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Abstract

We consider a sensor scheduling model where a set of identical sensors are used to
hunt a larger set of heterogeneous targets, each of which is located at a corresponding
site. Target states change randomly over discrete time slots between“exposed” and
“hidden” according to Markovian transition probabilities that depend on whether
sites are searched or not, so as to make the targets elusive. Sensors are imperfect,
failing to detect an exposed target when searching its site with a positive misdetec-
tion probability. We formulate as a partially observable Markov decision process the
problem of scheduling the sensors to search the sites so as to maximize the expected
total discounted value of rewards earned (when targets are hunted) minus search
costs incurred. Given the intractability of finding an optimal policy, we introduce a
tractable heuristic search policy of priority index type based on the Whittle’s index
for restless bandits. Preliminary computational results are reported showing that
such a policy is nearly optimal and can substantially outperform the myopic policy
and other simple heuristics.
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1 Introduction

1.1 Background and Motivation

In recent years, the investigation of effective dynamic policies for operating wireless sensor
networks has become an active research area. An issue that has received much attention
is the design of scheduling policies to allocate over time a relatively small set of sensor
resources to extract the required information about a scene containing a larger set of
targets of interest, in order to optimize a system-wide performance objective. See, e.g.,
the survey [4].

The sensors provide error-prone measurements of the sensed targets, such as their
location, or their presence (or absence) at a given location. The current knowledge on
each target is represented by its information state, which evolves via Bayesian updates
depending on whether or not the target is sensed at each time slot. This allows for the
formulation of a variety of optimal sensor scheduling problems as a partially observable
Markov decision process (POMDP) with special structure, which often fit into the frame-
work of the real-state multi-armed bandit problem, either in its classic version or, more
often, in its restless variant. See, e.g., [12].

Although the restless variant is, generally, computationally intractable, formulating
a sensor scheduling problem in such a framework allows for the use of the indexation
methodology reviewed in the previous chapter. Such an approach, further provides with
a bound on the optimal problem value that can be used to assess the deviation from
optimality of a given policy.

In certain situations, sensing actions do not only affect the system’s information state
(e.g. in terms of its precision) but also alter targets’ behavior. This is the case when
objective targets are smart, in the sense that they react to being sensed by changing
their dynamics, so as to hinder their detection or tracking. Sensor scheduling problems
complicate substantially when targets under surveillance are able to detect and respond to
sensing activities yet, it is natural to expect that different types of reaction would require
a different operating rule to optimize the system’s performance.

Specifically, sensor scheduling to detect (and/or track) smart targets is an application
that would strongly benefit from non-myopic decision rules, indicating the controller when
it is better not to sense a site for the sake of the possible future gains obtained by
influencing the target located at it accordingly. On the contrary, tractable myopic rules,
of the type defined by solving a one-period ahead optimization problem, do not inform
when a target should not be searched (specially in the case in which there are enough
sensing resources available to do so). This is clearly undesirable if targets are elusive, as
constantly searching for them makes them more and more elusive, resulting in larger use
of system resources (especially in time) to successfully find them.

Despite all these problems, few papers have considered sensor scheduling problems
with such reactive targets. Instead targets are typically assumed to follow dynamics that
are unaffected by sensing decisions. In the recent literature, some sensor management
models have been proposed for smart object localization disregarding such an unrealistic
assumption. For instance, in [2] reinforcement learning is used to obtain a non-myopic
policy for detection and tracking of smart targets, while [3] uses particle filter methods,
and [11] presents a game theoretic analysis.

The model presented in this paper extends such a line of work by investigating a sensor
scheduling model where a set of identical sensors are used to hunt a larger (or at least
equal) set of heterogeneous targets, each of which is located at a corresponding site. As
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in [2], target states change randomly over discrete time slots between exposed and hidden,
according to Markovian transition probabilities that depend on whether sites are searched
or not, so as to make the targets elusive. Sensors have a binary mode, so they can be
either active or passive at a site, and they are imperfect, failing to detect an exposed
target when searching its site with a positive misdetection probability

As a specific motivating application for such a model, we propose the problem inves-
tigated in [10], where the targets are mobile platforms (transporter-erector-launchers) for
launching short-range ballistic missiles (known as Scuds), and the sites are areas where it
is known that such platforms are hidden. In this setting, the sensors can be mounted on
unmanned aerial vehicles (UAV). A metric frequently used to measure the effectiveness
of such operations is the time to detect all targets. Hence, an effective sensor scheduling
rule may be derived by designing a a search policy that aims at maximizing the expected
discounted rewards of detecting and destroying all missile launchers, where the discount
factor represents how future detections are penalized in a given mission.

1.2 Goals and Contributions

It is the goal of this paper to propose a dynamic and readily implementable index policy for
a hunting elusive target model of POMDP type which exhibits a near-optimal performance
both under the discounted and the total criterion.

We accomplish this by formulating the resulting POMDP as a real-state Multi-armed
Restless Bandit Problem (MARBP) and deploying the recent extensions of the exist-
ing theoretical and algorithm results on discrete-state restless bandit indexation to the
continuous-state case.

This work makes the following contributions: it successfully deploys the methodology
announced in [6] to obtain a novel and dynamic index policy for the model of concern.
The PCL-indexability of the model is shown for the expected total discounted problem for
discount factors smaller than a critical value. For such a purpose, the lack of closed form
expressions for the required performance measures becomes a severe technical difficulty
introduced by considering a real state variable.

The remainder of the paper is organized as follows. Section 2 describes and formulates
the model. Section 3 reviews the restless bandit indexation approach as it applies to the
design of index policies for the present model. Section 4 outlines how to deploy such
a methodology to compute the index and summarizes our main results regarding the
indexability analysis of the model. Section 5 reports on several simulation experiments
where the proposed index policy is compared with alternative heuristic policies. Finally,
Section 6 ends the paper with concluding remarks. Detailed analysis and complete proofs
will be included in a full version of this paper, which is currently under preparation. A
preliminary version of this work appeared in [8].

2 Model description and MARBP Formulation

We consider a model where M sensors are available to hunt N ≥M elusive hiding targets,
where each target n is known to hide at a corresponding site n = 1, . . . , N . We assume
that the target present at site n alternates its visibility state sn,t at discrete time periods
t = 0, 1, . . . over an infinite horizon between the hidden state (sn,t = 0), in which it is
invisible to sensors but cannot perform its tasks, and the exposed state (sn,t = 1), in which
it can perform its tasks but can be detected by a sensor surveying the site.
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Figure 1: A model of a 2-state Markov chain. The arrows represent one-period transitions
among the states 0 (hidden) and 1 (exposed) with given probabilities under actions 0 (on
the left) and 1 (on the right).

