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Abstract

This paper discusses some connections among several robustness

concepts of mechanisms in terms of agents’ behaviors. Specifically,

under certain conditions such as private values and “rich” interdepen-

dent values, we show that implementation in (one-round or iterative)

undominated strategies, a solution concept robust to strategic uncer-

tainty, is equivalent to Bayesian implementation with arbitrary type

spaces, a solution concept robust to structural uncertainty.
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1 Introduction

In mechanism design or implementation theory, one often models the strate-

gic interactions of agents in a given mechanism as a Bayesian game by in-

troducing a type space as in Harsanyi (1967-68), which induces the agents’

(high-order) beliefs over their payoff-relevant private information.1

Some recent studies examine “robust” mechanism design, by investigating

which social objectives are implementable if the mechanism designer has little

information about the agents’ high-order beliefs. Roughly, an objective is

said to be “robustly implementable” if, given whatever type space is given, a

mechanism Bayesian implements the objective (e.g., Bergemann and Morris

(2005) and Bergemann and Morris (2011)). In this approach, the agents can

have arbitrary high-order beliefs about the states of the world, while they

are still assumed to play a Bayesian equilibrium given each type space. In

this sense, this approach considers robustness with respect to the agents’

structural uncertainties.

Another robustness notion often studied in the literature is with respect

to strategic uncertainties of the agents.2 In this approach, each agent is

assumed to be “rational” in the sense that he does not play any “dominated”

strategy, but he may play any “undominated” strategy. In particular, the

agents may play some non-equilibrium strategy profiles, and in this sense, this

strategic uncertainty approach considers a different aspect of the robustness

of mechanisms.

The objective of this paper is to contribute to the literature on the re-

lationships between those different kinds of robustness in the context of im-

plementation, by showing that some of the solution concepts in these two

different approaches are “close” to each other in terms of the implementable

1A typical additional assumption is that the agents have a common prior over their

payoff-relevant private information, and so there is no higher-order uncertainty. In this

paper, when we refer to a type space, it does not necessarily have a common prior.
2The terms “structural uncertainty” and “strategic uncertainty” appear in, for example,

Morris and Shin (2002).
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objectives.

To be more specific, we first compare Bayesian implementation given

any type space as an implementation concept in the structural uncertainty

approach, and implementation in undominated strategies as an implementa-

tion concept in the strategic uncertainty approach. Bayesian implementation

requires that a desirable outcome is induced given whatever Bayesian equi-

librium is played.3 Implementation in undominated strategies requires that a

desirable outcome is induced whenever each agent plays any strategy that is

not strictly dominated.4 Note that we do not allow the iterative elimination

of dominated strategies, and in this sense, do not assume mutual or common

knowledge of rationality among the agents.

We show that, if a social choice correspondence is implementable in un-

dominated strategies, then it is Bayesian implementable given any type space.

Conversely, in a private-value environment (i.e., one where each agent knows

his preference over allocations), the other direction is also true: if a social

choice correspondence is Bayesian implementable given any type space, then

it is implementable in undominated strategies (Theorem 1). Therefore, even

though we consider different uncertainties, robustness to one kind of un-

certainty implies robustness to the other kind. Although the private-value

assumption is restrictive, it may be considered reasonable in various con-

texts, including certain private-goods auctions, cost sharing for public good

provision, preference aggregation in voting, and some two-sided matching

3Because the concept of structural uncertainty refers to the designer’s assumption about

the agents’ possible high-order beliefs, it is not necessarily solely for Bayesian implemen-

tation. Indeed, several papers in game theory investigate the implications of structural

uncertainty with solution concepts other than Bayesian equilibria, such as rationalizability

(see, for example, Battigalli and Siniscalchi (2003) and Bergemann and Morris (2007)).

In this paper, we consider Bayesian implementation as a solution concept that does not

exhibit strategic uncertainty, in order to compare with implementation robust to strategic

uncertainty.
4Although we consider strict dominance to define the “rational” behaviors of the agents,

analogous results would hold for some different notions of rationality, such as that based

on weak dominance. See Remark 3 in Section 4.
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problems.

In Section 4, we generalize some of the results to an environment with

interdependent values. With interdependent values, we have the equivalence

between implementation in iteratively undominated strategies and Bayesian

implementation given any type space, as in Bergemann and Morris (2011).

However, implementation in one-round undominated strategies is in general

more demanding than these concepts. Nevertheless, we obtain an analogous

result as in Theorem 1 if each agent’s signal space is sufficiently “rich”.

In Section 5, we examine partial Bayesian implementation given any type

space as a less demanding implementation concept in the structural uncer-

tainty approach, which requires that, for each given type space, there is at

least one Bayesian equilibrium that induces a desirable outcome. With pri-

vate values and certain technical conditions, we show that, if a social choice

correspondence is partially Bayesian implementable given any type space,

then it is virtually implementable in undominated strategies, where the term

“virtual” is in the sense of Abreu and Matsushima (1992) and Abreu and

Matsushima (1991), i.e., a correspondence that is arbitrarily close to the de-

sirable correspondence is implementable in undominated strategies (Theorem

3).5 In this sense, implementation in (one-round/iteratively) undominated

strategies, Bayesian implementation, and partial Bayesian implementation

are all “close” to each other in the private-value environment. Thus, Bayesian

incentive compatibility conditions given any type space have “virtually” as

strong implications as implementation in undominated strategies. However,

5An analogous result is established by Bergemann and Morris (2009b) for social choice

functions with interdependent values. Our result is a complement to their findings in es-

tablishing an analogous result for social choice correspondences with private values. From

a technical viewpoint, the proof of our result trivializes the issue of their strategic dis-

tinguishability by the private-value assumption. On the other hand, the proof for their

result uses the property that Bayesian incentive compatibility given any type space implies

ex post incentive compatibility (Bergemann and Morris (2005)), which does not hold for

social choice correspondences. Because of these differences, neither of these proofs implies

the other.
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this virtual equivalence result does not generally hold with interdependent

values.

2 Private-value model

The set of agents is denoted by I = {1, . . . , N}. An allocation is denoted by

x ∈ X . Each agent i ∈ I has payoff-relevant private information θi ∈ Θi,

which we call i’s payoff type. We assume that each Θi is finite. We denote

the profile of payoff types by θ = (θi)i∈I , and the set of all payoff type profiles

by Θ =
∏

i∈I Θi.

Agent i’s preference for each x is represented by a utility function ui(x, θi),

which does not depend on θ−i, and hence is a private-value environment.

In Section 5, we discuss how the results would change with interdependent

values, i.e., when i’s preference also depends on θ−i.

The objective of the mechanism designer is represented by a social choice

correspondence F : Θ → 2X , which assigns a subset of X for each θ ∈ Θ.

We interpret F (θ) ⊆ X as the set of desirable outcomes in state θ ∈ Θ.

A mechanism is denoted by Γ = 〈M, g〉, where M =
∏

iMi, each Mi is a

finite set of messages for agent i, and g :M → X is an outcome function.6

2.1 Implementation based on dominance

We first introduce implementation in undominated strategies as an imple-

mentation concept that is robust to the agents’ strategic uncertainty. In

mechanism Γ = 〈M, g〉, for each i and θi, we say that mi ∈ Mi is strictly

6Throughout the paper, we only consider finite mechanisms. The author believes that

some of the results could hold for a class of infinite mechanisms, such as those with compact

message spaces and a continuous outcome function.
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dominated for θi if there exists µi ∈ ∆(Mi) such that,7 for any m−i ∈M−i,

∑

m′

i∈Mi

ui(g(m
′
i, m−i), θi)µi(m

′
i) > ui(g(mi, m−i), θi).

