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Abstract

In this study, we propose several power allocation schemes in a coordinated base station downlink transmission
with per antenna and per base station power constraints. Block Diagonalization is employed to remove
interference among users. For each set of power constraints, two schemes based on the waterfilling distribution
are proposed and compared to the optimal solution, which can only be obtained numerically by using convex
optimization. We show that the proposed schemes achieve a performance, in terms of weighted sum rate, very
close to the optimal, without the heavy computational complexity required by the latter. The sum rates are
compared first in a simplified two-user two-cell case where we also compare our approach to the previous
solutions available in the literature. Then, we examine the performance in a multi-cell scenario where we also
evaluate the degradation of the performance caused by imperfect channel state information.
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Introduction
Space-division multiplexing (SDM) based on multiple
input-multiple output (MIMO) techniques emerged as a
means of achieving high-capacity communications [1].
However, the introduction of MIMO processing in cellular
networks does not offer the expected benefits, the main
reason being the interference that characterizes these
environments. SDM requires high signal-to-noise-plus-
interference ratios (SINR) to leverage its capacity-achiev-
ing potential. Unfortunately, the interference in cellular
systems lowers the operating point toward low SINR, thus
making MIMO processing not so advantageous. Recently
some study has been devoted to manage interference in
cellular systems with reuse one, where all cells are allowed
to use the same frequencies, also known as universal fre-
quency reuse [2]. In [3], the other-cell interference (OCI)
is considered when designing the transmission for a multi-
user MIMO downlink. In [4], the authors analyze several
approaches for overcoming interference in SDM MIMO
cellular networks. If the interference is known by the

transmitters, then cooperative encoding among base
stations using dirty paper coding (DPC) can suppress OCI
[5]. In [6], several strategies are proposed to perform coor-
dinated base station transmission (CBST). Interference is
eliminated by jointly and coherently coordinating the
transmission from the base stations in the network,
assuming that base stations know all downlink signals.
Besides DPC, they propose a zero-forcing (ZF) scheme
that, although suboptimal, does not involve the complexity
of DPC. The capacity of MIMO benefits from CBST not
only because of the rise of the operating SINR point, but
also from the better rank condition of the joint channel
matrix resulting from non-collocated base stations [7].
Similar to multi-user MIMO, block diagonalization (BD)

[8,9] may be applied for CBST as a good compromise
between complexity and performance. In [10], BD is
applied in a multicell scenario in combination with the
OCI reduction scheme of [3]. Alternatively, in [11], a sin-
gular value decomposition (SVD) approach is proposed
that simplifies the channel estimation requirements at the
expense of a performance degradation.
In this article, we focus on BD-based CBST with differ-

ent power constraints at the transmission side, with the
aim of maximizing the weighted sum rate (WSR) of the
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users in a cellular network. A first reasonable assumption
for power constraints is to consider that each base station
(BS) has restricted its total transmission power; this was
used, for example, in [6,10,12]. Alternatively, per antenna
constraints may be more realistic, since each transmission
antenna is usually driven by its own high-power amplifier
[13].
In this article, we consider both per base station and per

antenna restrictions. For each of them, we will formulate
the optimization problem and derive two power allocation
schemes that resemble the well-known waterfilling (WF)
distribution. While WF is known to achieve capacity in
single-user frequency-selective transmission [14], modified
versions of WF also give the capacity-achieving power
allocation in multi-user communications [15,16]. In [10], a
scaled WF (SWF) scheme is heuristically proposed for the
case of per base station power constraints to avoid a
lengthy numerical optimization. However, its performance
is not discussed nor compared to optimal approaches. In
[7], a BD scheme denoted as JT-decomp is proposed where
the powers are assigned to the users’ transmissions with
the only aim of insuring that per base station power con-
straints are fulfilled. No optimization is performed on the
transmit powers to maximize the achievable rates. Conse-
quently, the obtained rates are lower. Also, some partial
results of the study shown here, again only for the case of
per base station power constraints, have been presented in
[17]. We will show that the schemes that we are propos-
ing, although suboptimal, perform very close to the opti-
mum power allocation–obtained by numerical convex
optimization–with a reduced complexity.
In brief, the innovative contributions of this article are