The visibility state sn,t evolves according to Markovian transition probabilities de-
pending on whether or not its site is searched. We assume that only one sensor can
search a site at each time slot, and model sensing decisions by binary actions processes
an,t, where an,t = 1 if site n is sensed at time t, and an,t = 0 otherwise. When the action
taken on site n is an,t = a the target moves from the hidden to the exposed state (resp.
from the exposed to the hidden state, in case the target is not detected) with probability

p
(a)
n (resp. q

(a)
n ). Those transitions probabilities are such that after a site is searched and

the unhunted target on it is not detected, it is more likely that the target moves into or
remains in the hidden state than if the site had not been searched, i.e., q

(1)
n > q

(0)
n and

p
(1)
n > p

(0)
n . Notice that such condition ensures also that after a site is not searched, it

is more likely that the target moves into or remains in the exposed state than if the site
had been searched. We further assume that the visibility state processes have positive
autocorrelation or memory, so ρ

(a)
n , 1 − p(a)

n − q(a)
n > 0. Figure 1 illustrates the above

description.
The target at site n can only be hunted if it is exposed when searched, yielding a

reward rn for completing the site’s mission. Information on target n’s visibility state is
gained by sensing it, which provides a sensor outcome on,t ∈ {0, 1} : on,t = 1 if the target
is detected and hunted, and on,t = 0 otherwise. Sensing is imperfect in that the target
at site n will not be detected when it is exposed and its site was sensed with a positive
misdetection probability of αn = P (on,t = 0|sn,t = 1). Hence, target n’s visibility state
sn,t is not directly observable, but it is tracked by the information state Xn,t ∈ X , [0, 1],
giving the posterior probability that the target is exposed in period t conditioned on the
history {Xn,s, an,s : 0 ≤ s < t} ∪Xn,t.
Since successfully hunting a target completes the mission at its site, we assume that a
site n whose target has been hunted (xn = 0) is removed from further search. Hence,
we partition a target state space X into the set X0,1 , (0, 1] of controllable states, where
both actions A , {0, 1} are available, and the uncontrollable state 0, where only action
an = 0 is available.

The dynamics of the information state for target n under each sensing action are
obtained via Bayesian updates as follows. If the target at site’s n has not yet been hunted
at the beginning of period t, i.e. Xn,t > 0, and the site is searched (an,t = 1), then its
next state will depend on wether the search was successful or not. Thus, if the sensor
outcome is positive (ont = 1), which happens with probability (w.p.) (1−αn)Xn,t, and the
target is detected on,t = 1, which happens with probability (1− αn)Xn,t, then the target
has been hunted and hence site n is removed from the search objectives. We model such
a situation by letting the target’s information state drop to zero, i.e. Xn,t+1 = 0.
On the other hand, if the target is not detected on,t = 0, which happens with probability
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1− (1− αn)Xn,t, it is readily calculated that the information state changes to

Xn,t+1 = p(1)
n + ρ(1)

n

(
αnXn,t

1− (1− αn)Xn,t

)
. (1)

Hence, when site n is searched, its next information state is obtained in a randomized
fashion depending on the sensing outcome.
Finally, if site n is not sensed (an,t = 0) in period t, with its information state being
Xn,t > 0, i.e., as long as the target has not been hunted yet, its next information state is
determined by

Xn,t+1 = p(0)
n (1−Xn,t) + (1− q(0)

n )Xn,t. (2)

Yet, if the target has already been hunted Xn,t = 0, then its information state remains at
0 under both sensing actions. Thus, we summarize the information state dynamics for all
controllable states Xn,t ∈ X0,1 as

Xn,t+1 =



p
(0)
n (1−Xn,t) + (1− q(0)

n )Xn,t, if an,t = 0 w.p 1,

0, if an,t = 1 w.p (1− αn)Xn,t,

p(1)
n + ρ(1)

n

(
αnXn,t

1− (1− αn)Xn,t

)
, if an,t = 1 w.p 1− (1− αn)Xn,t,

Sensing actions are prescribed by a scheduling policy drawn from the class of admissible
policies Π(M), consisting of the nonanticipative policies (i.e., based on the history of
states and actions) that search at most M sites per slot:

N∑
n=1

an,t ≤M, t = 0, 1, . . . . (3)

As for the economic results of sensing actions, taking action an on site n when it oc-
cupies the information state xn yields the expected one-slot net reward Rn(xn,t, an,t) ,
(rn (1− αn) xn − cn) an, where cn ≥ 0 is a fixed site/target specific sensing cost.

The sensing system described by this model operates over time slots of equal length,
assuming sensors are synchronized to operate over discrete time slots. The sequence of
events within each slot is described in Figure 2. At the beginning of each slot, the system’s
manager given site’s n current information state Xn,t, decides whether to sense that site or
not, afterwards earning an expected reward Rn(xn,t, an,t) which depends on the selected
action and the current belief state. Afterwards target’s n, if not hunted, changes its
visibility state depending on the selected sensing action and hence by the end of the slot,
site’s n belief state is updated accordingly.

2.1 Performance Objectives

We will consider the following dynamic optimization problem: find a β-discounted reward
optimal policy, i.e.,

max
π∈Π(M)

Eπx0

[
∞∑
t=0

N∑
n=1

βtRn

(
Xn,t, an,t

)]
, (4)

where 0 < β ≤ 1 is the discount factor, x0 = (xn,0)Nn=1 is the initial joint belief state, for n
in {1, 2, . . . , N}, and Eπx0

[·] denotes expectation under policy π conditioned on the initial
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Figure 2: The sequence of events within a time slot for the elusive target hunt model.

joint state being equal to x0. Note that the undiscounted case β = 1, which corresponds
to the total expected reward criterion, is well defined in the present setting given that the
search plan terminates after a finite number of slots with probability one (but the number
of slots until termination, i.e., the horizon, is uncertain and unbounded). Furthermore,
when considering a discount factor β = 1 we may analize the case in which there is
interest in finding targets regardless of how long it takes to do so. When there are reasons
to penalise finding targets in a later futute, such as system’s lifetime constraints, it makes
sense to consider some β < 1.

Problem (4) is a POMDP of restless MARBP type, thus being notoriously hard to solve
exactly. In the following section we shall present the results of deploying the real-state
restless bandit Whittle’s MP indexation approach to the model of concern.

3 MARBP formulation and Indexation

We will deploy the approach developed and applied in other real-state multi-armed restless
bandit models in [6,7,9]. The following discussion reviews the key methodological aspects
of such an approach.

3.1 Relaxed Problem, Lagrangian Relaxation and Performance
Bound

Along the lines introduced in [13] for the equality-constrained case, we first construct a
relaxation of (4), relaxing the hard sample path peak resource-usage constraint (3) by the
averaged version that the expected total discounted (ETD) number of sensed sites does
not exceed M/(1− β), i.e.,

Eπx0

[
∞∑
t=0

N∑
n=1

βtan,t

]
≤ M

1− β
. (5)

Denoting by Π the class of nonanticipative scheduling policies (which may sense any
number of sites at any time), the relaxed primal problem is

max
(5),π∈Π

Eπx0

[
∞∑
t=0

N∑
n=1

βtRn

(
Xn,t, an,t

)]
. (6)
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Note that the optimal value of (6) V R(x0) gives an upper bound on the optimal value of
(4) V ∗(x0).

