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Abstract 
Theoretical risk factors underlying time-variations of risk premium across asset classes are 
typically unobservable or hard to measure by construction.  Important  examples include 
risk factors in Long Run Risk [LRR] structural models (Bansal and Yaron 2004) as 
well as stochastic volatility or jump intensities in reduced-form affine representations  of 
stock returns (Duffie, Pan, and Singleton  2000). Still, we show  that both classes of 
models predict that the term structure of risk-neutral variance should reveal these 
risk factors. Empirically, we use model-free measures and construct the ex-ante variance 
term structure from option prices. This reveals (spans) two risk factors that predict the 
bond premium and the equity premium, jointly.  Moreover, we find that the same risk 
factors also predict the variance premium. This important contribution is consistent with 
theory and confirms that a small number of factors underlies common time-variations  in 
the bond premium, the equity premium and the variance premium. Theory predicts that 
the term structure of higher-order risks can reveal the same factors.  This is confirmed 
in the data. Strikingly, combining the information from the variance, skewness and 
kurtosis term structure can be summarized by two risk factors and yields similar level of 
predictability (i.e., R2s). This bodes well for our ability to bridge the gap between the 
macro-finance literature, which uses very few state variables, and valuations in option 
markets. 
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1 Introduction

The equilibrium relationship between expected returns and risk varies whenever investors

face time-varying investment opportunities (Merton (1973)). Consider a CRRA endowment

economy where, in equilibrium, the Equity Premium, EPt, is proportional to the conditional

variance of wealth, σ2t ,

EPt = γσ2t , (1)

where γ is the coefficient of risk aversion. Unfortunately, the ex-ante conditional equity

premium and conditional variance are not directly observable to the econometrician. This

may explain why the evidence is remarkably uneven and why this risk-return paradigm has

benefited from such longevity.1 In addition, the conditional volatility of wealth does not

typically summarize all sources of risk. The broad class of Long-Run Risk [LLR] models

(Bansal and Yaron 2004) provides many examples. It successfully match important stylized

facts in finance by introducing small but persistent stochastic factors in the mean, the

variance or higher-order moments of consumption growth. These factors are central to the

theory but, again, almost by construction, they are unobservable to the econometrician.

1.1 Risk-returns trade-offs in long-run risk economies

We study multi-horizon risk-return trade-offs in the class of affine LRR economies (Eraker

2008) that generalizes the seminal paper of Bansal and Yaron (2004) to conditionally non-

gaussian state variables. Note that a variation of the argument would obtain the same

results starting from a reduced-form representation within the broad family of affine asset

pricing models introduced in Duffie, Pan, and Singleton (2000). We show that in LRR

economies, the bond premium, the equity premium and the variance premium2 at different

horizon investments are linear functions of the same risk factors. But, as in Merton’s

model, these factors are typically latent or unobservable to the econometrician. Nonetheless,

we show analytically that the term structure of risk-neutral variance, which is measured

accurately from option prices, can be used to reveal risk factors. All these models embody

the theoretical prediction that risk factors form a basis for the term structures of risks.

In other words, a small number of linear combination from the variance term structure

can be used to span expected returns across asset classes. This prediction is at the heart

of the empirical investigation that we conduct below. It also corresponds to what John

Cochrane labeled the “Multivariate Challenge” to returns predictability in his presidential

1French et al. (1987), Campbell and Hentschel (1992), Ghysels et al. (2004), find a positive relation
between volatility and expected returns. Turner et al. (1989), Glosten et al. (1993) and Nelson (1991) find
a negative relation. Coefficient estimates are often statistically insignificant. Ludvigson and Ng (2005) find
a strong positive contemporaneous relation between the conditional mean and conditional volatility and a
strong negative lag-volatility-in-mean effect. Guo and Savickas (2006) also conclude that the risk-return
relationship is positive for the index.

2The variance premium is the difference between the expected variance under the historical measure and
the risk-neutral measure, Q, which is given by V RP (t, τ) = EQ

t [σ
2
r,t+τ ] − Et[σ

2
r,t+τ ]. This is analogous to

the definition of the Equity Premium, EP (t, τ) = Et[rt,t+τ ]− EQ
t [rt,t+τ ].
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address (Cochrane 2011). In particular, he asks “what is the factor structure of time-varying

expected returns? The following provides a partial answer.

1.2 The variance term structure predicts the bond and equity risk pre-

mium

Our first empirical contribution is to show that the variance term structure can be used to

reveal significant predictors of the bond premium and of the equity premium. We proceed in

three steps. First, we show that, consistent with theory, the variance term structure exhibits

a low-dimensional factor structure. Its first three principal components can be interpreted

intuitively as level, slope and curvature factors, respectively, and together explain close

to 95% of total variations. In practice, we follow the standard model-free approach from

Bakshi and Madan (2000) to construct measures of variance from SP500 futures options

across a range of maturities.

Second, we use the robust procedure of Cook and Setodji (2003) to estimate how many

factors from the variance term structure are sufficient to summarize its predictive content

for excess returns on bonds at different maturities and excess equity returns at different

horizons, jointly. This dimension reduction procedure asks how many variance factors (i.e.,

linear combinations of variance) can summarize the multivariate projections of returns on

the variance term structure. The test does not rely on any distributional assumption. It is

also robust to departure from linearity. We find that two factors are sufficient to summarize

the joint predictability of the bond premium and of the equity premium across maturities

and across horizons.

In a third step, we estimate multivariate projections of returns on the variance term

structure but where the coefficient matrix does not have full rank. This corresponds to

multivariate Reduced-Rank Regressions (RRR) for which closed-form estimation and infer-

ence are available.3 The rank of the coefficient matrix corresponds to the number of linear

combinations from the variance term structure that are common across expected returns.

A rank-two coefficient matrix yields R2s ranging from 5% to 7% for bond returns and from

3% to 6% for equity returns. Using a reduced-rank procedure is consistent with theory.

It is also supported in the data since, as suggested by the results from Cook-Setodji tests,

there is little gain from allowing for more than two factors. Finally, note that univariate

regressions cannot be used to reveal the risk factors implicit in the variance term structure.

1.3 The factor structure extends to the variance premium

Our second empirical contribution is to show that, consistent with theory, the term structure

of variance also provides a basis to forecast the Variance Premium. One approach would

include excess variance along with excess returns in the multivariate projections above

3See Anderson (1951) and, more recently, Hansen (2008) as well as Reinsel and Velu (1998) for a textbook
treatment.

2



and repeat the estimation.4 Unfortunately,this presents important econometric difficulties.5

Instead, we use this additional prediction from theory as an out-of-sample check and ask

whether the same two risk factors estimated from the variance term structure to predict

the bond premium and the equity premium only can predict the variance premium also.

We find that regressions of excess variance with horizons of 1, 2, 3, 6, 9, and 12 months on

variance factors yield R2s with an inverted U-shape, ranging from 6% to 10%, for horizons

of one to six months, to 9% and 3% for horizons of nine and twelve months. Moreover, each

of the factors plays an important role but at different horizons.

1.4 Information in the term structure of higher-order risks

The variance term structure may fail to reveal all risk factors. This may arise if some factors

do not affect the variance, or if the effects are small relative to the measurement errors in

the variance or relative to the innovations in returns.6 In our final contribution, we show,

within the same family of models as above, that all cumulants of multi-horizon returns,

including the variance, are affine. Therefore, we can use the term structure of higher-order

risks to discern further risk factors.7 Empirically, we construct model-free measures of risk-

neutral cumulants 3 and 4 (labeled as skewness and kurtosis hereafter). We find that each

of the term structure of variance, skewness and kurtosis has a similar predictive content

for the bond premium, the equity premium and the variance premium. Importantly, each

term structure’s predictive content can be summarized by two factors. In each case, we first

estimate the number factors and the factors themselves using the bond and equity returns

and, in a second step, we confirm that the predictability extends to the variance premium.

Strikingly, combining factors from the term structure of variance, skewness and kurtosis

does not adds to our ability to predict bond and equity returns. Moreover, two factors

remain sufficient to summarize the entire predictive content of option prices for the bond

premium, the equity premium and the variance premium. The same holds if we combine

the entire term structure of variance, skewness and kurtosis.

