is no a priori information about the environment, so there is no motion to compute during
the first iteration or execution. The robot directly obtains the sensor measurements.
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Figure 4.3: Odometry model of a mobile robot when moving between two different
locations. This model is used to generate the robot trajectory using information given
by wheel encoders.

iteratively updated given the odometry information. It can be continuously estimated,
but it is not accurate enough so as to obtain a robust model of the environment, and
that is why other tools are necessary for mapping.

Since the encoders measure wheel displacements, only three DOF representing
plane position and horizontal orientation can be estimated considering the odometry
information. The following explanation of the pose estimation method is based on our
experimental platform and assumes that there are three DOF for simplicity. However,
our mapping tools have been designed to work in six DOF as maximum and different
examples with sensors that receive 6D information are shown in the experimental
results.

Figure shows the robot displacement between two different locations given by
their cartesian coordinates and orientation: po(zo, yo,00) — p1(x1, y1,61).

The wheel displacement information is given by sensors, and it is equal to §l for
the left wheel and dr for the right one. The pose p; is computed using the following
equations:

5p:51+57“’ 59:51—67" (4.4)
b b

r1=x0 + dp cos(fy + 06/2), (4.5)

Y1="0 + opsin(fy + 660/2), (4.6)

01=0 + 66,2, (4.7)
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where dp and 06 are the position and angular variations and b is the robot’s base
width.

This information is then fed up to the mapping module for pose correction accord-
ing to the exteroceptive information. This is done by registering the newly acquired
laser reading. The current scan pose is corrected until the best overlap with the
reference scan is achieved. The most successful scan matching methods have been
described in Section 2.3] A DE-based scan matching method has been implemented
in this work. A complete explanation of our method is given in Section [4.2] Besides,
the ICP-based scan matching method developed by Triebel et al. [27] has also been
implemented for comparison.

The models generated after registration are not consistent enough to conclude
that the mapping task has been successfully achieved. This consistency will be given
by detecting the known places and eliminating the accumulated error when it exists
(loop closure). If the pose estimate has an small orientation error at the beginning of
the robot’s path, the accumulated error after some time can be very important. In
order to avoid that, several methods have been proposed. For example, two different
possibilities have been proposed by Jensen et al. [102]. The first one is based on scan
alignment and global registration, and the second one is a feature-based approach
using an EKF and the Symmetries and Perturbation Model [103].

Our work focuses on loop detection. Different features that are extracted from a
3D laser scan are the variables used to calculate the similarities between two places.
We have developed a feature-based loop detector based on the works by Magnusson
et al. [104] and Granstrom et al. [I05]. Our method is completely detailed in Section
3.3

The whole map since the last loop is corrected when the loop is detected. After
that, the robot continues exploring the environment with the corrected and updated
map.

If there is no loop, the current scan coordinates obtained after registration and
their associated scan are introduced in the global map, thus the model is also updated
but no loop is closed. The robot continues its exploration and new measurements will
be obtained.
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4.2 Registration: Scan Matching

Since the pose estimation considering only motion information is not accurate enough,
it is necessary to develop additional mechanisms to obtain better maps. The first idea,
that includes information obtained by perceptive sensors, is called registration or scan
matching. One of the crucial parts of any SLAM algorithm is the registration method.
The laser scan matching consists of the current scan pose correction until the best
overlap with the reference scan or model is achieved.

There are different classifications of scan matching methods. This was detailed in
Chapter [2| but is also summarized here. The scan matching methods found in the
literature can be developed to work with 2D or 3D data. The last case is addressed
here. The main difference between both of them is the computational cost. There
are also local [I§] and global [62] methods. The local methods match single scans.
Their disadvantage is that the final map is inconsistent because the accumulated
error can be important. However, their advantage is that this inconsistency can be
minimized by relaxation mechanisms. The global methods consider the current scan
and the global model. Their associated shortcoming is that one single mistake is
fatal because a wrong measurement is included in the model, not being possible to
correct this error by additional mechanisms. It is also possible to distinguish between
feature-based (feature extraction before the scan matching), point-based, or mixed

(correspondence between points and features) approaches. Some examples of point-
based scan matching are ICP [24], IMRP [I§], IDC [1g], PSM [66], and so on.

A DE-based scan matching algorithm has been implemented in order to solve the
referred problem. It consists of a particle-based evolutionary algorithm that evolves
in time to the pose that yields the cost function lower value. The fitness function
calculates the correspondences between model and data and the evolutionary filter
minimizes the distances between corresponding points.

The DE algorithm engine has also been used in our recent work to solve the global
localization problem, which can be defined as the search of the robot’s coordinates
in a known environment with no a priori information about its location. A complete
explanation can be found in Chapter [3] This scan matching technique is similar to
the localization filter.

Two different ideas have been applied to improve the algorithm performance:

e Correspondences modification: the scan matching algorithms are based on the
minimization of cost functions that calculate correspondences between points.
A modified scan matching algorithm has been implemented, which finds corre-
spondences between points of the same type. This means that the cost function
considers corresponding points that share any specific characteristic.



4.2. Registration: Scan Matching 91

e Acceleration with k-d trees: a k-d tree [106] (k-dimensional tree) is “a space-
partitioning data structure for organizing points in a k-dimensional space”.
The scan matching algorithm is accelerated using k-d trees when looking for
correspondences between points. The computational cost is greatly improved
when this method is incorporated into the search mechanism.

The proposed method is presented in Section [4.2.4] but it is necessary to explain
some concepts before. First, a preprocessing step that improves the computational
efficiency and makes it possible to work with huge 3D scans is detailed in Section
After that, the acceleration method based on k-d trees is presented in Section
Finally, the fitness function that incorporates the improvement mechanisms,
which is the key element of our method, is introduced in Section [4.2.3]

4.2.1 Preprocessing: data reduction

Working directly with the 3D data provided by the laser scan is not efficient from
a computational point of view. A 3D laser reading can be composed of more than
45000 points when using maximum resolution. It is impossible to obtain an acceptable
computational time with the original size of the scan. Therefore, it is necessary to
reduce the scan size to an optimal value by implementing a preprocessing phase.
Besides, if the data reduction is done in an appropriate way, there is no diminution
in the scan matching quality.

However, it is interesting to have such a resolution for modeling purposes. The 3D
scan size will be reduced in order to obtain a better computational cost, but without
losing the capability of obtaining a good matching between scans.

The following steps are applied obtaining a better size from a computational point
of view with no reduction in the scan matching quality:

e Size reduction: the initial 3D point cloud can be too dense (too much informa-
tion). Imagine that the resolution is 0.25° in the horizontal plane (pan) and
1° in the vertical plane (tilt) for the MANFRED-2 laser scan. The whole laser
scan contains approximately 45000 points. The laser scan initial resolution is
reduced by a factor R. A typical value for R is 0.1, which means that the 90%
of the initial data are discarded, considering only the 10% of the points.

e Median filter: it is a nonlinear digital filtering technique that is often used to
reduce noise. It does not change the data size, but it removes the outliers. This
tool is frequently used in digital image processing because it can preserve edges
while the noise is removed.

e Distance filter: multiple data points located close together are joined into one
point. If it is used with all data, it is too heavy from a computational point of
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view. But it can be applied after the size reduction stage. First, the euclidean
filter is applied to slices depending on the tilt planes. The result is a distance
filter not only in slices but in the whole scan.

e Range Correction: it is necessary to eliminate the readings that represent the
maximum range of the sensor. They present extreme values and are not reliable.
For example, the maximum range that is accepted when using the MANFRED-2
laser scanner is about 15 m.

e Segmentation: there are points in the laser scan that do not represent any reli-
able feature. It can be interesting to make a segmentation in order to eliminate
those elements that are far away from the rest. For example, only segments of at
least three points located close together could be considered for scan matching.

The benefits of the preprocessing step are shown in the following example. The
scan matching method is applied to two different scans composed of 16744 points.
The computational time using the original method without data reduction is 53.002
s, while the same time is equal to 1.086 s when introducing data reduction (the time
needed to reduce the data is also included). Both scans were reduced to 1100 points.

Similar results are obtained using different scans. The computational cost is de-
creased by 50 times (approximately).

4.2.2 Acceleration using k-d trees

Working in a 6D space is a heavy task from a computational point of view, thus
it is very common to accelerate scan matching algorithms using different methods.
Most matching methods require to search corresponding points between scans. This
search is the bottleneck from a computational point of view. The most widely used
acceleration approaches modify the correspondence search using trees.

A tree is “a data structure that emulates a hierarchical tree structure with a set of
linked nodes”. The scan matching method developed in this work has been modified
including a type of tree called k-d tree. This mechanism accelerates the scan matching
method in an efficient way.

The k-d tree is defined as “a binary tree in which every node represents a k-
dimensional point”. The nodes can be classified as leaf or non-leaf. An hyperplane
is generated from every non-leaf node dividing the space into two parts (subspaces).
In other words, two branches that represent subspaces have its origin in a non-leaf
node. The left subtree is composed of the points located to the left of the hyperplane.
The tree is generated as follows: every level (node) in the tree is associated with a
cartesian coordinate. An hyperplane that is perpendicular to that dimension’s axis is
used to generate the subtrees. For example, if the node with coordinates (z,, yn, 2)
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is associated with the x-axis, the left subtree will contain the points with x lower than
Z,. In this case, the hyperplane is generated using x,,.

An illustrative example of a 2D k-d tree is shown in Figure .4l It can be observed
that the tree is built at different levels. At the beginning, the median value according
to the x dimension is chosen as starting node (7,2). The space is divided into two
subspaces. The left branch is composed of points with x lower than 7 and the rest
of the set will be in the right branch. After that, the median value according the y
dimension is calculated for both subspaces resulting in points (5,4) and (9, 6). Finally,
the median is calculated again for those subspaces composed of more than one point.

This is an iterative process that is repeated until the tree has been completely built,
which means that all branches end in a single point. If the number of dimensions
is higher than two the tree is built in the same way, but considering all dimensions
when dividing the space into hyperplanes. An example of the 3D k-d tree splitting
process is shown in Figure |4.5]

Although there are many different ways to construct k-d trees because the planes
can be split by different methods, the canonical algorithm has the following con-
straints:

e The subspaces are created by selecting the median of the points that belong to

10 T T T

Figure 4.4: 2D k-d tree. Left: six points in a 2D space. Red and blue lines define
subspaces. Right: k-d tree. Source: http://en.wikipedia.org/wiki/K-d_tree.
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the corresponding subtree. The median is calculated according the axis that is
used to create the splitting plane.

e Each level of the tree corresponds to one dimension and the axes are chosen
cyclically to select the splitting planes. For example, in a 3D k-d tree, the first
subspaces will be generated depending on the x coordinate of the median point,
the next level will depend on the y coordinates, and the next one will consider
the z coordinates. After that, the x coordinates are used again.

The k-d tree created in this way is usually balanced, which means that the distance
from the leaf nodes to the root node is approximately the same. However, there are
some applications where the balanced trees are not the best choice.

When the associated coordinate in the splitting axis is equal to the median value,
the point is usually placed in the right subtree. It is also possible to define an
additional function that takes into account different dimensions. Besides, these points
can be included in both branches of the tree.

The time complexity when building a k-d tree from n points is O(nlog®n) if
an algorithm of time complexity O(nlogn) is used to sort the data and compute the
median. The time complexity is reduced to O(nlogn) when the linear median-finding
algorithm proposed by Cormen et al. [107] is applied.

Figure 4.5: 3D k-d tree building process. First, the original cell (white) is divided
into two subspaces (red plane). After that, each subcell is split (green) into two
subcells. Finally, each of those four is split (blue) into two subcells. Source: http:
//en.wikipedia.org/wiki/K-d_tree.
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The scan matching methods need to find the corresponding points between scans
in order to compute the cost function to minimize. This process, which is equivalent
to a Nearest Neighbour (NN) search, is accelerated by the k-d trees.

The purpose of the NN algorithm is to find the point in the k-d tree which is
closer to a given input point. The search efficiency of the NN algorithm is improved
by eliminating large portions of the search space. This method is described in the
following lines:

1. The NN starts in the root node. The input point and the root node are com-
pared. The input point is situated in one branch of the tree depending on the
split dimension. After that, the next split dimension is considered to choose
the next subtree (the search algorithm moves down the tree). This process is
equivalent to a new point insertion.

2. The first point is executed until a leaf node is reached. After that, the leaf node
is saved as the “current best”.

3. The algorithm moves up the tree executing the following steps at each node:

(a) The distance between the current node and the input point (d,eq4e) is com-
pared to the distance between the current best and the input point (dpes;)-
If d,,oqe < dpest, the current node becomes the current best.

(b) The other side of the splitting plane is checked to detect if there are points
in the other subtree that could be closer to the input point than the current
best. This is done by a simple comparison between the distance from the
input point splitting coordinate to the current node splitting coordinate
and the distance from the input point to the current best.

i. If the subtree can contain closer points, the algorithm moves down the
tree and the first step is executed again.

ii. If the subtree have not closer points, the algorithm moves up to the
next node and the entire branch is eliminated.

(¢) The search is completed when this process is finished for the root node.

The NN search is highly accelerated by this method. The time complexity of the
original NN search without k-d trees is O(n), while it is O(logn) when using this
tool. The worst case for a k-d tree containing n nodes according to the work by Lee
and Wong [108] is given by the following equation:

tworst = O(kn'"%). (4.8)
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The “curse of dimensionality” [109] refers to the fact that “some problems become
intractable as the number of the variables increases”. It appears in high dimensions.
The search algorithm needs to visit many more branches than in lower dimensional
spaces. This fact depends on the number of points. When the number of points
is only slightly higher than the number of dimensions, the accelerated algorithm is
only slightly better than the original method. In general, the NN search is efficiently
accelerated by k-d trees when the following condition is satisfied:

n >> 2% (4.9)

Otherwise, most of the points in the tree are visited and the efficiency is not
improved. There are approximate NN methods that can be used in these cases.