To address such a constrained MDP (6) we next deploy a Lagrangian approach, in-
cluding coupling constraint (5) and attaching a multiplier λ ≥ 0 to it. The resulting
problem

max
π∈Π

Eπx0

[
∞∑
t=0

N∑
n=1

βt
{
Rn

(
Xn,t, an,t

)
− λan,t

}]
+

Mλ

1− β
(7)

is a Lagrangian relaxation of (6), whose optimal value V L(x0;λ) gives an upper bound
on V R(x0). The Lagrangian dual problem is to find an optimal value λ∗(x0) of λ giving
the best upper bound on V R(x0), which we denote by V D(x0):

V D(x0) = min
λ≥0

V L(x0;λ) (8)

Note that λ∗(x0) solves (8) which is a scalar convex optimization problem, since V L(x0;λ)
is concave in λ.

3.2 Indexability and Whittle’s Index Policy

Next, given the fact that target’s state transitions are independent, we decompose problem
(7) as

V L(x0;λ) =
N∑
n=1

V L
n (xn,0;λ) +

Mλ

(1− β)
, (9)

where each V L
(n)(x0;λ) is a single-project restless bandit subproblem, consisting of the

following hunting problem considered for some site n in isolation,

max
πn∈Πn

Eπ
(n)

xn,0

[
∞∑
t=0

βt{Rn

(
Xn,t, an,t

)
− λan,t}

]
, (10)

where Πn denotes the class of admissible policies for operating a single sensor on such site,
i.e., deciding when it should be active (an,t = 1) and passive (an,t = 0) and with λ being
a constant parameter representing an extra cost incurred per unit of time the sensor is
active. In terms of these individual problems, multiplier λ represents an additional cost,
to be added to the site’s regular sensing cost cn, that will be paid per time slot a sensor
is searching site n.

The following defines a key structural property of such restless bandit subproblems,
termed indexability by Whittle in [13].

Definition 1 The single-site hunting subproblem (10) is said to be indexable if there
exists an index λ∗(xn) which is a scalar function of the site’s information state xn ∈ X0,1

such that, for any value of the cost λ ∈ R, the active action an,t = 1 (sensing the site) is
optimal in state Xn,t = xn iff λ∗(xn) ≥ λ, regardless of the initial state.

If definition 1 holds for each subproblem, then the resulting index can be used as site’s
n sensing-priority to define a heuristics for problem (4). Clearly, by decoupling the whole
problem into n individual subproblems, (10) is significantly easier to solve than (4), yet
its computational tractability depends on that of individual subproblems.
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3.3 Sufficient Indexability Conditions and Index Evaluation

Whittle’s indexability is a structural property from which a tractable and generally well-
performing priority index policy can be derived, yet it needs to be established for each
model at hand. The introduction of sufficient indexability conditions for discrete-state
restless bandits based on satisfaction on partial conservation laws (PCLs), along with an
index algorithm, reviewed in [5], provided with a methodology for such a purpose. Such
conditions were extended to continuous-state restless bandits in [6], as reviewed next.

In this section we focus on a generic single site/target subproblem, and hence drop the
superscript n from the above notation. We will evaluate the performance of admissible
sensing policies π ∈ Π along two dimensions: the work measure g(x, π), giving the ETD
number of times a site is sensed under policy π starting at X0 = x; and the reward measure
f(x, π), giving the corresponding ETD reward earned. Thus,

g(x, π) , Eπx

[
∞∑
t=0

βtat

]
, f(x, π) , Eπx

[
∞∑
t=0

βtR(Xt, at)

]
,

We can then formulate the single-site’s optimal target hunting subproblem (10) as

V ∗(x;λ) = max
π∈Π

f(x, π)− λg(x, π). (11)

Problem (11), is a continuous-state Markov Decision Process (MDP), whose optimal pol-
icy, under certain assumptions on R(x, a) (e.g. that it is a bounded and measurable
function), belongs to the family of deterministic stationary policies, naturally represented
by their active (state) sets, i.e., the set of information states where the active action (in
this case, sensing the site) is prescribed. For an active set B ⊆ X0,1, we shall refer to the
B-active policy.

We will further focus attention on the family of threshold policies. For a given threshold
level z ∈ R, the z-threshold policy senses the site in information state x iff x > z, so its
active set is B(z) , {x ∈ X0,1 : x > z}. Note that B(z) = (z, 1] for 0 ≤ z < 1,
B(z) = X0,1 = (0, 1] for z < 0, and B(z) = ∅ for z ≥ 1. We denote by g(x, z) and f(x, z)
the corresponding work and reward measures under a z-threshold policy.

In the following we will use the notation

φ(0)(x) , (p(0) + ρ(0)x), φ(1)(x) , p(1) + ρ(1) αx

1− (1− α)x
. (12)

For some fixed z, the total work measure g(x, z) for any x ∈ X0,1 is characterized by
the the unique solution to

g(x, z) =


1 + β [1− (1− α) x ] g

(
φ(1)(x), z

)
, x > z

βg
(
φ(0)(x), z

)
, x ≤ z

0 x = 0,

(13)

in the Banach space of Borel measurable bounded functions, endowed with the sup norm.
See [1]. Whereas the total reward measure f(x, z) for any x ∈ X0,1 is characterized by

f(x, z) =


R(x, 1) + β [1− (1− α) x ] f

(
φ(1)(x), z

)
, x > z

βf
(
φ(0)(x, z

)
, x ≤ z

0 x = 0.

(14)

7



We will further use the marginal counterparts of such total evaluation measures. For
threshold any fixed z and action a, denote by 〈a, z〉 the policy that takes action a in
the initial period and adopts the z-threshold policy thereafter. Define the marginal work
measure w(x, z) and the marginal reward measure r(x, z) as

w(x, z) , g(x, 〈1, z〉)− g(x, 〈0, z〉), (15)

= 1 + β [1− (1− α) x ] g(φ(1)(x), z)

−β g(φ(0)(x), z)

r(x, z) , f(x, 〈1, z〉)− f(x, 〈0, z〉),
= R(x, 1) + β [1− (1− α) x ] f(φ(1)(x), z)

−β f(φ(0)(x), z) (16)

If w(x, z) 6= 0, define the marginal productivity (MP) measure

λMP (x, z) ,
r(x, z)

w(x, z)
. (17)

We will invoke the following definition and theorem introduced in [6] .

Definition 2 Subproblem (11) is PCL-indexable (with respect to threshold policies) if:

(i) positive marginal work : w(x, z) > 0, x ∈ X0,1, z ∈ R;

(ii) nondecreasing index : the index defined by

λMP (x) , λMP (x, x), x ∈ X0,1. (18)

is monotone nondecreasing in x and continuous

Theorem 1 If subproblem (11) is PCL-indexable, then it is indexable and the MP index
λMP (x) in (18) is its Whittle’s index λ∗(x).