4 The definition of excess variance is analogous to that of excess returns. Formally, excess variance,
xV Rt,t+τ , is defined relative to the Variance Premium in a way that is analogous to the definition of
excess returns, xRt,t+τ , relative to the Equity Premium. We have that xRt,t+τ = rt,t+τ − EQ

t [rt+1] and
xV Rt,t+τ = σ2

t,t+τ − Et[σ
2
t,t+τ ], respectively.

5The measurement errors in excess variance are likely to be correlated with the measurement errors in
measures of risk-neutral variance since both use the same option prices. This induces spuriously high R2s if
we include the excess variance on the left-hand side to estimate the factors.

6This is yet another similarity with the term structure of interest rates. In principle, yields can reveal
all state variables related to the future behavior of the short rate. However, specific cases arise where some
factors have small or no impact on interest rates and remain hidden. See Duffee (2011).

7Recall that the first cumulant corresponds to the mean, the second cumulant corresponds to the variance,
the third cumulant corresponds to the third central moment and provides a measure of skewness, while the
fourth cumulant corresponds to the fourth central moments minus 3 times the squared variance and provides
a measure of the tails. The use of the cumulant-generating function to characterize the effect of higher-order
cumulants on properties of asset prices is also suggested by Martin (2010). The cumulant term structure
has been neglected in the literature.
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1.5 Macro-Finance Models and Option Prices

A recent literature ask whether the variance premium can predict the equity premium (e.g.,

Bollerslev, Tauchen, and Zhou 2009, Drechsler and Yaron 2011). The variance premium

is not observable to the econometrician and these authors resort to using proxies based on

lagged observations.8 In contrast, our approach turns this view on its head and considers

the predictability of the variance premium. We ask whether the components of bond and

equity returns that are predictable from the variance term structure also predict the variance

premium. Still, the key insight from Bollerslev, Tauchen, and Zhou (2009) still holds: the

variance premium is tightly linked to fundamental risk-returns trade-offs.

Results based on the variance term structure are consistent with Bakshi, Panayotov,

and Skoulakis (2011) who study the predictive content of the 1-month and 2-month forward

variance implicit in option prices for SP500 and Treasury bill returns.9 They do not analyze

the factor structure of returns but consider each asset and each horizon separately. Our

results are also consistent with Leippold, Wu, and Egloff (2007) and Carr and Wu (2011),

who use non-parametric methods, and Amengual (2009), who uses a parametric model.

They find that two factors are needed to describe the variance premium dynamics.

We are the first to analyze the information content from the term structure of higher-

order risks implicit in option prices. A recent macro-finance literature attempts to bridge

the gap between consumption-based asset pricing and option prices. Backus, Chernov,

and Martin (2010) compare the role of disaster probability measured from option prices

with estimates obtained from international macroeconomic data. Although the risk of a

disaster can in principle explains the large unconditional equity premium, they find that

the required probability or magnitude are not consistent with the distribution implicit in

option prices. We focus on conditional moments and provide further stylized facts from the

option market. Our results bode well for general equilibrium models. We find that a small

numbers of factors, perhaps 2, are sufficient to match time-variations of expected returns

and of the variance premium.

The rest of the paper is organized as follow. Section 2 considers affine LRR economies

and derives the multi-horizon cumulant-generating function of excess returns and excess

variance. We then show how the term structure of uncertainty can be used to reveal

fundamental risk factors. Section 3 introduces the data and measurement of risk from

option prices. Section 4 evaluates the information content from the term structure of risk-

neutral variance. Section 5 repeats the exercise but extending the information set to include

the term structure of skewness and kurtosis. Section 6 concludes.

8The Variance Premium is unobservable because the conditional expectation of integrated variance under
the historical probability measure is unobservable to the econometrician. Our approach does away with the
estimation of the conditional volatility under the historical measure.

9Strictly speaking, they focus on the information content of payoffs contingent on the exponential of
future integrated variance.
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2 Variance Term Structure In Equilibrium

This Section studies the bond premium, the equity premium and the variance premium

within the broad family of affine general equilibrium models described in Eraker (2008).

This family builds on the insights from the long-run risk literature and nests existing speci-

fications where the mean and volatility of consumption growth are stochastic, possibly with

jumps, and follow affine processes (e.g. Bansal and Yaron 2004, Bollerslev, Tauchen, and

Zhou 2009, Drechsler and Yaron 2011). We focus on the distribution of multi-period returns

under the risk-neutral and historical measure, Q and P, respectively, via their cumulant-

generating function. In particular, we derive expressions for the multi-horizon equity pre-

mium and bond premium. We also derive expressions for the conditional variance of returns

across investment horizons. We then show how to recover the equity premium and the bond

premium from the term structure of variance.

We build our analysis in the framework of LRR model. Nevertheless, a variation of

the argument would obtain the same results starting from a reduced-form representation

of the economy in the family of asset pricing models with affine transform introduced in

Duffie, Pan, and Singleton (2000). The essential component in the argument is that the joint

Laplace transform of the state vector and of the change of measure is affine, or approximately

so.10

2.1 Long-Run Risk Economies

Consider an endowment economy where the representative agent’s preference ordering over

consumption paths can be represented by a recursive utility function of the Epstein-Zin-Weil

form,

Ut =

[
(1− δ)C

(1−γ)/θ
t + δ

(
Et

[
U1−γ
t+1

])1/θ]θ/(1−γ)

, (2)

with θ defined as,

θ ≡ 1− γ

1− 1/ψ
,

where δ is the agents’ subjective discount rate, ψ measures the elasticity of intertemporal

substitution and γ determines risk aversion as well as the preference for intertemporal

resolution of uncertainty. Assume, next, that the joint dynamics of the (log) consumption

growth process, ∆ct+1 and of K state variables in the economy, Xt+1, has the following

Laplace transform,

Et

[
exp

(
u∆ct+1 + v⊤Xt+1

)]
= exp

(
F0 (u, v) +X⊤

t FX (u, v)
)
, (3)

10Chamberlain (1988) provides an alternative argument based on a martingale representation argument.
We thank Nour Meddahi for this suggestion.
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where the scalar function F0 (u, v) and the vector function FX (u, v) describe the exogenous

dynamics of the process Y ⊤
t+1 ≡

(
∆ct+1, X

⊤
t+1

)
and must satisfy F0 (0, 0) = FX (0, 0) = 0.

As discussed above, this nests existing General Equilibrium models based on Epstein-Zinn-

Weil preferences, with or without long-run risks.

Using the standard Campbell-Shiller approximation, rt+1 = κ0 + κ1wt+1 − wt +∆ct+1,

we have that the wealth-consumption ratio is given by

wt = A0 +A⊤
XXt,

for values of wt near its steady-state (see Appendix A.1.1). We show that the change of

measure from the historical probability, P, to the risk-neutral probability, Q, is then given

by:

Zt,t+1 = exp
(
H0 +H⊤

XXt − γ∆ct+1 − p⊤XXt+1

)
, (4)

where Z0 = −F0 (−γ,−pX), HX = −FX (−γ,−pX) and pX = (1− θ)κ1AX . This leads to

Lemma 1 characterizing the joint conditional distribution of one-period returns and state

variables.

Lemma 1 Excess returns Laplace transform

If the representative agent has utility given by Equation 2, and if the joint conditional
Laplace transform of consumption growth ∆ct+1 and the remaining K state variables Xt+1

are given by Equation 3, then the joint conditional Laplace transform of excess returns xrt+1

and of Xt+1 is given by

EP
t

[
exp

(
u xrt+1 + v⊤Xt+1

)]
= exp

(
F P
0 (u, v) +X⊤

t F
P
X (u, v)

)
,

under the historical measure, P, and the corresponding conditional Laplace transform under
the risk-neutral measure, Q, is given by

EQ
t

[
exp

(
u xrt+1 + v⊤Xt+1

)]
= exp

(
FQ
0 (u, v) +X⊤

t F
Q
X (u, v)

)
,

for constant scalar u and K-dimensional vector v and where coefficients are given in Ap-
pendix A.1.1.