We say that mi is undominated for θi if it is not strictly dominated for

θi. The set of undominated messages for θi is denoted by MU
i (θi). Hence,

MU
i (θi) = {mi ∈Mi|∄µi ∈ ∆(Mi); ∀m−i ∈M−i,

∑

m′

i∈Mi

ui(g(m
′
i, m−i), θi)µi(m

′
i) > ui(g(mi, m−i), θi).}.

Definition 1. A mechanism Γ implements F in undominated strategies if

for each θ and m ∈MU (θ), we have g(m) ∈ F (θ).

We say that F is implementable in undominated strategies if some mech-

anism implements F in undominated strategies. Implementation in un-

dominated strategies requires that, given whatever undominated actions the

agents play in any state, the induced outcome is desirable.8

The concept of implementation in undominated strategies would be rele-

vant in a situation where the designer assumes that each agent is “rational”

in the sense of not playing strictly dominated strategies, but does not assume

that the agents mutually or commonly know their rationality.

If we additionally assume common knowledge of rationality, then the

iterative elimination of strictly dominated strategies would be possible. We

introduce implementation based on the iterative elimination as follows.

7For a finite set S, ∆(S) denotes the set of all probability mass functions over S, so

that, for each α ∈ ∆(S), α(s) ∈ [0, 1] denotes the probability that α assigns to s ∈ S, and
∑

s∈S
α(s) = 1. We treat ∆(S) as a subspace of an |S|-dimensional Euclidean space.

8Our implementation concept is sometimes called weak implementation (in undomi-

nated strategies). This is more demanding than partial implementation, where at least one

strategy profile of the solution concept yields a desirable outcome. On the other hand, it is

less demanding than full implementation, which requires that {g(m)|m ∈MU (θ)} = F (θ)

(while the weak implementation only requires {g(m)|m ∈MU (θ)} ⊆ F (θ)).
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In a mechanism Γ = 〈M, g〉, for each i, θi, let M
0
i (θi) = MU

i (θi). Then,

for each k = 1, 2, . . ., given (Mk−1
j (θj))θj∈Θj ,j∈I , we define Mk

i (θi) as follows.

Mk
i (θi) = {mi ∈Mk−1

i (θi)|∄µi ∈ ∆(Mk−1
i (θi)); ∀(θ−i, m−i) s.t. m−i ∈Mk−1

−i (θ−i),
∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θi) > ui(g(mi, m−i), θi)}.

We define M∞
i (θi) =

⋂∞
k=0M

k
i (θi), and M

∞(θ) =
∏

i∈I M
∞
i (θi).

Definition 2. A mechanism Γ implements F in iteratively undominated

strategies if for each θ and m ∈M∞(θ), we have g(m) ∈ F (θ).

2.2 Bayesian implementation with arbitrary type spaces

Another implementation concept that considers robustness to the agents’

structural uncertainties assumes that the agents play a Bayesian equilib-

rium, which means that they predict each other’s strategy correctly (and so

there is no strategic uncertainty), but they can have arbitrary high-order

beliefs about each other’s payoff type. Such high-order beliefs are modeled

as “types” as follows.

For each i, let Ti be a countable set, and we call ti ∈ Ti his type. There

exist two mappings (τi, βi) such that, for each ti ∈ Ti, his payoff type is

given by τi(ti) ∈ Θi, and his belief type is given by βi(ti) ∈ ∆(T−i). A tuple

T = (Ti, τi, βi)
N
i=1 is called a (countable) type space.9

A mechanism Γ = 〈M, g〉 induces a Bayesian game with type space T ,

and each agent i’s (mixed) strategy is given by a mapping σi : Ti → ∆(Mi).

Definition 3. In a mechanism Γ = 〈M, g〉, a strategy profile σ = (σi)
N
i=1 is

9Throughout the paper, unless explicitly mentioned, a type space means a countable

type space. One merit of this approach over uncountably infinite type spaces is notational

simplicity and existence of Bayesian equilibria in finite games. With uncountably infinitely

many types, even in a finite game, a Bayesian equilibrium may fail to exist (see, for

example, Brandenburger, Friedenberg, and Keisler (2008)).
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a Bayesian equilibrium given type space T if for each i, ti, mi,

∑

t−i

∑

m′

−i

∑

m′

i

ui(g(m
′
i, m

′
−i), τi(ti))σi(m

′
i|ti)σ−i(m

′
−i|t−i)βi(t−i|ti)

≥
∑

t−i

∑

m′

−i

ui(g(mi, m
′
−i), τi(ti))σ−i(m

′
−i|t−i)βi(t−i|ti).

Definition 4. We say that a mechanism Γ Bayesian implements F given

type space T if, for each Bayesian equilibrium σ∗ given T , for each t ∈ T and

m ∈M with σ∗(m|t) > 0, we have g(m) ∈ F (τ(t)).

We say that F is Bayesian implementable given T if some mechanism

Bayesian implements F given T .

When the designer does not know which T is the true type space, then he

may aim to design a mechanism so that the mechanism Bayesian implements

F given any type space T .

3 Equivalence

We observe the equivalence of the three concepts in terms of implementable

social choice correspondences.

Theorem 1. The following three statements are equivalent.

1. F is implementable in undominated strategies.

2. F is implementable in iteratively undominated strategies.

3. F is Bayesian implementable given any type space T .

The equivalence between statements 2 and 3 is based on some epistemic

results established by Bergemann and Morris (2011) for social choice func-
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tions.10 We can straightforwardly extend their proof for social choice corre-

spondences, which is provided in the appendix for the sake of completeness.11

Proof. For the equivalence between statements 2 and 3, see the proof of

Proposition 1 in the appendix. We prove that statement 2 implies statement

1. The other direction is obvious.

Suppose that F is implemented in iteratively undominated strategies by

a mechanism Γ = 〈M, g〉. That is, for each θ and m ∈ M∞(θ), we have

g(m) ∈ F (θ). It suffices to show that F is in fact implementable in (one-

round) undominated strategies. The following lemma that holds true in

private-value environments is crucial.

Lemma 1. For each i, θi, and mi /∈ M∞
i (θi), there exists µi ∈ ∆(M∞

i (θi))

such that, for any m−i ∈M∞
−i =

∏

j 6=i(
⋃

θj
M∞

j (θj)),
∑

mi

µi(mi)ui(g(mi, m−i), θi) > ui(g(mi, m−i), θi).

Proof. (of the lemma)

Fix i, θi, and mi /∈M∞
i (θi). By finiteness of Γ, there is an integer K such

that MK
i (θi) =M∞

i (θi) for any i, θi, and thus,

MK
i (θi) = {m̃i ∈MK

i (θi)|∄µi ∈ ∆(MK
i (θi)); ∀(θ−i, m−i) s.t. m−i ∈MK

−i(θ−i),
∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θi) > ui(g(m̃i, m−i), θi)}.

Thus, for mi /∈ MK
i (θi), there exists µi ∈ ∆(MK

i (θi)) such that, for any

θ−i and m−i ∈MK
−i(θ−i),

∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θi) > ui(g(mi, m−i), θi).

10The proof is based on the equivalence between the collection of Bayesian equilibria

of all type spaces and the collection of iteratively undominated strategy profiles in any

(finite) game. See Battigalli and Siniscalchi (2003) and Bergemann and Morris (2007)

who show such an equivalence result in game theory.
11The relationship between the statements 2 and 3 becomes less clear if we allow un-

countably infinite type spaces (e.g., a universal type space), because of the existence issue

of Bayesian equilibria with such type spaces. See also Footnote 9.
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Fix an arbitrary m−i ∈ MK
−i =

⋃

θ′
−i∈Θ−i

MK
−i(θ

′
−i). Then there exists θ−i

such that m−i ∈MK
−i(θ−i). Then,

∑

m′

i

µi(m
′
i)ui(g(m

′
i, m

∗
−i), θi) > ui(g(mi, m

∗
−i), θi),

which establishes the lemma.