4 PCL-Indexability Analysis and MP Index Compu-

tation

4.1 Verification of PCL-indexability

As reviewed in subsection 3.3, establishing Whittle’s indexability 1 by means of deploying
sufficient indexability conditions 2 we focus on an individual site’s subproblem (11), which
is a single-project restless bandit subproblem, consisting of a hunting problem considered
for some site n in isolation. Πn denotes the class of admissible policies for operating a
single sensor on such site, i.e., deciding when it should be active (an,t = 1) and passive
(an,t = 0) and with λ being a constant parameter representing an extra cost incurred per
unit of time the sensor is active.

Next, we would like to establish that each subproblem (11) has the key structural
indexability property defined by 1. For such a purpose, we will deploy conditions 2 to
establish that the problem is indexable with respect to the family of z-threshold policies,
and thus we start by computing the performance measures under such class of policies

8



(13) and (14). In the remainder of this section we focus on a generic single site/target
subproblem as (11), and hence drop the superscript n from the above notation.

We recall that problem (11), is a continuous-state Markov Decision Process (MDP),
whose optimal policy belongs to the family of deterministic stationary policies ΠSD, nat-
urally represented by their active (state) sets (in this case, that is the set of information
states where sensing the site is prescribed). For an active set B ⊆ X0,1, we shall refer to
the B-active policy.

The following section outlines how to solve the evaluation equations to perform a
PCL-indexability analysis, and further shows how to use such solutions to compute in
practice the index (18).

Total and Marginal Evaluation Measures

In order to analyze the PCL-indexability of (11) by means of the sufficient indexability
conditions (SIC) stated in Theorem 2 we must first solve the evaluation measures g(x, z)
and f(x, z) for any fixed threshold z ∈ R and any x ∈ X0,1.

In order to do so, we must address the problem posed by the fact that possible infor-
mation state trajectories {Xt} are naturally infinite, since Xt can take any value in X at
each t. To do so, we will take advantage of the fact that under a z-threshold policy for
any initial state x, possible information state trajectories {Xt} are infinite but numerable,
as they exhibit recurrent cyclical patterns depending on the threshold level. Yet, as we
will next show, the total performance measures do not converge to a simple closed-form
expression. In the cases in which such measures can be solved in closed form, as e.g. [6],
both direct verification of the SIC and obtaining a closed-form index formula are possible.
Yet, in the model addressed in this paper, a significant challenge to establish indexability
and to derive an index policy, is to do so despite the fact that the evaluation equations
do not admit a straightforward algebraic manipulation.

Next, we outline how to solve the evaluation measures to perform an indexability
analysis and further shows how to use such solutions to evaluate the index λ∗(x) and to
establish the PCL-indexability of the model.

To solve for (13) and (14) in closed form we further define φ
(a)
t (x) for a = 0, 1 as the

recursion generated by letting φ
(a)
0 (x) , x and φ

(a)
t (x) , φ

(a)
0 (φ

(a)
t−1(x)) for a = 0, 1. Note

that for any x ∈ X0,1, both recursions φ
(a)
t (x) converge as t→∞ to the respective limits

φ(0)
∞ ,

p(0)

1− ρ(0)
φ(1)
∞ ,

γ −
√
γ2 − 4p(1)(1− α)

2(1− α)

with γ , 1− ρ(1) + (p(1) + ρ(1))(1− α).
Most importantly, notice that both functions (1) and (2) and their resulting iterated

mappings can be seen as (non-linear) functions known as Möbius transformations (or
also as Linear Fractional Transformations). This observation is crucial to the subsequent
indexability analysis.

The definitions of (1) and (2) ensure that that φ
(1)
∞ < φ

(0)
∞ , and both limits are attrac-

tive fixed points of the active and passive dynamics respectively. This naturally divides
the state space into three parts, where the active and passive actions (depending on the
initial information state x and the threshold z) produce movements in the state space,

which are either both increasing (if x, z ∈ (0, φ
(1)
∞ )) or both decreasing (if x, z ∈ [φ

(0)
∞ , 1])

or moving in opposite directions (if x, z ∈ [φ
(1)
∞ , φ

(0)
∞ )). Hence, we exploit this knowledge

9



to solve the evaluation equations by distinguishing among three z−threshold cases, as
discussed below.
In the sequel we assume, without loss of generality, that c = 0.

4.1.1 Case I: Threshold z ∈ [0, φ
(1)
∞ ) (Low thresholds)

In this case, the active set B(z) = (z, 1] contains the attractive fixed points of the recur-

sions associated to both actions, i.e. φ
(0)
∞ , φ

(1)
∞ . This implies that once the state reaches the

active set B(z) it stays in B(z) as long as the target remains unhunted. For any x ≥ φ
(1)
∞

then φ
(1)
t (x) ≥ φ

(1)
∞ > z for all t ≥ 0. Further, for z ∈ Bc(z) , [0, z]: φ

(0)
t (x)↗ φ0

∞. Hence,

after a finite number of passive slots t∗0(x, z) < ∞: φ
(0)
t∗0(x,z)(x) > z, where we define the

first (deterministic) hitting time to the active set as t∗0(x, z) , min{t ≥ 1 : φ
(0)
t (x) > z}

Also, denote by θ(x, z, t) the survival probability representing the probability that the
target has not been hunted before time slot t under the z-threshold policy, starting from
state x. Note that, for x > z

θ(x, z, t) ,
t−1∏
s=0

[
1− (1− α) φ(1)

s (x)
]

(19)

where we let θ(x, z, 0) = 1. Thus, the total work measure has the following evaluation:

g(x, z) =


∞∑
t=0

βt θ(x, z, t) x ∈ (z, 1]

βt
∗
0(x,z)

[
∞∑
t=0

βt θ(y, z, t)

]
x ∈ (0, z]

(20)

where y , φ
(0)
t∗0(x,z)(x).

Similarly, we obtain the total reward evaluation

f(x, z) =


∞∑
t=0

βt θ(x, z, t)R(φ
(1)
t (x, z), 1) x ∈ (z, 1]

βt
∗
0(x,z)

∞∑
t=0

βt θ(y, z, t)R(φ
(1)
t (y, z), 1) x ∈ (0, z]

(21)

The above infinite series are convergent, yet they do not admit closed form formulae.
Hence, they must be truncated in practice to evaluate w(x, z) and r(x, z) via (15) and
(16), and hence also for establishing that SIC conditions i) and ii) in 2 hold.

In the following we list our main results, drawing on the technical analysis of the
marginal work measure that will be included in a full version of this paper, currently
under preparation.We define β∗ as the discount factor β such that:(

∞∑
t=0

(β∗)tθ(x, z, t)− β∗
∞∑
t=0

(β∗)tθ(φ(0)(x), z, t)

)
= 0 (22)

We further define β(1) as:

β(1) ,
1

1 +
[
1− (1− α)(1− φ(1)

∞ )
] .

10



Proposition 3 The marginal work measure w(x, z) in problem (11) with x ∈ X0,1 and

z ∈ [0, φ
(1)
∞ ) is strictly positive for β < β∗ with β∗ > β(1).