Lemma 1 shows that the conditional Laplace transform of excess returns is exponential-

affine under P and Q. Essentially, this follows from the choice of historical dynamics for

the state vector, given in Equation 3, and from the fact that the change of measure given

by Equation 4 is also exponential affine. This result is instrumental in the characterization

of multi-horizon excess returns given in Proposition 1. It applies Lemma 1 repeatedly and

establishes that the cumulant-generating function of multi-horizon excess returns is affine

for any investment horizon τ .
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Proposition 1 Cumulants of multi-horizons excess returns

The cumulant-generating function of excess returns from the claim on aggregate consump-
tion over an investment horizon τ ,

xrt,t+τ ≡
τ∑

j=1

xrt+j ,

is given by

logEP
t [exp (u xrt,t+τ )] = F P

r,0 (u; τ) +X⊤
t F

P
r,X (u; τ) ,

under the P measure and by

logEQ
t [exp (u xrt,t+τ )] = FQ

r,0 (u; τ) +X⊤
t F

Q
r,X (u; τ) ,

under the Q measure with coefficients given in Appendix A.1.2.

2.2 Bond Premium, Equity Premium and Variance Premium

An immediate corollary of Proposition 1 is that the Bond Premium and the Equity Premium

over any investment horizon τ , BP (t, τ) and EP (t, τ), respectively, are affine. We have that,

BP (t, τ) ≡ EP
t

[
xrbt,t+τ

]
= βb,0(τ) + βb(τ)

⊤Xt, (5)

and

EP (t, τ) ≡ EP
t

[
xret,t+τ

]
= βep,0(τ) + βep(τ)

⊤Xt. (6)

The bond premium and the equity premium are linear in the state variables whenever

θ ̸= 1 and AX ̸= 0. These conditions implies that pX ̸= 0 in Equation 4, and, therefore,

that the pricing kernel varies with Xt. Intuitively, the first condition implies that the

agent has preference over the intertemporal resolution of uncertainty (i.e. γ ̸= ψ). The

second condition implies thatXt+1 affects the conditional distribution of future consumption

growth.11 These two conditions are the fundamental ingredients of long-run risk models. The

price of risk parameters pX are generally left unrestricted in reduced-form representations.

Proposition 1 also implies that the Variance Premium over any investment horizon τ ,

11Strictly speaking, the prices of risk associated with innovations to Xt+1 may differ from zero, with γ ̸= ψ,
but with a constant wealth-consumption ratio (and risk premium) if Ut/ct varies with Xt+1. This arises in
the knife-edge case where ψ = 1.
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V RP (t, τ), is affine,

V RP (t, τ) ≡ EQ
t

 τ∑
j=1

σ2t+j

− EP
t

 τ∑
j=1

σ2t+j

 (7)

= βvp,0(τ) + βvp(τ)
⊤Xt, (8)

where σ2t = V art(xrt,t+j). The coefficients βvp,0(τ) and βvp(τ) depend on the structure of

the model. The Variance Premium is zero in a LRR economy when the second conditional

moment of consumption is constant under both measures. Moreover, the Variance Premium

differs from zero but remains constant whenever the volatility of consumption volatility is

constant. Note that our solution contrasts with that of Bollerslev, Tauchen, and Zhou

(2009) which is based on an additional log-linearization and only covers the special case

τ = 1.

2.3 Variance Term Structure

Equations 5 and 6 characterize the equilibrium risk-return trade-offs in a broad class of

economies with long-run risks. Different LRR models emphasize different risk factors, Xt,

and imply different patterns of risk loadings, βep,X but the risk premium dynamics are linear

in every case. The coefficients of that relationship could be estimated directly via OLS if the

risk factors, Xt were observable. This would provide a test to discriminate across different

specifications, or serving as guidance to investors. However, the risk factors proposed in

the literature, including in reduced-form specifications, are latent or difficult to measure.

For example, the expected consumption growth (Bansal and Yaron (2004)), the volatility of

consumption volatility (Bollerslev et al. (2009)) or time-varying jump intensity (Drechsler

and Yaron (2011), Eraker (2008)) all escape direct measurement.

In contrast, the term structure of risk-neutral variance can be measured from option

prices. Moreover, Proposition 1 implies that the conditional variance of excess returns over

an horizon τ is also affine. It is given by:

V arQt (τ) = βvr,0 (τ) + βvr(τ)
⊤Xt, (9)

with coefficients given in Appendix A.1.2. This implies that measures of variance at different

maturities display a factor structure with dimension K. This is similar to interest rates

models where yields at different maturities sum the contributions of the real rate, inflation

and compensation for risk. In most models, these are determined by a small set of economic

variables (e.g. wealth, technology, habits) that are often not observed directly, at least at

the desired frequency. But the unobservable economic variables can be revealed via their

effects on yields. This important insight is applicable in our context.
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2.4 Revealing Risk Factors

The risk-neutral variance can reveal the effect of risk factors. However, The measured

risk-neutral variance differs from the true value, V arQt (τ) = ˜V ar
Q
t (τ) + νt(τ), where we

assume that the measurement error, νt(τ), is uncorrelated with ˜V ar
Q
t (τ). In other words,

in contrast with computation of bond yields from bond prices, measurement errors cannot

be neglected when computing variance from option prices. Stacking measurements across

horizons τ = τ1, . . . , τq, and using Equation 9, we have that,

˜V ar
Q
t + νt = B0,vr +BvrXt

where the q×1 vector, B0,vr, stacks the constant, βvr,0 (τ), and the q×K matrix Bvr stacks

the corresponding coefficients, βvr(τ)
⊤. Note that we typically have more observations

along the term structure than there are underlying factors (i.e., q > K). We can then write,

X̃t = −B̄vrB0,vr + B̄vr
˜V ar

Q
(t) + B̄vrνt, (10)

where the K × q matrix B̄vr = (B⊤
vrBvr)

−1B⊤
vr is the left-inverse of Bvr.

12

Using Equations 5 and 6, and stacking across horizons, we have that,

BPt = Πbp,0 +Πbp
˜V ar

Q
t + νbpt (11)

EPt = Πep,0 +Πep
˜V ar

Q
t + νept , (12)

so that we can use the variance term structure as a signal for the underlying risk factors.

Each line of the vector Πep,0 and of the matrix Πep is given by,

Πep,0(τ) = βep,0(τ)− βep(τ)
⊤B̄vrB0,vr

Πep(τ) = βep(τ)
⊤B̄vr, (13)

respectively. The definitions of Πbp,0 and Πbp are analogous. In practice, we do not observe

the Bond Premium or the Equity Premium, but we can only measure ex-post excess returns,

xret,t+τ = EP (t, τ) + ϵet,t+τ

xrbt,t+τ = BP (t, τ) + ϵbt,t+τ ,

12The left-inverse exists since we consider cases with q > K and Bvr has full (column) rank. If the latter
conditions is not satisfied, then the loadings of the conditional variance, V arQ(t, τ) on the risk factors Xt,k

are not linearly independent. This implies that less than K linear combinations of the risk factors can be
revealed from the variance term structure. In other words, some linear combinations of the risk factors are
unspanned by the variance term structure. In this case, we redefine the risk vector in Equation 10 to be
Xvr

t that only contain those Kvr < K linear combinations that are spanned. This issue also arises in the
interest rate literature and as been discussed in Duffee (2011).
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which can be re-written as:

xrbt+ = Πbp,0 +Πbp
˜V ar

Q
t + (νbpt + ϵbt+) (14)

xret+ = Πep,0 +Πep
˜V ar

Q
t + (νept + ϵet+), (15)

where the xrt+ notation signals that we have stacked ex-post excess returns at different

horizons.

Equations 14-15 form the basis of our empirical investigation below. Note, however,

that these are not standard OLS regressions since the matrix Πep is not in general of full

rank. Only a few linear combinations from ˜V ar
Q
t should be sufficient to link the variance

term structure to compensation for risk. Before we address this, the next Section introduces

the data.

3 Data and Measurement

3.1 Excess Returns

We use the CRSP data set to compute end-of-the-month equity returns on the SP500 at

horizons of 1, 2, 3, 6, 9 and 12 months. Longer-horizon returns are obtained from summing

monthly returns. We use the Fama-Bliss zero coupon bond prices from CRSP to compute

bond excess returns. Excess returns are computed using risk-free rates from CRSP.13

3.2 Excess Variance

As in the case of returns, longer-horizon realized variance are obtained from summing

monthly realized variance.14 We follow Britten-Jones and Neuberger (2000) to compute

ex-ante expected realized variance under the risk-neutral measure (see Equation 7) from

option prices. The excess variance is the difference between the realized variance under

the historical measure and the ex-ante measure of conditional variance under the risk-

neutral measure. This definition is completely analogous to the definition of excess returns.