Define a mechanism Γ′ = 〈M ′, g′〉 so that M ′
i = M∞

i =
⋃

θi
M∞

i (θi) for

each i, and g′ : M ′ → X is the restriction of g : M → X on M ′(⊆ M).

Then by Lemma 1, for each i, θi, if mi /∈ M∞
i (θi), then mi is (one-round)

strictly dominated. Thus, M
′U
i (θi), the set of undominated messages for θi

in mechanism Γ′, is a subset of M∞
i , which implies that Γ′ implements F in

undominated strategies.

Remark 1. It may be worth noting that, in general, social choice corre-

spondences that are implementable in either of these approaches are not

necessarily dominant-strategy incentive compatible (or more precisely, they

do not necessarily have subcorrespondences that are dominant-strategy in-

centive compatible). In this sense, the set of implementable objectives in

these approaches could be strictly larger than the set of dominant-strategy

implementable objectives, one of the classical “robust” approaches in the

literature.12

Remark 2. Our equivalence result also implies that the findings in one

approach can apply to the other approach. For example, as shown by Berge-

mann and Morris (2005), Chung and Ely (2007), and Börgers and Smith

(2012) in various contexts, under certain conditions, Bayesian implementabil-

ity given large type spaces implies dominant-strategy incentive compatibil-

ity. Such results would hold true as well for implementation in undominated

strategies.13 Conversely, Yamashita (2012) shows that a condition called the

12See, for example, Bergemann and Morris (2005) and Yamashita (2012).
13Indeed, for example, Jackson (1992) shows that a social choice function that is im-

plementable in undominated strategies must be dominant-strategy incentive compatible,
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“chain dominance property” is necessary for implementation in undominated

strategies, and this would also hold true for Bayesian implementation given

any type space. Such a result might be useful as a “detour” for studying

robust mechanisms in terms of structural uncertainties, where the Bayesian

incentive compatibility constraints given large type spaces could be highly

multidimensional and complicated.

4 Interdependent values

For some economic problems, it may be more natural to model the situation

as one with interdependent values, i.e., agent i’s preference given θi is repre-

sented by a utility function ui(x, θ) that can vary with θ−i. Even with this

general specification of the agents’ preferences, some of the results obtained

in this paper still hold true.

In the following, we redefine each implementation concept with interde-

pendent values. We say that, for each i, θi, a message mi ∈Mi in mechanism

Γ = 〈M, g〉 is strictly dominated, if there is µ′
i ∈ ∆(Mi) such that, given any

θ−i and m−i ∈M−i,

∑

m′

i

ui(g(m
′
i, m−i), θ)µi(m

′
i) > ui(g(mi, m−i), θ).

That is, µ′
i is strictly a better response than mi, given whatever payoff

types the others have, and whatever actions the others play. Let MU
i (θi) be

the set of all messages that are not strictly dominated for i with θi, i.e.,

MU
i (θi) = {mi ∈Mi|∄µi ∈ ∆(Mi); ∀θ−i ∈ Θ−i, m−i ∈M−i,

∑

m′

i

ui(g(m
′
i, m−i), θi)µi(m

′
i) > ui(g(mi, m−i), θi).}.

while Bergemann and Morris (2005) show that Bayesian implementation of a social choice

function (or more generally, a separable correspondence) implies its dominant-strategy

incentive compatibility.
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We say that mechanism Γ implements F in undominated strategies if for

each θ and m ∈MU(θ) =
∏

iM
U
i (θi), we have g(m) ∈ F (θ).

Iterative elimination is defined in an analogous way. LetM0
i (θi) =MU

i (θi)

for each i, θi. Then, for each k = 1, 2, . . ., given (Mk−1
j (θj))θj∈Θj ,j∈I , we define

Mk
i (θi) as follows.

Mk
i (θi) = {mi ∈Mk−1

i (θi)|∄µi ∈ ∆(Mk−1
i (θi)); ∀(θ−i, m−i) s.t. m−i ∈Mk−1

−i (θ−i),
∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θ) > ui(g(mi, m−i), θ)}.

We define M∞
i (θi) =

⋂∞
k=0M

k
i (θi), and M

∞(θ) =
∏

i∈I M
∞
i (θi). We say

that mechanism Γ implements F in iteratively undominated strategies if for

each θ and m ∈M∞(θ), we have g(m) ∈ F (θ).

Bayesian implementation is also defined in an analogous fashion. In a

mechanism Γ = 〈M, g〉, a strategy profile σ∗ = (σ∗
i )

N
i=1 is a Bayesian equilib-

rium given type space T if, for any i,mi, ti,

∑

t−i

∑

m′

−i

∑

m′

i

ui(g(m
′
i, m

′
−i), τ(t))σ

∗
i (m

′
i|ti)σ

∗
−i(m

′
−i|t−i)βi(t−i|ti)

≥
∑

t−i

∑

m′

−i

ui(g(mi, m
′
−i), τ(t))σ

∗
−i(m

′
−i|t−i)βi(t−i|ti).

We say that a mechanism Γ Bayesian implements F given type space T

if for any Bayesian equilibrium σ∗ given T , for each t ∈ T and m ∈ M

with σ∗(m|t) > 0, we have g(m) ∈ F (τ(t)). Similarly, Γ partially Bayesian

implements F given type space T if there exists a Bayesian equilibrium σ∗

given T such that, for each t ∈ T and m ∈ M with σ∗(m|t) > 0, we have

g(m) ∈ F (τ(t)).

Proposition 1. F is Bayesian implementable given any type space if and

only if it is implementable in iteratively undominated strategies.

We provide the proof in the appendix for completeness, but it is a straight-

forward extension of that in Bergemann and Morris (2011).
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Next, we examine the relationship between one-round and iteratively un-

dominated strategies. In general, there are some social choice correspon-

dences that are implementable in iteratively undominated strategies but not

in (one-round) undominated strategies, as in the following example.

Example 1. Let I = 2, Θ1 = Θ2 = {−1, 1}, and X = {−2,−1, 1, 2}. For

agent 1, u1(x, θ) = xθ1, and for agent 2, u2(x, θ) = xθ1θ2. Let F (θ) =

{2θ1 + θ1θ2}.

The following “revelation” mechanism Γ = 〈Θ, g〉 implements F in itera-

tively undominated strategies: g(θ) = 2θ1 + θ1θ2 for each θ. First, for agent

1, truth-telling is strictly dominant. Given this, for agent 2, truth-telling

becomes strictly dominant.14

However, no mechanism can implement F in (one-round) undominated

strategies. Specifically, for agent 2, we have u2(x, θ1, θ2) = u2(x,−θ1,−θ2)

for any x. Therefore, we have MU
2 (1) = MU

2 (−1) for any mechanism, which

implies that F is not implementable in undominated strategies.

This is different to the previous case because, with iterative elimination,

the first round of elimination (based on strict dominance for agent 1) restricts

the set of agent 2’s joint belief about θ1 and agent 1’s play. Because the value

of θ1 completely changes agent 2’s preference, such a restriction could make

a significant difference in agent 2’s behavior.

Nevertheless, there are some environments with interdependence where

an analogous result to Theorem 1 holds. One such environment is where the

agents’ payoff-relevant information has a multidimensional and rich structure

such that mutual knowledge of rationality would not have any additional

behavioral implications compared with rationality only.

Specifically, let Θi = Ci ×Di for each i, where, for each θi = (ci, di), we

call ci ∈ Ci the common component and Di the private component of θi.
15

14For θ2 = −1, u2(g(θ1,−1), θ1,−1) = −θ21 > −3θ21 = u2(g(θ1, 1), θ1,−1).