Besides, it is very simple to modify this algorithm in order to obtain the solution of
the K-Nearest Neighbours (KNN) problem, which consists of calculating the nearest
neighbours given an input point. The solution of this problem is computed by keeping
the K current bests instead of just one. This mechanism will be used by our scan
matching and loop detection methods. Although K was chosen before to represent
the dimensionality, it is now used to define the number of neighbours. The same
name has been kept because it is the standard choice in the literature.

It is also possible to obtain approximate solutions to make the algorithm run
faster. For example, the number of points to be examined or the execution time can
be limited. The NN search can be stopped when the distance to the input point is
equal to zero. The approximate NN methods are useful in real-time applications such
as robotics because the computational cost is highly improved.

More information about k-d trees can be found in the work of Berg et al. [I10].

4.2.3 Fitness function

The fitness function is the key component of the scan matching algorithm. It will be
explained in this section.

The starting point of the cost function is the well known ICP algorithm cost ex-
pression proposed by Surmann et al. [I11]. This expression has been chosen because
the cited authors define this problem with simplicity and they obtain a reliable so-
lution. The cost function compares the previously acquired scan (model) to the last
acquired one (data). Therefore, the inputs of the fitness function are two different
sets of 3D points:

e Model: M = {my,...,mn,, }.

e Data: D = {dy,....dn,}.
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Figure 4.6: ICP flow chart.

The ICP method “iteratively revises the transformation (Rot,Tra) needed to
minimize the distance between the points of two raw scans” (M and D). The cost
function to minimize is the following one:

Ny Ny
e(Rot, Tra) = > Y w;,|lm; — (Rot - d; + Tra)||?, (4.10)

i=1j=1

where w; ; is equal to 1 if ¢ nd j are corresponding points. It means that they describe
the same point in space. If they are not corresponding points, w; ; is 0.
A flow chart of the original ICP method [24] can be seen in Figure 4.6, A brief
explanation is given below. The optimization is achieved according to the flow chart.
First, the cost function (e) is initialized to infinite. The corresponding point within
the data is calculated for each point of the model in a second step. This search is
done according to the concepts explained in Section [4.2.2]
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After that, the motion is computed. The rotation matrix and the translation vec-
tor that minimize the cost function must be estimated. Any optimization method
(steepest descent, conjugate gradient...) can be used to find the rotation and trans-
lation. A more efficient method that is called “dual number quaternion” has been
proposed by Zhang [63]. A basic version of the ICP algorithm that uses the Newton-
Raphson method has been implemented in order to test and compare our method.
This version has been developed by Per Bergstrom and it is available online E]

Each point of the data set is displaced in the next stage according to the following
equation:

d’; = Rot +d, + Tra (4.11)

Finally, the data set is updated according to the new location (D < D’) and the
error is calculated again using the displaced data. The new error is compared to a
threshold, resulting in two options:

e ¢ > threshold: the results are not good enough and the ICP algorithm must
continue its execution using the displaced data. The correspondences calcula-
tion step is executed again with the displaced data.

o ¢ < threshold: the algorithm finishes and the results are returned.

This is an iterative process that is executed until the error is below a pre-specified
threshold. An upper limit of iterations can also be utilized. The ICP version imple-
mented by Bergstrom stops the algorithm after 40 iterations.

However, the scan matching method proposed in this document is not ICP-based
but DE-based.

The registration has been considered as a local process, thus the model set is the
last scan that has been successfully incorporated into the map.

The cost function given by Equation has been improved by several mecha-
nisms in order to obtain an effective scan matching method.

The corresponding points computation (NN search) is accelerated using k-d trees.
The objective is to find the corresponding point within the data (represented by a
k-d tree) for each point of the model.

The correspondences are introduced as weights (w; ;) in the error function. These
weights have a very important influence on the scan matching process. The method
proposed here exploits this idea by modifying the weight selection criterion to improve
its capabilities.

If the number of correspondences is equal to C' and the distance between two
corresponding points is denoted by d(m,;,_, d;, ), the cost function can be rewritten
as

6http ://www.mathworks.com/matlabcentral/fileexchange/12627-iterative-closest-point-method.
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c
e(Rot, Tra) = > _d(m,_,d;,)*. (4.12)
c=1
The next modification exploits the idea introduced by Triebel et al. [27], which
separates the scan in different types of points, only matching points that belong to the
same class. The set of points is divided into walls, horizontal planes, and obstacles:

Cl CQ 03
e(Rot, Tra) = Z d(my,;., deC)2 + Z d(m,;,, dp,jc)2 + Z d(m,;., do’jC)Q, (4.13)
c=1 c=1 c=1

walls planes obstacles

where subindex w is used to express that a point belongs to a wall, p represents
horizontal planes (unobstructed floor), and obstacles are denoted by o.
The type of a given point is easily computed following the next steps:

1. KNN search: the nearest neighbours of the point within the scan are calculated.
This search is also accelerated by using k-d trees. The number of neighbours
has been empirically fixed to 10.

2. Plane estimation: the plane that best fit the previously obtained neighbours is
calculated. A plane P; is defined by a point p; and the direction cosines of the
normal:

P, = {p;, cos a, cos 3, cos v }. (4.14)
The different types are calculated according to the cosines:

(a) v > 80° — Wall.
(b) v < 10° — Horizontal plane.

(c) otherwise — Obstacle.

The error function only considers points that belong to the same types. Different
types can be chosen depending on the environment characteristics. This segmentation
is suitable for structured indoor environments which are mostly composed of walls,
horizontal planes, and obstacles.

The next idea consists of choosing adequate weights for each type. In the previous
expressions, the weight factor was assigned to 1 when corresponding points were
found. However, it can be interesting to give higher weights to those points that
represent more important characteristics.
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Analyzing point types, the most important one in an indoor environment is the
vertical cell. The obstacles are characteristics that uniquely define the environment,
but their importance depends on the number of obstacles and their size. In general,
there are more vertical points than obstacles points in a frame. It is not always
possible to distinguish between places taking into account only traversable zones.

If Equation is modified by introducing w;; = 2 for walls and w;; = 0.5 for
the other types, the error function is now equal to

Cq Co C3
€(R0t, Tra) = Z Qd(mwﬂ-c, dw,jc)2 + Z O.5d(mp,ic, dch)z + Z O.5d(m07ic, do,j5)2 .
c=1 c=1

c=1

walls planes obstacles

(4.15)
An improvement in the distance between corresponding points that belong to walls
will have more influence on the error function. It is important to remark that these
values depend on the environment. It will be crucial to choose adequate weights in
order to obtain good results.
The cost function represented by Equation [4.15]is the engine of the DE-based scan
matching method. This method is explained in the following section.

4.2.4 DE-based scan matching (6 DOF)

A particle-based evolutionary algorithm evolves with time to the solution that yields
the cost function lower value. If the cost function is properly chosen, it is possible
to solve the scan matching problem. The cost function basic idea is to compute the
distances between corresponding points when they belong to the same type of surface.
An error is computed by the cost function that is given by Equation [4.15]

This scan matching technique is similar to the localization filter detailed in Chap-
ter [l If the reader is familiarized with this technique, this section can be skipped.
The contents of these paragraphs can be a bit repetitive. A brief explanation is given
here, so the reader can understand the full contents of this chapter without having
read the previous one. The differences between both methods are highlighted.

Given two sets of 3D points (model and data), the DE-based algorithm calculate
the rotation and translation that is necessary to apply to the data set in order to
maximize the matching between them.

One difference with respect to the ICP-based version is that the solution is now
represented by the robot’s pose, considering that the robot is situated in the origin
of the data scan. It means that this method calculates the robot’s displacement in
order to find the best matching between data and model. After that, the registration
is done by moving the data set according to the estimated solution.
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Algorithm 4 DE-based Scan Matching
1: fori=1: Np do

2: pop} < init_pop(data_initial_pose) > First population generation
3: (i) < cost(model, data, pop;) > Cost function calculation
4: end for
5. for Kk =1:max do
6: fori=1: Npdo
7: vF = popt + F(popf — pop®) > Mutation
8: for j=1:D do
9: ufj = vf’j,‘v’pﬁj < Cr > Crossover
10: uf] :popﬁj,‘v’pﬁj >Cr
11: end for
12: ek (i) < cost(model, data, popl) > New cost function calculation
13: if €f(i) < " 1(i) * 7 then > Selection with Thresholding
14: pop; Tt = uk;
15: else
16: popi ™ = popk
17: end if
18: end for
19: pop® = disc(pop”) > Discarding
20: ind_best < min(ek)
21: bestmem < pop* (ind_best)
22: if convergence = true then > Execution stops after convergence
23: exit(bestmem)
24: end if
25: end for > Return best estimation

The stochastic search of the matching pose is done using the DE method for global
optimization problems over continuous spaces. The reader can see Algorithm [4] to
understand the main concepts. Besides, a complete explanation of the DE algorithm
can be found in Chapter 3| or in our previous work [45, [81].

The search starts with a population of Np candidates (the number of elements is
represented by Np). Each candidate is a possible solution. The robot’s pose has 6
DOF because the robot is situated in a 3D world:

pop; = (xi,yi 2 1, 0 0r), (4.16)

where pop! represents element 4 at iteration k. The position is given by the cartesian
coordinates and the orientation is defined by the Euler angles.
The initial population will be chosen randomly but situated in a sphere close to
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the pose estimate given by the odometry information.

The DE-based scan matching is simpler than the DE-based global localization
because there is an initial estimation of the robot’s pose. In global localization,
the initial population was randomly generated covering all the map because there
was no a prior: information about the robot’s location. The problem here consists
of correcting the robot’s pose obtained by the odometry sensors, thus an smaller
population is generated around the original pose. Besides, the number of iterations
to convergence is also lower because the population is located close to the solution.

For each candidate, its associated cost function is calculated (line 3 of Algorithm
. The cost function defined by Equation computes correspondences and data
types and assigns different weights to different types. The nearest neighbour search
has been efficiently accelerated using k-d trees.

The main loop starts in line 5 and it is repeated until the maximum number of
iterations is reached or one of the convergence conditions is satisfied. Another loop
which contains the evolutionary search starts in line 6. It consists of the generation
of a new population for the next generation. In a single iteration the algorithm is
executed to obtain the next candidates, evolving in time to the correct pose.

The initial population is perturbed to generate a variation v; for each population
member:

vi = popy + F(popy — pop?), (4.17)
where pop’, popf, and pop® are three randomly chosen elements at iteration k and
a, b, and ¢ are different from running index i. F'is a real and constant factor which
controls the amplification of the differential variations (pop} — pop®). The variables of
this expression can be changed to obtain a different perturbed vector. For example,
instead of pop’, it is possible to select the best element of the population.

In order to increase the diversity of the new generation, the crossover is introduced.

The trial vector is denoted by uf = (uﬁl,ufg, e ,uﬁD)T and its parameters depend
on the crossover probability:
k . if ok < C
uyy = {v“’k A (4.18)
pop; j; otherwise,

where pﬁj is a randomly chosen value from the interval [0, 1] for each parameter
7 of the population member i at iteration k, and Cr is the crossover probability
that constitutes the crossover control variable. D, which represents the number of
chromosomes (number of components of the population element), is equal to six
because the robot’s pose has six DOF. The random values pf’j are made anew for
each trial vector .

The new candidate u is compared to pop! to decide which element should become
a member of generation k + 1. If uf yields a better value for the objective fitness
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function than pop¥, then it is replaced by u¥; otherwise, the current member pop? is
retained for the next generation.

The selection mechanism has been modified by adding a thresholding band that
avoids the premature convergence in noisy optimization problems. The idea of the
thresholding is to reduce the eagerness of the algorithm by rejecting those new so-
lutions that do not improve the previous hypothesis in a pre-specified magnitude 7.
The threshold cannot be a fixed magnitude, because this unit depends on the noise
variance and the fitness distance to the optimal fitness value. The noise variance
might be estimated, but it is not easy to estimate the second factor.

The previous process (mutation, crossover, and selection with thresholding) is
applied to the whole population obtaining the next generation population (k + 1).

The convergence speed is decreased by the thresholding band. This aspect is
particularly important at initial stages. A discarding mechanism has been introduced
to increase the algorithm speed while maintaining the thresholding advantages. The
idea is to determine the worst fitness individuals of the new population and substitute
them by new solutions that are situated close to better ones. In order to do so, a
percentage of elements to be discarded is chosen (5%). To avoid concentrating the
discarded solutions around the best existing individual, one of the members of the
population with its fitness value located in the first half of the fitness ranking is
randomly selected. This selected solution plus a relatively small random component
is adopted as a new offspring.

Finally, the algorithm returns the best member of the population. This mem-
ber is the robot’s pose that minimizes the difference between model and data (scan
matching solution). The data set is moved and rotated according to this solution,
the registration is successfully accomplished, and the updated data are incorporated
into the model.

4.2.5 Simplified version: plane scan matching

Although the previously explained method is robust and its efficiency in 3D envi-
ronments with six DOF will be widely demonstrated with experimental results, a
different and simplified version has also been tested. A short description of this tool
is given in this section. This version can be very useful in some cases and it has some
associated advantages. The available data are 3D, but it is possible to consider 2D
frames for scan matching.

The use of 3D data in mapping has an important drawback which is the com-
putational cost. Nevertheless, some simplifications can be assumed when the robot
movement does not cover all DOF and some components of the pose vector remain
constant. Imagine a mobile robot equipped with a 3D laser scanner fixed in its base.
The relative distance between scanner and robot is constant. This robot is situated
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Figure 4.7: Scan matching example with 2D data. Left: 3D view. Right: horizontal
projection. Seven different scans are joined into the model. Elapsed time: 1.05 s.
Laser noise: 1%.

in an indoor environment which is mostly composed of flat surfaces. In this case, the
movement can be restricted to 3 DOF that represent position (x, y) and orientation
(yaw) in a plane, thus the scan matching can be simplified to these coordinates.