The strategy deployed for proving the positivity of marginal work measures in all the
threshold cases of concern, despite the lack of a closed form formulae, is the following: for
each z-threshold case and every possible initial state x, based on properties of the active
and passive recursions as Möbius transformations, we derive a lower bound on w(x, z)
and then study its positivity (or the conditions under which its positivity it is ensured).

The proof of Proposition 3 is based on the following lemma which states lower bounds
on w(x, z) for this threshold case.

Lemma 4 For all z < φ
(1)
∞ ,

(a) w(x, z) > min{1− β (1−α) x
(1−β)+β (1−α) z

, 1− β} ≥ 0

for any x ∈ (0, z], 0 ≤ β ≤ 1.

(b) w(x, z) > (1− β) ≥ 0 for any x ∈ (z, φ
(0)
∞ ], 0 ≤ β ≤ 1.

(c) w(x, z) > 0 for any x ∈ (φ
(0)
∞ , 1], only if β < β∗,

where β∗ is defined as the discount factor β such that:(
∞∑
t=0

(β∗)tθ(x, z, t)− β∗
∞∑
t=0

(β∗)tθ(φ(0)(x), z, t)

)
= 0 (23)

As there is no closed form expression for those infinite sums, β∗ cannot be computed
exactly. β(1) is a lower bound on it obtained by imposing that the lowest bound on
w(x, z) for x = 1 is strictly positive. Further bounds can be obtained by truncation of
the infinite sums in (23).
Proposition 3 ensures that condition (i) in the SIC holds for this case. Regarding the
monotonicity condition of the index, first notice that it follows from the definition of
t∗0(x, z) that: t∗0(φ(1)(x), x) = t∗0(φ(0)(x), x) = 0 given that φ(0)(x) > x and φ(1)(x) >
0,which allows us to compute the index (17) for case I as follows:

λMP (x) =

R (1− α)

[
∞∑
t=0

βt
[
φ

(1)
t (x) θ(x, x−, t)− βφ1

t (φ
(0)(x)) θ(φ(0)(x), x, t)

]]
∞∑
t=0

βt
[
θ(x, x−, t)− β θ(φ(0)(x), x, t)

] , x ∈ (0, φ(1)
∞ )

(24)
where x− stands for the sensing policy with active set equal to B(x−) = [x, 1].
Next, to ensure indexability we must prove that this index is nondecreasing with respect
to the information state. Notice, that for all x ∈ [0, φ

(1)
∞ ) the λMP (x) is an infinite sum of

continuous functions of the state. For such a purpose, we take the derivatives of the two
infinite sums defining the index with respect to x. Since, there is no closed form formulae
for those sums to manipulate it algebraically, the strategy to accomplish such a goal is to
show that, provided continuity of the MP index is ensured, it holds that a) ∂w(x,x)

∂x
< 0 and

b) ∂r(x,x)
∂x

> 0 by manipulating the derivative of each term in the infinite sum. Showing
continuity of the index in this case calls for further research, but the experimental evidence
suggests it holds.
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Proposition 5 The index λMP (x) = r(x,x)
w(x,x)

as defined in (24) for problem (11) is mono-

tone increasing and a continuous in the information state x for x ∈ (0, φ
(1)
∞ ).

The proof of proposition 5 is based on the following lemma.

Lemma 6 For all x < φ
(1)
∞ , it holds that:

∞∑
t=1

βt
[
∂θ(x, x−, t)

∂x
− β ∂θ(φ

(0)(x), x, t)

∂x

]
< 0 (25)

∞∑
t=0

βt

[
∂φ

(1)
t (x) θ(x, x−, t)

∂x
− β ∂φ

(1)
t (φ(0)(x)) θ(φ(0)(x), x, t)

∂x

]
> 0 (26)

4.1.2 Case II: Threshold z ∈ [φ
(1)
∞ , φ

(0)
∞ ) (Intermediate thresholds)

In this case, the passive set Bc(z) contains the attractive fixed point of the recursion

associated to the active action, i.e. φ
(1)
∞ , whereas the active set B(z) contains the attractive

fixed point of the recursion associated to the passive action, i.e. φ0
∞. Hence, the state

Xt jumps above and below the threshold z, until the target is found. Following the
argument introduced in [7], define the map φ(x, z) , 1x>zφ

(1)(x) + 1x≤zφ
(0)(x), and let

φ0(x, z) = x, φt(x, z) = φ(φt−1(x, z), z) for t ≥ 1. Then, writing at(x, z) , 1φt(x,z)>z,

(φa)t(x, z) , φt(x, z)at(x, z). In this case, the survival probability has evaluation

θ(x, z, t) ,
t−1∏
s=0

[1− (1− α) (φa)s(x, z)] (27)

with θ(x, z, 1) = 0. Thus, total evaluation measures admit the following expressions

g(x, z) =
∞∑
t=0

βt at(x, z)θ(x, z, t) (28)

f(x, z) =
∞∑
t=0

βt R ( (φa)t(x, z), 1 ) θ(x, z, t) (29)

In this case also, since the expressions (28) and (29) cannot be calculated in a closed
form, truncation is neccesary for evaluating them numerically. However, we are able to
describe a recurrent cyclical pattern in the resulting information state Xt process under a
z-threshold policy, which allows us to describe the possible trajectories of the information
state to be considered. Specifically, using properties of the Möbius Transformations we
are able to establish regularities , in terms of the sequence of active and passive slots until
a target is hunted, that allow us to derive the corresponding lower bounds on w(x, z) for
this case, which is the most complex of the three threshold cases. In the following we list
the main results for this case.

Proposition 7 The marginal work measure w(x, z) in problem (11) with x ∈ X0,1 and

z ∈ [φ
(1)
∞ , φ

(0)
∞ ) is positive for β < β∗ with β∗ > β(1).
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The proof of Theorem 3 is based on the following lemma, providing lower bounds on
w(x, z).

Lemma 8 For all z ∈ [φ
(1)
∞ , φ0

∞),

(a) w(x, z) > min{1− β (1−α) x

(1−β)+β (1−α) φ
(1)
∞
, 1− β} ≥ 0

for any x ∈ (0, z], 0 ≤ β ≤ 1.

(b) w(x, z) > (1− β) ≥ 0 for any x ∈ (z, φ0
∞], 0 ≤ β ≤ 1.

(c) w(x, z) > 0 for any x ∈ (φ0
∞, 1] only if β < β∗

Theorem 7 ensures that condition (i) in the SIC holds for this case. Further, Theorem 7
implies that Theorem 3 holds in this threshold case also. Next, we compute the index
(17) in this case, using the fact that t∗0(x, x) = 1 and, given that φ(1)(x) < x < φ(0)(x), as
follows:

λMP (x) =

∞∑
t=0

βtR (1− α)
[
(φa)t(x, x

−)θ(x, x−, t)− β(φa)t(φ
(0)(x), z) θ(φ(0)(x), x, t)

]
∞∑
t=0

βt
[
θ(x, x−, t)at(x, x

−)− β θ(φ(0)(x), x, t)at(φ
(0)(x), z)

] ,

(30)

for x ∈ [φ
(1)
∞ , φ0

∞), where x− stands for the sensing policy with active set equal to B(x−) =
[x, 1].
Such an index can be expressed as an infinite sum of functions defined by a composition of
the two the Möbius transformations describing the active and passive dynamics, depending
on the concrete cycle that a given threshold x generates. Showing continuity of the index
in this case calls for further research, but the experimental evidence suggests it holds.