Explicitly, the excess variance is given by:

xvet,t+τ ≡ ẼQ
t

 τ∑
j=1

σ2r,t+j

−
τ∑

j=1

σ2r,t+j , (16)

where σ2r,t+j is the realized variance in period t + j and ẼQ
t

(∑τ
j=1 σ

2
r,t+j

)
is measured

ex-ante from option prices.

13The Fama-Bliss T-bill file covers maturities from 1 to 6 months. We use the 1-year rate from the
Fama-Bliss zero-coupon files. The 9-month T-bill rate is interpolated when necessary.

14We thank Hao Zhou for making end-of-the-month SP500 realized variance data available on his web
site.

10



3.3 Risk-Neutral Variance

We use the OptionMetrics database of European options written on the SP 500 index. We

first construct a weekly sample of closing bid and ask prices observed each Wednesday. This

mitigates the impact of intra-weekly patterns but includes 328,626 observations. Consistent

with the extant literature, we restrict our sample to out-of-the-money call and put options.

We also exclude observations with no bid prices (i.e. price is too low), options with less

than 10 days to maturity, options with implied volatility above 70% and options with zero

transaction volume. Finally, we exclude observations that violate lower and upper bounds

on call and put prices. The OptionMetrics database supplies LIBOR and EuroDollar rates.

To match an interest rate with each option maturity, we interpolate under the assumption of

constant forward rates between available interest rate maturities. We also assume that the

current dividend yield on the index is constant through the options’ remaining maturities.15

Finally, we restrict our attention to a monthly sample (see Appendix A.2). This yields 85,385

observations covering the period from January 1996 to October 2008. Table 1 contains the

number of option contracts across maturity and moneyness groups. The sample provides a

broad coverage of the moneyness spectrum at each maturity.

3.4 Summary Statistics

We then rely on the non-parametric approach of Bakshi and Madan (2000) to measure

the conditional variance implicit in option prices at maturities of 1, 2, 3, 6, 9, 12, and

18 months. These corresponds to the maturity categories available on the exchange (see

Appendix A.3).16 Table 2 provides summary statistics of variance across maturities. Risk-

neutral variance is persistent with autocorrelation coefficients between 0.73 and 0.87 across

maturities. The term structure is upward sloping on average but with an inverted U-shape.

The volatility of risk-neutral variance peaks at 2 months and then gradually declines with

maturity. In other words, the average variance of stock returns increases with maturity but,

on the other hand, the conditional variance itself is less volatile for longer returns horizons.

It is also more symmetric and has smoother tails for longer horizons.

3.5 Principal Components

Variance measures are highly correlated across maturities (not reported). For example,

the correlation between 1-month ahead and 2-month risk-neutral variances (i.e. V arQ (t, 1)

and V arQ (t, 2)) is 0.88 while the correlation between 1-month ahead and the 1-year ahead

variance is 0.69. This suggests that a few systematic factors can explain most of variations

across maturities. Panel B of Table 2 reports the results from a Principal Component

15See OptionMetrics documentation on the computation of the index dividend yield.
16We originally included the 24-month maturity category. However, its summary statistics contrast with

the broad patterns drawn in other categories. For this maturity, risk-neutral variance is more skewed to the
right, has fatter tail and is less persistent. Moreover, it is less correlated with other maturities. We consider
these results a reflection of higher measurement errors and exclude this category in the following.
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Analysis (PCA), which is a simple way to summarize this factor structure. The first three

principal components explains 88%, 6% and 3% of the term structure of the risk-neutral

variance, respectively, and together explain 97.4% of total variations.

These components reflect systematic variations across the variance term structure. The

first component’s loadings range from 0.31 to 0.44 with an inverted U shape across ma-

turities. In other words, most of the variations in the risk-neutral variances can be sum-

marized by a change in the level and curvature of its term structure. Next, the second

component is similar to a slope factor. Its loadings increase, from -0.57 to 0.49, and pivot

around zero near the 6-month maturity. The third component’s loadings draw a curva-

ture pattern. The correlation between the first component and a measure of the level,

Lt = ˜V ar
Q
(t, 6), is 0.98, the correlation between the second component and a measure of

the slope, St = ˜V ar
Q
(t, 18) − ˜V ar

Q
(t, 1) is -0.90, and the correlation between the third

component and a measure of the curvature, Ct = 2 ˜V ar
Q
(t, 6)− ˜V ar

Q
(t, 18)− ˜V ar

Q
(t, 1), is

0.80.

4 Variance Risk-Returns Trade-Offs

Section 2 shows that a broad family of affine general equilibrium models, or affine reduced-

form models, contains in its core the implication that a few linear combinations from the

term structure of variance can be used to predict compensation for risk. Consistent with

the theory, Section 3 shows that the term structure of variance can be summarized by its

leading principal components. This Section analyzes the relationship between the variance

factors and the compensation for risk.

4.1 Estimating how many factors can the variance term structure reveal

We first ask how many linear combinations from the variance term structure summarize

its information content for the bond and the equity premium. In other words, we want to

estimate the rank of the coefficient matrix, Π, in multivariate regressions with the following

general form

Yt+ = Π ˜V ar
Q
t +ΨZt + ϵt+. (17)

This nests Equations 14 and 15 where Yt is a vector of excess returns, ˜V ar
Q
t is q×1 vector of

risk-neutral variance and the vector Zt contains any other regressors, including the constant.

Recall that Equation 13 shows that Π does not generally have full rank. The statistical

literature on Sufficient Dimension Reduction provides a useful approach to estimating this

rank.

Cook and Setodji (2003) introduces a model-free test of the null hypothesis that the

rank is k (i.e., H0 : rankΠ = k) against the alternative that the rank is strictly larger.

The modified Cook and Setodji test-statistics, Λ̃k, is available in closed-form and has a χ2
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asymptotic distribution with known degrees of freedom. In particular, this test does not

require that the innovations in Equation 17 are Gaussian. The test is also robust against

departure from linearity.17 Cook and Setodji (2003) then propose the following iterated

algorithm as an estimator for the rank of Π.

1. Initialize the null hypothesis with H
(0)
0 : rankΠ = k(0) = 0.

2. For the hypothesis H
(i)
0 , compare the Λ̃k(i) statistics with the chosen cut-off from the

χ2
g distribution, e.g., 5%.

3. If the probability of observing Λ̃k(i) is lower than the cut-off, then reject the null,

conclude that rankΠ > k(i), and repeat the test under a new null hypothesis where

the rank is incremented, i.e., k(i+1) = k(i) + 1.

4. Otherwise, conclude that rankΠ = k(i). That is, there is insufficient evidence against

rankΠ = k(i) but, yet, we have rejected rankΠ < k(i).

4.2 Estimating reduced-rank multivariate regressions

As stated above, Equations 14 and 15 form the basis of our empirical investigation and, for a

given rank, k, they correspond to multivariate Reduced-Rank Regressions (RRR) for which

estimators and the associated inference theory are available since at least Anderson (1951).

In particular, for a given estimate of the rank, k, the p× q matrix, Π, can be rewritten as

a product, Π = AΓ, where A and Γ have dimensions (p× k) and (k × q), respectively, and

where k < min(p, q).18 Then, we can re-write Equation 17 as,

Yt = AΓ ˜V ar
Q
t +ΨZt + ϵt, (18)

and the RRR estimators of A, Γ and Ψ are given from the solution to

arg min
A,Γ,Ψ

trace

(
T∑
t=1

ϵtϵ
⊤
t

)
, (19)

with closed-form expressions given in Appendix A.4. Note that that the estimated factors,

Γ̂ ˜V ar
Q
t , can be very different than the leading principal components of ˜V ar

Q
t .

19 Finally, A

17Λ̃k, has a χ2 asymptotic distribution with g degrees of freedom, where Λ̃k and g depend on the data
and are available in closed-form. If E[Yt|Xt] is not linear in Xt, in contrast with Equation 17, then inference
about the rank of Π from estimates of Equation 17 may still be used to form inference about the dimension
of the Central Mean Subpace (CMS) of Yt|Xt. A subspace M of Rq is a mean subspace of Yt|Xt if E[Yt|Xt]
is a function of M⊤Xt where the q× k matrix M is a basis for M. The CMS is the intersection of all mean
subspaces. See Cook and Setodji (2003).