A modified version that works in the horizontal plane has been implemented in
order to test it. A 3D data set is obtained by the laser scan, but only one plane is
considered when matching (z, roll, and pitch are constant).

One advantage of this simplified version is that the computational cost is dras-
tically reduced. Therefore, it is possible to use more information. For example, the
whole model or a part of it can be included instead of a single scan. It means that the
new scan can be matched with the whole model or the last acquired scans. The pro-
cess is converted into global scan matching, with its advantages and disadvantages,
and the computational cost is not prohibitive. Since a single mistake produces an
irrecoverable error in global registration, only the local version has been implemented
in this work.

The time requirements (in seconds) are in the interval [1,2] with 3D data and
[0.2,0.5] with 2D measurements. If the process is not local the computational re-
sources needed grow very fast, making the first option unfeasible from a computa-
tional point of view.

The following example illustrates the simplification adopted in this section. The
ICP-based scan matching algorithm has been applied in a simulated indoor environ-
ment. In Figure 4.7, the results with 2D scans are presented. Figure 4.8| shows the
results with 3D frames. Seven different scans has been registered in each figure. There
is not a big visual difference between the 3D views. However, it can be appreciated
that the horizontal projection of the 2D option has a lower error, which seems to be
an additional advantage.
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Figure 4.8: Scan matching example with 3D data. Left: 3D view. Right: horizontal
projection. Seven different scans are joined into the model. Elapsed time: 9.76 s.
Laser noise: 1%.

The simulated map is an indoor environment which is mostly composed of offices
and corridors. Its principal components are parallel or perpendicular. The results
when using 3D data are referred to six dimensions, thus the relation between model
and data is described by six components: cartesian coordinates (x, y, and z) and
orientation angles (roll, pitch, and yaw). The results when using 2D data are described
by three components: x, y, and horizontal orientation. It has to be remarked that
the horizontal orientation (yaw) is the parameter that actually changes in this type
of environment, not the other orientation parameters (roll and pitch).

It is straightforward that a small error in roll and pitch angles can produce an
appreciable error in the map because they do not change at all. In this type of
environment, the plane version considers the angle that actually changes. That is the
reason why the best results are obtained with 2D data. As a conclusion, it can be
said that the plane option is suitable for this environment. However, it cannot be
generalized because it has been applied to a very specific situation.

Finally, it has to be remarked that the plane mapping has been widely studied
and it is not the purpose of this work. The 3D modeling, with its characteristics
and applications, has been studied here, and we focus on the aspects related to this
problem.

4.2.6 Scan matching associated difficulties

It is very difficult to obtain satisfactory results with scan matching techniques in some
cases. It occurs when there is not information enough to match both frames or this
information causes a wrong matching. This difficulties are described here to give a
complete explanation of the method and its problems.
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First, strong changes in orientation (up to 90° has been tested) make it difficult
to apply scan matching techniques because both scans (model and data) have not
similarities enough and it is not possible to match them.

Second, the scan matching in environments with repetitive and similar forms is
very laborious. For example, imagine a typical indoor environment composed of a
narrow long corridor and offices on both sides. Many locations along the corridor
have the same appearance, thus it is very difficult to distinguish between them. It is
not a scan matching shortcoming but a perception problem, because it is not possible
to solve it with the current information provided by the sensors.

An example of the second case is shown in Figure The mobile robot is located
in a long corridor without features. The purpose is to match two different scans took
from different positions (the distance between them is equal to one meter), but the
perceptive information obtained from both locations is very similar. After the scan
matching process, the result indicates that both scans have the same origin, which
means that the robot is situated in the same place.

It can be very interesting to apply feature detectors (for example, corner and
edge detectors) when the scan matching fails. It can solve the previously mentioned
shortcomings.

-

s
1600 <100
1400 -1

Figure 4.9: Scan matching associated difficulties. The environment is a long corridor
and the measurements obtained from two different locations are very similar. The
(wrong) result indicates that both scans have the same origin. All units in cm.
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4.3 Loop Detection

Being able to detect and correct loops is fundamental for autonomous navigation.
The maps generated after scan matching are not consistent enough to conclude that
the mapping task has been successfully achieved. This consistency will be given by
detecting the known places (loop detection) and eliminating the accumulated error
when it exists (loop closure). If the pose estimate has an small orientation error at
the beginning of the robot’s path, the accumulated error after some time can be very
important.

Analyzing the relaxation or loop closure problem, there are some algorithms that
obtain robust and reliable solutions, such as TORO [6] or Simultaneous Matching [7].
They distribute the accumulated pose error of pairwise registered scans in order to
build a consistent map once the robot has detected that it is in a pre-visited place.
However, the loop detection task is still an open problem in robotics. That is the
reason why this topic has been studied in this thesis.

This tool has been implemented to improve the map consistency. It is possible to
design a feature-based or a point-based algorithm (like scan matching). The second
option has not been considered here for several reasons. The scan matching algorithms
are based on the minimization of a cost function that is an estimate of the matching
quality. This cost function has a high computational cost when working in 3D. Since
it is necessary to compare the current scan to all frames, it is not a feasible option
from a computational point of view. Besides, the loop detection algorithms must be
rotation invariant because a pre-visited place could be reached from different points
of view. The scan matching methods present problems when working with strong
changes in orientation.

4.3.1 Surface features

The method developed here is based on several ideas. The first one is extracted from
the work by Magnusson et al. [104]. Their algorithm extracts features from two 3D
laser scans and compares them in order to detect if the loop exists. Their descriptor
is composed of the geometric forms of the scan (lines, planes, and spheres). Each
component is equal to the number of elements (laser measurements) that belong to a
feature (for example, plane with orientation).

The cited authors divide the map into a regular grid and calculate the parameters
of a normally distributed probability density function describing the local surface
shape. This part has been implemented here in a different way.

For each point 7 of the laser scan, the K nearest neighbors are efficiently searched
by using k-d trees. The covariance matrix of the K points is calculated after that. The
point i local surface is described by the eigenvectors (€7, €3, €3) and the eigenvalues



108 Chapter 4. 3D Mapping

(A1, A2, A3) of the covariance matrix.
The local surface type is given by the relation between A, Ay, and 3. Two
different variables (#; and t,) are defined to distinguish between surfaces:

e Line: )\1/)\2 > 1.
e Plane: it is not a line and Ay/Ag > 1.
e Sphere: it is neither a line nor a plane.

t; and ¢, are constant thresholds that are used to detect lines and planes respec-
tively.

After that, the planes and lines can be sub-divided into different types depending
on the orientation, and the different spheres can be defined depending on the surface
roughness. Finally, a number Ny of planar, linear, and spherical features is obtained.
A good performance is achieved in the experimental results with one line, seven
planes, and one sphere (N; = 9). The feature descriptor defined is:

F = (fi, e ), (4.19)

where each element j of F represents how many points belong to feature j.

The matching between scans is obtained by comparing feature descriptors. The
most common method is to define a difference giving weights to each component of
the descriptor. However, our approach here is treated from a different point of view.

If the matching quality is defined by a value that represents the similarities be-
tween a pair of scans, the loop detection is converted into a binary process because
the loop exists when the difference is lower than a threshold. Nevertheless, the loop
detection variable that we have defined is not binary but continuous. It has ben called
LPI (Loop Probability Indicator).

The LPI does not literally represent the probability of matching because the fea-
ture descriptors are not probabilities at all. But it is possible to define a variable
that equals 100% when the scans perfectly match and whose value decreases when
the match is poorer. That is the reason why the term probability is included. The
LPI initial definition is expressed by the following Equation:

N (max(fi, gi) — |fi — gi]) w;
LPI:Z i g1) T 100, (4.20)
=1 1y J1 =1 Wi

where f; and g; are the components of two different feature descriptors and w; repre-
sents the weight of each component.

The term (max(f;, g;) — | fi — ¢;|)/ max(f;, g;) of Equation represents the sim-
ilarities between both scans for a single feature. It has been normalized in order to
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be 1 when the matching is perfect and lower when the difference between f; and g;
increases.

Besides, each feature weight has to be defined and normalized. It has to be higher
when the number of points that belong to this feature is larger. The weight given to
each feature ¢ could be equal to

w;=max(f;, g;), (4.21)

choosing the maximum value between f; and g;. The weights are normalized by
dividing their value by the sum of the maxima of all features. Two different options
have also been implemented:

w;=mean(f;, g;).

wi:; max(f;, g;)/T. (4.22)

The first one uses the average value instead of the maximum. The second one not
only considers the current frame but the past information. If the robot has received
T laser frames during the exploration, each weight is the average of the T" weights
that are obtained for each laser scan according to Equation [4.21]

If the weights are given by Equation [£.21] Equation [4.20| can be simplified:

SN (max(fi, g:) — | fi — gil)
>N max(fi, i)

This option will be used from now on for simplicity.

The described method considers geometric forms (we have called them surface
features). Each component holds the number of points that belong to each feature.
However, there are different types of features that cannot be added. It can be inter-
esting to add different features (we have called them numerical features) and change
the LPI formula in order to introduce them.

LPI=

- 100. (4.23)

4.3.2 Numerical features

There are interesting characteristics that can be represented by a number. Some

examples are: volume, curvature, average distance between points, and so on. A

feature descriptor with numerical characteristics is used by Granstrom et al. [105].
Including this type of features, the new feature descriptor can be defined as
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F = (fiy ooy oy Nty oos NN, (4.24)

where N,, is the number of numerical features.

The LPI value must satisfy the specifications: it has to be equal to 100% in
a perfect match and lower when the matching quality decreases. Therefore, it is
necessary to define the weights of the new features according to this fact.

Analyzing Equation [4.20] the average value of the weights is equal to

NS . .
w = Zisimax(fi, ) (4.25)
Ny
A weight equal to W will be given to the new features. Nevertheless, different
weights can be calculated depending on the new features to be added. The loop

indicator can be now divided into two components:

S (max(fi g;) — | fi — gi])
[0 max(f;, g:)) (1 + R2)
NI max(fi, gi) — | fi — il

LPI,=
i_%;—i—l max(fia gz)
(3 max(f;, g:)) /N
(27 max(f;, g:)] (1 + %)
N max(f;, g;) — | fi — gil 1
LPI,— .
z':NZS—i-l max(fia gz) Ns + Nn

LPI=(LPI, + LPI,) - 100 (4.26)

LPI,=

The loop indicator still meets the requirements: it is equal to 100% in a perfect
match and lower when the matching quality decreases. LPI, is the component that
computes the surface features. It is calculated following Equation but the
weights are normalized according to the total number of features (Ns+ N,,) by adding
the term 1+ N,,/Ns. LPI, is used to include the numerical features. Each component
weight is equal to W and the expression is normalized according to the total number
of features .

An advantage of the proposed method is that the weights are calculated online, not
needing any machine learning algorithm to fix them like the method by Granstrom
et al. [I05] does. The autonomous robot mapping task is not traditionally a machine
learning problem, thus the previously explained option that has been developed in
this paper is a more suitable approach.
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Different numerical features have to be considered to be a component of the
descriptor. Most of them have been taken from the work by Granstrom. The best
performance has been obtained with the following ones:

e Volume: the volumes of the individual laser beams are added to measure the
volume of the scan. Each measurement is the centre of a pyramid base with
its top in the sensor location (robot’s position). If #, and ), are the laser
vertical and horizontal resolution, the length and width of the pyramid base are
l; = 2d;tan(0,/2) and w; = 2d;tan(6),/2). The height is h; = d;. The volume of
the pyramid is v; = [; - w; - h;/3. It is possible to obtain a volumetric feature
that does not depend on the angular resolutions, normalizing the volume of
each point with the volume of d,,,;:

1 &L 1 & q

> vi=752(

Pvmax i=1 i=1 dmax

st+1 = )37 (427>

where the range d; is computed as the distance from point ¢ to the sensor
location. The total number of points is P.

e Distance: fy,.o is the sum of the distances between consecutive points: dp; =
||D; — Pis1]], where pj is the 3D position of point 4.

e Curvature: if A is the area covered by the triangle with vertexes in p;_1, p;, and
Di+1, and d;_1, di—1 41, and d; ;41 are the pairwise point to point distances, the
curvature at ¢ is computed as

4A

di—1idi—1i+1d; 541

k= (4.28)

fn.+3 is the mean of the vector that contains the curvature for all points.
Besides, there are more candidates that could be chosen as numerical features:
e Average range: fn,i4 is the average of d; normalized by dividing by ..

e Standard deviation of range: fu, .5 is the standard deviation of d; normalized
by dividing by d,,qz-

e Range kurtosis: it is a measure of the peakedness of the histogram of ranges.
It is computed as follows:

m = 5 > (d; — d)F. (4.29)
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my

froe = ma)? 3. (4.30)

e Centroid: fy, 47 is the mean distance form the centroid of the scan and fy, s
is the standard deviation.

e Range differences fn, 19 is the mean of the range difference between consecutive
points and fy, 10 is the standard deviation.

e Curvature standard deviation: fx, i1 is the curvature standard deviation.

Depending on the number N,, of these new features and the descriptor composi-
tion, different behaviors will be observed. It will be necessary to make a study about
it, selecting the best settings.

4.3.3 Expression analysis

The final definition of LPI is given by Equation Analyzing its value, an addi-
tional mechanism has been implemented in order to improve the method capabilities.
Different bands have been defined depending on the loop detection variable value:

e LPI > ti: positive matching. The loop is detected and the accumulated error
must be minimized by a relaxation method.

e to < LPI < ty: uncertainty band. There is not enough information to conclude
that the loop exists.

e LPI < ts: negative matching. There is no loop in this case.

t; and t5 are thresholds that are used to distinguish between bands.