For θ2 = 1, u2(g(θ1,−1), θ1, 1) = θ21 < 3θ21 = u2(g(θ1, 1), θ1, 1).
15These terms appear in, for example, Jehiel, Moldovanu, Meyer-ter-Vehn, and Zame

(2006).

13



We assume that i’s preference depends on θi = (ci, di) and c−i ∈ C−i, but not

on d−i ∈ D−i (and hence, ui(x, θ) = ui(x, θi, c−i)). We impose the following

“richness” condition.

Assumption 1. For each i, (ci, di) ∈ Θi, and c′i ∈ Ci, there exist d′i ∈ Di

and ψi : C−i → C−i such that, for any c−i ∈ C−i, ui(·, ci, di, c−i) is an affine

transformation of ui(·, c
′
i, d

′
i, ψi(c−i)) (i.e., they exhibit the same preferences

over the lotteries).

To interpret this assumption, imagine that one could observe agent i’s

choices, which are the best choices if i’s payoff type is (ci, di) (with some

belief over C−i and the others’ choices). In this sense, the observed choices

do not falsify that i’s payoff type is (ci, di). The assumption says that, in such

a case, one cannot falsify either that i’s common component is any c′i because

i would behave exactly in the same way if his private component is d′i and his

belief over C−i is the one that is appropriately translated by ψi. Therefore,

the assumption means that agent i’s behavior implies no information about

his common component.

For example, consider an interdependent-value auction of an oil tract,

where each bidder has two sorts of private information, a noisy estimate

of the amount of oil in the tract (common component ci), and his cost of

digging the well (private component di). Let vi(c, di) = ci + δi(
∑

j 6=i cj) + di

be i’s willingness to pay for the tract, and vi(c, di) − pi be i’s utility if he

wins the auction (and zero otherwise) where pi ∈ R is his payment to the

seller. Let Ci ⊆ R = Di.
16 In this case, the assumption is satisfied by letting

d′i = ci− c
′
i+di and ψi be an identity map. To understand the implication of

the assumption, suppose that agent i bids ci + di in a second-price auction.

His bid of ci + di may reflect (i) that i’s payoff type is (ci, di) and he believes

that the others’ common components are all zero, or (ii) that i’s payoff type

is (c′i, ci − c′i + di) with the same belief over C−i. Therefore, i’s bid does

16We adopt a continuous payoff-type space in this example to simplify the argument,

but a similar conclusion is obtained even with finite Θi.
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not induce any information about his common component.17 Intuitively, if

bidder i makes an aggressive bid, it may be because he has a high estimate

of the amount of oil (i.e., ci is high), or because he has a low estimate but his

cost of digging the well is low (i.e., di is high). Assumption 1 says that the

bidders’ signal spaces are so rich that the bidders’ behaviors do not reject

either possibility.18

Theorem 2. Under Assumption 1, the following three statements are equiv-

alent.

1. F is implementable in undominated strategies.

2. F is implementable in iteratively undominated strategies.

3. F is Bayesian implementable given any type space.

17Although i’s bid induces no information about the common component (in any mech-

anism, as we show in Theorem 2), his bid could be informative about possible combina-

tions of the private and common components, and in this sense, the design of desirable

mechanisms is still nontrivial. See Yamashita (2013b) for revenue maximization in such

interdependent-value auction settings when bidders may play any strategies that are not

weakly dominated.
18The assumption can also be satisfied with a more general valuation function. For

example, let di = (di1, di2) ∈ Di be two-dimensional, and vi = πi(c)di1 + di2 be bidder i’s

willingness to pay, where ci ∈ Ci = [c, c], di1 ∈ [d1, d1] ⊆ R+, and di2 ∈ [d2, d2] ⊆ R. We

interpret πi(c) > 0 as the estimated amount of oil in the tract given c, di1 is i’s (constant)

marginal revenue from the sale of the oil, and di2 is the cost of digging the well. We assume

πi is continuous and strictly increasing in every argument. Assumption 1 is satisfied if the

intervals [d1, d1] and [d2, d2] are sufficiently large, because then we can let d′
i
= (d′

i1, d
′
i2)

be such that

πi(c, . . . , c)di1 + di2 = πi(c, . . . , c)d
′
i1 + d′i2,

πi(c, . . . , c)di1 + di2 = πi(c, . . . , c)d
′
i1 + d′i2,

and ψi be such that πi(ci, c−i)di1 + di2 = πi(c
′
i
, ψi(c−i))d

′
i1 + d′

i2 for each c−i. Note that

such a ψi exists by continuity of πi. For example, for each x ∈ R, let γ(x) ∈ Ci be such

that x = πi(c
′
i
, γ(x), . . . , γ(x))d′

i1 + d′
i2, which exists by continuity of πi. Then, we let

ψi(c−i) = γ(πi(ci, c−i)di1 + di2).
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Proof. The equivalence between statements 2 and 3 is Proposition 1. We

show that statement 2 implies statement 1. The other statement that state-

ment 1 implies statement 2 is obvious.

Suppose that F is implemented in iteratively undominated strategies by

a mechanism Γ = 〈M, g〉. That is, for each θ and m ∈ M∞(θ), we have

g(m) ∈ F (θ).

First, we observe that Assumption 1 implies the following lemma.

Lemma 2. For each i, (ci, di) ∈ Θi, and c
′
i ∈ Ci, there exists d′i ∈ Di such

that, for each k, Mk
i (ci, di) ⊆Mk

i (c
′
i, d

′
i).

Proof. (of the lemma) Fix i, ci, di, c
′
i. First, let k = 0.

Let mi ∈ M0
i (ci, di). Then, there is no µi ∈ ∆(Mi) such that for all c−i

and m−i,
∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), ci, di, c−i) > ui(g(mi, m−i), ci, di, c−i).

By Assumption 1, there exist d′i ∈ Di and ψi : C−i → C−i such that, for

any c−i ∈ C−i, ui(·, ci, di, c−i) is an affine transformation of ui(·, c
′
i, d

′
i, ψi(c−i)).

This implies that there is no µi ∈ ∆(Mi) such that for all c−i and m−i,
∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), c

′
i, d

′
i, ψi(c−i)) > ui(g(mi, m−i), c

′
i, d

′
i, ψi(c−i)).

Therefore, mi ∈ M0
i (c

′
i, d

′
i). In the following, we denote such d′i by

δi(ci, di, c
′
i).

Now, suppose that, for every j ∈ I, (c̃j, d̃j) ∈ Θj, and ĉj ∈ Cj, we have

Mk−1
j (c̃j , d̃j) ⊆ Mk−1

j (ĉj , δj(c̃j, d̃j, ĉj)).

Let mi ∈ Mk
i (ci, di). Then, by the separation theorem, there exists λi ∈

∆(Θ−i ×M−i) such that (i) λi(θ−i, m−i) > 0 implies m−i ∈ Mk−1
−i (θ−i), and

(ii) for each m′
i ∈Mi,

∑

c−i,d−i,m−i

λi(c−i, d−i, m−i)ui(g(m
′
i, m−i), ci, di, c−i)

≤
∑

c−i,d−i,m−i

λi(c−i, d−i, m−i)ui(g(mi, m−i), ci, di, c−i).
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By Assumption 1, there exists ψi : C−i → C−i such that, for any c−i ∈

C−i, ui(·, ci, di, c−i) is an affine transformation of ui(·, c
′
i, d

′
i, ψi(c−i)). Define

λ′i ∈ ∆(Θ−i ×M−i) so that, for each (c′−i, d
′
−i, m−i) ∈ Θ−i ×M−i,

λ′i(c
′
−i, d

′
−i, m−i) =

∑

c−i,d−i

λi(c−i, d−i, m−i)1{c
′
−i = ψi(c−i)}1{d

′
−i = δ−i(c−i, d−i, c

′
−i)}.

