
 

TSE‐474

 

“	Measuring	and	testing	spatial	mass	concentration	with	
micro‐geographic	data”	

	
	

C.	Thomas‐Agnan	and	F.	Bonneu	

 

		

January 2014



Measuring and testing spatial mass concentration

with micro-geographic data

C. Thomas-Agnan* and F. Bonneu**
*Toulouse School of Economics

GREMAQ
**University of Avignon

LMA

January 31, 2014

Abstract

We address the question of measuring and testing industrial spatial con-

centration based on micro-geographic data with distance based methods. We

discuss the basic requirements for such measures and we propose four addi-

tional requirements. We also discuss the null assumptions classically used for

testing aggregation of a particular sector and propose an alternative point of

view. Our general index measure involves a cumulative and a non-cumulative

version. This allows us to propose an alternative version of the Duranton-

Overman index with a proper baseline as well as a cumulative version of this

same index. We illustrate the approach with some simulated data.
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1 Introduction

1.1 Literature

The question of measuring spatial mass concentration is encountered in many
�elds. This topic has received a lot of attention in the economics literature with the
concentration of industrial settlement on which we focus in this paper. Similarly, in
forestry it is interesting for example to study the spatial concentration of biomass
from the knowledge of trees (or plants) locations and sizes. In epidemiology, when
studying the spatial concentration of cancer cases it is important to account for
the number of cases in each hospital as a mark.

In economic geography, Krugman's theory states that �instead of spreading out
evenly around the world, production will tend to concentrate in a few countries,
regions, or cities, which will become densely populated but also have higher levels
of income.� There is empirical evidence that jobs and industries are clustered in a
small number of regions. There are several mechanisms that induce this agglom-
eration. First of all, plants locate near to each other because of agglomeration
spillovers or local amenities. Returns to scale induce industries to concentrate
their production in a small number of business units and there is interdependence
between �rm's location choice (snowball e�ect mechanism).
There are numerous motivations for studying the geographic concentration of eco-
nomic sectors. Such a measure allows to understand the determinants of local-
ization, compare di�erent sectors with respect to agglomeration/dispersion and
predict the evolutions of localization. A similar question is that of co-localization
and interactions between sectors for which measures can be generally derived from
the former. Another related issue is that of cluster detection but we do not consider
this problem in the present paper.
Until 2000, all studies about geographic concentration of economic activity use
areal data for measuring spatial concentration. The precise location of �rms is
not available and the data only consists in aggregated counts over administrative
zones. There is a large literature on this topic with many measures including the
Her�ndahl index, the locational Gini index (which is the Gini index of the lo-
calization ratio), the Ellison-Glaeser index, the Maurel-Sédillot's index and many
others. However these measures depend upon the aggregation level (Modi�able
Areal Unit Problem) and most importantly they do not take geography into ac-
count in the sense that a permutation of the sites does not a�ect the measure. A
good description of the drawbacks of these approaches is found in Arbia (2001).
A new vein of this literature arises in the years 2000 considering the treatment of
micro-geographic data. This type of data usually consists in the precise location of
�rms together with a size measure such as the number of employees. Duranton and
Overman (2005) introduce a measure based on the distribution of inter-distances
between �rms. It will be referred to subsequently as the DO index. Marcon and
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Puech (2003, 2010) introduce another measure based on Ripley's K-function that
we will refer to as the MP index. Combes et al. (2006) survey this literature. With
the tools of point process theory Espa et al. (2010) use a model-based approach
to assess concentration with an index based on a weighted version of Ripley's K
function that we will refer to as the EGA index.

1.2 Basic requirements

First of all, we should make clear that the problem is not only that of measuring
�rm's locations spatial concentration. The classical Ripley's K function can be
used for this purpose. We address the problem of taking into account �rm's sizes
in the measure. Indeed a mass characteristic is attached to each �rm (like the
number of employees or the capital) and the question of interest is that of spatial
mass concentration and not spatial location concentration.
Duranton and Overman (2005) list �ve properties that a good measure of industrial
geographic concentration should satisfy

• Requirement [DO1] The index must be comparable from one sector to the
other. This implies that the measure should not depend upon the number
of �rms of a given sector neither upon the scale of the �rm's sizes.

• Requirement [DO2] The index must take into account the overall manufac-
turing geographical pattern. Indeed, the absence of concentration should not
correspond to spatial homogeneity of locations because obviously geographic
and demographic factors in�uence industrial location.

• Requirement [DO3] The index must control for industrial concentration. In-
deed, the problem of measuring the concentration of the �rm's sizes should
be distinguished from that of their spatial location concentration.

• Requirement [DO4] The index must be independent of the geographical scale
of observation. This is related to the so called Modi�able Areal Unit Problem
(MAUP): the fact that aggregations over di�erent geographical subdivisions
of space may lead to diverging conclusions about the concentration pattern.
This pleads for a method based on micro-geographic data versus the classical
indices based on areal data.

• Requirement [DO5] The index must be assorted with a level of statistical
signi�cance.

In this paper, we argue that the following four additional requirements should be
added to the previous list:

• Requirement [BT1] The index must be an empirical measure associated to a
well identi�ed theoretical characteristic. The satisfaction of this requirement
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allows for correct statistical inference about the signi�cance of the results
(see Combes and Overman, 2004).

• Requirement [BT2] The index must take into account spatial inhomogeneity
of a particular sector. The factors in�uencing the inhomogeneity of locations
can vary from sector to sector (think about �shing for example).

• Requirement [BT3] The index must have a known and constant benchmark in
the absence of concentration (under the null hypotheses). This requirement
is stated by Combes and Overman (2004).