the following. We develop closed-form and implementable
solutions for the power allocation in a BD-based CBST
system with realistic power constraints at the transmission
side. These solutions are not empirical, but they are
obtained, starting from the optimal allocation, using only
few approximations that allow us to understand why they
perform close to the optimum. In the case of per base
station power constraints, one of our proposals gives the
same result as SWF [10], while the others are new. We
show also that our approaches reduce dramatically the
complexity with respect to the optimal search. Moreover,
we consider also the effect of errors in the channel estima-
tion and of a time-varying channel, in which the use of
outdated channel state information due to the feed-back
delay reduces the achievable rates.
The remainder of this article is structured as follows. In

the next section, the system model is presented; in the
“Constrained optimization and optimal power allocation”
section, the optimization problem is described; while in
the “Waterfilling distributions for suboptimal power allo-
cation schemes” section the proposed power allocation

schemes with per base station and per antenna constraints
are developed. The “Numerical results” section discusses
some performance results and the “Complexity” section
explores the complexity of the proposed solutions. The
article concludes with some concluding remarks.
Notations: In this article, the following notations will

be used. Boldface symbols will be used for matrices and
vectors, while italic letters will be used for scalars.
Superscripts T and H denote the transpose and the Her-
mitian transpose of a matrix, respectively; superscript *
refers to an optimal solution; [·]+ denotes the maximum
between zero and the argument; and ||·|||F denotes de
Frobenius norm of a matrix.

System model
The system model assumes a coordinated transmission
downlink scenario, where M base stations serve N users.
Each base station has t transmit antennas, and each user
has r receive antennas. Although our analysis is general,
the performance will be illustrated for BS-user pairs;
therefore the case M = N will be considered in the
“Results” section.
Assuming narrowband transmission (if the channel is

frequency selective, it can be decomposed into a number
of parallel non-interfering subchannels, each experien-
cing approximately frequency-flat fading), the channel
may be modeled by a Nr × Mt channel matrix H where
each matrix coefficient represents the gain from each
transmit antenna in the BS to each receive antenna at
the user side.
The received signal model is as follows:

y = Hx + n (1)

where y is the received Nr × 1 signal vector, x is the
Mt × 1 signal vector transmitted from all the BSs, and n
is a Nr × 1 vector of i.i.d complex Gaussian entries with
zero mean and unit variance. If we define Hi with i =
1...N as the r × Mt channel matrix seen by user i, then

H = [HT
1HT

2 . . . HT
N]T . Figure 1 illustrates the reference

scenario for the particular case of M = N = 3, t = 3 and
r = 1.
For the CBST scenario, we define x as follows:

x =
r∑

j=1

b1jw1j +
r∑

j=1

b2jw2j + · · · +
r∑

j=1

bNjwNj = Wb (2)

where b = [b11,..., b1r ,..., bNr]
T, bij represents the jth

symbol for user i transmitted with power Pij, the pre-
coding matrix is defined as W = [w11,..., w1r,..., wNr] and

wij =
[
w11

ij , ..., w1t
ij , ..., wkl

ij , ..., wMt
ij

]T
are the precoding

vectors.
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The precoding sub-matrices Wi = [wi1,..., wir] will be
obtained through BD as in [6,8,10], to guarantee that
there is no inter-user interference, that is

HiWn = 0 if i �= n, (3)

where 0 is an all-zero matrix of dimensions r × r. If

we define H̃i = [HT
1HT

2 . . . HT
i−1HT

i+1 . . . HT
N]T , then the

condition (3) is obtained if wij lie in the null space of

H̃i . Let l̃i = rank(H̃i) and define the SVD

H̃i = ŨĩSi

[
Ṽ

(1)
i Ṽ

(0)
i

]H
(4)

where Ṽ
(0)
i

holds the last Mt − l̃i right singular vec-

tors. We consider another SVD:

HiṼ
(0)
i = Ui

[
Si 0
0 0

] [
V(1)

i V(0)
i

]H
(5)

where V(1)
i

represents the first li singular vectors, li = r

being the rank of HiṼ
(0)
i

. The product Wi = Ṽ
(0)
i V(1)

i

represents the transmission vectors that maximize the
information rate for user i subject to the condition of
canceling interference. Therefore,

HiWn = UiSi if i = n (6)

Ui is an r × r unitary matrix and

Si = diag
{
λ

1/2
i1 , λ1/2

i2 , . . . , λ
1/2
ir

}
(7)

λ
1/2
ij being the singular values of HiṼ

(0)
i

. Then, the

received signal can be expressed as

y =

⎡⎢⎢⎢⎣
U1S1 0 · · · 0
0 U2S2 · · · 0
...

...
. . .

...
0 0 · · · UNSN

⎤⎥⎥⎥⎦b + n. (8)

Each user independently rotates the received signal
and decouples the different streams:

ỹ =

⎡⎢⎢⎢⎣
UH

1 0 · · · 0
0 UH

2 · · · 0
...

...
. . .

...
0 0 · · · UH

N

⎤⎥⎥⎥⎦ y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ
1/2
11 b11

...

λ
1/2
1r b1r

...

λ
1/2
Nr bNr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ ñ (9)

where the noise ñ remains white with the same cov-
ariance because of the unitary transformation. BD is

Figure 1 Illustration of the system model for M = 3 base stations each equipped with t = 3 transmit antennas, N = 3 users, each with
r = 1 receive antenna. The solid lines are used for channel H1 experienced by user 1, and the dotted lines H2 for user 2.
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possible in this scenario if the condition Mt ≥ Nr is
satisfied [6,8,10].

Constrained optimization and optimal power
allocation
Under the BD-CBST strategy, it can be observed from (9)
that the overall system is then turned into a set of parallel
non-interfering channels. Therefore, the achievable rate

of user i is Ri =
∑r

j=1 log2(1 + λijPij) .

We would like to maximize a weighted sum of the rates
Ri for the set of users, which requires solving the following
optimization problem in terms of the power Pij allocated
to the jth stream of user i:

max

⎧⎨⎩
N∑

i=1

αi

r∑
j=1

log2(1 + λijPij)

⎫⎬⎭ (10)

where the values αi ∈ [0, 1] (
∑N

i=1 αi = 1) , can be seen

as indicating the priorities of the users: the closer ai is
to 1, the higher the priority given to user i. In the parti-
cular case of ai = 1/N, for all i, the solution of the
above problem maximizes the sum rate.
In this context, two different constraints on the power

available at the transmitter side may be considered. The
first one deals with per base station restrictions, where
each base station k has a maximum available power
PmaxBS to transmit.a Then, the power allocation Pij

should fulfill the following constraints:

t∑
l=1

N∑
i=1

r∑
j=1

Pij| wkl
ij |2 ≤ PmaxBS (11)

for each BS k = 1,..., M.
The second set of constraints that may be considered

on the power available at the transmitters is given by a
restriction of the maximum power PmaxAn transmitted
by each antenna of each BS (per antenna constraints).b

The restriction of the maximum power transmitted by
each antenna l = 1,..., t of each BS k = 1,..., M, condi-
tions the power allocation Pij as follows:

N∑
i=1

r∑
j=1

Pij| wkl
ij |2 ≤ PmaxAn. (12)

Maximizing a weighted sum of the rates Ri under any
of the two proposed constraints is a convex problem,
since the logarithmic function is concave in the power
assignments: the additional operation preserves concav-
ity, and the constraints (11) are linear. Therefore, the
optimal solution may eventually be derived by numerical
convex optimization techniques [18,19]. However,
closed-form solutions, even if suboptimal, are highly

preferable, to reduce the computational time and
resources required by the CBST for the power alloca-
tion. Thus, we approach a closed-form solution of the
problem by applying the Lagrange duality theory.
In order to solve the problem (10) with constraints