Note that, for each c′−i, d
′
−i, and m−i, λi(c

′
−i, d

′
−i, m−i) > 0 implies m−i ∈

Mk−1
−i (c′−i, d

′
−i). To see this, suppose contrarily that, for some c′−i, d

′
−i, m−i,

we have m−i /∈ Mk−1
−i (c′−i, d

′
−i) but λ′i(c

′
−i, d

′
−i, m−i) > 0. Then, there exist

c−i, d−i such that c′−i = ψi(c−i), d
′
−i = δ−i(c−i, d−i, c

′
−i), and λi(c−i, d−i, m−i) >

0. Moreover, by assumption, Mk−1
−i (c−i, d−i) ⊆ Mk−1

−i (c′−i, d
′
−i), and hence,

m−i /∈ Mk−1
−i (c−i, d−i). This contradicts that λi(c−i, d−i, m−i) > 0 implies

m−i ∈Mk−1
−i (c−i, d−i).

This implies that there is no µi ∈ ∆(Mi) such that, for any (c−i, d−i) and

m−i ∈Mk−1
−i (c−i, d−i),

∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), c

′
i, δi(ci, di, c

′
i), c−i) > ui(g(mi, m−i), c

′
i, δi(ci, di, c

′
i), c−i),

and therefore, mi ∈Mk
i (c

′
i, δi(ci, di, c

′
i)).

Define a mechanism Γ′ = 〈M ′, g′〉 so that M ′
i = M∞

i =
⋃

θi
M∞

i (θi) for

each i, and g′ : M ′ → X is the restriction of g : M → X on M ′(⊆ M). For

some i, θi, suppose that mi /∈ M∞
i (θi). Then, there exists µi ∈ ∆(M∞

i (θi))

such that, for any (c−i, d−i) and m−i ∈M∞
−i(c−i, d−i),

∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θi, c−i) > ui(g(mi, m−i), θi, c−i).

Now, fix an arbitrary m′
−i ∈ M∞

−i and c′−i ∈ C−i. By Lemma 2, there

exists d′−i such that m′
−i ∈M∞

−i(c
′
−i, d

′
−i). Thus,

∑

m′

i

µi(m
′
i)ui(g(m

′
i, m

′
−i), θi, c

′
−i) > ui(g(mi, m

′
−i), θi, c

′
−i).

Because this inequality is true for any m′
−i ∈M ′

−i and c
′
−i ∈ C−i, we have

mi /∈ M
′U
i (θi) in the new mechanism Γ′. This implies that Γ′ implements F

in undominated strategies.
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5 Partial Bayesian implementation

In the literature on robust mechanism design with respect to the agents’

structural uncertainties, several studies, such as Bergemann and Morris (2005),

Chung and Ely (2007), Smith (2011), and Börgers and Smith (2012), ex-

amine the implications of Bayesian incentive compatibility conditions given

arbitrary type spaces. Bayesian incentive compatibility is equivalent to the

partial Bayesian implementation of an objective, which requires that there

exists at least one Bayesian equilibrium that induces a desirable outcome.

In this section, we examine the relationships between the partial Bayesian

implementation and the other implementation concepts discussed in the pre-

vious sections. We first consider the private-value environment, and then

consider the interdependent-value environment.

5.1 Private values

Definition 5. We say that a mechanism Γ partially Bayesian implements

F given type space T if there exists a Bayesian equilibrium σ∗ given T such

that, for each t ∈ T and m ∈M with σ∗(m|t) > 0, we have g(m) ∈ F (τ(t)).

Obviously, partial Bayesian implementation is a less demanding concept

than Bayesian implementation (and implementation in one-round or itera-

tively undominated strategies), but not necessarily vice versa. Nevertheless,

under certain conditions, together with the private-value assumption, we

show that these concepts are “close” to each other in terms of implementable

objectives.

To explain the additional conditions we need, the following example il-

lustrates that, without any additional condition, partial Bayesian implemen-

tation is strictly less demanding than Bayesian implementation, even in a

single-agent setting.19

19This distinction between partial implementation (i.e., requiring that one of the possible

outcomes is desirable) and weak (or full) implementation (i.e., requiring that every possible

outcome is desirable) is well known in the literature. See, for example, Plott (1976).
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Example 2. Let N = 1, X = {a, a′}, and Θ1 = {t, t′}. The agent is always

indifferent between a and a′, regardless of θ1, i.e., u1(a, θ1) = u1(a
′, θ1) for

each θ1 = t, t′. However, the designer aims to implement the following state-

contingent outcomes: F (t) = {a} and F (t′) = {a′}.

F is partially Bayesian implementable given any type space, by a “reve-

lation mechanism” Γ = 〈Θ1, g〉 such that g(t) = a and g(t′) = a′. However, Γ

cannot Bayesian implement F , becauseMU
1 (t) =MU

1 (t
′) = {t, t′}. Indeed, in

any mechanism Γ, we haveMU
1 (t) =MU

1 (t
′), and therefore, F is not Bayesian

implementable.

This distinction occurs because, for Γ to implement F , the agent needs to

send different messages in different states, even though he is indifferent. Such

F is never implementable in undominated strategies (and thus, nor Bayesian

implementable) by any mechanism, because the two types of the agent have

the same set of undominated messages.

Nevertheless, we show that, if F is partially Bayesian implementable given

any type space, then with some additional assumptions, it is “virtually”

implementable in undominated strategies. To introduce the notion of virtual

implementation, we assume that there exists a finite set of “pure allocations”

Y such that X = ∆(Y ) is the set of all lotteries over Y . For each y, i’s utility

given θi is denoted by vi(y, θi), and we assume ui(x, θi) =
∑

y x(y)vi(y, θi),

where x(y) ∈ [0, 1] is the probability that lottery x assigns to y. We also

assume that F is convex-valued, i.e., for each θ, if x, x′ ∈ F (θ), then αx +

(1−α)x′ ∈ F (θ) for any α ∈ (0, 1). That is, if two lotteries x, x′ are considered

to be desirable in state θ, then any compound lottery that randomly selects

x or x′ is desirable in θ as well.

Definition 6. Given ε ∈ (0, 1) and a social choice correspondence F , let Fε

be a social choice correspondence such that, for each θ,

Fε(θ) = {x|∃x′ ∈ F (θ), max
y

|x(y)− x′(y)| < ε}.

We say that F is virtually implementable in undominated strategies if, for

any ε ∈ (0, 1), Fε is implementable in undominated strategies.
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We introduce an assumption where an agent’s indifference can always be

broken by some perturbation.

Assumption 2. There exists an allocation rule fU : Θ → X such that, in a

revelation mechanism ΓU = 〈Θ, fU〉, θi is the unique undominated message

for each i and θi (i.e., M
U
i (θi) = {θi}).

20

Theorem 3. Under Assumption 2, if F is partially Bayesian implementable

given any T , then it is virtually implementable in undominated strategies.21

The proof comprises the following two steps. We first introduce another

implementation concept, which we refer to as implementation in (some) best-

response correspondences. We show that (i) if F is partially Bayesian imple-

mentable, then it is implementable in best-response correspondences (Propo-

sition 2).22 Then we show that (ii) under Assumption 2, if F is implementable

in best-response correspondences, then it is virtually implementable in un-

dominated strategies (Proposition 3).