• Requirement [BT4] For testing concentration, a null hypotheses must be
correctly speci�ed.

Concerning [BT1], we will see that the DO index as well as the MP index and the
EGA index are all inspired from the marked point process theory but only Espa
et al. (2010) explicitly link their measure to a well identi�ed statistical parameter.
Satisfying this requirement could allow to satisfy [DO5] without resorting to Monte
Carlo methods.
We will show that the DO index as well as the MP index do not correctly satisfy
[BT2]. Arbia et al. (2012) incorporate inhomogeneity in the framework of �rm's
location concentration (without mass characteristic) but Espa et al. (2010) (which
includes mass characteristic) do not correct for inhomogeneity.
With respect to [BT3], the MP index has a constant benchmark but not the DO
one. In Espa et al. (2010) the benchmark value depends upon some parameters
and hence is not constant.
Indeed, as stated in [BT4], a null assumption should be stated in terms of a theo-
retical parameter. As we have seen with [BT1], the absence of clear speci�cation
of a theoretical parameter in the former literature is related to the absence of clear
de�nition of the theoretical meaning of spatial concentration. Espa et al. (2010)
use a speci�c point process model to reach this goal. Indeed we will explain which
aspects we believe are not entirely satisfactory in the simulation framework used in
Duranton-Overman and Marcon-Puech for testing spatial concentration and will
argue that there is no clear statement of the null assumption in their work.

We propose an alternative approach for this purpose.
It is �rst necessary to present the mathematical tools of the spatial point process
theory in section 2. In section 5, we introduce our family of indices. We show how
this family is related to the DO, MP and EGA indices and how this relation sheds
light on the mentioned imperfections. We show how this new point of view allows
to introduce a modi�ed version of the DO index which has a clear benchmark.
This relationship also allows to make a minor correction in the EGA index which
appears as an homogeneous version of the cumulative BT index for a particular
weighting scheme.
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We discuss the testing framework in section 6. Finally in section 7, we present
some simulated examples to illustrate our arguments.

2 The relevance of spatial point patterns models

2.1 Marked spatial point processes

As we already observed, the tools from spatial point pattern models (PP hereafter)
have inspired most of the industrial spatial concentration literature using micro
geographic data. Sweeney and Feser (1998) use Diggle and Chetwynd's D function.
Ripley's K function is mentioned in Arbia (2001) and Marcon and Puech (2003).
The need to take into account �rm's sizes leads to consider more complex models
which are called marked spatial point patterns. The spatial distribution of �rms
together with their sizes can be modeled using spatial point patterns associated
with possibly several marks: the size and the sector for example. In this section,
we brie�y review the main theoretical concepts. Spatial point processes (PP) are
models for a random spatial con�guration of a random number N of points (for
us: location of �rms). One talks about a marked PP when a random mark is
associated to each position (for us the mass characteristic, for example number of
employees and sector of each �rm). Mathematically, let X be a subset of R2, a
con�guration of n points of X is a non ordered set of n points x = {x1, · · · , xn}.
A PP model is a model for a random con�guration with a random countable
number N of points (possibly zero or in�nity), repetitions being allowed. Two
mathematical approaches exist for this theory: they are based on locally �nite
random sets of points of X or alternatively on random measures on X and we
refer the reader to Moller and Waagepetersen (2004) or to Illian et al.(2008) for
precise de�nitions and properties.
Two important aspects of the description of these processes are spatial inhomo-
geneity and spatial interaction. Spatial inhomogeneity relates to the fact that
some regions may have a mean number of points higher than others, for example
when studying the spatial distribution of population, mountainous zones may be
less populated. Spatial interaction relates to the dependence between points in
pairs of locations. For example, the competition for food may generate repul-
sion between animals positions, whereas when looking at infectious disease cases,
contagion generates attraction between spatial occurrences of a disease.

Spatial interaction is illustrated in Figure 1 with simulated realizations of such
processes. In the center, the process is a homogeneous Poisson process which em-
bodies homogeneity and absence of interaction between points. On the right of
Figure 1 is an aggregated process with interaction between the locations of an at-
traction type. On the left of Figure 1 is a regular process with interaction between
the locations of a repulsion type. The circles on this �gure will be commented
upon later.
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Figure 1: From left to right: Regular PP, Poisson homogeneous PP, Aggregated
PP

Two invariance properties will play a role later: stationarity and isotropy. A
PP is stationary or homogeneous if its law is invariant under translations of the
con�gurations. A PP is isotropic if its law is invariant under the rotations of the
con�gurations. Figure 2 illustrates the notion of non stationarity on the left panel
and the notion of anisotropy on the right panel.

Figure 2: Left : non stationarity, Right: anisotropy

Because marks and locations are both random, their joint distribution has to be
modeled in a marked point process model. Let M be a space for marks and, for
each con�guration X, let mX be a random variable with values in M . Then one
says that (X,mX) is a marked PP with mark space M . In practice, we consider
the case M �nite (it is the case when the mark is the �rm's sector) , or M subset
of Rp (it is the case when the mark is the �rm's number of employees or the �rm's
capital).

Figure 3 presents a realization of an inhomogeneous marked Poisson PP with
independent marks. It is usual to draw circles which show the mark through their
radius.
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Figure 3: Marked Inhomogeneous Poisson PP

2.2 Characteristics of a marked spatial point process

As for other types of stochastic elements, one can de�ne characteristics of order
one and two for point processes. Let us �rst consider the case an unmarked PP.
The order one characteristic of a PP is given by its intensity and captures large
scale variations of the process. For a subregion B of X , let NX(B) be the number
of points of the PP X in B. The intensity measure for a subregion B is de�ned by
the expected number of points of X in B

Λ(B) = E(NX(B)).