An advantage of this approach is that an additional method can be applied when
LPI is inside the uncertainty band, thus the loop detection quality is improved. The
implemented method consists of analyzing a third scan. If the LPI value between
two scans (@ and b) is inside the uncertainty band, a third scan is considered and the
probability is calculated again using the new scan (a and c). This is done by waiting
until the robot receives a new laser reading from the next location that is explored.
The loop is now detected depending on the new value that includes more information.

The minimum loop size must be also defined to complete the algorithm. If it is too
small, consecutive scans will be considered as loops. Therefore, a minimum number
of scans between two visits to any location must be fixed.

In addition, the LPI definition given by Equation makes this method very
flexible because it is not necessary to have any previous knowledge about the environ-
ment. It has more associated advantages. As said before, different features and values
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of N,, can be introduced in the formula in order to choose the best combination. It
can be considered as an online learning method because it does not need any previous
training or a huge available data set.

When the autonomous robot is navigating around the environment, the available
information increases, and the LPI weights can be changed to obtain a better perfor-
mance. The features average or standard deviation would be a better approximation
if there is enough information. For example, the features average of the past scans
can be chosen. This option has been implemented in this work, as can be seen in the
second line of Equation [4.22]

After several pair comparisons, an estimation of the most important features in
the matching process can be done, and the weights of the most important features
can be increased while decreasing those of the least important ones.

The described method is adaptive and its weights will change online while the
robot is navigating and acquiring new information. Its adaptation to changes of
the environment is automatic. For example, if the robot is working on an indoor
environment and it navigates to an outdoor place, the adaptive weights change while
it is navigating and the adaptation to the new environment is done online, not being
necessary to make any additional calibration.
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This chapter has been divided into two different sections that demonstrate the effi-
ciency of the proposed tools and show their associated characteristics. The RELF-3D
localization filter experiments are presented in in Section [5.1] while the experiments
related to the mapping tools (scan matching and loop detection) are shown in Section

5.1 Global Localization in 3D Environments

All the experiments have been developed in a simulated indoor environment: lab-
oratories, corridors, and offices of the Department of Engineering Systems and Au-
tomation of the UC3M. An example of the 3D map can be found in Figure 5.1} The
measurement model is the same that was explained in Section [3.2.4]

Z(cells)

Y(cells)

X(cells)

Figure 5.1: 3D simulated map.
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The following experiments have been conducted to demonstrate different aspects.
The first one, that is shown in Section [5.1.1] tests the capacity of this method to
solve the global localization problem. After that, the method accuracy is calculated
in Section [5.1.2] The effect produced by the thresholding and discarding mechanisms
is studied in Section [5.1.3] In Section [5.1.4] different fitness functions are compared.
The complexity and computational cost are computed in Section [5.1.5] Finally, the
results of the initial population estimation method are presented in Section [5.1.6]

The parameters used by the DE-based localization algorithm are F' = 0.85 and
C, = 0.75. The laser error is Gaussian-distributed with a 3% average standard
deviation over the distance weighted (o = 0.03xdistance). The threshold 7 is equal to
Sy fF = 0.03fF, where Sy is the sensor noise (percentage over the distance weighted)
and fF is the fitness function value for the ith population member in the kth iteration.
The discarded population is equal to the 5%. The population size has been empirically
adjusted in all cases except in Section where it is generated by the initialization
tool.

5.1.1 Effectiveness of the algorithm

In the first experiments, we have tested the capacity of our method to solve the global
localization problem. In order to do that, we must tackle the problem of localizing
the robot in a random place of the environment only with the information of the
sensors at this point (3D data obtained with the laser range finder and movement
information).

First, we will consider that the robot is still. The way to check it consists on
running the algorithm a number of times, situating the robot at different places, and
obtaining the percentage of success. The global localization process starts with the
robot situated in a random place of the environment and two different cases and
variables define the process: the estimate matches the real pose (the variable true is
incremented by one) or the estimate and the real pose do not coincide (the variable
false is incremented by one). After that, a new random place is generated and the
previous process (which is defined as a single trial) is repeated. The total number
of trials is total. The percentage of success is equal to true divided by total. We
have chosen 100 as the number of elements of the population. The laser range finder
has an error of 3% over the distance weighted, which is worse than the noise of real
devices. The commercial devices have a noise which is approximately equal to a cm.
We have not considered the convergence of the algorithm in this experiment, and we
let the algorithm run a high number of iterations (500) to see whether it can obtain
the solution or not.

The success of running the program under these conditions is 84%. This percent-
age depends on the environment and our map contains many similar places whose



5.1. Global Localization in 3D Environments 119

Figure 5.2: Example of localization in a corridor.

correspondent measurements are the same. Therefore, it is not possible to distin-
guish between several different locations because the sensor measurements are the
same. For example, it occurs when the robot is inside an office. That is why the
algorithm does not succeed in some cases and the localization method converges to
all possible solutions (correct place and similar locations). We consider it as a failure
because it does not converge to a single solution. The algorithm returns one solution
but it could be a wrong place. It can also be explained using the human beings per-
ception. If you are in an office corner looking at the wall it is not possible to know in
which office you are. It can be concluded that the information is not good enough to
apply localization techniques in these cases.

This is a promising result, because we have not included the movement of the
robot (using a single step to localize the robot, with information of one 3D laser scan
and no motion information), but it does not reflect a real situation. The purpose of
the experiment is to check the capability of our method to solve the global localization
problem. Therefore, the RELF-3D algorithm is suitable for solving this. An example
of the information that the robot would receive is shown in Figure [5.2] where the 3D
environment, the laser readings, and the robot are represented.

However, we will not find this situation in real life, because the robot will not
be still. We have also tested the capacity of our method under movement, making
different experiments with changes in the maximum iterations per step. On one
hand, with a high number of iterations per step, we will be closer to the solution in
one single step, but with a lower velocity because we need more time to deal with a
single laser reading. As a reminder, the robot uses the first laser reading to locate,
with a given number of iterations, and then the second laser reading from another
location is introduced in the localization module, including motion information. On
the other hand, with a low number of iterations, the robot will need less time to
execute a step. The number of steps to localization against the iterations per step is
shown in Figure [5.3

The population size is 100. The convergence criteria to conclude that the robot
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Steps to Localization
L} ke Mo L =y [8)] o -] oo w

—

0 20 40 60 80 100
Iterations/ Step

Figure 5.3: Steps to localization vs. iterations/step. Error = 3%. Convergence
criteria: worst member fitness value smaller than 3N, /2. Algorithm options: random
mutation with thresholding and discarding. N, = 100.

is successfully localized is that the worst member fitness value is lower than 3N,/2.
The average number of steps after situating the robot in different places is shown in
the figure.

Interesting results can be concluded observing Figure It needs more steps to
succeed with a maximum of 10 iterations per step (lower limit chosen). Therefore,
we obtain better results in other cases. The time needed (it depends on the number
of iterations) to execute the localization algorithm in a step is less, but we do not
know the situation of the robot until eight steps. It means that the number of laser
readings used, and also the distance from the initial location to the current one, is
bigger. This could be quite dangerous for the robot, because it goes a long way before
being properly localized on the map. If the number of iterations per step is 90, the
robot will need one single step. However, the time needed could be a problem if the
time per step is a constraint. It can be concluded that different values can be chosen
depending on robot requirements. For example, good results are obtained with 40
iterations per step. The robot is successfully localized quickly in two steps using a
low number of iterations.

Vahdat et al. [46] show a similar experiment implementing three different meth-
ods: DE, PSO, and MC. However, the number of iterations per step is surprisingly
low. They need two or three iterations in each time-step and about 25 steps for ro-
bust convergence. The experiment is different from ours because it does not limit the
number of steps but the number of iterations. It can be because it is not dangerous
for their robot and it can wait 25 steps until convergence. It is a different result that
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Table 5.1: Errors localizing the robot at different points. The cartesian coordinates
are in cells and the errors in millimeters and degrees.
x y oz 0 T 7 z 7 ep(mm)  ep(deg)

1 47 358 4 0 47.001 358.000 4.039 0.000 4.76 0.000
2 75 215 14 90 75.004 214984 13.991 90.016 2.24 0.016
3 13 260 13 10 13.000 260.005 12.991 9.997 1.21 0.003
4 82 240 16 45 82.016 240.004 16.047  44.957 6.06 0.043
5 40 385 15 5 40.015 384.997 14.976 4.981 3.50 0.019
6 48 68 10 180 48.006  68.027 10.009 180.017 3.51 0.017
7 60 60 7 5 59993 60.015 7.032 2.032 4.31 0.032
8 82 100 11 90 82.015 100.000 11.000  89.985 1.88 0.015
9 60 380 6 0 60.001 380.005 5.972 0.000 3.41 0.000

10 110 130 9 270 110.009 130.007  9.018 269.937 2.64 0.063
11 70 23 9 0 70.001 23.045 9.066 360.000 9.63 0.000
12 110 260 3 250 109.990 260.021  2.915 250.016 10.63 0.016

complements our experiments. They compare convergence rates, convergence times,
and individuals needed for convergence, and their conclusion is that DE converges
faster, more robustly, and with fewer individuals.

The percentage of success running the program under these conditions is higher
(93%). This is a logic result, because we have more information: several laser readings
and movement (odometry) information. It means that the algorithm returns the
correct location in the vast majority of the cases, a very promising result considering
that the places are random and there are many symmetries in the map.

5.1.2 Accuracy of the method

The localization process results in different points of the environment can be seen in
Table [5.1] The cartesian coordinate of the point we want to localize in the map is
x, and Z is the estimation obtained. This can be extended to y, 9, z, and 2. The
orientation in the horizontal plane (tilt) is 6 and 0 is the estimation obtained. The
sensor noise level is 3% (a gaussian distribution over the laser distance with a standard
deviation of 3%). The position error (e,) is the distance in millimeters between the
estimated value and the real position of the robot. The orientation error (eg) is the
difference between 6 and é, in degrees.

We can conclude that the accuracy of the localization process is improved signifi-
cantly compared with our previous works in 2D maps, and we believe it is the most
important advance we have obtained. If we observe the position error column (e,),
the average error is equal to 5.1 mm, and the same measurement with our previous
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algorithm using 2D sensor data was equal to 2 cm, as can be checked in our published
work [45]. The main reason for this reduction is the increase in the amount of infor-
mation. The 3D laser reading contains nine 2D scans (slices). Thus, the information
is multiplied by nine.

It is possible to compare the accuracy results with those obtained by other groups
working on localization in 3D environments. The accuracy achieved by Kiimmerle
et al. [51] is about a few centimeters. Se et al.’s [58] average Euclidean translation
error is equal to 7 cm and the average rotation error is 1°. However, they mention
that it can be reduced by using a higher image resolution. Ho et al. [56] localize
the robot within 1 m of true position and 5° for orientation. Their best results are
9 cm and 0.49°. The localization error mean obtained by Royer et al. [57] is equal
to 1.9 cm and 0.1°. The results obtained in this paper are more accurate than those
approaches.

Furthermore, this improvement has an important consequence for the computa-
tional cost. We work with a 3D laser scanner and it has a negative influence on the
computational cost. However, the accuracy is higher and we need less iterations to
obtain satisfactory results. The negative influence of the 3D laser data can be partly
compensated with the positive influence of the accuracy improvement (allowing us to
use the algorithm faster with relaxation in the accuracy or convergence requirements).

If we observe the orientation error, we see that its value is very small. The orien-
tation error average was equal to 0.02° for the results shown in Table 5.1} Therefore,
it can be concluded that the method presents good features in this aspect.

The influence of the sensor noise level can be observed in Figure [5.4] where the
localization error (in centimeters) is represented against the laser noise level (standard
deviation of a Gaussian distribution over the laser distance, in percentage of the
weighted distance). We obtain acceptable results even with a high noise. As can
be observed in the figure, the error is lower than a centimeter with a 15% of sensor
noise. It is a great result that leads us to conclude that the algorithm presents good
performance in this aspect. Besides, the typical error of this type of devices is around

1%.

5.1.3 Thresholding and discarding effect

A threshold rejection band has been added to avoid the premature elimination of solu-
tions. This mechanism decreases the eagerness of the algorithm, letting it to eliminate
a candidate solution from the set only when the offspring candidate is significantly
better from a statistical point of view. A discarding operator was also added to ac-
celerate the convergence of the algorithm by eliminating a very low percentage of the
worst population individuals at each iteration of the algorithm, and resampling the
individual candidate in the vicinity of a better candidate selected randomly between
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Figure 5.4: Error vs. sensor noise level. The localization error is in cm. The noise
level is the standard deviation of a Gaussian distribution over the laser distance, in
percentage of the weighted distance.
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Figure 5.5: Best fitness evolution value vs. iterations. Three different options: with-
out thresholding, with thresholding, and with a thresholding band and 5% of popu-
lation discarding.
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An important effect of the use of a threshold rejection level is the decreasing of
the convergence speed, as shown in Figure [5.5] The latest improvement occurs in
iteration number 380 in the thresholding option for the best estimation, while it is
produced around iteration number 260 in the other case without thresholding. The
fitness function is the L2-norm (Equation and the observation measurements
are in cells.

The use of a discarding mechanism accelerates the convergence of the algorithm
with a threshold level. Studying the case with thresholding and discarding, it can be
concluded that the convergence is reached earlier.

The algorithm with discarding is even faster than the basic version, while main-
taining the capability to avoid premature convergence inside of the noise band, as
can be seen in Figure [5.6) which shows the solution of the algorithm in a highly
symmetrical environment.