(11) or (12), we can introduce a Lagrangian Λ(P, μ)
where P is the vector collecting all the powers Pij, i =
1,..., N, j = 1,..., r, and μ contains the (non-negative)
Lagrange multipliers.
When we have the per base station constraints (11),

Λ(P, μ) is given by

�(P, µ) =
N∑

i=1

αi

r∑
j=1

log2(1+λijPij)−μ1 [g1(P)−Pmax BS]−· · ·−μM[gM(P)−PmaxBS] (13)

with

gk(P) =
t∑

l=1

N∑
i=1

r∑
j=1

Pij| wkl
ij |2 k = 1, . . . , M (14)

and μ = [μ1,..., μM].
Similarly, when the per antenna constraints (12) are

applied, Λ(P, μ) is given by

�(P, µ) =
N∑

i=1

αi

r∑
j=1

log2(1+λijPij)−μ11
[
g1

1(P) − PmaxAn
]−· · ·−μMt

[
gt

M(P) − PmaxAn
]

(15)

with

gl
k(P) =

N∑
i=1

r∑
j=1

Pij| wkl
ij |2 k = 1, . . . , M l = 1, . . . , t(16)

and

µ =

⎡⎢⎣ μ11 · · · μ1t
...

. . .
...

μM1 · · · μMt

⎤⎥⎦ . (17)

With the per base station constraints, the solution of
the problem is given by a point [P*, μ*] that satisfies the
set of Nr +M equations:

αiλij

ln(2) (1 + λijPij)
− LBS

ij = 0 i = 1 , . . . , N j = 1 , . . . , r

t∑
l=1

N∑
i=1

r∑
j=1

Pij| wkl
ij |2 ≤ Pmax BS k = 1, . . . , M

(18)

with LBS
ij =

∑M
k=1
∑t

l=1 μk| wkl
ij |2 .

Again and similarly, with the per antenna constraints,
the solution should satisfy the set of Nr + Mt equations:

αiλij

ln(2) (1 + λijPij)
− LAn

ij = 0 i = 1 , . . . , N j = 1 , . . . , r

N∑
i=1

r∑
j=1

Pij| wkl
ij |2 ≤ PmaxAn k = 1, . . . , M l = 1, . . . , t

(19)
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with LAn
ij =

∑M
k=1
∑t

l=1 μkl| wkl
ij |2.

The solution of (18) and (19) is given by the values of
P* and μ* such that

Pij +
1
λij

=
αi

ln(2)LBS/An
ij

(20)

where the vector of Lagrange multipliers μ*, which

defines LBS/An
ij , should be chosen so that each set of

power constraints is satisfied. It can be observed that in
both cases, the solution resembles the well-known WF
distribution. However, here the waterlevel is given by

αi/(ln(2)LBS/An
ij ) , that is, the waterlevel is different for

each symbol j to be transmitted to each user i.
We have obtained an expression for the power alloca-

tion that is still highly complex. However, this proce-
dure gives us an insight on how to build alternative
simplified schemes based on the same idea of the well-
known WF. Although suboptimal, they may perform
close to the optimal solution, with the advantage of a
much lower optimization burden.

Waterfilling distributions for suboptimal power
allocation schemes
Modified waterfilling
By analyzing the set of constraints in either (11) or (12),
the solution that we propose is to reduce the problem by
considering an equivalent virtual BS (antenna) that would
lead to a single constraint equation. The underlying idea is
that, instead of all the BSs (antennas) giving a constraint
on the powers Pij allocated to each stream j of user i, we
choose the BS (antenna) that needs more power to trans-
mit this user information stream and, hence, will be the
first to violate the constraint if we increase Pij. Defining
the new quantities

�BS
ij = max

k=1,...,M

(
t∑

l=1

| wkl
ij |2
)

�An
ij = max

k=1,...,M
l=1,...,t

(
| wkl

ij |2
)

(21)

the simplified optimization problem reduces the con-
straints to just one, becoming

max

{
N∑

i=1
αj

r∑
j=1

log2(1 + λijPij)

}
N∑

i=1

r∑
j=1

Pij�
BS/An
ij ≤ PmaxBS/An

. (22)