When this measure is absolutely continuous with respect to the Lebesgue measure,
the intensity function λ is de�ned by

Λ(B) =

∫
B
λ(u)du,

and can be interpreted as follows: λ(u)du is the probability of occurrence of a
point in the in�nitesimal ball of center u and radius du. The intensity is constant
in the homogeneous Poisson model and equal to the total number of points divided
by the area of the region.
The order two structure of a PP which characterizes the small scale variations can
be speci�ed by several tools. The order two factorial moment measure counts the
mean number of points pairs with a point in A and the other in B:

Λ(2)(A×B) = E

 ∑
u,v∈X:u6=v

1I(u ∈ A, v ∈ B)


When this measure Λ(2) is absolutely continuous with respect to the Lebesgue
measure, one can write

Λ(2)(A×B) =

∫
A

∫
B
ρ(u, v)dudv
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where ρ(u, v)dudv can be interpreted as the probability of joint occurrence of a
point in the in�nitesimal ball of center u with radius du and of a point in the
in�nitesimal ball of center v and of radius dv. The function ρ is named the second
order product density function.
Another way of characterizing the second order structure is through the pair cor-
relation function which is related to ρ by

g(x, y) =
ρ(x, y)

λ(x)λ(y)
(1)

with the convention a
0 = 0 if a ≥ 0. A PP is said to be �second order reweighted

stationarity� when the function g is translation invariant g(x, y) = g(‖ x − y ‖)
with a slight abuse of notation.
At last, a third way of characterizing the second order structure is through the
Ripley's K function. In the stationary case, λK(r) is the mean number of points
within radius r of the origin given that the origin belongs to the con�guration
(λ being the constant intensity). On Figure 1, a circle of radius r centered on
a con�guration point illustrates the fact that the K-function counts the mean
number of points within a given radius of a point of the con�guration. In the
more general �second order reweighted stationary� case, the Ripley's K function
can be de�ned through its relationship with the pair correlation function by

Kinhom(r) = π

∫ r

0
ug(u)du,

Even though we mentioned that spatial homogeneity of locations is not a good
reference for the concentration problem (see [DO2]), it is important to de�ne this
assumption in order to understand the testing procedures introduced later. The
assumption of complete spatial randomness or CSR is embodied by the Poisson
homogeneous process or PPP for which we have K(r) = πr2 and g(r) ≡ 1.
For a marked PP, one needs to extend these de�nitions. These extensions are
introduced and studied in the homogeneous case by Schlather (2001) and Illian et
al. (2008).
Let (X,M) be a marked PP, homogeneous for positions. Let k(m), q(m) be uni-
variate weight functions and f(m1,m2) be a bivariate weighting function which
will be speci�ed functions of the marks.
An order one characteristic called the mark-sum intensity measure Λk is given by

Λk(B) = E
∑
u∈X

k(mu)1IB(u).

For example for k(m) = m, Λk(B) is the expected number of employees in B
whereas Λ(B) is the expected number of �rms in B. If this measure has a density
with respect to Lebesgue measure Λk(B) =

∫
B λk(u)du, then λk is the weighted

intensity function for weighting function k.

8



When the weighting scheme is multiplicative f(m1,m2) = k(m1)q(m2), one can
de�ne similarly a weighted version of the second order factorial moment measure
Λ(2) given by

Λ
(2)
f (A×B) = E

 ∑
u,v∈X:u6=v

k(mu)q(mv)1IA(u)1IB(v)

 .
When Λ

(2)
f is absolutely continuous with respect to Lebesgue measure, one can

write

Λ
(2)
f (A×B) =

∫
A

∫
B
ρf (u, v)dudv

and ρf is called second order product density of X for weighting scheme f . A
weighted version of (1) yields a weighted version of the pair correlation function

gf (x, y) =
ρf (x, y)

λk(x)λq(y)
(2)

and a weighted version of the the Ripley's K function in the �f -second order
reweighted stationarity� case (i.e. when gf is translation invariant)

Kf (r) = π

∫ r

0
ugf (u)du. (3)

2.3 Estimating the theoretical characteristics

The estimation of these theoretical characteristics has been extensively studied
under several assumptions and we refer the reader to Moller and Waagepetersen
(2004) and Illian et al. (2008) for details. Let us just recall here the basic estima-
tors that will be used in the sequel. Under the assumption of homogeneity, one
can estimate the constant intensity λ from one realization of the process by

λ̂ =
N

|W |
, (4)

where N is the total number of points inW and |W | is the area of the observation
window W . Similarly one can estimate in this case the Ripley's K-function by

K̂(r) =
|W |

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

wi,j1I(‖ xi − xj ‖≤ r)

where wi,j is a boundary correction factor to take into account disks partially
included in the region given by

wi,j =
1

|W ∩ (W − xi + xj)|
=

1

|(W + xi) ∩ (W + xj)|

9



The corresponding estimate of the g function is given by

ĝ(r) =
|W |

2πrN2

N∑
i=1

N∑
j=1,j 6=i

wi,j
1

h
κ

(
r − ‖xi − xj‖

h

)
. (5)

In the inhomogeneous case, one can estimate the intensity by

λ̂inhom(x) =

N∑
i=1

1

h
κ(
‖x− xi‖

h
) (6)

where κ is a given kernel density function and h a given bandwidth. Note that one
can also use some covariates when available to model the intensity. In the second
order reweighted stationary case, the following is an estimator of the inhomoge-
neous Ripley's K-function

K̂inhom(r) =
1

|W |

N∑
i=1

N∑
j=1,j 6=i

wi,j
1I(‖ xi − xj ‖≤ r)

λ̂inhom(xi)λ̂inhom(xj)

and the pair correlation function can be estimated by

ĝinhom(r) =
1

2πr

N∑
i=1

N∑
j=1,j 6=i

wi,j

1
hκ
(
r−‖xi−xj‖

h

)
λ̂inhom(xi)λ̂inhom(xj)

.