In this type of environment it is not possible to distinguish between all rooms,
because the observations are the same for all of them. If the algorithm is optimized
in the noise band, it will eventually converge into a room, giving us a wrong result. It
will finally converge to one solution, eliminating all the other rooms and concentrating
all the population around the optimal solution.

It can be observed that the estimated solution (point in the center, with coordi-
nates (30.00, 385.00,5.97,0.00)) does not coincide with the real solution (30, 220, 6, 0),
but there are still candidates in all rooms. It is a logical result that indicates that
the algorithm avoids the premature elimination of solutions.

It is also important to say that the thresholding mechanism does not always make
the algorithm converge slower. There are cases where the noise makes the algorithm
evolve towards erroneous solutions. Although the number of candidates that evolve
is smaller, the improvements are more significant, and the big influence of the best
candidates on the population improves the convergence speed. It occurs in situations
where noise plays a very important role, as can be seen in Figure which shows the
evolution of the best fitness function value in a particular case under the influence of
an important noise (we use a range laser finder as sensor, and the noise introduced is
equal to 10% over the distance weighted). It can be observed that the thresholding
increases the convergence speed in this case, being even close to thresholding with
discarding option.

5.1.4 Fitness function options

There are several options when choosing an appropriate cost function for our partic-
ular problem. The Ll-norm and the L2-norm have been studied in this document,
and the results are presented below.
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In order to test the algorithm characteristics in this aspect, a simulated environ-
ment has been considered (Figure . This environment is similar to many office
indoor areas where all offices are located along the central corridor. This test envi-
ronment will be used to verify the accuracy and robustness properties of the evolutive
localization filter algorithm under two different cost functions, and the effect on the
algorithm convergence of a contamination in the noise error. A Gaussian observation
error of zero mean and standard deviation o equal to 3% of the measured distance

has been considered.

The first test tries to determine the capability of the algorithm to localize the
robot when it is located in one of the distinguishable rooms. The robot’s pose is

Z(cells)

Y(cells)

X(cells)

Figure 5.6: Algorithm solution in a symmetrical environment, with thresholding and
discarding
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Figure 5.7: Best fitness function value vs. iterations. Three different options: without
thresholding, with thresholding, and with a thresholding band and 5% of population
discarding. Noisy case (10% over distance).

variable and there is no contaminated noise. The position errors in centimeters are
presented in Table (columns with subindex NC').

The second test tries to determine the capability of the algorithm to localize the
robot when there exists a contaminated Gaussian noise. This behavior has already
been studied in our previous work [I12]. This situation happens when there are
mobile objets or unexpected obstacles. In order to test this situation the robot has
been located in one of the distinguishable rooms and the normal Gaussian noise has
been contaminated with a uniform distribution between the 25% and 75% of the
sensor measurement. The results with a 10% of contamination can be observed in
Table (columns with subindex C').

Comparing the results presented in the no contaminated case, there is no clear
evidence to choose one option, as in both cases the errors present comparable values.
Only the position error is considered, because the results were negligible with the
orientation error.

However, if we study the case with uniform contamination, the results are much
more interesting. The error estimating the pose using the L1-norm (the average error
is equal to 1.087 cm) is significantly lower than using the L2-norm (the average error
is 8.464 cm). This is a logical result, because the contamination introduced has a
bigger influence in the penalization of the cost function value using the square error,
being much more robust with the first order one.

Moreover, if we look at the terms in parentheses, which correspond to the popu-
lation size used in each case, we find another interesting conclusion. It is very often
necessary to use a larger population to succeed (with a smaller size the robot was
unable to locate) in cases of contamination when using the L2 norm, which adversely
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Table 5.2: L1-norm and L2-norm estimation position errors from different locations.
Two different situations: no contamination (NC), and 10% of contamination (C).
Errors in centimeters and locations (z,y,z,0) in cells. Each cell size is a cube of 12-cm

side. Population size required is in parentheses.

True Pose €P(L1,NC) €EP(L2,NC) €P(L1,C) €P(L2,C)

(95,430,12,180) 0. 783(200) 1. 123(150) 4. 040(250) 18.84(2()0)
(25,190,6,0) 0.113(250) 0.303(250) 0.570(250) 1.222(250)
(50,100,10,0) 0.672(150) 0.665(150) 0.656(150) 0.576(300)
(50,350,13,0) 0.943(2 ) 1.907(2 ) 1.646(2 ) 3.324(200)
(90,425,8,270) 0.652( ) 0.628(150) 0.689(150) 12.121(150)
(80,240,15,270) 0.623( ) 1.037(150) 0.907(150) 4.158(150)
(70,350,8,270)  0.661(200) 0.221(150) 1.605(150) 1.656(500)
(30,225,14,90) 0.333(150) 0.278(150) 0.151(150) 13.059(150)
(30,200,5,90) 0.673(150) 0.811(150) 0.366(150) 13.345(300)
(25,275,10,90) 0.289(150) 0.461(150) 0.246(150) 16.342(300)
Average 0.574 0.743 1.087 8.464

affects the computational cost.

Therefore, we obtain better solutions with the cost function given by the L1-norm
in cases where there is a significant contamination (cases with many dynamic objects,
pedestrians, etc.).

Besides, it can be appreciated the algorithm present good performance with Gaus-
sian errors up to ten percent in measurement in both cases (with and without con-
tamination).

5.1.5 Complexity and computational cost

An additional issue addressed in our experiments concerns the running time of the
RELF-3D algorithm. The computational cost of any algorithm that works in 3D
maps is very high, and this is one of the biggest problems found by researchers in
this field. The absolute time depends on several factors: the computer platform, the
observation prediction model and the sensor data, and the population and iterations
number.

The algorithm complexity is O(n), which means that it grows linearly with the
population size and the perceptive sensor size. It does not depend on the robot’s
DOF, which can be easily expanded if necessary.

Table shows the time required for RELF-3D to update the estimate value
using 9 x 61-range laser data, 15 iterations/step, and different population sizes. Table
shows the time required for the RELF-3D algorithm to update the robot’s pose
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Table 5.3: Computation time for a fixed number of iterations.
Population/iterations Time(s)

200/15 16.14
100/15 8.77
50/15 4.09
25/15 2.25
10/15 1.04

Table 5.4: Computation time for a fixed population of 50 elements.
Population/iterations Time(s)

50/5 1.42
50/10 2.95
50/15 4.03
50/20 5.66
50/25 7.21
50/50 12.75

estimate using a fixed population size and changing the iterations per step number.
In both cases, the behavior of the algorithm is completely linear. In our experimental
tests, the best results in a 865 m? x 3 m environment have been obtained with an
initial population of 50 elements and 15 iterations.

Analyzing the localization method described in Algorithm [3, the bottleneck from
a computational point of view is the function named as dist_est_3d. It consists of
estimating the 3D laser scan (composed of 9 x 61 laser beams) from a pose estimate
in the simulated environment, and it has to be calculated for each population member.
The reading is used by the fitness function to calculate the error.

A critical point in any global localization algorithm is the variation in the com-
putational requirements with environment dimensions. The RELF-3D algorithm re-
quirements in our experiments not only depend on the size of the environment but
also on the characteristics of the place where the robot is located. As an example, in
the experiments done in our laboratory test site, a 900 m? x 3 m environment, the
algorithm requires at least 50 samples when it is in the corridor, and 100 when it is
in one of the offices.

The computational cost is higher when we use the algorithm in three dimensions,
but the improvement of the accuracy is an important result. If we work with a
mobile manipulator and tasks with small objects, it will be indispensable to obtain
an accuracy of millimeters. If the robot does not need this level of accuracy, we will
obtain a reduction in computational cost with less restrictive convergence conditions.

It is not easy to compare our algorithm to other methods. Se et al.’s [58] global
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localization computational times are 0.725 and 0.02 s for two different methods imple-
mented. They show that the SIFT feature extraction is efficient from a computational
point of view. However, their method is vision-based and the computational prob-
lems that they need to solve are different. Besides, they do not focus on obtaining
the maximum accuracy and their map size is 100 m? (our map size is 900 m?). Ho et
al.’s [56] algorithm needs 4.82 s to obtain the global localization solution. This time
is similar to the time obtained in our results. Lingemann et al.’s [52] method can
be used online because they need 10.38 s to compute a trajectory composed of 2844
scans. However, it is not easy to compare their method to our algorithm because
their times are referred to the tracking problem. Finally, the time needed to obtain
the measurements can be the most important one in many cases and it has to be con-
sidered in real applications. The time delays of the ultrasonic transmitter/receiver
modules are approximately equal to 0.5 s in the paper published by Tsai et al. [53].

5.1.6 Initial population estimation

It has to be remarked that there are two different options when choosing the initial
population size. It has been empirically adjusted in the previous experiments, but we
have also developed an initialization mechanism in Section that is based on the
information perceived by sensors. The method performance has been demonstrated
here with three different experiments.

The first one demonstrates the capability of the method to solve the global local-
ization problem when the robot is situated in a large area. The second experiment
is similar, but the robot is now in a medium-size map. Finally, the estimate is com-
pared with the best solution in different cases, representing the probability of success
against the initial population size. All experiments have been conducted in a planar
map for simplicity.

Large map

A simulated indoor map has been chosen to test the characteristics of the method.
It is a large indoor environment and there are significant differences in the number of
elements of the initial population when the robot is situated in different places. The
computational cost can vary from a few seconds to more than twenty minutes. The
map size is 960 x 600 = 576000 cells, which is equivalent to an area of 8433 m? (the
cell is a 12.1 cm-side square). This map is shown in Figure .

The results of the global localization process for the first observation when the
robot is situated in ten different places are shown in Table[5.5] The left columns rep-
resent the cartesian coordinates and the orientation in cells and degrees, respectively.
N, is the number of elements obtained with the initialization method. A characteris-
tic of the place is described in the next column, and the elapsed time needed in each
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Figure 5.8: Map of the environment (large area). All units in cells.

case is shown in the right one.

It is a map with important symmetries, which is an important drawback that in-
creases the number of elements. For instance, if the robot is located at (50, 60, 0), there
are two different locations with exactly the same observation vector and it is impossi-
ble to distinguish between them without additional movement of the robot and more
perceptive information. The other possible location is approximately (850, 60,0). The
true pose will converge to one of them depending on the stochastic evolution of the
localization method.

In case 7 of the table, there are eight possible locations with the same observation
vector. It is a corridor with columns in the middle, and there are four identical places
where the robot is looking in one direction and other four where it is looking in the
other one. It is not possible to distinguish between them because the range of the
simulated laser scanner is not large enough. In order to solve the problem, the robot
must obtain another observation vector after movement.

It can also be observed that there are important differences in the computational
cost, which leads us to conclude that the correct estimation of the initial population
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Table 5.5: Number of elements of the initial population in different places of a large
environment. The cartesian coordinates are in cells, the orientation in degrees, and
the time in seconds. Sensor error: 2% over the distance weighted.

X y 0 N, Characteristics Elapsed time

1 600 80 90 200 Big room 24.51
2 600 130 0 272 Big room 30.22
3 50 60 0 1080 Narrow corridor 162.58
4 100 300 0 1500 Wide corridor 290.86
5 650 400 0 1518 Medium-size room 335.81
6 400 50 90 2004 Narrow corridor 375.85
7 750 100 90 1710 Big corridor with columns 377.89
8 300 550 0 5496 Very narrow corridor 831.43
9 330 580 270 20700 Small office — 00
10 130 580 270 79038 Small office — 00

number of elements is a crucial factor in this aspect. It should be added that it is
the computational cost for the global localization problem in a large environment
with only one observation vector and no movement. Once this problem has been
solved and all candidates have converged to the true solution, this number can be
drastically reduced. The number of iterations to converge is also reduced because
the algorithm now starts with the previous results as initial population instead of
a random distribution over the map. These factors have a great influence on the
computational cost and the algorithm could be used online. If there is no reduction
in the population size, it usually takes a few seconds, and less than one second when
the candidates are re-sampled in the true solution area. However, it is not the subject
of this work and it has been explained in our previous work [45].

The typical situation in mobile robotics includes robot movement. This situation
has not been studied here because it is not the purpose of this experiments, which
focus only on the initialization problem. This fact has also been studied before [80].

There are some cases where the estimated number of elements is too high and it is
impossible to work with a population of this size. For example, when the robot is at
(130, 580, 270), the initial population size is equal to 79038 elements. It is impossible
to work with this number from a computational point of view. It is logical because
the robot will be able to locate itself when there is enough information to do it.
If it is in a corner looking at the wall, it will not be no possible to solve the global
localization (like human beings, because we cannot know where we are in these cases).
The robot must turn around until the perceived information is maximized, and the
initial population number will decrease to an acceptable value.
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Figure 5.9: Map of the environment (medium-size map). All units in cells.

Table 5.6: Number of elements of the initial population in different places of a
medium-size environment. The cartesian coordinates are in cells, the orientation
in degrees, and the time in seconds. Sensor error: 2% over the distance weighted.

X y 0 N, Characteristics Elapsed time

1 800 45 90 78 Wide corridor 11.57
2 800 50 0 132 Wide corridor 15.11
3 450 50 90 116 Wide corridor 19.53
4 200 70 0 250 Big office 30.60
5 650 110 270 336 Big office 37.20
6 830 60 180 390 Medium-size corridor 68.67
7 400 60 0 582 Medium-size corridor 64.95
8 350 100 90 1156 Small office 110.62
9 230 30 270 2254 Small office 172.40
10 190 30 0 4338 Small office 791.64

Medium-size map

The second environment is a medium-size area shown in Figure |5.90 The map di-
mensions are 960 x 120 cells, and the total area is equal to 1687 m?. The results are
shown in Table (.6

The time requirements in this experiment are substantially lower. The map is
smaller and the result is obtained in 11 s in the most favorable case. The influence
of the map size on the population estimate can be deduced from Equation [3.41]

The computational cost does not only depend on the population size. There are
places where the algorithm converges faster with a larger population (cases two and
three of the table). It is because it is easier to achieve the global minimum when
the basin of attraction is bigger and more abrupt. The symmetries have a negative
influence in this aspect because it is more difficult to converge to the true pose when
there are similar locations.