It should be noted that this new constraint is more
restrictive than all the previous ones. Therefore, if we
satisfy this restriction, then we also fulfill the restrictions
in (11) or (12). Application of the Lagrange multiplier
technique gives the new function:

N∑
i=1

αi

r∑
j=1

log2(1 + λijPij) − μ

⎛⎝ N∑
i=1

r∑
j=1

Pij�
BS/An
ij − PmaxBS/An

⎞⎠ (23)

partial derivatives of which, with respect to the powers
Pij, give the set of equations:

αi

ln(2)

λij

1 + λijPij
− μ�

BS/An
ij = 0. (24)

Hence,

Pij +
1
λij

=
αi

ln(2)μ�
BS/An
ij

. (25)

Therefore, the problem is equivalent to finding the

Lagrange multiplier (or constant KMWF = 1
ln(2)μ ) such

that, for all the power levels Pij, the following equation
holds:

Pij =

⎡⎣KMWF
αi

�
BS/An
ij

− 1
λij

⎤⎦+

i = 1, . . . , N j = 1, . . . , r (26)

where KMWF must be found to fulfill the constraints
(11) or (12). This corresponds again to a WF distribu-
tion with variable waterlevel. However here, and unlike
the optimal solution in (20), in the variable waterlevel,
we have decoupled the term containing the Lagrange

multiplier KMWF from �
BS/An
ij and ai. That is, the pro-

blem reduces to finding the only unknown value KMWF

in (26), while the variability in the waterlevel is confined

to the known parameters �
BS/An
ij and ai. This can be

solved with the same type of algorithms that solve stan-
dard WF [20].

Waterfilling
In order to further simplify the solution to the optimiza-
tion problem, we may consider the fact that, in a practi-

cal realization, the values of �
BS/An
ij are close to each

other for all i, j. Then, we assume them to be constant
and include that constant into the waterlevel to simplify
the solution in (26) giving

Pij =
[
KWFαi − 1

λij

]+

i = 1, . . . , N j = 1, . . . , r (27)

where again KWF must be found to fulfill the con-
straints (11) or (12). This corresponds to a WF distribu-
tion with the waterlevel modified only by the user
priorities. In particular, for equal priorities, ai = 1/N,
which corresponds to a standard WF.

Numerical results
In this section we compare the performance of the pro-
posed modified waterfilling (MWF) of (26), waterfilling
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(WF) of (27), and the optimum solution found by
numerical convex optimization (CVX) [21]. For the sake
of comparison, we also include the rates achieved when
using the scaled WF (SWF) proposed in [10] for per
base station constraints, the results of [7], also for per
base station constraints, and a uniform power distribu-
tion (UP). In the case of UP, the power allocated to
each user stream is the same and corresponds to the
maximum value that fulfills either constraints (11) or
(12).
In the following subsection, we analyze the achievable

rates for each scheme in a simple scenario to under-
stand how close they perform without the influence of
the fading model. Then, in the subsequent subsections,
we analyze a more realistic scenario with the effects of
imperfect channel estimation and of the feed-back delay
in a time-varying channel, which outdates the current
channel with respect to the one used for precoding and
power assignment.

Achievable rates
In a simple two-BS, two-user case (M = N = 2), we con-
sider a simplified channel model where the matrix chan-
nel entries are independent identically distributed
complex Gaussian random variables with zero-mean and
unit variance. We set PmaxBS = 1 and PmaxAn = 1/t. We
find the boundary B of the region of achievable rates for
each proposed scheme as B(a) = aR1 +(1 - a)R2, for a Î
[0, 1], with (R1, R2) being the pairs in the achievable
region. Figures 2 and 3 show the regions of mean achiev-
able rates, averaged over 1,000 channel realizations, with
the per base station and per antenna power constraints,
comparing the three different approaches with the uni-
form power allocation as a reference. SWF is also shown
when the per base station constraints are used. Different
values of the number of transmit and receive antennas
are considered. It can be seen that the gap between the
achievable rates obtained with WF and MWF and the
optimal solution CVX is very narrow for the case of per
base station constraints, while for the per antenna con-
straints, the difference between CVX and the waterfilling
distributions becomes more noticeable. In both cases,
these rates are considerably higher than what is achieved
by UP. When the power is constrained per base station
the performance of WF and SWF are the same; however,
the use of MWF can give a small improvement. The fact
that MWF performs better than WF is more visible when