In the marked PP case, assuming that marks are independent from positions,
we have that λk(x) = λ(x)E(k(mX)), and one can thus estimate the weighted
intensity function for example by

λ̂k(x) = λ̂(x)k(mX), (7)

where λ̂ can be understood as (4) in the homogeneous positions case and as (6) in
the inhomogeneous positions case and where k(mX) is the empirical mean of the
transformed marks.
Similarly in the second order reweighted stationary and isotropic case, one can
estimate the weighted version of the pair correlation function by

ĝf (r) =
1

2πr

N∑
i=1

N∑
j=1,j 6=i

h−1κ
(
r−‖xi−xj‖

h

)
k(mi)q(mj)

|W ∩ (W − xi + xj)|λ̂k(xi)λ̂q(xj)
, (8)

where λ̂ can take the two di�erent forms (4) or (6) leading to two versions of this
estimators ĝf

inhom and ĝf
hom and the weighted version of the Ripley's K function

by
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Figure 4: Several types of concentration

K̂f =
N∑
i=1

N∑
j=1,j 6=i

k(mi)q(mj)1I(‖xi − xj‖ ≤ r)
|W ∩ (W − xi + xj)|λ̂k(xi)λ̂q(xj)

(9)

leading similarly to the two estimators K̂hom
f and K̂inhom

f depending upon which
form between (4) or (6) has been selected to estimate the intensity.

3 The di�erent faces of spatial concentration

In this section, we discuss the de�nition of spatial concentration for locations and
for mass and distinguish between several types. People have an intuitive idea of
what a concentrated pattern is but it may be more di�cult to de�ne as it �rst
seems. We can de�ne spatial concentration of �rms locations as the fact that �rms
are more aggregated in space than in a random pattern. The reverse situation of
inhibition when �rms are more scattered than in a random case does not lead to
spatial concentration. For mass concentration, it can be described as the fact that
the employees are more aggregated in space than in a random pattern.
Figure 4 shows three examples of spatially concentrated marked processes. In the
�rst two cases (left and center) we chose constant marks on purpose to start with a
simple situation. In the left panel, the point process is an inhomogeneous Poisson
PP and the concentration aspect of the con�guration is due to the inhomogeneity
of positions (order one) and not to interaction (order two): Arbia et al. (2012)
call it apparent contagion. In the center panel, the concentration aspect is due to
interaction of aggregation type and thus we say that it is a concentration of order
2: Arbia et al. (2012) call it true contagion. The left and center panel bring face
to face two types of concentration :that due to inhomogeneity of locations (order
one) and that due to interactions between locations (order two).
If we now oppose the center and right panels, we see that concentration of the mass
in the center panel is due to constant marks with aggregated positions whereas
in the right panel mass distribution is inhomogeneous in space but located at
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homogeneously distributed positions resulting in a third kind of concentration due
to marks. Espa et al. (2010) oppose these two cases using the terms of clustering
of �rms for the center case and clustering of economic activities for the right one.
Of course some situations may involve a concentration due to an interplay between
positions and marks. We see that there are several types of concentration and that
the marks may or may not induce this concentration. Mass concentration is indeed
a complicated interaction between the locations and the marks sizes. We will
concentrate in this paper on the case when marks are independent from positions
(the case of the right panel of Figure 4 is then excluded) leaving the other case for
a further paper. We claim that not only it is important to measure concentration
but also that it may be relevant to determine which type of concentration is present
in the data at hand. In an applied perspective, we can consider that what comes
under order 1 is what can be explained by contextual variables whereas order 2
contains all other unobserved factors.

4 Indices based on inter-points distances

In this section, we recall the de�nitions of the classical indices based on inter-point
distances: the DO index (Duranton and Overman, 2005), the MP index (Marcon
and Puech, 2003, 2010) and EGA index (Espa et al., 2010). We use a uni�ed
notation in order to ease the comparisons and we discuss their imperfections. Let
xi,s denote the location of �rm i (i = 1, · · · , n) of sector s (s = 1, · · ·S) and let
mi,s be the corresponding mark (to illustrate we will use a mark equal to the
number of employees).

4.1 The DO, MP and EGA indices

The Duranton-Overman index is de�ned for each sector separately hence we drop
momentarily the sector index. It is a non cumulative index de�ned for any r > 0
by

iDO(r) =

∑Ns
i=1

∑Ns
j=1,j 6=i h

−1κ
(
r−‖xi−xj‖

h

)
mimj∑Ns

i=1

∑Ns
j=1,j 6=imimj

,

When the mark is a count, which is the case for the number of employees, it can
be compared to the Parzen-Rosenblatt density estimator associated to a replicated
point process of positions (number of replications equal to the mark) considering
points positions as i.i.d.
Starting from the fact that iDO does not account for order one inhomogeneity of
locations, Marcon and Puech (2010) propose to perform this correction by using
the union of all the available sectors as a reference. Note that no correction is
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then possible if there is only one sector available. The Marcon-Puech index is a
cumulative index de�ned for any r > 0 by

IMP (r) =

Ns∑
i=1

∑Ns
j=1,j 6=imj1I(‖xi,s − xj,s‖ ≤ r)∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r)

/

Ns∑
i=1

∑Ns
j=1,j 6=imj∑N
j=1,j 6=imj

,

IMP (r) > 1 indicates that there are proportionally more employees close to plants
of sector s within a radius r than in the whole area. Note that IMP (r) can be
written JMP (r)/JMP (∞) where

JMP (r) =

Ns∑
i=1

∑Ns
j=1,j 6=imj1I(‖xi,s − xj,s‖ ≤ r)∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r)

.