18See Reinsel and Velu (1998) for a textbook treatment of RRR and a discussion of existing applications in
tests of asset pricing models (e.g. Bekker et al. (1996) and Zhou (1995)). Anderson (1999) provides a theory
of inference under general (e.g. not Gaussian) conditions. Hansen (2008) provides a recent formulation of
the estimator. The OLS regression emerges when k = min(p; q) or, trivially, when k = 0 and the regressors
are irrelevant.

19See, for example, the discussion by Dennis Cook in his Fisher Lecture (Cook 2007) and in particular,
this quote from Cox (1968) “... there is no logical reason why the dependent variable should not be closely
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and Γ are not separately identified, and we choose that rotation which yields orthogonal

factors. This is analogous to the standard identification choice in Principal Component

Analysis.

4.3 The advantages of reduced-rank regressions

Our methodological approach imposes the factor structure predicted by theory but remains

agnostic regarding other structural assumptions. This approach is in line with Cochrane

(2011) who emphasizes the need to the uncover the factor structure behind time-varying

expected returns. It is also closely related to Cochrane and Piazzesi (2008) who show that

a single factor from forward rates is sufficient to summarize the predictability of bonds with

different maturities.

In this spirit, we test the joint hypothesis of linearity and reduced-rank structure without

any other joint hypothesis about the number and the dynamics of state variables, the

conditional distribution of shocks, or the preference of the representative agent. Otherwise,

test will over-reject the null hypothesis of a given low number of factors, even if it holds

in the data, when these maintained hypothesis are not supported by the data. Similarly,

estimation based on the Kalman filter will be severely biased if the maintained structural

or distributional assumptions are not supported in the data. In contrast, our approach does

need additional hypothesis but, instead, exploits the fundamentally multivariate nature of

the problem.20

4.4 Predictability Results

4.4.1 Excess Returns Predictability

Formally, we consider different versions of a joint model for the bond premium, the

equity premium, and the variance premium,

xrt+ = Π0 +AΓ ˜V ar
Q
t + ϵt+, (20)

where we stack Equations 14 and 15. Panel A of Table 3 displays the p-values associated

with the Cook-Setodji statistics, Λ̃k, for different ranks ranging from 1 to q. The tests reject

that rankΠ = 0 or rankΠ = 1. But we do not reject that rankΠ = 2. The results suggest

that 2 risk factors are sufficient to summarize the predictive content of the variance term

structure.

Panel B reports the R2s of predictability regressions of bond excess returns across dif-

ferent rank hypothesis. In particular, the R2s in the case where the rank is k = 2 are 7.3%,

tied to the least important principal component [of the predictors].” (Cochrane and Piazzesi 2005) is a case
in point in Finance in the context of bond returns predictability. Their returns-forecasting factor is a linear
combination of forward rates that is only weakly spanned by the leading principal components of forward
rates.

20In particular, our testing and estimation procedure could not be applied to each line of Equation 17
separately.
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6.6%, 5.9% and 5.5% for annual returns on bonds with 2, 3, 4, and 5 years to maturity,

respectively. Compare with the case where k = 7 and where the model corresponds to stan-

dard OLS predictive regressions. The R2s in this case are 11.5%, 10.1%, 8.8% and 7.9%,

respectively. Similarly, Panel C reports R2s for equity returns predictability. For k = 2, the

R2s are 3.1% and 6.3% for 1-month and 2-month excess returns. It then declines smoothly

3.6% at the 12-month horizon. In all cases, there is little gain from increasing the rank from

k = 2 to k = 7 given the large increase in the number of parameters.

Estimation of the 14 unrestricted univariate regressions on 7 variance measures use 98

parameters. In contrast, allowing for a factor structure in expected returns is parsimonious

and yields disciplined results. Estimation of the multivariate system with only two linear

combinations of variance reduces the number of parameters to 42. It is also more informa-

tive relative to OLS. The standard OLS inference, based on F -statistics, rejects the null

hypothesis that the variance term structure is irrelevant (unreported). The Cook-Setodji

statistics above also leads to a rejection that that the rank is k = 0. But the standard OLS

misses the factor structure in expected returns. We conclude, in addition, that two factors

are sufficient and that the increased predictive power of unrestricted regressions (k = 7)

can be attributed to sampling variability.

4.4.2 Excess Variance Predictability

Equation 7 relates the variance premium to Xt and provides a revealing way to check

whether the estimated risk factors truly reflects compensation for risks. We can write the

variance risk premium in terms of the variance term structure,

xvet+ = Πvrp,0 +Πvrp
˜V ar

Q
t + (νvrpt + ϵvt+), (21)

where the definitions of Πvrp,0 and Πvrp are analogous to those given in Equation 13 for

excess returns and xvet,t+τ is the ex-post excess variance over an horizon τ . Theory predicts

that the same risk factors can be used to predict excess returns and excess variance. We

can then combine Equation 21 with the linear combinations of variance estimated above,

Γ̂ ˜V ar
Q
t , and check that they also predict excess variance. This is akin to an out-of-sample

robustness check since the excess variance was not used to estimate these factors.

Specifically, Table 4 reports estimates and R2s from the following OLS regressions,

xvet+(τ) = Πvrp,0(τ) + a1,vrp(τ)Γ̂1
˜V ar

Q
t + a2,vrp(τ)Γ̂2

˜V ar
Q
t + ϵt+(τ), (22)

where we use estimates of Γ̂ obtained above in the case with k = 2. The results are striking.

Together, the two linear combinations that were estimated to predict the equity premium

and the bond premium also predict the variance premium with R2s ranging from 6.2%,

9.5%, 9, 0% and 10.1% at horizons of 1, 2, 3 and 6 months, respectively, and then to 8.7%

and 2.7% at horizons of 9 and 12 months, respectively. Looking at individual coefficients
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shows that each of the estimated linear combination plays an important role. The first plays

a significant role in the variations of the variance premium at relatively short horizons, up

to three months ahead, while the second linear combination plays a significant role at longer

horizons, beyond three months.

It may appear tempting to use Equation 21 along with bond returns and equity re-

turns in a RRR regression. However, the excess variance equation presents an economet-

ric difficulty. The measurement errors in excess variance that arise because we measure

ẼQ
t

(∑τ
j=1 σ

2
t+j

)
from option prices are correlated with the measurement errors in ˜V ar

Q
t ,

which is also obtained from option prices. Therefore, this equation cannot be used directly

at estimation.21

5 Term Structure of Higher-Order Cumulants

We show that measures of higher order risks can also be used to reveal risk factors. Empir-

ically, we find that, the skewness and kurtosis term structures predict the bond premium,

the equity premium and the variance premium. Their predictive content is similar to that

of the variance term structure and can be summarized by 2 risk factors. Consistent with

theory, combining measures of variance, skewness and of kurtosis improves predictability

only marginally and, strikingly, the predictive content of this broad information set can still

be summarized by two factors.

5.1 Higher-Order Cumulants in Equilibrium

The variance term structure may fail to reveal all risk factors. This may arise if some factors

do not affect the variance, or if their effects are small relative to the measurement errors in

the variance or to the innovations in returns. It may be possible to increase the efficiency

of our estimates and parse the variance term structure to find additional factors. But this

neglects low-hanging fruits. An alternative way is to broaden the information set include

other measurements where the effect of other risk factors may be more easily seen. Looking

back, Proposition 1 implies that every cumulant22 of returns is affine in the state vector,

MQ
t,n (τ) = βn,0 (τ) +X⊤

t βn,X (τ) ,

21Stambaugh (1988) provides a similar example where measurement errors due to bid-ask spreads in bond
prices leads to over-rejection of small factor structure and wrongly favors larger factor structure (his Section
4.4, p.58).