5.1. Global Localization in 3D Environments 133

Analyzing both experiments, it can be concluded that the estimation of the initial
population size is robust enough to achieve the solutions when the robot is located
in different places of medium-size and large environments.

Comparison between estimate and best solution

In the first experiments, the initialization method has been tested and it has been
concluded that the proposed method is good enough to localize the robot in a robust
way. After that, it has been thought that it is necessary to have statistical evidences
to validate the hypotheses. In other words, it is necessary to know how good the
results are.

Besides, the computational cost is one of the most important challenges and short-
comings of particle-based localization methods, and the objective is to obtain good
performance in the localization process with a minimum number of elements. This
requirement is studied in the following experiment, which is very simple and intuitive.

The number of elements of the initial population is fixed (without the initialization
method) and the algorithm is executed obtaining the percentage of success. It means
that the probability of being correctly localized with a constant initial population
size is calculated. After that, the number of elements is changed and the previous
process is repeated. The goal is to represent the percentage of success against the
initial population size. Finally, the results are compared with those obtained with
the initialization method.

The simulated indoor environment of Figure[5.9 has been chosen in this experiment
and the results obtained are shown in Figure [5.10}

The population size must be large enough to have the highest probability of local-
ization. Nevertheless, the computational cost increases with this number. Therefore,
the best estimate is the minimum number of elements that maintains the highest
probability.

Studying the graph, an interesting conclusion can be reached. There are some
places where it is more difficult to localize the robot and it does not only depend on
the initial population size (it was also discussed in the other experiments). It can
be because there is not enough information (the robot is in a corner) or the robot
is in a symmetrical place. If there are two different places with the same aspect, it
will be impossible to distinguish between them to localize the robot with only one
observation vector. That is the why the maximum probability is not the 100% in some
cases. The important conclusion is that the proposed method estimates a number of
elements that is in the maximum probability band. Besides, the discontinuities have
also a negative influence, because it is more difficult to reach the basin of the global
minimum.

Six different cases have been represented and the most difficult one is the example
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Figure 5.10: Probability of a correct global localization (%) vs. population size in
different places of the environment.

where the robot is located at (340, 80,0). This case presents symmetries problems
because it is situated in one office and there are similar ones. Besides, at least
five discontinuities can be found in the laser reading. As was said previously, the
percentage of success is not equal to 100%. The factor that is introduced to avoid the
discontinuities effect limits this problem, but it is not sufficient in those cases with
many complications. The robot is unable to always obtain the true position, but
the estimate is in the maximum probability band. This case does not have a unique
solution and it is impossible to solve it with a single observation vector. It has been
introduced to show the reader what happens in these situations.

Some problems have been found when the population size is very large. In some
cases, the estimate is too conservative because the calculations have been made to
obtain a robust formula. The results are robust but the population size implies
problems with the computational cost. It can be avoided by limiting the upper
limit of the population depending on the computational requirements for a specific
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task. The number of candidates can also be penalized when the population is over a
specified value.

An interesting conclusion has been reached after these experiments. When the
number of elements is small or medium, the estimated number is optimum. If there is
not much information and the estimated population is large (more than 500 elements),
the formula is robust but too conservative and the size may be smaller. It has to be
noted that the results are applicable to this environment. Observing Figure [5.10]
good results could be obtained with fewer elements. An additional correction factor
could be introduced in the formula when the number of elements is larger than a
threshold. A good performance could be obtained with a factor equal to 0.6 when
the population size is larger than 500.
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5.2 Mapping in 3D Environments

5.2.1 Data sets

The Hannover2 data set has been recorded at the university campus of Leibniz
Universitdt Hannover, Germany. It contains 924 3D scans (with 360° field of view),
covering a trajectory of about 1.24 km. Each scan is approximately composed of
16600 points. The maximum range is d,,., = 30 m. Thanks to Oliver Wulf for
making available these data['}

The UC3M data set obtained by MANFRED-2 has been recorded at the university
campus of the UC3M. It contains 150 3D scans covering a 900 m? indoor environment
(Department of Engineering Systems and Automation of the UC3M). Each scan is
approximately composed of 45000 points. The horizontal (tilt) resolution is 0.25°,
and the amplitude of a 2D scan is 190°. The vertical (pan) resolution is 1° and its
amplitude is 70°. The maximum range is d,,q, = 15 m.

5.2.2 Scan matching

Two different experiments have been conducted to verify our DE-based scan matching
method. The algorithm has been configured with the following parameters: F' = 0.8,
Cr =0.75, Sy = 0.02, Np = 20, and maximum iterations equal to 50. An additional
convergence criterion that follows the ideas developed for the RELF-3D algorithm
has been implemented. The best element fitness value (min(e¥)) is checked and the
process is stopped when its value is equal or lower than 3Np /2.

The UC3M data set is used in the first experiment to study the error in local
environments composed of several laser frames. The purpose is to observe the visual
appearance of the map that is built after registration.

Some results in different situations are shown in Figure [5.11] The distances be-
tween consecutive scans are equal to 30 cm. The local map after joining four different
scans when the robot is located in a corridor is represented in the upper part. The
high accuracy can be observed in the horizontal projection. Two different labs are
modeled in the middle and bottom figures. The middle one is composed of four scans
while the bottom one is formed by six laser frames.

In general, the high accuracy of our method lets us conclude that the algorithm
can be used in manipulation tasks. It is not easy to measure the scan matching error
because the robot’s truth pose is not available in indoor environments. However, the
error is equal or lower than a centimeter when analyzing the horizontal projections
of the local maps. Similar errors have been obtained after applying an ICP-based

"http://kos.informatik.uni-osnabrueck.de/3Dscans/.
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Figure 5.11: Scan Matching. Different local maps obtained after registration. UC3M
data set. Top figures: university corridor. Middle and bottom figures: different labs.
Left: 3D view. Right: horizontal projection. All units in cm.

method in the corridor. Our method accuracy is better than the ICP-based scan
matching accuracy when the robot is located in the labs.

A map of a big area composed of multiple measurements has been analyzed in a
second experiment. The Hannover2 data set has been utilized in this case. Figure
shows a map built after registration, which is composed of 500 laser scans.

The robot’s trajectory starts in a point of the rectangle that is located in the
bottom part of the figure and ends in the upper part of the figure. It can be observed
that the map has an acceptable appearance, but the accumulated error is specially
important in the last part or the robot’s path. Although accurate results have been
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Figure 5.12: Scan Matching. Map of an area composed of 500 laser scans.

obtained after registration of scan pairs, the accumulated error makes the development
of a loop detection and closure algorithm necessary.

The average time needed to register a newly acquired scan and incorporate it to
the model is equal to 1.83 s when using the DE-based scan matching. This time is
equal to 1.73 s for the ICP-based algorithm. The preprocessing step is included in
those times. Both times are low enough to use the algorithms online, taking care of
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the minimum time between two consecutive scans.

The algorithm complexity is O(iter - Np - n - logn), which means that it grows
linearly with the population size (Np), the iterations (iter), and the sensor size after
preprocessing (n). The term logn corresponds to the average of the NN search accel-
erated with k-d trees. It does not depend on the DOF, which can be easily expanded,
if necessary.

5.2.3 Loop detection

The algorithm has been tested using the Hannover2 data set. The configuration
parameters are: K = 10, t; =t, = 0.1, Ny, = 9, and the minimum loop size is equal
to 25 scans. Different values of N,, and configurations of the numerical features have
been tested. Thresholds t; and ¢ have been also studied.

The loop detection matrix between all possibilities, given a robot’s trajectory
composed of 375 consecutive scans, is shown in Figure[5.13] The thresholds are set to
t; = 93% and t; = 90%. The positive matching is represented by white points, grey
means uncertainty band, and black is negative matching. The LPI values between
all pairs have been calculated. It is a symmetric matrix where the axis indicates the
scan number (which are consecutively numbered starting by the first reading). The
robot’s path can be observed at the bottom of the figure.

Analyzing the robot’s path, several loops must be detected. The first loop detected
is located around the coordinates (110, 0) of the matrix (or (0, 110) because the matrix
is symmetrical). There is not only one white point because the robot’s path after the
first loop detection coincides with the previous one. The loop size variable is reset
after detection in a real applications, therefore no more loops around these coordinates
will be detected after the first positive. It is the first time that the robot is navigating
around a pre-visited place and it is correctly detected.

After that, the largest close trajectory is described by the robot and the starting
point is visited again. This second visit that is also classified as positive matching has
approximate coordinates equal to (340,0). Finally, a third loop is detected around
coordinates (110,340). It is a logical detection because in both cases the robot is
visiting the starting point. No more loops are appreciated in the matrix, which is a
correct result because there are no more coincident locations in the robot’s path.

Since all loops are correctly detected and no false detection is appreciated, it can
be concluded that the loop detection algorithm presents an optimal performance.

An additional question that needs to be answered is how to fix the thresholds
t; and t5. A preliminary heuristic study has been developed in this paper. Figure
shows the probability histogram between 150 different scans of the Hannover?2
data set. All possible combinations have been computed. The LPI descriptor is
composed of three numerical features (volume, distance, and curvature) and nine
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Figure 5.13: Loop detection matrix between 375 consecutive scans (t; = 93%, to =
90%): white represents positive matching, grey means uncertainty band, and black
is negative matching. The robot path is at the bottom.

surface features.

The histogram is composed of two Gaussian-shaped distributions. If the loops
(positive matching) are contained in the right one, the thresholds can be chosen
depending on the right distribution properties. The distribution average is equal to
95.04% and the standard deviation is 1.66%. A conservative choice for t; could be
the lower limit of the probability distribution, which is around the 90%. But this will
be discussed in the next experiment.
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Figure 5.14: Probability histogram between 150 different scans of the Hannover?2
data set.

A different experiment has been designed to quantify the loop detection perfor-
mance. The ground truth distance of the Hannover2 data set is available, and a
distance threshold (dg) has been defined in order to calculate two probabilities:

e Probability of Detection (PD): number of pairs classified as positive matching
and a distance between them lower than dg divided by the total number of
pairs located closer than d;.

e Probability of False Alarm (PFA): number of pairs classified as positive match-
ing and a distance between them greater than d, divided by total number of
pairs located closer than dg,.

If the ground truth distance between a pair of scans is lower than the threshold,
the loop detection algorithm must classify this pair as positive. The PD must be the
highest possible, but high values for the PFA are critic, understanding the PFA as
the probability of detecting a loop when it does not exist. In addition, one single
false detection makes the whole mapping process collapse. Therefore, the threshold
t; will be the highest PD value that keeps the PFA at the minimum.

It has to be remarked that d, has been used as a tricky tool to check the algorithm
capabilities. It is not possible to check it in indoor environments because this distance
is not available. The threshold dy has been fixed to 6 m.

The influence of the most important variables on PD and PFA has been analyzed.
The first aspect to be studied are the weights of the LPI function. Since three different
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Table 5.7: Highest probability of loop detection with the minimum probability of
false alarm depending on V,, and the uncertainty band. Both values in percentage.
PD(PFA). w; = max(f;, ¢;)
N, tLh=t, ti=te+3 t1=1t+10
0 23.53 (0.66) 27.13 (1.19) 22.93 (0.86)
3 26.53 (0.86) 29.73 (1.26) 32.80 (1.20)
12 28.00 (0.60) 33.20 (1.07) 35.53 (0.80)

Table 5.8: Highest probability of loop detection with the minimum probability of
false alarm depending on V,, and the uncertainty band. Both values in percentage.
PD(PFA) w; = mean(f;, ;)
N, t1=1 ti=ta+3 1 =1+10
0 26.27 (1.19) 29.67 (1.20) 32.4 (1.13)
3 31.80 (0.66) 32.60 (1.13) 38.67 (1.00)
12 28.20 (1.20) 30.67 (1.00)  33.53 (1.06)

weights have been considered (Equations and , each one will be represented
in a different table.

The second factor is the number of numerical features (N,,). The feature descriptor
is composed of 9 surface features and different possibilities for N,, have been tested:
N, = 0, N,, = 3 (volume, distance, and curvature mean), and N, = 12 (volume,
distance, curvature mean, curvature standard deviation, range standard deviation,
range mean, range kurtosis, centroid, distance to centroid mean, distance to centroid
standard deviation, range differences mean, and range differences standard deviation).

The third factor is the uncertainty band. If the LPI value between a pair of scans
is inside the uncertainty band, a third scan is considered. The loop is now detected
depending on the new LPI value using the new acquired scan (LPI > t;). It means
that when the robot is checking if it is navigating around a previously visited place
and the LPI value is inside the uncertainty band, it waits for a new laser reading and
uses it to improve its loop detection capabilities. Three different options have been
considered: no uncertainty band (t; = t3), narrow band (¢; = t5 + 3), and wide band

The highest PD values that keep the PFA at the minimum depending on the
previously explained factors have been represented in Tables [5.7] and The
experiment consists of decreasing t; (and t3, because this value is a function of t;)
while checking the PFA. The value of ¢; that is chosen as critic is the minimum value
that keeps the PFA at the minimum. The PD is calculated for this critic value of ¢;.
Only these critic values are represented for simplicity.