the power is constrained per antenna, because �BS
ij exhi-

bit less variability and can be better approximated by a
constant. In any case, the increase of mean achievable
rates with higher values of t and/or r is substantial, mean-
ing that the capabilities of multiple antennas are
leveraged.

It is also interesting to analyze with more detail the
behavior of UP in Figures 2 and 3 for t = r = 2 and t = 2,
r = 1. CBST is transmitting as many data streams per
user as the number of receive antennas r (10), each mul-

tiplied by the elements of the diagonal matrix Si(λ
1/2
ij )

after the compound effect of transmit, channel, and
receive processing. This means that one stream for r = 1
and two streams for r = 2 are transmitted using, there-

fore, 1 or 2 values of λ
1/2
ij per user i. For each user, in

these channel conditions, one of these values is generally
considerably higher than the other, and so sharing the
transmission power between two streams (r = 2) in the
case of UP results in a waste of power that renders a
lower rate than just using the entire available power in
one stream (r = 1). One illustrative example from a parti-
cular channel realization: for r = 1 we have

λ
1/2
21 = 1.4613 ,λ1/2

21 = 1.4613 , while for r = 2 we obtained

λ
1/2
12 = 0.6778 ,

λ
1/2
22 = 0.6878 ,λ1/2

21 = 1.0839 ,λ1/2
22 = 0.6878 . This is a

well-known effect leading to the dominant eigenmode
transmission concept described in [22].
Figure 4 shows the average achievable rates when users’

transmissions have the same priority (a = 0.5). Average
rates (over 10,000 channel realizations) are plotted for
different values of t and r and the two considered types
of power restrictions. We can see that when the number
of antennas is increased, the advantage of using the WF
schemes over a uniform power distribution is more evi-
dent. The advantage of MWF over WF is relatively small,
and they both perform close to CVX. Finally, we can
observe that the per antenna power constraints, even
though they may be more realistic, reduce the degrees of
freedom in the power assignment, and therefore this
leads to worse performance compared to the per base
station power constraints. The effect is more noticeable
for high antenna dimensions. In this figure, the mean
achievable rates obtained with the JT-decomp precoding
proposed in [7] for per base station power constraints are
also shown. Since no optimization is performed on the
transmit powers to maximize the achievable rates, the
obtained mean rates are lower with this scheme.

Effect of an erroneous or outdated channel estimation
In the results of previous subsection, we assumed that the
channel was perfectly estimated at each receiver and
instantaneously fed back to the base stations so that BD
insured that perfect cancelation of the interference was
achieved. However, the channel is usually estimated at
the receivers using the information conveyed by pilot
symbols, and this estimation will normally be corrupted
by additive white Gaussian noise (AWGN). Moreover,
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sending the estimated channel state information (CSI) to
the base stations will require some time, and therefore a
delayed version of the estimated CSI will be available
there. If BD is performed with erroneous or outdated
CSI, then the diagonalization will not be perfect and
some interference will remain. The power will be subse-
quently allocated using the wrong estimates. With the
results shown in the subsequent figures, we discuss the-
ses two effects.
The effects of imperfect channel estimation are evalu-

ated using a noisy estimate of the channel matrix Ĥ
instead of the real one

Ĥ = H + Hσ (28)

where Hs is a matrix of i.i.d. complex Gaussian entries
with zero mean and variance σ 2

H . BD is performed with

the imperfectly estimated Ĥ , and therefore the power
allocation is determined using the singular values
obtained with this estimation error. The mean squared
error (MSE) of the channel estimation is defined as