Definition 7. For each i, θi, let M
R
i (θi) ⊆ Mi. A mechanism Γ implements

F in best-response correspondences (MR
i (θi))i,θi if (i) for each θ and m ∈

MR(θ) =
∏

iM
R
i (θi), we have g(m) ∈ F (θ), and (ii) for each i, θi, and

µ−i ∈ ∆(M−i), there exists mi ∈ MR
i (θi) that is a best response for θi

against µ−i, i.e., for any m
′
i ∈ Mi,

∑

m−i

µ−i(m−i)ui(g(mi, m−i), θi) ≥
∑

m−i

µ−i(m−i)ui(g(m
′
i, m−i), θi).

20Assumption 2 may not be very demanding if the feasible set of allocations does not

depend on θ. For example, it is sufficient if for each i, θi 6= θ′i, there exist x, x′ such that

ui(x, θi) > ui(x
′, θi) and ui(x, θi) < ui(x

′, θi).
21Obviously, if F is virtually implementable in undominated strategies, then it is virtu-

ally partially implementable given any T (with or without Assumption 2). On the other

hand, it is an open question whether virtual implementation in undominated strategies

implies partial Bayesian implementation given any T .
22In fact, the other direction also holds. The proof is available upon request.
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Proposition 2. If F is partially Bayesian implementable given any T , then

there exists MR
i (θi) ⊆ Mi for each i and θi such that F is implementable in

best-response correspondences (MR
i (θi))i,θi.

The formal proof is in the appendix, and here, we explain the idea of the

proof for a special case to provide some intuition. Suppose that, given a type

space T , Γ = 〈M, g〉 has a pure-strategy Bayesian equilibrium σ∗ such that,

for each t with τ(t) = θ, we have g(σ∗(t)) ∈ F (θ) (so Γ partially Bayesian

implements F ). Suppose also that, for each i and mi ∈ Mi, there is some ti

such that σ∗
i (ti) = mi. Such a type ti is denoted by ti(mi) (fixed arbitrarily

if there are multiple of such types).

Imagine that T is indeed a universal type space of Mertens and Zamir

(1985) or Brandenburger and Dekel (1993).23 Then, for each i, θi, and any

probability distribution µ−i over M−i, there is some ti such that τi(ti) = θi

and βi(t−i(m−i)|ti) = µ−i(m−i) for each m−i ∈ M−i.
24 Then, because σ∗

i (ti)

is the equilibrium action for ti, we have, for any m′
i ∈Mi,

∑

m−i

µ−i(m−i)ui(g(mi, m−i), θi) ≥
∑

m−i

µ−i(m−i)ui(g(m
′
i, m−i), θi).

Now, we define MR
i (θi) = {σ∗

i (ti)|τi(ti) = θi} for each i, θi. Then, Γ

implements F in best-response correspondences (MR
i (θi))i,θi because (i) for

each θ and m ∈ MR(θ), we have g(m) ∈ F (θ) because Γ partially Bayesian

implements F given T (at the equilibrium σ∗), and (ii) for each i, θi, µ−i ∈

∆(M−i), there exists mi ∈MR
i (θi) that is a best response for θi against µ−i,

by the construction of MR
i (θi).

In general, of course, σ∗ may be in mixed strategies and may assign prob-

abilities less than one (or even zero) for some of the messages. Furthermore,

T is restricted to be at most countably infinite, and thus, the argument based

23Because we only allow for at most countably infinite type spaces, and so do not allow

uncountably infinite type spaces such as the universal type space, in the formal proof,

we find another type space that is at most countably infinite, and still sufficiently rich to

obtain the result.
24This is an implication of the completeness of the universal type space.
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on the completeness of the universal type space is not applicable. The for-

mal proof treats these complicated issues, while the main intuition is already

explained above.

Now we show that, under Assumption 2, if F is implementable in best-

response correspondences, then it is virtually implementable in undominated

strategies.

Proposition 3. Under Assumption 2, suppose that there exists MR
i (θi) ⊆

Mi for each i, θi such that F is implementable in best-response correspon-

dences (MR
i (θi))i,θi. Then F is virtually implementable in undominated

strategies.

Remark 3. Although this paper considers strict dominance to define the

agents’ “rational” behaviors, an alternative approach in the literature is

based on (one-round) elimination of weakly dominated strategies.25 Obvi-

ously, implementation based on weak dominance is less demanding than im-

plementation in (strict) undominated strategies. Conversely, partial Bayesian

implementation given any type space is less demanding than implementation

based on weak dominance. Therefore, as long as Assumption 2 is satisfied,

the distinction between the weak and strict dominance concepts is “virtually”

nonessential.

More generally, as long as Assumption 2 is satisfied, implementation based

on any solution concept that is (i) more demanding than partial Bayesian

implementation given any type space and (ii) less demanding than implemen-

tation in undominated strategies is “virtually” equivalent to each other.26

25For example, see Börgers (1991) and Jackson (1992). In this remark, we discuss only

the one-round elimination of weakly dominated strategies, but Yamashita (2013a) shows

that the same argument applies to an iterative elimination concept, which is based on the

one-round elimination of weakly dominated strategies followed by the iterative elimination

of strictly dominated strategies, as in Dekel and Fudenberg (1990) and Börgers (1994).
26For example, (appropriately defined) “perfect Bayesian” implementation given any

type space using dynamic mechanisms would be in this class of solution concepts.
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5.2 Interdependent values

With interdependent values, there can be some F that is partially Bayesian

implementable, but is not implementable in (even virtually) iterative undom-

inated strategies, as in the following example.

Example 3. Let I = 2, Θ1 = Θ2 = {−1, 1}, and X = ∆({1,−1}). For each

agent i, ui(x, θ) = xθ1θ2. Let F (θ) = {θ1θ2} for each θ.

The following “revelation” mechanism Γ = 〈Θ, g〉 partially Bayesian im-

plements F given any type space: g(θ) = θ1θ2 for each θ.

However, no mechanism can (even virtually) implement F in iteratively

undominated strategies, because in any mechanism, for each i, MU
i (1) =

MU
i (−1), and thus, no iterative elimination is possible.

In this example, in the truth-telling equilibrium, no agent is made better

off by any deviation if the other agent is truthful. However, the mechanism

has another untruthful Bayesian equilibrium. Indeed, we can only Bayesian

implement constant correspondences, i.e., such F that F (θ) does not vary

with θ.

Identifying general conditions for any partially Bayesian implementable

correspondence to be virtually implementable in (one-round) undominated

strategies is left as a future research topic. However, such “general condi-

tions” could be somewhat restrictive. Bergemann and Morris (2009a) obtain

ex post incentive compatibility and robust measurability as two necessary

conditions (and also sufficient with some additional “technical” conditions)

for social choice functions to be virtually implementable in iteratively un-

dominated strategies. Recall that a social choice function is ex post incentive

compatible if and only if it is partially Bayesian implementable given any type

space (Bergemann and Morris (2005)), and therefore, robust measurability

is the additional condition that makes the function virtually implementable

in iteratively undominated strategies. However, robust measurability could

be a substantial restriction on social choice functions. For example, in their

private-goods allocation environment, robust measurability requires that in-
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terdependence is “sufficiently small” with respect to a certain measure.

6 Conclusion

In this paper, in certain environments, we have established equivalence in

terms of implementable social choice correspondences between (i) implemen-

tation in (one-round or iterative) undominated strategies, a solution concept

that is robust to strategic uncertainties, and (ii) Bayesian implementation

with arbitrary type spaces, a solution concept that is robust to structural

uncertainties. The class of environments that admit this equivalence includes

private-value environments and interdependent-value environments with cer-

tain richness conditions.

Furthermore, we have established virtual equivalence of those concepts

with partial Bayesian implementation in the private-value environment. The

results suggest that, in some economically important environments, assuming

the agents’ (Bayesian) equilibrium plays does not enlarge the set of imple-

mentable objectives unless we make additional assumptions on their (high-

order) beliefs, compared to the case where the agents are just assumed to be

rational.