The improvement introduced by the uncertainty band can be observed in the
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Table 5.9: Highest probability of loop detection with the minimum probability of
false alarm depending on N, and the uncertainty band. Both values in percentage.
PD(PFA) w; = >1_, max(f;, g;)/T
Nn t1:t2 t1:t2+3 t1:t2+10
0 2293 (1.07) 25.80 (0.93) 25.20 (0.66)
3 26.53 (0.60) 29.93 (0.93) 30.20 (0.80)
12 28.47 (0.86) 32.80 (1.00) 34.73 (0.60)

tables. The results with a wide band are slightly better than the results when a narrow
band is chosen. The algorithm performance is also improved by the introduction of
the numerical features. However, it is not possible to conclude if a feature descriptor
with N,, = 12 is better than a feature descriptor with N,, = 3. Finally, there are not
important differences when comparing the results using different weights.

The best results are obtained using the average between features as weight, three
numerical features, and a wide uncertainty band. In this case, the probability of
detection is equal to 38,67%. This probability is high enough to be successfully
applied to loop detection. The results are similar or even better than those obtained
by other authors. Magnusson et al. [104] show a PD = 35.3% with the same data
set; Granstrom et al. [105] obtain a PD = 63% with no false positives, but their
algorithm is included in a machine learning scope. It is a complete different focus
and both algorithms cannot be compared because their method needs a large amount
of initial data to build the classifier. The loop detection problem cannot be included
in this scope because an autonomous robot has to be able to build a robust model
even with no initial information.

Besides, the distance threshold (d) is equal to 6 m, which is not a very restrictive
assumption. The information received from two different locations with distance
between them equal to 6 m can be very different. If this value is reduced to 3 m,
the PD is increased to 65.2% while keeping the PFA at the minimum. This is a very
promising result.

Finally, the PD and the PFA are represented as a function of ¢; for the best option
of the previous experiment in Figure [5.15] There are two graphics that correspond
to dgy = 6 m and dy = 3 m. We have built this graphic in order to calculate the
value that is shown in Table [5.8] It can be observed in the left part of the figure that
the highest PD that keeps the PFA at the minimum is the same that is shown in
Table [5.8] (38.67%). The optimal value of ¢; is around a 90%, which is similar to the
heuristic value deduced before in this section. The increase of the PFA starts when
t1 is below this value.

The computational cost of the implemented method is an important aspect be-
cause it is necessary to handle a large amount of information provided by the 3D
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Figure 5.15: PD and PFA as a function of ¢;. Settings: w; = mean(f;, ¢;), N, = 3,
t1 =ty + 10. Left: dg = 6 m. Right: dg = 3 m.

sensors. The loop detection average time is equal to 0.36 s including data reduction,
feature extraction, and probability calculation. The time complexity is O(n), where

n 1s the laser scan size.
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Three different algorithms related to the mapping problem in 3D environments
are the main contributions of this work. These algorithms solve the following prob-
lems: global localization, scan matching, and loop detection. The most important
conclusions of each method are detailed in this chapter.

6.1 Global Localization

The last version of our global localization method based on evolutionary concepts has
been presented in this document. It has been designed to work in 3D environments
with six DOF at maximum. It is based on DE, which is a particle-based evolutionary
algorithm that evolves in time to the solution that yields the cost function lowest
value. The ability of the algorithm to successfully perform its task is demonstrated,
and the influence of various improvements, such as thresholding and discarding, is
also discussed.

As we have demonstrated by the results obtained in the tests carried out, this
new version is able to improve the accuracy in an order of magnitude in comparison
with the results obtained with the original method in planar maps. The increase in
the amount of information allows us to obtain an accuracy of millimeters, which is
below the accuracy of the laser manipulation tasks with a mobile manipulator. This
feature is one of the most important conclusions of the presented work.

It is necessary to emphasize that the increment in the computational cost due
to the increase in the amount of handled information can be limited, relaxing the
accuracy and convergence requirements. The computational cost is an important
limitation to be addressed because it is a common problem in this type of methods.
It can be seen in Chapter [5| where the computational cost is compared to those
obtained by other methods. Besides, the population reduction after convergence
makes it possible to use the algorithm online.

Due to the stochastic nature of the search algorithm for the robot’s best pose
estimate, the algorithm is able to cope with a high level of sensor noise with low
degradation of the estimation results.

A thresholding mechanism has been also implemented. The consequence is the
capability of the RELF-3D to avoid the premature convergence towards some areas,
not selecting the new population members that can be originated by the noise. The
introduction of a threshold level has an important disadvantage: the decrease of the
convergence speed. It was therefore necessary to develop a discarding mechanism to
improve the convergence speed while maintaining the positive aspects of the thresh-
olding. The convergence speed after discarding is even higher than with the original
method.

A further study to compare the L1-norm and the L2-norm as a cost function has
been done in this work. We can conclude that with a gaussian noise the behavior
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is similar in both cases, while the use of the first order error is useful in certain
situations, such as those where there are dynamic objects, people, outliers, and so on.

In addition, the DE has many other characteristics that make its use very inter-
esting: it can deal with non-linear state space dynamics and noise distributions, it
does not require any assumptions on the shape of the posterior density, and so on.

One of the most important shortcomings in population-based localization algo-
rithms is the initialization problem, which consists of the estimation of the population
size that solves the localization with a reasonable computational cost. This problem
has traditionally been adjusted in an empirical way, choosing a number of elements
that works well in a particular case depending on many factors: the environment, the
sensor characteristics, the type of method, etc.

An initialization method based on the information contained in the observation
vector has been implemented. The initialization problem for our evolutionary-based
global localization filter has been solved in a satisfactory way.

Some factors that affect the initial population size required to localize the robot
have been studied. It has been deduced that symmetries of the environment, sen-
sors information, and sensor overlapping are crucial factors to determine the initial
population and guarantee that the population-based localization algorithm works in
a robust way.

An empirical formulation (depending on the cited factors) to determine an appro-
priate size for the initial population has been demonstrated to be efficient in different
environments.

The proposed method has found some difficulties when there are many symmetries
in the environment or the available information is low, which is logical if we take into
account the characteristics of the problem addressed.

As shown in the experimental results, the initial population size is large enough
to deal with the localization problem but the minimum possible in order to optimize
the computational cost.

6.2 Scan Matching

A DE-based scan matching algorithm for 3D environments (6 DOF) has been imple-
mented. If the cost function of DE is properly chosen, it is possible to solve the scan
matching problem. The high accuracy and computational efficiency of the proposed
method have been demonstrated with experimental results.

The local accuracy is high enough to apply this algorithm in manipulation tasks.
It is a logical result because a high accuracy has been obtained by a similar method
for robot global localization.

The algorithm could be used online depending on the time needed between two
consecutive readings. The computational cost is the most important shortcoming of
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the 3D mapping and our algorithm presents a good performance in this aspect because
it does not depend on the DOF but on the perceptive sensor number of measurements
and the population size.

The DE has many other characteristics that make its use very interesting: the
computational resources are focused on the most relevant areas, the algorithm is able
to cope with a high level of sensor noise with low degradation of the estimation results,
and so on.

6.3 Loop Detection

A loop detection algorithm that extracts the most important features from two dif-
ferent scans has been implemented in order to obtain an indicator that is used as a
threshold to detect when the robot is visiting a known place.

The LPI has been demonstrated to be an efficient tool to be used in mapping
problems. All true loops are correctly detected and no false detections are appreciated
when the mobile robot is covering a long trajectory and there is one place that is
visited several times.

The results are similar or even better than those obtained by other research groups
when analyzing the probability of detection. The introduction of different types of
features and the uncertainty band improve the algorithm performance and make it a
more versatile method because it admits different settings.

Since the LPI formula does not depend on any previous state and its weights
are updated online, the algorithm can be classified as an online learning method,
which is a more appropriate approach for an autonomous robot when exploring its
surroundings. The mobile robots do not have a wide amount of perceptive data at
the beginning, which makes it difficult to apply machine learning algorithms to build
loop detection classifiers.

In addition, a wide variety of scan properties can be contained in this descriptor
and different weights have been tested. First, the surface features include the geo-
metric forms of the scan (lines, planes and spheres). Second, the numerical features
are values that describe other several properties, such as: volume, average range, cur-
vature, etc. A detailed study of the descriptor and the influence of different factors
have been shown in the experimental results.

The computational cost of the proposed method makes it possible to use the
algorithm in real-time applications.

6.4 Future Developments

This work presents some challenges to be accomplished in the future:
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Chapter 6. Conclusions and Future Developments

It is necessary to check the DE-based global localization algorithm in different
situations and environments in order to optimize its performance.

The computational cost has to be improved to make the proposed methods
applicable to larger and more complex environments.

There are additional factors and information models that have to be considered
to generate a more efficient formula when initializing the population.

Although the loop detection problem has been successfully solved, it is necessary
to address the loop closure problem.

The introduction of adaptive weights depending on the incoming information
and the feature importance (features with more influence on the matching pro-
cess). The future indicator defined in this way will change its weights depending
on the environment.

The versatility of LPI formula allows the introduction of very different charac-
teristics. It is possible to try new values and combinations of features, selecting
the best options.

There are more and more sensors that are available in the present time. It
is necessary to study these new sensors and their integration in the mapping
process.

The scan matching algorithms traditionally have troubles with sharp turns. It
can be interesting to study the behavior of our algorithm in this aspect.
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The experimental platform MANFRED-2, fully developed at the Robotics Lab
of the Carlos III University of Madrid, is presented in this appendix. Most of this
information and figures have been taken from the work by Alvarez [I13].

The mobile robot MANFRED-2 is a mobile manipulator whose purpose is to serve
as experimental platform for R&D in the mobile robots area.

One of the main objectives of this research is to build an autonomous robot for
an indoor office area. In other words, MANFRED-2 must be able to navigate au-
tonomously in an environment typically composed of a corridor and offices. For
example, one specific task that the robot must perform is to move from one room to
another by opening a door.

This robot has been built because it is necessary to have an experimental platform
with a robust and reliable hardware that allows researchers to focus on the real
problem: the implementation of an artificial intelligence that allows the robot to be
autonomous and perform multiple tasks.

The robot design is inspired by planetary rovers and communications satellites.
These systems are composed of several subsystems that need to be interconnected
to make the whole system work. These subsystems are: onboard computer, power
distribution system, sensors, drive system, etc. More instruments to explore the
surroundings, such as articulated arms, can also be implemented depending on its
application, but it is necessary to distinguish between the mobile platform and the
inserted accessories. One important characteristic is that the subsystems are designed
as independent units or boxes that are interconnected to each other by an internal
wiring.

Summarizing, the design of MANFRED-2 is based on independent units that
are interconnected to each other by using electric and mechanical interfaces. This
modular concept facilitates the integration, repair, and future expansion of the robot.

MANFRED-2 is presented in Figure [A.I] It was also shown in Figure [1.2] Tt
has at most eight DOF. It is composed of a differential-type mobile base with two
DOF and an anthropomorphic light arm with six DOF. It can execute multiple tasks.
The most typical ones are opening and passing through doors, obstacle avoidance,
and picking up and manipulating objects. In order to do that, the robot needs
all the basic capabilities to move safely and independently around the environment,
motor coordination between the base and manipulator, and sensory coordination to
manipulate objects.

As was previously said in this appendix, any robotic system consists of a set of
subsystems that enable (through networking) meeting the objectives for which it was
designed. These modules use the environment information to generate data that are
used to develop the movement skills in the robot’s base and the robotic arm. The
main components of the systems that constitute the mobile manipulator are described
in the following sections.
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Figure A.1: MANFRED-2, mobile manipulator with robotic arm.

A.1 Mechanical Design - Robot Structure

The design of the mobile robot must meet the following specifications: high mobility,
mechanical and electrical robustness, high repeatability in its movements, and easy
integration and repairing (modular concept).

A brief description of the mechanical design of MANFRED-2 and a breakdown
of the most important elements are given in this section. The mechanical design of
the robot’s base is also based on the robustness and reliability that must satisfy the
robot when it is performing a task. It is crucial that the the robot movement does
not cause instability or inaccuracy.

The base has also been designed following a modular philosophy which has two
important advantages: it is easy to access to all elements of the mobile robot, and
the change of elements due to repairs or improvements is immediate.

The general design also focuses on the improvement of the structure rigidity.
The force distribution is more balanced than the distribution of the previous version
(MANFRED). The location of the base elements has been optimized in order to
counterbalance when the robotic arm is executing critical tasks, which means that
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the distribution of the elements in the robot’s base gives stability to the mobile robot.
Some mechanical characteristics and their associated advantages are given below.
Some of them are compared to the previous version of the mobile robot.

e When the arm is at rest, it does not collide neither interfere with the base. If
the system runs out of power, the arm can fall freely without damage to itself
or to the base.

e The gravity center of the base has been moved closer to the ground. This implies
an improvement in the stability.

e The main mast has been extended to the bottom plate and more columns have
been placed between the plates. These changes give more rigidity to the system.

e [t has independent carcasses that are easy to remove and place. It is easier to
access to any component of the mobile robot.

e An internal communication system from the mast to the bottom plate has been
designed. This system is simple and facilitates the changes or incorporation of
new elements.

e All switches, buttons, and safety mushrooms are located in a single panel. This
allows an easy and fast access to each element of the control and security sys-
tems.

e A second robotic arm that will be added to the robot has been taken into
account, trying to make its future implementation as simple as possible.

e A height adjustment system for the drive wheels has been designed. This allows
an accurate calibration.

The robot’s weight and the weight of each one of its components are shown in
Table [A.T] Tt is important to remark that most of the weight is concentrated in the
bottom part, which benefits the stability.

MANFRED-2 is formed by a metal structure that can integrate all the components
needed for operation (Figure . It can be divided into three parts:

e Mobile base:

The robot’s base is composed of two steel platforms with a diameter of 61 cm
and a height around 65 cm. It is equipped with wheels that allow movement.
The battery system that generates the power to operate autonomously is also
stored in the base.
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Table A.1: MANFRED-2’s weight.