22Recall that the first cumulant corresponds to the mean, the second cumulant corresponds to the variance,
the third cumulant corresponds to the third central moment and provides a measure of skewness, while the
fourth cumulant corresponds to the fourth central moments minus 3 times the squared variance and provides
a measure of the tails.
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for any returns horizon τ , and where coefficients depend on the underlying model.23 Then,

an argument similar to Section 2.4 shows that higher-order cumulants can also be used

reveal Xt,

X̃t = −B̄nB0,n + B̄nM̃t,n
Q
+ B̄nνn,t. (23)

In the following, we follow a path parallel to the previous section and construct model-free

measures of returns cumulants of order 3 and 4(see Appendix A.3). We also exchange a

slight abuse of terminology for ease in the exposition and label these cumulants skewness

and kurtosis, respectively.24

5.2 Summary Statistics and Factor Structure

Panel A and Panel B of Table 5 presents summary statistics of the conditional skewness and

kurtosis of returns, respectively. The average distribution of returns implicit in index option

is left-skewed and has fat tails. The average skewness lies below zero and slopes downward

with the horizon. On the other hand, the average tail is fatter at longer horizons. Skewness

and kurtosis are persistent, especially at intermediate horizons.

The correlation matrices (Panel C and Panel D) suggest a low-dimensional factor struc-

ture as in the case of risk-neutral variance. Panel E and Panel F present PCA results for

the term structure of skewness and kurtosis, respectively. The first three principal compo-

nents of skewness explain 67%, 15% and 12% of total variations, respectively, and together

explain 93%. Similarly, the first three principal components of kurtosis explains 65%, 19%

and 12% of total variation, respectively. As for the variance, the loadings of reveal that the

leading components of skewness and kurtosis have a systematic effect on their respective

term structure.

5.3 Predictability results

We estimate different variations of the following multivariate regression,

xrt+ = Π0 +AΓ Ft + ϵt+ (24)

where, as above, xrt+ stacks 4 excess bond returns and 6 excess equity returns. We consider

different combinations of the variance, skewness and of kurtosis term structure to construct

the regressors, Ft.

23The scalar coefficient, βn,0 (τ), and the vector coefficient, βn,X (τ), are defined as

βn,0 (τ) = DnFQ
r,0 (0; τ) and βn,X (τ) = DnFQ

r,X (0; τ) ,

where the matrix jacobian operator Dn is defined in Appendix A.1. These can typically be computed in
closed-form, up to the usual recursions on τ .

24The conventional measure of skewness and kurtosis are not affine in the risk factors.
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5.3.1 Excess returns with skewness or kurtoris

We first consider each term structure separately. Panel A of Table 6 presents results.

First, model V (2) uses the term structure of variance as predictors (i.e., Ft = ˜V ar
Q
t ).

This reproduces a subset of the results presented above (Table 3) and provides a point of

comparison for models using skewness or kurtosis as predictors. Second, Model S(2) only

includes the term structure of skewness (i.e., Ft = ˜Skew
Q
t ). Third, modelK(2) only includes

the term structure of kurtosis (i.e., Ft = ˜Kurt
Q
t ). In model S(2), the p-value is 6.1% for the

null that r = 1 and 38.2% for the null that r = 2. Similarly, for the K(2) model, the p-value

is 7.9% for the null that r = 1 and 32.2% for the null that r = 2. Hence, the test based

on each of these higher moments come close to reject the rank-one restrictions in favor of a

higher rank while the rank-two restrictions is clearly not rejected. Nonetheless, we report

estimation results based on r = 2 for comparison because more general models combining

information from different term structures consistently reject the case r = 1 (see below).

The results show that the ability to predict bond and equity excess returns, as measured by

the R2s, is strikingly similar whether we use any one of the variance, skewness and kurtosis

term structures. This is consistent with theory. If anything, skewness and kurtosis appear

to be slightly more informative about bond returns while variance appears to be slightly

more informative about equity returns.

5.3.2 Combining variance, skewness and kurtosis term structure

The VSK(2,2) model combines the two risk factors estimated separately from each of

the variance, skewness and kurtosis term structure. Hence, this uses 6 predictors and asks

whether these risk factors add up to more than two factors when combined in the same

model. The evidence is unambiguous. The p-value is 1.1% for the null that r = 1 and

32.6% for the null that r = 2. Again, this is consistent with theory. The predictive content

available from the term structure of different risk measures is broadly overlapping. As

expected, estimation in the case r = 2 yields R2s that are very close to the highest value

obtain above. Of course, we could (at least) reach these values by setting r = 6. What

is unexpected is that we can summarize these 6 risk factors into two at almost no loss of

predictive ability.

The VSK(2,2) is a second-stage estimation that uses factors obtained in a first-stage

procedure. Model VSK(7,2) brings together the entire variance, skewness and kurtosis term

structures. This is an alternative way to ask whether the risk factors measured from different

term structures add up to more than two factors. Model VSK(7,2) model is estimated in

one step but, on the other hand, it is more exposed to over-fitting given the large number

of regressors. Nonetheless, these model yield consistent evidence. The p-value is 1.1% for

the null that r = 1 and 32.6% for the null that r = 2. Two factors can summarize the

information content of the term structure of risks. Moreover, there is a substantial increase

in predictability, with R2s ranging from 17% to 22% in the case of bond returns (compare
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to the 9%-10% of more parsimonious models) and from 6% to 18% in the case of equity

returns (compare to the 3%-8%).

5.3.3 Excess variance

We also check that the in-sample predictability obtained from bond and stock returns

extends to the variance premium. Panel A of Table 6 presents results of excess variance pre-

dictability regressions. The results are broadly consistent across all models, the R2s have

an inverted U-shape across horizons, reaching a maximum close to 10% at intermediate

horizons between 3 and 6 months. This holds whether the risk factors were extracted from

the variance, skewness or kurtosis term structure. Once again, the theoretical prediction

is supported in the data. In particular, there is no improvement in excess variance pre-

dictability for the VSK(7,7) model. Hence, this out-of-sample exercise suggests that some

of the increased excess returns predictability obtained above for the VSK(7,7) model is due

to in-sample over-fitting.

6 Conclusion

The Long-Run Risk literature emphasizes slowly moving factors that affect the future con-

ditional distribution of consumption growth. But, almost by construction, these factors are

difficult to measure from the macro data. Similarly, reduced-form parametrizations of the

stock returns process introduce latent variations in stochastic volatility or jump intensity.

In each case, the risk-returns trade-offs are difficult to measure and present a challenge to

the econometrician. On the other hand, model-free measures of risk-neutral variance, and

higher-order moments, are available from option prices. This paper shows how the term

structure of these risk measures can be used to reveal risk factors that are important driver

of bond premium, equity premium and variance premium variations. In particular we use

test and estimation methods that do not rely on maintained structural assumptions. Con-

sistent with theory, we find that a small number of factors, two, summarize the relationship

between the equity premium, the bond premium and the variance implicit in option prices.
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A Appendix

A.1 Risk-Neutral Moments in Equilibrium

A.1.1 Affine General Equilibrium Models

We consider an Affine General Equilibrium Model (AGEM) similar to Eraker (2008). Suppose that the state of the

economy can is summarized by a Markov process Zt+1 ≡
(
∆ct+1, X

⊤
t+1

)⊤
where ∆ct+1 is the consumption growth process

and Xt+1 is a vector of K (observed and unobserved) state variables independent of consumption growth. The moment-
generating function of this state vector under the physical measure is given by

Et

[
exp

(
x∆ct+1 + y⊤Xt+1

)]
= exp

(
F0 (x, y) +X⊤

t FX (x, y)
)
,

where the scalar function F0 (x, y) and the vector function FX (x, y) describe the exogenous dynamics of the vector process
Zt+1. Assume, further, that the representative agent has recursive preferences of Epstein-Zin-Weil type. Consequently, the
logarithm of the intertemporal marginal rate of substitution is given by

st,t+1 = θ ln δ − θ

ψ
∆ct+1 − (1− θ) rt+1, (25)

where rt+1 is the return to the aggregate consumption claim. Using the standard Campbell-Shiller approximation, rt+1 =
κ0 + κ1wt+1 − wt +∆ct+1, the log price-consumption ratio wt can be well-approximated by an affine function of the vector
state variable Xt as

wt = A0 +A⊤
XXt, (26)

where the scalar coefficient A0, and the vector coefficient AX depend on model and preference parameters. Solving for these
coefficients is standard in the literature. The (log) stochastic discount factor can then be re-written as

st,t+1 = θ ln δ − (1− θ)
(
κ0 + (κ1 − 1)A0 −A⊤

XXt

)
− γ∆ct+1 − (1− θ)κ1A

⊤
XXt+1, (27)

and the model-implied log risk-free rate is given by,

rf,t+1 = B0 +B⊤
XXt, (28)

where the scalar coefficient B0 and the vector coefficient BX depend on the exogenous dynamics and preference parameters,