We also believe that the results are useful in suggesting that some theo-

retical tools developed in one approach would be useful in another approach,

as we have discussed in Remark 2.
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A Proofs

B Proof of Proposition 1

Suppose that F is implemented in iteratively undominated strategies by a

mechanism Γ = 〈M, g〉. Given any type space T , let σ∗ be any Bayesian

equilibrium in Γ. First, for each i and ti such that τi(ti) = θi, if σ
∗
i (mi|ti) > 0,

then mi ∈M0
i (θi).

For k = 1, 2, . . ., suppose the following holds: for each i and ti such that

τi(ti) = θi, if σ
∗
i (mi|ti) > 0, then mi ∈ Mk−1

i (θi). Now, suppose that for

some i, ti such that τi(ti) = θi, there is mi ∈ Mk−1
i (θi) \M

k
i (θi) such that

σ∗
i (mi|ti) > 0. Then, for such mi, there exists µi ∈ Mk−1

i (θi) such that, for

any θ−i and m−i ∈Mk−1
−i (θ−i),

∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θ) > ui(g(mi, m−i), θ).

Because the support of σ∗
−i(·|t−i) is a subset of Mk−1

−i (τ−i(t−i)) for each

t−i, we have

∑

t−i

∑

m−i

∑

m′

i

βi(t−i|ti)σ
∗
−i(m−i|t−i)µi(m

′
i)ui(g(m

′
i, m−i), τ(t))

>
∑

t−i

∑

m−i

βi(t−i|ti)σ
∗
−i(m−i|t−i)ui(g(mi, m−i), τ(t)).

Instead of playing σ∗
i (ti), suppose that ti plays (i) each m

′
i ∈Mi such that

m′
i 6= mi with probability σ∗

i (m
′
i|ti), and (ii) µi with probability σ∗

i (mi|ti).

This is strictly a better response for ti than σ
∗
i (ti), which contradicts that σ∗

is a Bayesian equilibrium. Therefore, if σ∗
i (mi|ti) > 0, then mi ∈Mk

i (θi).

Iterating this argument for all k, we conclude that, for each i, ti such that

τi(ti) = θi, if σ
∗
i (mi|ti) > 0, then mi ∈M∞

i (θi). This implies that Γ Bayesian

implements F given any type space.
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Next, we show that Bayesian implementation given any type space implies

implementation in iteratively undominated strategies. Let Γ = 〈M, g〉 be a

mechanism that Bayesian implements F given any type space. Let

Λ−i = {λ−i ∈ ∆(Θ−i ×M−i)|∀θ−i, [λ−i(θ−i, m−i) > 0 ⇒ m−i ∈M∞
−i(θ−i)]}.

λ−i ∈ Λ−i is agent i’s (joint) conjecture about the others’ payoff types

and their messages that survive the iterative elimination procedure. Note

that Λ−i is convex and closed.

Lemma 3. For each mi ∈M∞
i (θi), there exists λ−i ∈ Λ−i such that, for any

m′
i ∈Mi,

∑

θ−i

∑

m−i

λ−i(θ−i, m−i)ui(g(mi, m−i), θ) ≥
∑

θ−i

∑

m−i

λ−i(θ−i, m−i)ui(g(m
′
i, m−i), θ).

We denote such λ−i by λ
θi,mi

−i .

Proof. Suppose that there exist i, θi, and mi ∈ M∞
i (θi) such that, for any

λ−i ∈ Λ−i, there is some m′
i ∈Mi such that

∑

θ−i

∑

m−i

λ−i(θ−i, m−i)ui(g(mi, m−i), θ) <
∑

θ−i

∑

m−i

λ−i(θ−i, m−i)ui(g(m
′
i, m−i), θ).

We can find such m′
i in M∞

i (θi). Then, by the separation theorem, we

can find µ′
i ∈ ∆(M∞

i (θi)) such that, for any λ−i ∈ Λ−i,

∑

θ−i

∑

m−i

λ−i(θ−i, m−i)ui(g(mi, m−i), θ) <
∑

θ−i

∑

m−i

∑

m′

i

λ−i(θ−i, m−i)µi(m
′
i)ui(g(m

′
i, m−i), θ).

In particular, this implies that, for any θ−i and m−i ∈M∞
−i(θ−i), we have

ui(g(mi, m−i), θ) <
∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θ),

which contradicts that mi ∈M∞
i (θi).
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We construct a type space T as follows. For each i, let Ti = {(θi, mi)|θi ∈

Θi, mi ∈ M∞
i (θi)}. For each ti = (θi, mi) and t−i = (θ−i, m−i), we define

τi(ti) = θi, and βi(t−i|ti) = λθi,mi

−i (θ−i, m−i).

Consider σ∗ such that, for each i and ti = (θi, mi), we have σ
∗
i (mi|ti) = 1.

It is a Bayesian equilibrium because, for each i and ti = (θi, mi), given that

the other agents −i follow σ∗
−i, mi satisfies that, for each m

′
i ∈Mi,

∑

t−i

∑

m−i

σ∗
−i(m−i|t−i)βi(t−i|ti)ui(g(mi, m−i), τ(t))

=
∑

θ−i

∑

m−i

λθi,mi

−i (θ−i, m−i)ui(g(mi, m−i), θ)

≥
∑

θ−i

∑

m−i

λθi,mi

−i (θ−i, m−i)ui(g(m
′
i, m−i), θ)

=
∑

t−i

∑

m−i

σ∗
−i(m−i|t−i)βi(t−i|ti)ui(g(m

′
i, m−i), τ(t)).

Because Γ Bayesian implements F , for each θ,m ∈M∞(θ), we have g(m) ∈

F (θ). This implies that the mechanism Γ implements F in iteratively un-

dominated strategies.

B.1 Proof of Proposition 2

Let Γ be a mechanism that partially Bayesian implements F given any type

space.

Consider the following type space T . Let Li = |M−i| + 1(< ∞), where

|M−i| is the number of message profiles for agent i’s opponents.

For each i, we define

Ti = {(θi; q
1
−i, . . . , q

Li

−i; p
1, . . . , pLi)|∀l, ql−i ∈ QN−1, pl ∈ Q ∩ [0, 1];

Li
∑

l=1

pl = 1}.

Because Ti is at most countably infinite, there is a one-to-one mapping

ρi : Ti → Q. In the following, each rational number qj ∈ Q corresponds

to one type of j, ρj(qj) ∈ Tj . Each type ti = (θi; q
1
−i, . . . , q

Li

−i; p
1, . . . , pLi) of
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agent i has (i) a payoff type θi, and (ii) assigns positive probabilities for at

most Li(< ∞) type profiles of the opponents, and (iii) each probability is a

rational number. More precisely, we define τi and βi as follows.

τi(θi; q
1
−i, . . . , q

Li

−i; p
1, . . . , pLi) = θi,

βi(t−i|θi; q
1
−i, . . . , q

Li

−i; p
1, . . . , pLi) =

{

pl if t−i = ρ−1
−i (q

l
−i),

0 otherwise.

By assumption, in mechanism Γ = 〈M, g〉 and given type space T , there

exists a Bayesian equilibrium σ∗ such that, for each t andm with σ∗(m|t) > 0,

we have g(m) ∈ F (τ(t)). For each i, θi, let Σ
∗
i (θi) = {σ∗

i (ti) ∈ ∆(Mi)|τi(ti) =

θi}. Let Σ∗
i =

⋃

θi
Σ∗

i (θi), and let Λ−i = co(Σ∗
−i) denote the convex hull of

Σ∗
−i.