Proposition 9 The index λMP (x) = r(x,x)
w(x,x)

as defined in 30 for problem (11) is monotone

increasing and a continuous in the information state x for x ∈ [φ
(1)
∞ , φ

(0)
∞ ).

Lemma 10 For all x < φ
(1)
∞ , it holds that:

∞∑
t=1

βt
[
∂θ(x, x−, t)at(x, x

−)

∂x
− β∂θ(φ

(0)(x), x, t)at(φ
(0)(x), z)

∂x

]
< 0 (31)

∞∑
t=0

βt
[
∂(φa)t(x, x

−)θ(x, x−, t)

∂x
− β∂(φa)t(φ

(0)(x), x) θ(φ(0)(x), x, t)

∂x

]
> 0 (32)

4.1.3 Case III: Threshold z ∈ [φ
(0)
∞ , 1] (High thresholds)

In this case, the passive set Bc(z) contains the attractive fixed points of the recursions

associated to both actions, i.e. φ
(0)
∞ , φ

(1)
∞ . This, in turn, implies that once the information

state reaches the passive set Bc(z), it remains in it, regardless if the target has been hunted

or not at that moment of time. For all x > z, z ≥ φ
(0)
∞ ≥ φ

(0)
t (x) for all t ≥ 0. Further,

for z ∈ [φ
(0)
∞ , 1] and for x > z: φ

(1)
t (x)→ φ

(1)
∞ . Hence, after a finite number of active slots
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τ ∗(x, z) <∞, with τ ∗ , min{t ≥ 1 : Xt ≤ z},: φ1
τ∗(x) ≤ z. Notice that τ ∗(x, z) for some

x > z is a random variable with maximum value t∗1(x, z) , min{t ≥ 1 : φ
(1)
t (x) ≤ z}.

Then, we have that

g(x, z) = 1{x>z}

t∗1(x,z)−1∑
t=0

βtθ(x, z, t)

 , (33)

f(x, z) = 1{x>z}

t∗1(x,z)−1∑
t=0

βt R( φ
(1)
t (x), 1 )θ(x, z, t)

 . (34)

where θ(x, z, t) is the survival probability as defined in Case I. For x > z, equations (33)
and (34) are readily computed by evaluating finite sums with t∗1(x, z)− 1 terms.

Proposition 11 The marginal work measure w(x, z) in problem (11) with x ∈ X0,1 and
z ∈ [φ(0)∞, 1) is positive for β < β∗ with β∗ > β(1).

The proof of Proposition 11 is based on the following lemma, providing lower bounds
on w(x, z).

Lemma 12 For all z ≥ φ0
∞,

(a) w(x, z) = 1 for any x ∈ (0, z], 0 ≤ β ≤ 1.

(b) w(x, z) > 0 for any x ∈ (z, 1] for β < β∗.

Hence, for x ≤ z it is readily seen that w(x, z) = 1 and r(x, z) = R(x, 1). Therefore, the
index in (18)

λMP (x) = R(x, 1), φ(0)
∞ ≤ x ≤ 1 (35)

Proposition 13 The index λMP (x) = r(x,x)
w(x,x)

as defined in 35 for problem (11) is a con-

tinuous and monotone increasing in the information state x for x ∈ (φ
(0)
∞ , 1].

Proof:
Taking partial derivative to index (35), it follows that:

∂λMP (x)

∂x
=
∂R(x, 1)

∂x
= r(1− α) > 0.

Notice that in case III, the MP index λMP (x) coincides with the myopic index λmyopic(x),
which results from optimizing the one-period expected reward.

4.1.4 Verification of PCL-indexability Sufficient Conditions

Based on propositions 3-13, we conclude:

Theorem 14 The single-site elusive target hunt ETD problem (11) is PCL-indexable for
β ∈ [0, β∗), with

β∗ >
1

1 +
[
1− (1− α)(1− φ(1)

∞ )
] .

Therefore, it is indexable for β ∈ [0, β∗), and the MP index λMP (x) calculated above is its
Whittle’s index λ∗(x).
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Notice that once the information state process Xt reaches the set [φ
(1)
∞ , φ

(0)
∞ ], it never

leaves it. Then, for x ∈ [0, φ
(0)
∞ ] the ETD problem (11) is PCL-indexable for all discount

values β ∈ [0, 1], as shown by 3, 7 and 11. Hence, the set of information states for which

PCL-indexability in ensured only if β < β∗, i.e. x ∈ (φ
(0)
∞ , 1], applies only to a set of states

which the system will, with certainty, leave and never return to, since the subset [φ
(1)
∞ , φ

(0)
∞ ]

contains the absorbing set of states of the system operated under any z-threshold policy.

4.2 Index Computation

The Whittle’s MP index has evaluation given by (24), (30) and (35). As already mentioned
during the indexability analysis, the index λ∗(x), which is further equal to the MP index

λMP (x), for the information states 0 ≤ x < φ
(0)
∞ in practice must be computed by by

truncating the infinite series defining them to a finite number of terms.

4.2.1 Performance Bound Computation

Once the indexability of subproblem (11) is ensured by Theorem 14 and having proposed
a tractable procedure to compute its optimal value given any λ (i.e. the optimal active
set B∗(z) contains those information states x such that λ∗(x)− λ ≥ 0), we can solve the
Lagrangian dual problem (8) stated as

V D(x0) = min
λ≥0

N∑
n=1

[
max
πn∈Πn

f(xn,0, π)− λg(xn,0, π)

]
+ λ

M

(1− β)
(36)

Hence, we may use V D(x0) as a upper bound on the best attainable performance for
problem (4). In the next section we will compute such a bound for the simulated scenarios
considered and use it to evaluate the suboptimality gap of our proposed policy and other
possible heuristics.

5 Computational Experiments

In this section we clarify and extend the ideas on the MARB elusive target hunt model
presented in Section 4. First, we discuss, through a series of computational experiments,
index tractability, the validity of PCL-indexability conditions and of theorem Theorem 14,
and relative and absolute performance of the Whittle’s index policy. Throughout the
analysis, we will seek to draw insightful interpretations of the results in terms of the
search problem of concern.