MSE = E

[
||H − Ĥ||2F

||H||2F

]
= σ2

H (29)

which is coincident with the normalized MSE of [23]
where we can see [[23], Figure 4] that values of MSE
lower than 10-1 can be achieved for operational numbers
of antennas and signal-to-noise ratio (SNR) values.
The effects of the imperfect channel estimation are

examined in Figure 5 for the case of per base station
power constraints. If the mean rates that may be
achieved with perfect channel estimation are denoted as
Rper and the mean rates achieved with imperfect channel
estimation are denoted as Rimp, then the relative loss
(Rper - Rimp)/Rper is plotted. We can observe that for
reasonable values of the MSE obtained in the channel
estimation (up to 10-1), the values of the relative loss are
small, and so the degradation caused by imperfect chan-
nel estimation is not important. If the MSE increases
above 10-1, then a degradation of the achievable rates
can be observed, which increases with the number of
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antennas. We can see that the degradation obtained
when using WF and UP is in general quite similar.
Although not included, the behavior of MWF is the
same as WF.
The effects of outdated CSI are examined in Figures 6,

7, and 8 for the case of per base station power con-
straints. Here, we have evaluated the performance in a
more realistic scenario with M = N = 64 as described in
[6]. Cells of radius d0 = 1.6 km are arranged to form a
torus which avoids the boundary effect that causes cells
at the border of the cellular deployment to receive less
interference. Each cell has a BS in its center and a single
user allocated in the shared frequency, time-slot, or
code resource of interest. The position of each user is
randomly varied according to a uniform distribution
over the area of each cell.
The channel-fading coefficients account for path loss

with exponent decay 3.8, lognormal shadow fading with
mean of 0 dB and standard deviation of 8 dB, and Gaus-
sian complex fading with zero mean, unit variance, and

with a Doppler spectrum modeled by a Jakes filter [24]
with maximum Doppler spread fD. Given that in the sys-
tem model we assume unit variance noise, we normalize
the path loss (PL) accordingly to account for different
SNRs, which are specified at the cell boundary (at dis-
tance d0 from the center) as

SNR =
PmaxBS/An

PL(d0)
. (30)

In this definition of SNRs, only the effect of path loss
is included, not of the shadowing or fading, according
to [6]. Also, it should be noted that the receivers placed
closer to the BS will experience a higher value of SNR.
Figures 6, 7, and 8 show the CDF of the rates achieved
in this scenario when t = r = 1, t = r = 2, and t = r = 4,
respectively. The SNR at the cell boundary is 18 dB.
The parameter D indicates the delay between the actual
CSI and the CSI being used for the BD. That is, the CSI
is outdated by a delay D with respect to ideal CSI. In
the figures, we show the performance for different
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values of D conveniently normalized with respect to the
channel coherence time (Tc = 1/fD). We can observe
that the delay must be very small compared to the
coherence time of the channel to cancel effectively the
interference. When D = 0.001Tc, the degradation of the
rates is already substantial. The degradation is more
accentuated when transmitter and receiver have a higher
number of antennas. Actually, with D = 0.005Tc, the
advantages of increasing the number of antennas are
lost, and the performance is basically the same for all
the number of antennas considered in these figures.
A value D = 0.001Tc is in line with the feed-back delay

used in [25] to evaluate the performance of closed-loop
MIMO systems (D = 0.1 ms with Tc = 167 ms, so D =
0.0006Tc), while smaller values of delay seem infeasible in
practice. Therefore, these results confirm that the use of
outdated CSI can seriously degrade the performance of
BD, and therefore efficient feed-back mechanisms must
be designed, which are beyond the scope of this article.
We can note that UP and WF suffer approximately the
same degradation (and also MWF not shown), while

CVX is more prone to the effects of the outdated CSI,
which makes sense, since it strongly relays on the chan-
nel information to optimize the power allocation.