B0 = −θ ln δ + (1− θ) (κ0 + (κ1 − 1)A0)− F0 (−γ,− (1− θ)κ1AX) (29)

BX = − (1− θ)AX − FX (−γ,− (1− θ)κ1AX) . (30)

It follows that, in this economy, the change-of-measure from the historical probability to the risk-neutral probability is given
by

Zt,t+1 = exp (st,t+1 + rf,t+1) = exp
(
H0 +H⊤

XXt − γ∆ct+1 − p⊤XXt+1

)
, (31)

where
H0 = −F0 (−γ,−pX) , HX = −FX (−γ,−pX) and pX = (1− θ)κ1AX . (32)

A.1.2 Cumulants Term Structure

To compute risk-neutral cumulants of the excess return, xrt+1, from the claim on aggregate consumption, it suffices to

know the moment-generating function of the vector process
(
xrt+1, X

⊤
t+1

)⊤
under the risk-neutral measure. This moment-

generating function is given by

EQ
t

[
exp

(
xret+1 + y⊤Xt+1

)]
= exp

(
FQ
r,0 (x, y) +X⊤

t F
Q
r,X (x, y)

)
(33)
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where the scalar function FQ
r,0 (x, y) and the vector function FQ

r,X (x, y) are defined by

FQ
r,0 (x, y) = H0 − xG0 + F0 (−γ + x,−px + y + xκ1AX)

FQ
r,X (x, y) = HX − xGX + FX (−γ + x,−px + y + xκ1AX) ,

(34)

and xrt+1 is given by
xrt+1 = rt+1 − µQ

t = −G0 −G⊤
XXt +∆ct+1 + κ1A

⊤
XXt+1, (35)

where µQ
t = EQ

t [rt+1] is given by

µQ
t = κ0 + (κ1 − 1)A0 +G0 + (GX −AX)

⊤
Xt, (36)

with coefficients,

G0 = DF0 (−γ,−pX)

(
1

κ1AX

)
and GX = DFX (−γ,−pX)

(
1

κ1AX

)
. (37)

The operator D defines the Jacobian matrix of a real matrix function of a matrix of real variables.25 Formally, for a given
function Υ defined over Rm ×Rn and with values in Rp ×Rq, which associates to the m×n matrix ξ the p× q matrix Υ (ξ),
we have that DΥ(ξ) is the pq ×mn matrix defined by

DΥ(ξ) =
∂vec (Υ (ξ))

∂vec (ξ)
⊤ and DΥ(ξ∗) =

∂vec (Υ (ξ))

∂vec (ξ)
⊤

∣∣∣∣∣
ξ=ξ∗

. (38)

where the operator Di is analogue, but the derivative is taken with respect to the ith argument of a function.

To derive the term-structure of all risk-neutral moments, it suffices to compute the conditional moment-generating
function of aggregate returns, given by,

EQ
t

exp
x τ∑

j=1

xrt+j

 = exp
(
FQ
r,0 (x; τ) +X⊤

t F
Q
r,X (x; τ)

)
(39)

where the sequence of functions FQ
r,0 (x; τ) and F

Q
r,X (x; τ) satisfy the following recursions,

FQ
r,0 (x; τ) = FQ

r,0 (x; τ − 1) + FQ
r,0

(
x, FQ

r,X (x; τ − 1)
)

FQ
r,X (x; τ) = FQ

r,X

(
x, FQ

r,X (x; τ − 1)
) (40)

with initial conditions FQ
r,0 (x; 1) = FQ

r,0 (x, 0) and F
Q
r,X (x; 1) = FQ

r,X (x, 0). Then, the nth order cumulants of excess returns

denoted, MQ
n (t, τ), is the derivative with respect to x of the log moment-generating function of aggregate returns, and

evaluated at x = 0,

MQ
n (t, τ) = βn,0 (τ) +X⊤

t βn,X (τ) , (41)

where

βn,0 (τ) = DnFQ
r,0 (0; τ) and βn,X (τ) = DnFQ

r,X (0; τ) . (42)

The scalar (drift) coefficient βn,0 (τ), and the vector (slope) coefficient βn,X (τ) obtain in closed-form. For the particular
case of risk-neutral variance (n = 2), we show that these coefficients may be recursively and explicitly expressed as follows:

β2,0 (τ) = β2,0 (τ − 1) +D2F
Q
0 (0, 0)β2X (τ − 1)

+

((
1

β1X (τ − 1)

))⊤

D2FQ
0 (0, 0)

(
1

β1X (τ − 1)

) (43)

25See e.g. See Magnus and Neudecker (1988), Ch. 9, Sec. 4, P. 173.
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with β2,0 (1) = D2
1F

Q
0 (0, 0), for the drift coefficient, and

β2,X (τ) = D2F
Q
X (0, 0)β2,X (τ − 1)

+

((
1

β1X (τ − 1)

)
⊗ IK

)⊤

D2FQ
X (0, 0)

(
1

β1X (τ − 1) ,

) (44)

with β2,X (1) = D2
1F

Q
X (0, 0), for the slope coefficient, and where

β1,0 (τ) = β1,0 (τ − 1) +DFQ
0 (0, 0)

(
1

β1X (τ − 1)

)
β1,X (τ) = DFQ

X (0, 0)

(
1

β1,X (τ − 1)

) (45)

with β1,0 (1) = D1F
Q
0 (0, 0) and β1,X (1) = D1F

Q
X (0, 0).

A.2 Constructing A Monthly Sample

Option settlement dates follow a regular pattern though time: contracts are available for 3 successive months, then for the
next 3 months in the March, June, September, December cycle and, finally for the next two months in the June and December
semi-annual cycle. This leads to maturity groups with 1, 2 or 3 months remaining to settlement and then between 3 and
6, between 6 and 9, between 9 and 12 months, between 12 and 18 and between 18 and 24 months remaining to settlement.
We group option prices at the monthly frequency using their maturity date, so that enough observations are available within
each group to construct non-parametric measures. To see why this is a natural strategy, note first that each contract settles
on the third Friday of a month. Consider, then, all observations intervening between two successive (monthly) settlement
dates. Each of these observations can be unambiguously attributed to one maturity date. Moreover, within that period,
each contract will be attributed to the same maturity group.26 While a higher number of observations reduce sampling errors
in our estimates of risk-neutral moments, it may also increase noise if there is large within-month time-variations in the
distribution of stock returns at given maturities. To mitigate this effect, we always use the most recent observation when the
same contract (i.e. same maturity and strike price) is observed more than once.

A.3 Cumulants

We rely on the non-parametric approach of Bakshi and Madan (2000) to measure the conditional variance implicit in option
prices. Any twice-differentiable payoff, H(S(t + τ)), contingent on the future stock price, S(t + τ), can be replicated by a
portfolio of stock options. The portfolio allocations across option strikes are specific to each payoff H and given by derivatives
of the payoff function evaluated at the corresponding strike price. Following Bakshi and Madan, we take

H(S(t+ τ)) ≡(ret,t+τ )
n = ln

((
S(t+ τ)

(S(t)

)n)
,

so that the fair value, at time t, of a contract paying the second moments of returns over the next τ periods ahead,

V Q
2 (t, τ) ≡ EQ

t [e
−rτ

(
ret,t+τ

)2
], is given by

V Q
2 (t, τ)

2
=

∫ S(t)

0

1− ln(K/S(t))

K2
P (t, τ,K)dK +

∫ ∞

S(t)

1− log(K/S(t))

K2
C(t, τ,K)dK,

and can be directly computed from the relevant European call and put option prices, C(t, τ,K) and P (t, τ,K), with maturity
τ and strike price K. Finally, the risk-neutral variance at maturity τ is given by

V arQ(t, τ) = erτV Q
2 (t, τ)− µQ(t, τ)2,

26Take any contract, on any observation date. This contract is assigned to the 1-month maturity group if its settlement date occurs
on the following third-Friday, to the 2-month group if it occurs on the next to following third-Friday, etc. This grouping does not
change until we reach the next settlement date.
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where we follow Bakshi et al. (2003) to compute µQ(t, τ). Similarly, option-implied risk-neutral returns cumulants are given
by

MQ
1 (t, τ) ≡ µQ(t, τ) ≈ erτ − 1− erτ

2
V Q
2 (t, τ)− erτ

6
V Q
3 (t, τ)− erτ

24
V Q
4 (t, τ)

MQ
2 (t, τ) ≡ V arQ(t, τ) = erτV Q

2 (t, τ)− µQ(t, τ)2

MQ
3 (t, τ) = erτV Q

3 (t, τ)− 3µQ(t, τ)erτV Q
2 (t, τ) + 2µQ(t, τ)3

MQ
4 (t, τ) = erτV Q

4 (t, τ)− 4µQ(t, τ)erτV Q
3 (t, τ) + 6µQ(t, τ)2erτV Q

2 (t, τ)− 3µQ(t, τ)4,

where we closely followed Bakshi et al. (2003) in the computation of µQ. Recall that the first cumulant is the mean, the
second cumulant is the variance, the third cumulant is the third centered moment, and the fourth cumulant is the fourth
centered moment minus 3 times the squared variance.