JMP (r) is the average proportion of employees of sector s among all sectors within
a given radius r.
Espa et al. (2010) propose to use a weighted Ripley's K function de�ned as follows
for any r > 0

IEGA(r) =

Ns∑
i=1

Ns∑
j=1,j 6=i

mimj1I(‖xi,s − xj,s‖ ≤ r)
|W ∩ (W − xi,s + xj,s)|Nλ̂µ̂2

, (10)

where W is an observation window, µ̂ is an estimator of the mean value of the
mark and λ̂ is an estimator of the mean value of the intensity of locations. They
associate to this empirical measure a corresponding theoretical EGA and they
derive a closed form formula for it in the framework of a particular log-Gaussian
Cox model which they use for testing concentration.

4.2 The imperfections of the classical indices

Let us �rst explain the weaknesses of these classical indices, postponing the dis-
cussion about the imperfections of the corresponding testing strategies to section
6.

1. except for EGA, these indices are introduced as purely empirical quantities
and there are no theoretical characteristics clearly associated to them hence
they do not satisfy requirement [BT1].

2. with respect to the [DO2] requirement, the DO index takes location in-
homogeneity into account in the simulation framework (with the fact that
locations remain unchanged) but it certainly does not incorporate inhomo-
geneity in the formula of the index itself. The MP index tries to take it
into account in the measure itself but we will show in section 5.4 that this
correction is not entirely satisfactory.
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3. DO and EGA do not take into account inhomogeneity of location intensity
of a particular sector hence do not satisfy requirement [BT2]. MP avoid this
problem by considering relative indices.

4. there is no clear benchmark for DO (cf [BT3]); the benchmark for EGA in
the log-Gaussian Cox model depends upon some parameters

5. there is no edge correction for DO (which implies bias for large r)

5 Introducing the family of BT indices

In an attempt to correct some of these imperfections, we present an approach
using some theoretical characteristics of spatial marked point processes which will
allow us to cast the previous approaches in a same mould and to point at their
respective weaknesses. In this paper, we will consider that marks can be assumed
to be independent from positions.

We propose to construct the indices as estimators of the following two charac-
teristics to measure spatial mass concentration: a non cumulative measure corre-
sponding to the weighted pair-correlation function (2) and a cumulative measure
corresponding to the weigthed Ripley's K function (3).
For a given choice of multiplicative weighting scheme, we introduce the non-
cumulative BT index by

iBT (r) = ĝf (r) =
1

2πr

N∑
i=1

N∑
j=1,j 6=i

h−1κ
(
r−‖xi−xj‖

h

)
k(mi)q(mj)

|W ∩ (W − xi + xj)|λ̂k(xi)λ̂q(xj)
(11)

with the weighted intensity function λk being estimated by (7).
Our index is an estimator of the theoretical gf characteristic. It is de�ned at any
distance r > 0. It is important to note that this index can be calculated under
the assumption of homogeneity of the intensity of positions as well as under the
assumption of inhomogeneity using one of the two estimators of the intensity (4)
or (6) and this leads to two versions of our index called ihomBT and iinhomBT thereafter.
In the homogeneous case, the square of the intensity appears in the denominator
and can be estimated by a slightly di�erent version of (4) which is unbiased for λ2

(see Illian et al, 2008) namely

λ̂2 =
N(N − 1)

|W |2
. (12)

The intensity is estimated for each sector separately so that requirement [BT2] is
satis�ed.
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5.1 The BT index: cumulative version

For a given multiplicative weighting scheme, a corresponding cumulative version
of the BT index is given by the following estimator of the weighted K-function,
de�ned at any distance r > 0

IBT (r) = K̂f (r) =
N∑
i=1

N∑
j=1,j 6=i

k(mi)q(mj)1I(‖xi − xj‖ ≤ r)
|W ∩ (W − xi + xj)|λ̂k(xi)λ̂q(xj)

. (13)

In the case that ‖ xi − xj ‖ is small compared to the diameter of W , the border
correction term approaches |W | so that we can consider that a version without
border correction is obtained by substituting |W | for |W ∩ (W − xi + xj)|. As
for the non-cumulative one, this index can be calculated under the assumption
of homogeneity of the intensity of positions as well as under the assumption of
inhomogeneity using one of the two estimators of the intensity (4) or (6) and this
leads to two versions of this cumulated index called IhomBT and IinhomBT thereafter.

5.2 Consequences for the Duranton-Overman index

In this section, we establish a link between the Duranton-Overman index and the
classical estimate of the weighted pair correlation function gf for the following
choice of weighting scheme k(m) = m and q(m) = m. Indeed for this choice,
we have the following result (see section 9 for a proof) when considering the
homogeneous BT index without border correction:

iDO(r) =
2πr

|W |
ĝf (r) =

2πr

|W |
iBT (r).