For each i, ti, his belief about the opponents’ messages in the equilibrium

is given by µti
−i ∈ Λ−i such that, for each m−i,

µti
−i(m−i) =

∑

t−i

βi(t−i|ti)σ
∗
−i(m−i|t−i),

which is a convex combination of |M−i| elements of Σ∗
−i where each weight

is a rational number. Let Λ̃−i = {µti
−i|ti ∈ Ti}.

The following technical result will be used later.

Lemma 4. Λ̃−i is a dense subset of Λ−i.

Proof. First, by Carathéodory’s theorem,27 each µ−i ∈ Λ−i is given by a

convex combination of Li elements in Σ∗
−i, say σ

∗
−i(t

1
−i), . . . , σ

∗
−i(t

Li

−i), with the

weight vector (b1, . . . , bLi), i.e., (b1, . . . , bLi) ∈ RLi

+ ,
∑

l b
l = 1, and µ−i(m−i) =

∑

l b
lσ∗

−i(m−i|t
l
−i) for each m−i ∈M−i.

By the denseness of rational numbers, for any ε > 0, we can find a rational

vector, (β1, . . . , βLi) ∈ QLi

+ , such that
∑

l β
l = 1 and |bl − βl| is less than ε

27Specifically, let A be an L-dimensional subset of a Euclidean space, and let co(A) be the

convex hull of A. For each a ∈ co(A), there exist L+1 elements in A, say a1, . . . , aL+1 ∈ A,

such that a is a convex combination of them.
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for each l. By the construction of the type space, there exists ti such that

βi(t
l
−i|ti) = βl for each l. Therefore, for each ε > 0 and each µ−i ∈ Λ−i, we

can find ti ∈ Ti such that

max
m−i∈M−i

|µti
−i(m−i)− µ−i(m−i)| < ε,

which implies that Λ̃−i is a dense subset of Λ−i.

The following lemma is the key step of the proof of the theorem.

Lemma 5. For each i, θi, there exists a finite subset ΣR
i (θi) of Σ∗

i (θi) such

that, for any µ−i ∈ Λ−i, there exists µi ∈ ΣR
i (θi) that is a best response for

θi against µ−i, i.e., for any m
′
i ∈Mi,

∑

θ−i

∑

m−i

∑

mi

µ−i(m−i)µi(mi)ui(g(mi, m−i), θi) ≥
∑

θ−i

∑

m−i

µ−i(m−i)ui(g(m
′
i, m−i), θi).

Proof. For each i, θi, and µ−i ∈ Λ̃−i, let Ri(θi, µ−i) ⊆ Mi be the set of the

“pure” best responses for θi to µ−i, i.e., mi ∈ Ri(θi, µ−i) if and only if, for

any m′
i ∈Mi,

∑

θ−i

∑

m−i

µ−i(m−i)ui(g(mi, m−i), θi) ≥
∑

θ−i

∑

m−i

µ−i(m−i)ui(g(m
′
i, m−i), θi).

For each i, θi, and µ−i ∈ Λ̃−i, let ti(θi, µ−i) denote agent i’s type such

that µti
−i = µ−i (fixed arbitrarily if there are multiple of such types), i.e.,

ti(θi, µ−i) is agent i’s type whose payoff type is θi and his belief about the

opponents’ messages in the equilibrium is µ−i.

We partition Λ̃−i so that µ′
−i, µ

′′
−i are in the same partition element if and

only if Ri(θi, µ
′
−i) = Ri(θi, µ

′′
−i) for any θi. Then Λ̃−i is finitely partitioned,

and we denote the partition by {B1, B2, . . . , BKi}. For each Bk ⊆ Λ̃−i in

the partition, fix any element µk
−i ∈ Bk, and we define ΣR

i (θi) as ΣR
i (θi) =

{σ∗
i (ti(θi, µ

k
−i))|k = 1, . . . , Ki}.

By upper hemi-continuity of best responses, σ∗
i (ti(θi, µ

k
−i)) is a best re-

sponse to any element in Bk, the closure of Bk. Because Λ̃−i is dense in Λ−i,

we have Λ−i ⊆
⋃Ki

k=1B
k. Therefore, for each µ−i ∈ Λ−i, there is µi ∈ ΣR

i (θi)

that is a best response for θi against µ−i.
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We define a mechanism Γ′ = 〈M ′, g′〉 as follows. For each i, M ′
i =

⋃

θi
ΣR

i (θi), and for each µ ∈M ′, g′(µ) =
∑

m∈M µ(m)g(m). The next lemma

completes the proof of the theorem.

Lemma 6. Γ′ implements F in best-response correspondences (ΣR
i (θi))i,θi.

Proof. For each i and µ−i ∈ ∆(M ′
−i), agent i with θi can find a best response

against µ−i in ΣR
i (θi).

Recall that, in mechanism Γ, for each θ and µ ∈
∏

i(Σ
R
i (θi)), µ was the

equilibrium message profile of some t such that τ(t) = θ, and therefore, for

any m such that µ(m) > 0, we have g(m) ∈ F (θ). Now, in mechanism Γ′, we

have g′(µ) =
∑

m∈M µ(m)g(m), and it is an element in F (θ) as well because

F is convex-valued.

C Proof of Proposition 3

Let Γ be a mechanism that implements F in best-response correspondences

(MR
i (θi))i,θi. Without loss of generality, we assume that Mi =

⋃

θi
MR

i (θi)

for each i.28

We define another mechanism Γε = 〈Mε, gε〉 as follows. For each i, let

Mε
i = {(mi, θi)|mi ∈ MR

i (θi), θi ∈ Θi}, and for each (m, θ) ∈ Mε, let

gε(m, θ) = (1− ε)g(m) + εfU(θ).

Fix arbitrary i, θi, and mi /∈ MR
i (θi). Because Mi =

⋃

θi
MR

i (θi), we

have mi ∈ MR
i (θ

′
i) for some θ′i 6= θi. Because mi cannot be the unique

best response to any µ−i ∈ ∆(M−i), by the separation theorem, there exists

µi ∈ ∆(MR
i (θi)) such that, for any m−i ∈M−i,

∑

m′

i

µi(m
′
i)ui(g(m

′
i, m−i), θi) ≥ ui(g(mi, m−i), θi).

In mechanism Γε, observe that, for this agent i with θi, (θ
′
i, mi) is strictly

dominated if θ′i 6= θi. Specifically, consider a mixed action µ′
i such that, for

28If not, then redefine the mechanism by eliminating all messages in Mi \ (
⋃

θi
MR

i (θi)).

Then the new mechanism implements F in the same best-response correspondences.
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each m′
i ∈MR

i (θi), µ
′
i(θi, m

′
i) = µi(m

′
i) (so

∑

m′

i∈M
R
i (θi)

µ′
i(θi, m

′
i) = 1). Then,

for each (m−i, θ−i),

∑

m′

i

µ′
i(m

′
i, θi)ui(g

ε((m′
i, θi), (m−i, θ−i)), θi)

=
∑

m′

i

µi(m
′
i)(1− ε)ui(g(m

′
i, m−i), θi) + εui(f

U(θi, θ−i), θi)

> (1− ε)ui(g(mi, m−i), θi) + εui(f
U(θ′i, θ−i), θi)

= ui(g
ε((mi, θ

′
i), (m−i, θ−i)), θi),

where the strict inequality is implied by the definition of fU . Thus, (θ′i, mi)

is strictly dominated.

Therefore, in mechanism Γε, if a message is undominated for θi, then it

must take the form (θi, m
′
i), where m

′
i ∈MR

i (θi). This implies that, for each

θ, g′ assigns g(m′) for some m′ ∈MR(θ) with a probability of at least 1− ε.

In conclusion, F is virtually implemented in undominated strategies.
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