Element Unit weight (kg) Total weight (kg)
Batteries 15.40 61.60
Aluminum structure 29.00 29.00
Drivers 0.68 5.44
Computer 5.00 5.00
Electronic devices 2.75 2.75
DC-DC Converters 2.00 2.00
Carcasses 2.50 2.50
Caster wheels 0.42 1.26
Drive wheels 7.00 14.00
Wiring 6.00 6.00
Total 129.55

The motion system is included in the base. It has five wheels: three of them are
support wheels to improve the stability and facilitate the movement, and the
other two are drive wheels with brushless motors and their corresponding servo-
amplifiers. The drive wheels generate a differential displacement that allows the
robot to turn around its axis.

The power supply system that gives autonomy to the robot consists of batteries
that are located in the base. There are four batteries of 12 V connected in series
that provide a voltage of 48 V. The selected batteries are Power-Sonic PS-12450
B (Figure , which provide an output voltage of 12 V and a capacity of 45
Ah.

In addition, as a security system, the robot has a monitoring system through a
PIC16F818 microcontroller that measures the voltage provided by the batteries
and the current flowing through them. This system can continuously commu-
nicate the power status to the control computer, as well as stopping the motors
in a controlled way in case of low voltage or too high current.

Body:

An structure that forms the robot body and holds multiple components has been
mounted on the base. The body contains all the wiring for connecting several
subsystems: arm to computer, power from battery to motors, and external
sensors. It has also the servo amplifiers associated with the arm.

This structure serves as dock for the robotic arm, the laser sensor, and the
computer vision cameras. The onboard computer that is responsible for add
intelligence to the robot is also inside this part of the robot. This computer
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Figure A.2: MANFRED-2, lateral view.

has the PMAC2-PCI card installed, which is a controller card that can control
jointly the eight DOF corresponding to the base and the manipulator arm.

e Robotic arm:

The manipulator arm LWR-UC3M-1 is an essential element of the robot. It is
composed of rigid elements connected by revolution joints. Each joint gives an
additional DOF to the robot. The total number of DOF is six for the arm. It
has been designed to provide a remarkable flexibility to perform manipulation
tasks (grasping and and movement of objects) by combining the available DOF.

The robotic arm that is presented in Figure has been fully developed by the
Robotics Lab of the Carlos III University of Madrid. Its main characteristics
are:

1. Kinematic redundancy similar to the human arm.
2. Weight: 18 kg.
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Figure A.3: Power supply system.

3. Maximum load capacity: 4.5 kg at the end of the arm.
4. Load/weight ratio: between 1:3 and 1 : 4.

5. Range: around 955 mm.

The developed arm is mounted on the lateral side of the mobile robot in such a
way that the computer vision and the laser telemetry systems are not obstructed
by the arm. The arm joints are composed of DC brushless motors and Harmonic
Drives that reduce the speed and increase the torque.

Since the installed encoders obtain relative information (they provide informa-
tion about the motor current position with respect to an initial or home posi-
tion), an initial home function must be executed in order to fix the robotic arm
initial position. This facilitates the conversion between relative and absolute
positions. This function has been designed using the programming language
of the PMAC2-PCI. It establishes that the initial position of the robotic arm
is that one in which it is pointing straight to the ground. This position has
been chosen because it requires a low energy consumption because most of the
engines are not doing any work.
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Figure A.4: LWR-UC3M-1(robotic arm).
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Figure A.5: Hokuyo UTM-30LX (laser range finder).

A.2 Sensory System

The sensory system can transform the physical variables that characterize the environ-
ment into a data set that will be processed by other modules, such as the localization
system, the security system, and the motion planner, in order to increase the robot
intelligence and be able to execute certain tasks. This information will be provided
by the robot’s sensory system, which consists of the following elements:

e Laser telemetry subsystem:

Its aim is to provide the robot with information about its surrounding environ-
ment by measuring the distance to objects. This information is primarily used
in navigation and localization in order to model the workspace.

It is possible to use 2D or 3D data depending on the task characteristics and
the complexity and degree of occupancy of the workspace.

This subsystem is composed of the following laser range finders:

1. Hokuyo UTM-30LX with 270 opening degrees (Figure located in the
rear of the vehicle. It has a detection range that varies from 100 mm to 30 m
and a 25 ms period. Its angular resolution is equal to 0.25°. It is connected
to the computer through a USB2.0 interface. Its power consumption is 700

mA and 12 V, which makes it suitable for battery-powered systems such
as MANFRED-2.

2. SICK PLS with 180 opening degrees (Figure |A.6)). The original measure-
ments are 2D, but we have added a motor that lets it rotate up and down
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Figure A.6: SICK PLS (laser range finder).

Table A.2: SICK PLS technical characteristics.

Maximum range 80 m
Angular resolution  0.25° - 0.5° - 1° (variable)
Time response 26 ms
Distance resolution 10 mm
Transfer rate 500 kbaud
Power requirements 24V -6 A

(£45°), being able to obtain 3D measurements (it can also be observed in
the figure). The technical characteristics are summarized in Table [A.2]

The 2D telemetry (horizontal plane parallel to the ground) can be used
during navigation around environments with few obstacles to safe compu-
tational time.

This sensor records 361 measurements in a planar sweep with medium
resolution (separation between measurements equal to 0.5°). The SICK
PLS measurement error is lower than 20 mm. This error is influenced by
two parameters: the measuring distance and the angle of the laser beam
shot (from 0° to 180°).

e Computer vision subsystem:

This subsystem helps in the manipulation of objects in 3D environments, which
is one of the abilities of MANFRED-2. In order to do this, it is necessary to
recognize the object to be manipulated, estimate its position and orientation



162

Appendix A. Experimental Platform

Figure A.7: Color cameras. Left: SONY EVI-D100. Right: SONY B/N XC-ES50CE.

relative to the mobile manipulator, and determine the grasping point. It also
facilitates other tasks, such as opening doors, navigation, and localization.

The computer vision subsystem is composed of the following elements:

1. Color camera: SONY EVI-D100 (Figure . This camera is employed

to recognize objects and estimate their positions relative to the robot. It
is located in the front of the mobile robot body.

. Color camera: SONY B/N XC-ES50CE (Figure [A.7). This is a mini-

camera that is situated on the wrist of the robotic arm. It is used in
manipulation tasks when the extreme of the arm is close to the object to
be manipulated and the field of vision of the other camera is obstructed
by the arm.

. Time-of-flight camera (Kinect): the robot also incorporates a camera with

time-of-flight technology (Figure that obtains a 3D image composed
of an array of distances to different objects and color information. This
information can be fused with the data of the other cameras in order to
improve the manipulation capabilities.

e Force/torque sensor:

MANFRED-2 has a JR3 force/torque sensor (model 67M25A-U560, Figure[A.9)
at the end of the robotic arm. Its purpose is to interact with the environment
in manipulation tasks. This sensor is situated between the end of the arm and
the clamp or terminal element.

This device has the following features:
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Figure A.8: Time-of-flight camera: Kinect.

Figure A.9: JR3 67TM25A-U560 (force/torque sensor).

— Maximum load capacity: 11 kg.
— Weight: 175 gr.

— Maximum operating frequency: 8 kHz.

The JR3 sensor provides force and torque data in three axes that can be used in
the force control loop of the mobile manipulator. It is based on a strain gauge
system and a Digital Signal Processor (DSP) acquisition system that allow
measurements with high bandwidth and signal-noise ratio. The main purpose
of this sensor is to perform manipulation tasks based on force or torque control,
such as opening doors, pulsation of switches, manipulating objects, etc.

e Motion sensors:

The main function of these sensors is to obtain information about the robot
location and the arm posture. This information is obtained by encoders that
are mainly coupled to the rotation axes of the motors. The relative or absolute
position of each motor is computed by using this information. The motion
sensors are high-resolution optical encoders of the HP company with reference
HEDS550.

These motion sensors are complemented by inductive sensors that perform an
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A

Figure A.10: PMAC2-PCI (controller card).

initial routine that is usually named as home in order to establish the absolute
position of each joint of the arm. This routine improves the safety and minimizes
the power consumption. The inductive sensors have a diameter equal to 3 mm
and a detection distance equal to 1 mm. Their basic principle is based on the
inductive detection of ferromagnetic materials by flux variation caused by their
presence near the sensor’s detection area.

A.3 Control System

MANFRED-2 has eight different motors to move its base (2) and its robotic arm
(6). It is necessary to have a continuous control of these engines when the robot is
navigating or it is moving its arm. This control is carried out by the PMAC2-PCI
controller card (Figure [A.10)).

The PMAC2-PCI is a Programmable Multi-Axis Controller card developed by
Delta Tau Data Systemsﬁ. It is a high performance device that can simultaneously
control up to eight axes with high precision. It has a high performance/price ratio,
with more than 1000 configuration variables and the high computing capacity of its
DSP. The DSP that is incorporated in the PMAC2-PCI is the DSP56002 of 24 bits
and operation frequency of 40 MHz.

8http://www.deltatau.com
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Figure A.11: ACC-8E. Interface between the PMAC2-PCI and the devices.

This card offers multiple ways to control the motors. However, it has not been
designed to be connected directly to the devices. There is a set of additional cards
that can be used as interfaces . These cards are also offered by Delta Tau Data
Systems.

In the case of MANFRED-2, the additional card is the ACC-8E (Figure [A.11]).
Since each card can interact with two motors, it is necessary to implement four of
them. Each ACC-8E card is connected to the PMAC2-PCI through a 100-pin bus that
is called JMACH. Each ACC-8E card has four 18-bit Digital-to-Analog Converters
(DAC) that command two analog input drivers and must be fed with 15 V. It has also
two inputs to read the encoders and five inputs per axis that capture different types
of events: error signal, home signal (starting position), motor limits (two signals),
and user-defined signal (external events for a specific application).

The configuration of the PMAC2-PCI is a very laborious and tough task. There
are two available manuals, the “Software reference manual” and the “PMAC2 user
manual”, together with a program provided by the manufacturer, the “PEWIN32
PRO”, which runs under Windows. This software offers a set of tools to modify all
the configuration parameters of the PMAC2-PCI. Some of these tools are:

1. Terminal: it sends commands to the card in ASCII coding.

2. Watch window: it is a window where it is possible to view the variable values
in real time.

3. Tunning Pro: it configures the PMAC2-PCI parameters, such as: PID con-
trollers, filters, DAC calibration, and so on.

4. Position window: it displays the position of the motors, in counts of encoder,
and also their speed and tracking errors.

Finally, the controller card allows different types of programs:
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e Motion programs: the most common task of the controller card is to move
the motors according to a particular sequence of commands. These programs
are executed line by line by the controller card. They are called by a specific
command and, after that, they are executed once. It is possible to make a call
to another program or terminal commands. The controller card can store and
execute up to 256 motion programs.

e Programmable Logic Controller (PLC): the PLC programs exist because there
are some programs that must be executed continuously. For example, there is
a PLC program that computes the robot’s position given the encoders informa-
tion. These programs are written in the same way that the motion programs,
except that they are defined as PLC in their title. They are called and executed
in each cycle of the controller card.

e Motion commands: it is possible to send motion commands to the PMAC2-PCI
through the terminal. They are simple commands that allow the motion of each
motor. These commands were initially implemented to test the controller card,
but they can perform simple movements in a motion program.

A.4 Software

A.4.1 MATLAB

MATLAB (abbreviation of MATrix LABoratory)ﬂ is a numerical computing environ-
ment developed by MathWorks. It is oriented to projects that imply high computation
resources and graphical display. It allows multiple actions, such as: manipulation of
matrix and vectors, handling and plotting of functions and data, implementation of
algorithms, creation of graphical interfaces, and interfacing with programs in other
languages (C, C++, Java, and Fortran).

One additional advantage of this tool is that it is very easy to learn, not being
necessary to study a new language because the solutions are expressed by an easy
syntax (similar to C).

MATLAB includes a wide range of pre-built functions called “toolboxes”. These
toolboxes perform multiple operations of multiple areas of engineering and simulation,
such as: signal processing, control, statistics, financial analysis, symbolic mathemat-
ics, neural networks, fuzzy logic, system identification, dynamic systems simulation,
and so on. An additional package called “Simulink” offers a graphical interface for
these toolboxes. It allows the simulation of dynamic models.

9More information can be found in http://www.mathworks.es/products/matlab/.
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This tool is widespread in engineering, science, and economics. It has been re-
ported that it had around one million users in 2004. It is also widely used in academic
and research institutions.

All these features make MATLAB a suitable tool to be used for our purposes. All
the algorithms developed in this work have been implemented in MATLAB.

A.4.2 ROS

ROS (Robot Operating System)lT_U] is an open code operating system for robots devel-
oped by Willow Garage. As it is said in its website, “it provides libraries and tools
to help software developers create robot applications. It provides hardware abstrac-
tion, device drivers, libraries, visualizers, message-passing, package management, and
more. ROS is licensed under an open source, BSD license (Berkeley Software Distri-
bution, family of permissive free software licenses)”.

ROS is based on a set of processes or nodes that are individually executed and
linked by a communication infrastructure provided by ROS. This communication
can be synchronous (client-server) or asynchronous (continuous data sending). The
different data can be grouped into packages that are shared allowing a distributed
collaboration.

The most remarkable characteristics are the following: light and easy to export
(it has been exported to OpenRAVE, Orocos, and Player), programming language
independent (it can be implemented in the most common languages, such as C+-+
and Python), easy error correction (because it has a testing unit), and appropriate
in big systems with multiple modules.

It currently only works with Unix-based platforms. It has been extensively tested
on Ubuntu (operating system of MANFRED-2).

ROS has been implemented in MANFRED-2. All modules developed for the robot
must follow its guidelines.

0More information can be found in http://www.ros.org/wiki/.
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