5.1 Index Evaluation

As an example of the use of our index computation method, we have simulated 103

runs of a scenario involving a target instance with the following parametric specification:
q(0) = 0.1, p(0) = 0.5, ρ(0) = 1 − p(0) − q(0), q(1) = 0.5, p(1) = 0.3, ρ(1) = 1 − p(1) − q(1),
R = 1, and α = 0.05. The fixed points dividing the state space X0,1 , (0, 1] into the

three analyzed threshold cases are φ
(1)
∞ = 0.3043 and φ

(0)
∞ = 0.8333. The discount factor

β varied over the range β ∈ {0, 0.1, 0.2, . . . , 0.9, 0.99} and the critical discount factor is in
this case β(1) = 0.7468.
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The index was computed using a MATLAB script for index evaluation based on the
expressions (24), (30), (35). For each β, the index λ∗(x) was evaluated on a grid of
x information state values of width 10−2 and the infinite sums of cases I and II were
approximately evaluated by truncating them to T = 104.

Figure 3 plots the results. As required by the PCL-indexability conditions, in each
case the index λ∗(x) is monotone nondecreasing in x. Note that the index is continuous
in x and piecewise differentiable and it converges as β ↗ 1 to a limiting index that can be
used for the expected total criterion. For each x the time required to compute the index
is negligible.

Β = 0

Β = 0.99

Β = 1 Φ¥
0Φ¥

1 1
x

Λ*HxL

Figure 3: MP index for different discount factors β

From Figure 3 we derive the following relevant conclusions regarding the intuition of
the optimal search policy for one elusive target in isolation.
For small enough x, (i.e., for x ≤ φ

(1)
∞ ) the index λ∗(x) may be negative for large values of

β, reflecting the fact that it is unproductive to search a site when it is very unlikely that
the target is visible, as both actions result in an increased probability that it is exposed
(further, this increase is larger if we do not search for it).

For x within the absorbing set of states (φ
(1)
∞ ≤ x ≤ φ

(0)
∞ ), as β ↗ 1, the marginal profit

of searching the target practically vanishes. This reflects the fact that as the system’s
lifetime grows, it becomes counterproductive to try to hunt a target which is unlikely to
be exposed, as doing so will only drive the target into hiding, delaying the hunt.
By the same reasoning, the fact that the λ∗(x) is decreasing in the discount factor β

within the absorbing set φ
(0)
∞ , suggests that as the moment in which the target is hunted

is less important, then the best search strategy is to let the target be unsensed so that
its probability of being exposed raises (up to its maximum value if β = 1), and only then
attempt to hunt it. In simpler terms, if we have enough time to hunt the target, it is
best to wait for the moment in which it becomes the most likely to be exposed, and only
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then try to hunt it. For larger values of x (i.e., for x > φ
(0)
∞ ), it is optimal to behave

myopically, since in those states the target is most likely to be exposed, yet those states
are only transient.

5.2 PCL-indexability

As required by the PCL-indexability condition (ii), Figure 3 shows that in each case the
index λ∗(x) is monotone nondecreasing and continuous in x (in fact, it is strictly increasing
in x). This section reports some computational evidence on the validity of condition (i),
regarding the positivity of the marginal work measures, considering 103 runs of the target
instance analyzed in in the previous section.

Figure 4 shows the results of computing the marginal work measure w(x, z) fixing the
z threshold value in {0.05, 0.5, 0.85} and letting x vary in X0,1, analyzing a z value for each
of the possible threshold cases described in subsection 5.1. The discount factor β varied
over the range β ∈ {0, 0.1, 0.2, . . . , 0.9, 0.99, 0.999}. For each β and z, the index w(x, z)
was evaluated on a grid of x values of width 10−2 and the infinite sums of cases I and II
were approximately evaluated by truncating them to T = 104. Figure 4 illustrates how
w(x, z) differs for each threshold case considered. Further, notice that in these examples
of case I (z = 0.05) and case II (z = 0.5), the marginal work measure positivity condition
only holds for β ≤ 0.8.

Notice that these simulation results are in accordance with the indexability analysis
described in Section 4. Also, in light of the interpretations provided in subsection 5.1,
note that since the target never returns to the largest values of x (i.e., x > φ

(0)
∞ ), then the

total expected search effort to hunt it will be larger (in time) if we miss the opportunity
to hunt it in those states than if we do not. Hence, the marginal work measure becomes
negative for this range of x as the time horizon of the search increases.

5.3 Alternative Index Policies

In this section we define some alternative heuristics for the MARB elusive target hunt
problem (4) as stated in subsection 2.1. In the following section we will report simulation
studies that compare the performance of Whittle’s MP index policy against these simpler
alternatives.

5.3.1 The Myopic Index Policy

The myopic policy is based on index λMyopic(x) = R(x, 1) for all x ∈ X0,1. Notice from
Figure 3 that this index also corresponds with Whittle’s MP index λ∗(x) for the case

β = 0 and also for all discount factors β when x is in the range (φ
(0)
∞ , 1].

5.3.2 The Belief State Index Policy

The belief state policy is based on index λB(x) = x, for all x ∈ X0,1. At this point,
it is worth pointing out that since λMyopic(x), λB(x) and λ∗(x) are monotone increasing
functions of the information state x, in instances of identical targets the three policies
result in equivalent sensing decisions, as the higher the information state the greater the
priority a target receives under all search rules.
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Figure 4: Marginal work measure for the z-threshold cases
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5.3.3 The Random Search Policy

The random selection policy is based on picking a site to search (among the ones that
contain an uhunted target) at random, with each site having the same probability of being
selected.

5.4 Bechmarking the Whittle Index Policy

We have performed some small-scale preliminary simulation studies, based on MATLAB
implementations we have developed to compare the performance of the proposed Whittle’s
MP index policy against the the myopic policy, the belief state policy, and the random
selection policy.
Further, we have computed an upper bound on the optimal value (4) based on the ideas
discussed in subsection 3.1.

5.4.1 Cautious and Reckless targets

In this experiment we assess the relative performance of the Whittle’s MP index policy
against the other heuristics distinguishing target instances between reckless and cautious.
We call reckless those targets which “after not being searched, are highly likely to expose
themselves”, i.e. with p(0) ≈ 1, while cautious targets display the opposite behavior, i.e.
with p(0) ≈ 0 (while having p(0) > p(1)).
Each base instance has a single sensor M = 1 for searching within N = 30 sites, in one
instance all targets are reckless with p

(0)
n = 0.95, while in the other instance all targets

are cautious with p
(0)
n = 0.35. In both instances, p

(1)
n = 10−3, q

(1)
n = 0.97, q

(0)
n = 0.003,

αn = 0.30 and Rn = 1 for all n. Thus, for both targets φ
(1)
∞ = 0.0010 while for reckless

φ
(0)
∞ = 0.9694 and for cautious φ

(0)
∞ = 0.9211.

We take the initial state xn = 1, which corresponds to exact knowledge of N exposed
targets at the start of the search. Sensing costs were taken to be zero and we consider two
possible discount factors β ∈ {0.7, 0.99}, where β∗ is equal to 0.7688 both for the reckless
and cautious instance. Both base instances were modified, letting the number of sensors
increase from M = 1 up to M = N = 30. For each instance, 103 independent runs were
performed on a horizon of T = 104 time slots.