This formula induces a natural normalization of the DO index |W |2πr iDO(r) = iBT (r)
with a clear benchmark since we will see in the next section that under our pro-
posed H0 assumption we have gf ≡ 1.
This link allows us to propose a cumulative version of the DO index

IDO(r) =

∑∑
j 6=imimj1I(‖xi − xj‖ ≤ r)∑∑

j 6=imimj
=
K̂f (r)

|W |

5.3 Consequences for the Marcon-Puech index

Comparing

JMP (r) =

Ns∑
i=1

∑Ns
j=1,j 6=imj1I(‖xi,s − xj,s‖ ≤ r)∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r)
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and

IBT (r) = K̂f (r) =

N∑
i=1

N∑
j=1,j 6=i

k(mi)q(mj)1I(‖xi − xj‖ ≤ r)
|W ∩ (W − xi + xj)|λ̂k(xi)λ̂q(xj)

.

for k(m) = m and q(m) = 1, we �rst see that in the stationary case, the two indices

are related by IBT (r) = |W |
N JMP (r). Moreover, ignoring the bias correction term

(which was also proposed in some versions of the MP index), and focusing on the
denominator we understand that the correction for inhomogeneity of the location
intensity of sector s is missing in the MP index (see details in section 9).

5.4 Consequences for the EGA index

For the weighting scheme given by f(m1,m2) = m1m2, if we compare

IBT (r) = K̂f (r) =
N∑
i=1

N∑
j=1,j 6=i

k(mi)q(mj)1I(‖xi − xj‖ ≤ r)
|W ∩ (W − xi + xj)|λ̂k(xi)λ̂q(xj)

and

IEGA(r) =

Ns∑
i=1

Ns∑
j=1,j 6=i

mimj1I(‖xi − xj‖ ≤ r)
|W ∩ (W − xi + xj)|Nλ̂µ̂2

, (14)

we �nd that

• the EGA index is an homogeneous (location intensity) version of the cumu-
lative BT index

• there is a minor mistake in its denominator |W | IEGA = IBT which has no
impact in their paper since they have |W |= 1.

6 Testing strategy

We now turn attention to the de�nition of a null hypotheses for testing mass
concentration and to the testing strategy. Our two main concerns about the
testing strategy in the classical approach are that there is no clear null hypotheses
identi�ed and that there is un unstated assumption that all sectors originate from
the same process.

6.1 The null hypotheses

The question we want to test is that of absence of mass concentration and we need
to specify a clear null hypotheses corresponding to this idealistic situation.
For the classical DO and MP approaches, the proposed test of absence of con-
centration is based on the following Monte Carlo framework. M permutations of
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the observed �rms locations are randomly chosen for all sectors altogether. The
marks (size for DO and couples size and sector for MP) are then reallocated to
the permuted locations. Both in the Duranton-Overman and the Marcon-Puech
framework, the simulations are done conditionally upon the positions: marks (sec-
tor and number of employees) are randomly reassigned to the observed positions.
This same procedure is used in Illian et al. (2008) for testing the assumptions of
�independent marking� (also called �random labelling�, case of uncorrelated marks)
and that of geostatistical marking (case of correlated marks) but with distinct test
statistics. We believe this approach is only valid for the case when all sectors orig-
inate from a single model. Indeed one �nds this as an unstated assumption in the
classical approach that all sectors are issued from the same type of process, the
�overall manufacturing� process. However if each sector has its own intensity or
dependence structure, the fact of mixing these processes in the simulations gener-
ates confounding e�ects. For the EGA approach, H0 corresponds to the nullity of
one parameter in the log-Gaussian Cox model but we claim that even under this
restriction on the parameters, the log-gaussian Cox Process may exhibit concen-
tration.

Ideally, we would like to use the hypotheses gf = 1 as H0. For constant marks
it boils down to g = 1 which is not equivalent to the CSR assumption but it
implied by this assumption (we come back to this problem in section 7). Indeed
deviations of gf from 1 may arise as the result of large marks in some regions or as
the result of aggregated locations (or as a combination of both). With this choice
of null, the fact that our index (which is also our test statistic) is an estimator of gf
implies that we ful�ll the constant benchmark requirement [BT4]. The di�culty
however is that unlike in the case g = 1, one does not know how to simulate under
the assumption gf = 1 if we do not further restrict the process. The strategy
we propose is to simulate under a more restricted null hypotheses of a Poisson
point pattern model for positions with independent marks (following the same
distribution throughout space) for which we know how to simulate realizations.
We allow this Poisson process to be homogeneous or not, leading to two versions
of the null Hhom

0 and H inhom
0 and therefore to two versions of the simulations

scenario. For the simulations under the null, we generate realizations of a Poisson
PP with the intensity given by (4) if we are testing Hhom

0 and given by (6) if we are
testing H inhom

0 . In a real application, one could use a model based on covariates
for estimating the intensity instead of (6). Before introducing our testing strategy,
we recall in the next section how the Ripley's K-function can be used to test for
CSR. In the introduction, we argued that CSR was not a good benchmark for
studying spatial concentration of industrial location but this is just a preliminary
step in order to better understand the tools introduced later.
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6.2 Using the K-function to test for complete spatial randomness

Figure 5 shows a realization of an inhomogeneous Poisson process on the left
panel. The central panel shows the ordinary K-function and the right panel the
inhomogeneous K-function: both are displayed together with an empirical envelope
obtained by Monte Carlo simulations of a Poisson process with intensity estimated
from the data (using (4) in the central panel and (6) in the right one). The central
K-curve is out of the envelope whereas the right K-curve is inside the envelope:
the estimation of the K-function in the central panel does not take into account
inhomogeneity whereas this is done using the inhomogeneous K estimator on the
right panel. The fact that the curve is outside the envelope in the central panel
is not due to the presence of interaction but rather due to inhomogeneity. A
parallel can be done with a time series situation when the unaccounted presence
of a trend may reveal a wrong serial correlation. The fact that the curve is back in
the envelope on the right panel is coherent with the fact that the inhomogeneous
Poisson model does not exhibit order two interaction. This procedure in two steps
allows to distinguish between inhomogeneity of intensity from order two interaction
between the locations.
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Figure 5: Use of K to test CSR

6.3 Using the weighted K-function to test for concentration

Following the classical approach for testing CSR of locations described in the pre-
vious section, we propose a two steps procedure in order to separate concentration
of order one from concentration of order two.