Complexity
The optimum power distribution can be obtained through
a convex optimization procedure, while WF approaches
allow a much reduced complexity at the expense of some
performance degradation. In this section, we examine the
difference in terms of complexity between both approaches
for the power optimization procedure.
Since the power is distributed over Nr user transmis-

sions, the complexity does not depend on the number of
transmit antennas or base stations (as long as Mt ≥ Nr as
required for BD). Therefore, the complexity of WF, MWF,
and CVX does not increase with the number of antennas
per BS, which is a preferable characteristic, since often t >
r in practice.
A thorough comparison of complexity of the methods is

not easy, since the optimization procedures are adaptive
with a number of operations that can vary according to

Figure 4 Mean achievable rates with M = 2, N = 2 and several values of the number of transmit t and receive r antennas.
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the channel realization. In general, the convex optimiza-
tion by using interior-point methods implements a New-
ton search with a number of iterations, which is slightly
dependent on the problem size, and in most of the cases
can be considered limited to few tens, while inside each
Newton iteration, the complexity is dominated by the
determination of the so-called Newton step which has a
complexity order of about (Nr)3/3 [19]. For the WF, again,
we can have a number of iterations variable with the chan-
nel conditions and the required accuracy; however, a theo-
retical number of operations for each iteration is on the
order of Nr log(Nr). In the specific case of modified WF,
the search procedure cannot be optimized as in the WF,
because of the variable waterlevel, and the complexity sav-
ing with respect to the convex optimization is lower.
To get a practical idea, we denote by TCVX, TWF, and

TMWF the mean execution time of CVX, WF, and MWF,
respectively, all averaged over 1,000 channel realizations,
and we plot in Figure 9 the ratios TCVX/TWF and TCVX/
TMWF varying the number of cooperating base station–

user pairs with per base station power constraints. For
illustration purposes, we have set the number of antennas
per base station to t = 4; however, the results do not
depend on the value of this parameter. The execution
times obtained for r = 1,2, and 4 have been averaged and
plotted in this figure. The channel conditions are the
same as in the “Achievable rates” section. The simula-
tions were run on an Intel Core 2 Duo CPU at 2.53 GHz
with 2.00 GB RAM; however, since we are dealing with
time ratios, the same values can be expected in other
processors.
We have to keep in mind that the specific code imple-

mentation of the convex optimization and WF will have
an impact on the measured times, and so what we give
here is just an idea of their relative execution times. Hav-
ing said that, we can observe that both WF and MWF are
always more than three orders of magnitude faster than
CVX. More specifically, WF is between 6,000 and 12,000
times faster, while MWF is between 1,000 and 2,000
times faster. Therefore, even if they are suboptimum, WF
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and MWF make a good choice in terms of the balance
between complexity and achievable rates.

Conclusions
We have proposed two power optimization schemes
(WF and MWF) for the CBST downlink based on BD
with different transmit power constraints. Both are
derived with a technique similar to the WF distribution:
the first (WF) has the lowest complexity and reduces to
the standard WF if the user priorities are the same. In
the case of per base station constraints, it achieves the
same performance as SWF of [10]. The second (MWF)
shows a better performance, more noticeable for the
case of per antenna constraints, with a small increase in
complexity. They both perform close to the optimal
solution. However, the optimum can be derived only by
resorting to the numerical solution of the convex opti-
mization problem, with a heavy computational complex-
ity, much higher than the proposed schemes of WF and
MWF. Also, the degradation in terms of mean rates
caused by imperfect channel estimation is small for rea-
sonable values of the MSE of the channel estimation.
However, our simulation results confirm the need of a
fast feed-back of the estimated CSI to the base stations
to avoid a severe degradation of the rates.
We have observed that the rates achieved with the

more realistic per antenna constraints are lower com-
pared to a per base station one. In general, the proposed
schemes allow us to obtain the capacity improvements
of MIMO, canceling the high amount of interference
which characterizes cellular environments.
In [26], it is shown that, in the context of the Broad-

cast Channel, the performance of BD gets very close to
DPC with a proper selection of the user scheduling. In
further study, we will cope with the joint optimization
of the power allocation, the precoding scheme, and the
user scheduling.

Endnotes
a We assume, without loss of generality, that all the base
stations have the same maximum available power.

b Again, we assume, without loss of generality, that all
the antennas in all the base stations have the same max-
imum available power.
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