A.4 Reduced-Rank Regressions

A multivariate reduced-rank regression model can be written as

Yt = AΓ⊤Ft +ΨZt + ϵt t = 1, . . . , T, (46)

where A and Γ have size (p×K) and (q ×K), respectively. The RRR estimators are given from the solution to

min
A,Γ,Ψ

∣∣∣∣∣
T∑

t=1

ϵtϵ
′
t

∣∣∣∣∣ , (47)

and closed-form expressions are given in Theorem 5 of Hansen (2008). In his notation, define the moment matrix,

Myf = T−1
T∑

t=1

YtF
⊤
t , (48)

and define the matrices Myy, Myz, Mff similarly. Also, define

Syy =Myy −MyzM
−1
zz Mzy (49)

Syf =Myf −MyzM
−1
zz Mzf ,

and define Sff and Syf = S⊤
fy similarly. Then, the estimator of A, Γ and of Ψ are given by,

Γ̂⊤ = [v̂1, . . . , v̂K ]ϕ (50)

Â = Sy,f B̂(B̂⊤Sff B̂)−1

Ψ̂ =MyzM
−1
zz − ÂB̂MfzM

−1
zz (51)

where [v̂1, . . . , v̂K ] are the eigenvectors corresponding to the largest K eigenvalues of,

|λSff − SfyS
−1
yy Syf | = 0, (52)

and ϕ is an arbitrary (K×K) matrix with full rank. It is a normalization device and corresponds to the choice of a particular
basis for the subspace spanned by the rows of Γ̂.
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Table 1: Option Sample Summary Statistics

Number of observations (out-of-the-money puts and calls) in each maturity (months) and moneyness (K/S) group. SP 500 futures

option data from January 1996 to October 2008.

< 0.90 0.90− 0.95 0.95− 0.975 0.975− 1 1− 1.025 1.025− 1.05 > 1.05

1 3173 3498 2229 2435 2429 2178 2638
2 4849 3350 2115 2423 2435 2098 3938
3 3077 1789 1151 1423 1371 1029 2649
6 4248 1694 987 1056 917 789 2957
9 2679 1020 635 645 484 405 2049
12 1621 598 368 417 375 264 1507
18 1504 500 279 313 267 169 1107
24 890 259 176 235 149 103 703

Table 2: Risk-Neutral Variance Summary Statistics

Summary statistics (Panel A) and principal component analysis (Panel B) of conditional risk-neutral variance across maturities from 1

to 18 months. Risk-neutral variance measures at each maturity constructed using the model-free method of Bakshi and Madan (2000).

Option data from January 1996 to October 2008.

Panel A Summary Statistics

1 2 3 6 9 12 18
Mean 0.037 0.045 0.046 0.049 0.047 0.044 0.044
Std. Dev. 0.024 0.027 0.027 0.026 0.022 0.021 0.022
Skewness 1.484 1.193 1.047 0.888 0.549 0.847 0.478
Kurtosis 5.332 4.066 3.725 3.579 2.497 3.559 2.932
ρ(1) 0.738 0.730 0.788 0.820 0.871 0.812 0.809

Panel B Summary Statistics

1 2 3 4 5 6 7

Loadings

0.36 0.49 -0.75 -0.23 0.10 -0.05 -0.03
0.44 0.38 0.33 0.16 -0.41 -0.06 0.60
0.43 0.20 0.28 0.12 -0.07 0.52 -0.63
0.42 -0.06 0.26 0.02 0.32 -0.76 -0.27
0.35 -0.28 -0.01 0.15 0.70 0.37 0.40
0.31 -0.42 0.08 -0.81 -0.23 0.09 0.06
0.31 -0.57 -0.41 0.48 -0.42 -0.07 -0.06

R2 0.88 0.06 0.03 0.02 0.01 0.00 0.00
Cum. R2 0.88 0.94 0.97 0.99 0.99 1.00 1.00
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Table 3: Excess Return and the Variance Term Structure

Rank test p-values and R2s in multivariate regressions, Yt = Π0 + ΠFt + ϵt where each component of Yt is an excess bond or equity

returns, xrt,t+τ , and where Ft = { ˆV ar
Q
(t, τ)}τ=1,...,q is a q × 1 vector of risk-neutral variance measures. We consider annual excess

returns for bonds with maturities of 2, 3, 4 and 5 years, and SP 500 excess returns at horizons 1, 3, 6, 9 and 12 months. Panel A displays

p-values associated with the Cook and Setodji modified statistics, Λ̃r, in a test of the null hypothesis that the rank of the matrix Π

is r. Panel B displays the R2 associated with each of the individual bond returns predictability regression obtained via multivariate

reduced-rank regression (RRR) estimation but for different hypothesis on the rank of the matrix Π. Panel C displays the R2 associated

with each of the individual equity returns predictability regression. Risk-neutral variance measures at each maturity constructed using

the model-free method of Bakshi and Madan (2000). Monthly Returns and Option data from January 1996 to October 2008.

Panel A - Rank test p-values

H0 : r = 0 H0 : r = 1 H0 : r = 2 H0 : r = 3 H0 : r = 4 H0 : r = 5 H0 : r = 6
p-val 0.0 4.3 22.9 64.8 82.5 81.4 73.0

Panel B - Bond returns R2s

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
2 7.3 7.3 9.2 11.1 11.4 11.4 11.5
3 6.6 6.6 7.8 9.6 9.9 10.0 10.1
4 5.7 5.9 6.6 8.2 8.7 8.7 8.8
5 5.0 5.5 5.8 7.3 7.8 7.9 8.0

Panel C - Equity returns R2s

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
1 1.9 3.1 3.1 3.3 3.4 3.5 3.7
2 4.0 6.3 7.2 8.8 9.2 9.2 9.2
3 5.4 6.3 7.5 10.7 11.1 11.1 11.3
6 3.3 5.3 7.6 9.0 9.0 9.1 9.6
9 3.5 4.2 7.9 10.1 10.1 10.1 10.3
12 3.5 3.6 10.5 11.0 11.0 11.0 11.1

Table 4: Excess Variance Predictability

Results from multi-horizon predictability regressions of the excess variance over an horizon of of τ , xvt,t+τ , with τ = 1, 2, 3, 6, 9 and 12

months, respectively. The predictors include a constant and Γ̂Ft, the risk factors obtained from the multivariate reduced-rank regression

of bond and equity excess returns on the variance term structure (See Table 3). Newey-West t-statistics with lags corresponding to

the investment horizon plus 3 months in parenthesis and R2 reported in percentage. Risk-neutral variance measures at each maturity

constructed using the model-free method of Bakshi and Madan (2000). Monthly Variance and Option data from January 1996 to

October 2008.

1 2 3 6 9 12

Γ̂1
˜V ar

Q
t -0.011 -0.012 -0.010 -0.009 -0.003 -0.003

(-2.15) (-1.94) (-1.55) (-1.35) (-0.49) (-0.42)

Γ̂2
˜V ar

Q
t -0.005 -0.007 -0.008 -0.008 -0.009 0.005

(-1.23) (-1.78) (-1.74) (-2.21) (-2.51) (1.56)
R2 6.2 9.5 9.0 10.1 8.7 2.7
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