• Test Hhom
0 :

1. if accept: conclude that there is no concentration

2. if reject: go to next step

• Test H inhom
0 :

18



1. if accept: conclude that there is signi�cant concentration of order 1
(apparent contagion)

2. if reject: conclude that there is signi�cant concentration of order 2 (true
contagion)

We simulate each point process corresponding to each sector separately with a ho-
mogeneous Poisson model in case of Hhom

0 and an inhomogeneous Poisson model
in case of H inhom

0 after estimating its intensity. This allows for sectors with di�er-
ent intensity driven processes and therefore to satisfy requirement [BT2]. In the
simulations of next section, the intensity of positions λ is estimated locally by a
non parametric kernel method or by an non parametric iterative and adaptative
method based on Voronoï cells. In real applications, it can be modeled paramet-
rically with covariates. The expectation of the mark is estimated by the empirical
mean of marks. We do not mix the sectors in a permutation framework as in the
DO or MP approach.
Due to the fact that the test statistic is a function of the distance r, we face a
multiple testing problem and we have two options. A �rst option is to use the local
envelopes to build a global test for which we do not control the global nominal
level. For a given local nominal level α, we select at each distance r the α and
1−α/2 quantile among theM realizations of the index at r: this de�nes the lower
and upper local envelopes. We reject the null when the observed curve gets out of
the upper envelope at least once. Note that we use a single sector at a time.
A second option is to do a deviation test. We compute for each simulated process
and for the observed one the maximum over the distances of the absolute value of
the di�erence between the index of the given process and the mean index over all
the simulations. We then compute an empirical signi�cance level for the observed
deviation in the distribution of the simulated deviations and take a decision with
a given nominal level.

7 Simulations

We devise some simulations to compare our testing strategy with the classical DO
and MP indices approaches. We do not include the EGA index in the comparison
because it can be viewed as an homogeneous version of our cumulative index (once
corrected from the mentioned minor mistake). We simulate two sectors, non nec-
essarily of the same type with respect to spatial homogeneity and interaction: in
scenario 1, we have a homogeneous Poisson process versus an inhomogeneous Pois-
son process, in scenario 2, a homogeneous Poisson versus an aggregated Matern
process. Scenario 3 illustrates an exceptional case. Because the possible interplay
between marks and positions may obscure the comparisons, we only focus here
on the case of marks independent from positions and following a discrete uniform
distribution. We compare the following indices
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• the DO index (original version, non cumulative)

• the cumulative MP index

• the indices BThom and BTinhom (non cumulative versions)

MP, BThom and BTinhom all have a benchmark of 1 under H0. The envelopes
are based on M = 1000 replications. The con�dence level is a local 5 % level.
We �rst present graphs of the indices on one realization of the processes before
proceeding to the analysis of the comparative performance of the corresponding
tests on replications of these simulated processes.

7.1 Scenario 1

Scenario 1 has two sectors :

• sector 1 is homogeneous Poisson with intensity 100 and uniform marks on
{0, · · · , 50}.

• sector 2 is inhomogeneous Poisson with uniform marks on {0, · · · , 50} with
intensity function given by λ(x, y) = 500

1−exp(−5) exp(5x).

Sector 2 has the same expected number of points as sector 1 and Figure 6 shows
one realization of these two processes with sector 1 on the left panel.
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Figure 6: Scenario 1: the two sectors

Figure 7 presents the graphs of the DO index for the two sectors and Figure 8
presents the MP index for the two sectors with sector 1 on the left panel. We can
see that DO and MP detect concentration of sector 2. MP concludes that sector
1 is also concentrated which is not true.
Figure 9 presents the graphs of the BThom index for the two sectors and Figure
10 presents the BTinhom index for the two sectors. For sector 1, BThom and
BTinhom curves are both inside the envelope which is compatible with the ho-
mogeneous Poisson nature of the locations together with the uniform independent
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Figure 7: DO index for scenario 1
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Figure 8: MP index for scenario 1

marks. For sector 2, we can see that BThom and BTinhom correctly detect that
the origin of its concentration comes from �rst order since the BThom curve lies
outside the envelope and the BTinhom is inside (compare with Figure 5).
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Figure 9: BThom index for scenario 1

We then analyze the 500 repetitions of the simulated scenario 1 and the following
table contains the percentage of error for the tests based on local envelopes and
for the deviation tests. It is easier to make an error for sector 1 than for sector 2.
The error rate is clearly higher for DO and MP than for BThom and BTinhom.
Recall also that BThom and BTinhom should be used jointly one after the other
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Figure 10: BTinhom index for scenario 1

Table 1: Error rates in 500 repetitions of scenario 1
Local envelopes test DO MP BThom BTinhom

PPhom 32 % 100 % 11 % 3 %
PPinhom 0 % 0 % 0 % 1 %

Deviation test DO MP BThom BTinhom

PPhom 1 % 100 % 4 % 3 %
PPinhom 3 % 0 % 29 % 1 %

and that the conclusion is more informative since it reveals not only concentration
but also its nature.

7.2 Scenario 2

Scenario 2 has two sectors :

• sector 1 is homogeneous Poisson with intensity 100 and uniform marks on
{0, · · · , 50}.