Figure 6 shows the ETD net rewards under each policy as the number of sensors in the
network grows. The upper bound from the relaxation for all the instances with reckless
targets was of 24.510 and 29.735 for discount factors 0.7 and 0.99, respectively, whereas
for cautious targets those values were 22.767 and 29.374. Note that the bound on the
best result of the search is always less when targets are cautious, since they are harder to
hunt.

As depicted by Figure 6, the Whittle’s MP policy outperforms other heuristic policies
for any number of sensors with the performance improvement increasing as M ↗ N . In
fact, as the number of sensors grows all policies perform worse, except for the Whittle’s
MP policy for which the opposite occurs. The explanation of this results is that all other
heuristics overuse the network resources as they become available, searching more and
more sites possibly containing a target, thus making targets more elusive and hence, more
difficult to hunt. This is a salient result, since it points out a severe drawback that myopic
or simpler heuristic have for allocating resources in cases in which idling is expected to
have a greater impact on the system’s expected returns.
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Figure 5: Experiment 1 - (5a) & (5b), Reckless and Cautious Targets instances
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Figure 6: Experiment 2 - (6a) & (6b), Reckless and Cautious Targets instances
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Table 1: Average System’s Operating Time

M / Reckless T̄MP T̄My T̄B T̄R

1 6.175 9.768 7.083 31.039
2 5.778 18.994 12.021 42.475
3 2.405 49.074 45.718 95.318
4 3.344 36.678 33.071 70.652
5 3.034 90.074 76.949 102.643
15 1.928 122.554 155.053 371.901
30 1.924 373.586 366.239 458.258

M / Cautious T̄MP T̄My T̄B T̄R

1 10.770 43.833 37.630 44.864
2 6.384 29.845 33.414 80.638
3 4.841 66.301 55.581 87.306
4 3.828 74.822 76.426 138.993
5 3.970 135.726 86.134 182.447
15 3.277 281.945 264.044 410.706
30 3.073 448.593 465.127 423.586

Another interesting result is that the Whittle’s MP policy suboptimality gap tends to
0 for a relatively small number of sensors when β ≈ 1, while the largest sensor network
size is required for the Whittle’s MP policy to be nearly optimal for smaller β (i.e. when
hunting targets is urgent). Such a result is related to the fact that all policies successfully
find the N targets, yet they differ significantly in the time they take to do so. Thus, if the
hunt mission is urgent a large sensor network (operated under the Whittle’s MP index
policy) will result nearly optimal whereas if the mission is just to find the objects but not
urgently a relatively small sensor network is required.

Table 1 shows the average time that the system takes to hunt all targets operated
under each policy. Such results illustrate the fact that a large sensor network which
is constantly searching will spend a larger period of time to hunt targets. However,
all policies succeed at finding the N targets at some period. The Whittle’s MP index
policy takes significantly less time to hunt targets than the alternative polices for both
Reckless and Cautious targets, yet hunting the Cautious targets naturally takes longer
for all policies. These results also show the overuse under other heuristics since their
average operating time substantially increases as the number of sensors grows. Results
in Table 1 are of particular relevance in terms of the specific motivating application
proposed in subsection 1.1 and investigated in [10]. The main goal in that case was to
have a scheduling policy which minimizes the average time until all missile launchers are
detected and destroyed. As Table 1 shows, the Whittle’s MP policy is the heuristic that
manages to find all targets in the least time.

To sum up, the proposed policy is always as good as the other heuristics, yet in many
instances it does yield important performance improvements. These performance im-
provements of the Whittle’s MP policy are significant from a statistical point of view,and
from a practical point of view (performance gains can be up to 36,48%). Further, the
performance improvements become more important as the size of the sensor network in-
creases. In fact, the Whittle’s MP policy is even nearly optimal in both scenarios when
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M ↗ N . Also, the Myopic and the Belief policy are not significantly different in these
scenarios, nor do they improve significantly on the random policy. Further, all the policies
produce the same results when M = 1, basically because they are all equally forced to
not search the remaining unhunted targets. Performance differences are observed when
the system has the possibility of searching a site and a index policy prescribes not to do so.

5.4.2 Sensing Costs

In this experiment we assess the relative performance of the Whittle’s MP index policy
against the other heuristics as the sensing cost c increases. We consider two base instances
of N = 10 sites with M = 1 and M = 5 sensors. In both instances targets parameters
are: p

(1)
n = 10−3, q

(1)
n = 0.97, p

(0)
n = 0.05, q

(0)
n = 0.003, αn = 0.30, xn = 1, β = 0.99 and

Rn = 1 for all n. Both base instances were modified, letting sensing costs for all sites
vary as c ∈ {0, 0.3, 0.5, 0.75}. For each instance, 103 independent runs were performed on
a horizon of T = 104 time slots.

Figure 7 plots the ETD net rewards under each policy and the upper bound as c
grows. Results show that the Whittle’s MP index policy outperforms the other policies
in all instances. The random policy performs significantly worse in this case, basically
because it prescribes to search sites, provided there are enough sensors, regardless of the
sensing cost, while the other two heuristics have been defined in such a way that they
prescribe to search only if their index value exceeds c.

Naturally, as searching becomes expensive, both the resulting performance under all
policies and its upper bound decrease. In the Figure 7 we observe that the system yields
0 rewards for c > 0.75. Actually, the optimal value function vanishes when c = R(1, 1),
which in this case is c = 0.7.

Notice that the Whittle’s MP policy is nearly optimal for all values of the sensing
cost when M = 5 while the suboptimality gap of the other heuristics is larger for M = 5
than for M = 1, a result consistent with the overuse of the simpler heuristics pointed out
before.

5.5 Sensor Network Size

Perhaps one of the most notorious results obtained, with special consequence for the
design of sensing systems for hunting such elusive targets, is that if the horizon is long
enough (i.e. as β ↗ 1), operating a system’s under the Whittle’s MP policy requires
a few sensors to optimally hunt a larger set of targets. In the instances plotted in 6a
we observe that a sensor network of M ≈ 12 or more sensors is enough to achieve the
best possible expected reward under the Whittle’s MP policy provided that targets are
reckless. If targets are cautious, as in 6b, a sensor network of M ≈ 8 is enough to achieve
optimality, as the system spends less time actively searching targets.

The results also suggest that if the optimal scheduling policy is not tractable, and we
are forced to operate the system under a simple heuristics, if we define heuristics which do
not advise the system to idle, it will take longer to find all targets. Thus, for this kind of
problems it makes more sense to define heuristics of round-robin type, specifying how to
alternate between searching and not searching a target, as the Whittle’s MP index does,
than myopically operating the system.
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Figure 7: Experiment 2: Sensing Cost Effect with: M/N = 1/10 (7a) and M/N = 1/2
(7b)
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6 Concluding Remarks

This paper has introduced a novel dynamic index policy for a relevant sensor network
scheduling problem where the goal is to hunt a fixed number of smart targets, in which
the theory of restless bandit indexation is applied to a POMDP setting. The resulting
policy has been shown in simulation experiments to outperform simpler heuristics.
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