• sector 2 is a Matern process (parent process: homogeneous Poisson with
intensity 10, children process: homogeneous Poisson in a disk of radius 0.1)
and uniform marks on {0, · · · , 50}

Figure 11 shows one realization of these two processes with sector 1 on the left
panel. Figure 12 presents the graphs of the DO index for the two sectors and
Figure 13 presents the MP index for the two sectors. We can see that DO and MP
detect concentration of sector 2. MP concludes that sector 1 is also concentrated
which is not true.
Figure 14 presents the graphs of the BThom index for the two sectors and Figure
15 presents the BTinhom index for the two sectors. We can see that BThom et
BTinhom correctly detect that the origin of concentration of sector 2 comes from
second order.
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Figure 11: Scenario 2: the two sectors
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Figure 12: DO index for scenario 2
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Figure 13: MP index for scenario 2
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Figure 14: BThom index for scenario 2
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Figure 15: BTinhom index for scenario 2

We then run 500 simulations of scenario 2 and the following table contains the
percentage of error of the tests based on local envelopes and of the deviation tests.
The conclusions are similar than for scenario 1.

Table 2: Error rates in 500 repetitions of scenario 2
Local envelopes test DO MP BThom BTinhom

PPhom 53 % 100 % 8 % 3 %
Aggregated 0 % 0 % 0 % 38 %

Deviation test DO MP BThom BTinhom

PPhom 13 % 100 % 4 % 3 %
PPinhom 16 % 0 % 1 % 38 %
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7.3 Scenario 3

Scenario 3 has two sectors :

• sector 1 is homogeneous Poisson with intensity 100 and uniform marks on
{0, · · · , 50}.

• sector 2 is Non-Poisson process described in Badley et al. (2000) and such
that g = 1 and uniform marks on {0, · · · , 50}.

Note that sector 2 satis�es gf = 1 but the process is not Poisson hence presents
interaction between the locations. However there is no concentration e�ect as can
be seen on the realization shown on Figure 16.
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Figure 16: Scenario 3: the two sectors

Figure 17 presents the graphs of the DO index for the two sectors and Figure 18
presents the MP index for the two sectors. We can see that the indices DO and
MP do not detect any concentration for sectors 1 and 2.
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Figure 17: DO index for scenario 3

Figure 19 presents the graphs of the BThom index for the two sectors. We can
see that BThom does not detect any concentration for sector 2.
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Figure 18: MP index for scenario 3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
5

1.
0

1.
5

xx

yy

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
1

2
3

4

xx

yy

Figure 19: BThom index for scenario 3

8 Conclusion

We have introduced a family of spatial concentration indices which subsumes the
classical Duranton-Overman, Marcon-Puech and Espa et al. indices. The BT
indices have a cumulative and non-cumulative version. The BT indices satis�es
the nine objectives DO1 to DO5 and BT1 to BT4. The relationships between
the classical indices and our family allow to introduce a normalized version of the
Duranton-Overman index with a proper benchmark in the absence of concentration
and to correct some weaknesses of the other two indices. The simulations show that
these new indices yield good results concerning tests error rates. The perspectives
for further discussion are the choice of weighting scheme f related to the concrete
interpretation of the indices and the proper monitoring of the global level of the
tests based on local envelopes.
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9 Annex

9.1 Proof of link between BT and DO

iDO(r) =

∑
i

∑
j>i h

−1w
(
r−‖xi−xj‖

h

)
mimj∑

i

∑
j>imimj

=

∑
i

∑
j 6=i h

−1w
(
r−‖xi−xj‖

h

)
mimj∑

i

∑
j 6=imimj

We de�ne classical estimators ρ̂
(2)
f , λ̂2 and µ̂2 for respectively ρ

(2)
f , λ2 and µ2 :=

E[M ]2, in the stationary case, with the following formulae :

ρ̂
(2)
f (r) =

1

2πr|W |
∑
i

∑
j 6=i

h−1w

(
r − ‖xi − xj‖

h

)
mimj Illian et al. (2008) [5.3.54, p.354]

λ̂2 =
N(N − 1)

|W |2
Illian et al. (2008) [4.3.34, p.231]

µ̂2 =
1

N(N − 1)

∑
i

∑
j 6=i

mimj adapted from Illian et al. (2008) [5.3.48, p.353]

Consequently we have

iDO(r) =
2πr|W |ρ̂(2)f (r)

|W |2N(N−1)
|W |2

1
N(N−1)

∑
i

∑
j 6=imimj

=
2πr

|W |
ρ̂
(2)
f (r)

λ̂2µ̂2
=

2πr

|W |
ĝf (r) =

2πr

|W |
iBT

9.2 Proof of link between BT and MP

Several conditions are needed to establish a link between IBT and IMP in the
same way as IBT and IDO. We present this link in a stationary framework, with
f(m1,m2) = m2

IBT =
1

|W |

Ns∑
i=1

Ns∑
j=1,j 6=i

mj1I(‖xi,s − xj,s‖ ≤ r)
λ̂λ̂q

=
1

|W |

Ns∑
i=1

Ns∑
j=1,j 6=i

mj1I(‖xi,s − xj,s‖ ≤ r)
N(N−1)
|W |2 µ̂
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where µ̂ is estimated by 1
N−1

∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r). We have

IBT =
|W |
N

Ns∑
i=1

∑Ns
j=1,j 6=imj1I(‖xi,s − xj,s‖ ≤ r)∑N
j=1,j 6=imj1I(‖xi,s − xj‖ ≤ r)

=
|W |
N

JMP (r)
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