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1 Introduction

Mathematical finance applied to investment theory gave rise about thirty years ago to a new field
known as real options. In traditional real option models, the underlying state variable is the ob-
servable value of an investment project that could be undertaken at a fixed cost. The real option
literature has emphasized the ability of firms to delay their irreversible investment decisions. In
the presence of sunk costs, this flexibility in the timing of investment is valuable because it gives
firms the option to wait for new information. As a result, optimal investment policies are mathe-
matically determined as the solution to optimal stopping problems and prescribe to invest above
the point at which expected discounted cash-flows cover sunk costs, in contrast with the usual
net present value rule. The pioneered model is due to McDonald and Siegel [13] and has been
extended in various ways by many authors (see for instance Dixit and Pyndick [8] for an overview
of this literature). An important common feature of this literature is to assume that the investment
decision can be made independently of the financing of the sunk cost. This amounts to consider
that capital markets are perfect so that any project with positive net present value will find a fund-
ing (Modigliani and Miller [14]). However, capital markets are not perfect, external financing
is costly and firms accumulate cash to cover investment needs without resorting to the market.1

Despite strong empirical evidences, the real option literature has somewhat neglected market im-
perfections and, typically, the role of cash holdings in the firms’ investment decision. Very few
papers focus on the level of self-financing that a firm should optimally decide in a dynamic setting.
A first attempt in that direction is Boyle and Guthrie [3]. More recently, Asvanunt, Broadie and
Sundaresan [2] develop a corporate model with interactions between cash reserves and investment
opportunity when the firm has some outstanding debt. Hugonnier, Malamud and Morellec [10]
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considers the interactions between cash holdings, dividend distribution and capacity expansion
when firms face uncertainty regarding their ability to raise external funds and have to pay a search
cost to meet outside investors.

In this note, we try to merge the real option and the corporate finance literature by focusing
on the optimal investment policy for a cash-constrained firm. More precisely, we make the strong
assumption that the firm has no access to capital markets. As a consequence, the cash reserves of
the firm must always remains non-negative to meet operating costs and the firm value is computed
as the expected value of dividends payment. In this framework, when facing an investment op-
portunity, shareholders have both a profitability concern (the optimal time to undertake a growth
opportunity) and a liquidity concern (the risk to be forced to liquidate a profitable project). The
model presented above takes the result of Décamps and Villeneuve [6] and studies the conse-
quences of liquidity constraints on the decision to invest in a new project.

2 Optimal Investment in perfect capital markets

2.1 The benchmark model

As a benchmark, we begin with the seminal model of McDonald and Siegel [13]. We start with a
probability space (Ω,F ,P), a filtration (Ft)t≥0 and a Brownian Motion W = (Wt)t≥0 with respect
to Ft . We assume that a decision maker continuously observes the instantaneous cash-flow X of a
project where X = (Xt)t≥0 is a Geometric Brownian Motion with drift µ and volatility σ ,

dXt = µXtdt +σXtdWt .

We denote by r the constant risk-free rate and we assume that µ < r. The decision maker’s problem
is to decide when to invest in this project at a fixed cost I. After the investment is made, the firm
generates cash-flow forever. As a result, the sum of the discounted expected future cash-flows if
investment is made at time t is

Et

[∫
∞

t
e−r(s−t)Xs ds

]
=

Xt

r−µ
.

Thus framed, the decision maker’s problem takes the form of an optimal stopping problem. Be-
cause X is the only state variable, the set of admissible strategies is the set of stopping times
adapted to Ft denoted by T . That is, the value function associated to the investment opportunity
is defined as

V (x) = sup
τ∈T

Ex

[
Xt

r−µ
− I
]
.

Under this formulation, it is easy to prove that the optimal investment strategy belongs to the
set of threshold strategies Ty where Ty is the hitting time of y by the process X . Specifically,
the investment option should be exercised the first time that the value of the investment project
exceeds a critical threshold, the so-called optimal exercise boundary. The exercise boundary can
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be explicitly computed using a standard verification theorem based on the smooth-fit principle (see
for instance Dixit and Pyndick [8], Part III). This leads to an explicit expression for V ,

V (x) = L(x,x∗)
(

x
r−µ

− I
)
,

where L(x,y) = Ex(e−rTy) and where x∗ represents the optimal exercise boundary or the level of
cash-flow above which it is optimal to invest. We have,

x∗ =
ξ

ξ −1
I(r−µ)

with

ξ =
1
2
− µ

σ2 +

√(
µ

σ2 −
1
2

)
+

2r
σ2 ,

and, due to the properties of the Geometric Brownian motion, L(x,x∗) =
( x

x∗

)ξ

.

2.2 Discussion

It is worth to mention that the seminal model of McDonald and Siegel is based on several implicit
assumptions, two of which are particulary strong: perfect information on the future cash-flows
and perfect capital markets. In particular, it is not necessary to assume that the decision maker has
the possibility to self-finance the sunk cost I. In a perfect capital market, she has the possibility to
access to outside financing by issuing shares. Let us describe a possible financing contract between
the decision maker and an outside investor. Because X is perfectly observable, the expected profit
Π if the investment is made at time t is denoted by Π(Xt) with Π(x) = x

r−µ
. Therefore, the outside

financier may propose the following contract: if the decision maker invests at a level y, the investor
will ask for a proportion δ of shares that satisfies δΠ(y) = I. Along this contract, the expected
payoff for the decision maker will be (1−δ )Π(y) = Π(y)− I. Therefore, the decision maker has
to choose the optimal level y that maximizes her profit, that is,

max
y

L(x,y)(Π(y)− I),

which is equivalent to the decision problem of the benchmark model. Therefore, a decision maker
that cannot afford to self-finance I invests optimally at the same level of investment x∗ if she signs
the contract described above. As a consequence, under the assumption of perfect capital markets,
the investment decision is made independently of the financing decision which is in the spirit of the
Modigliani-Miller theorem. The objective of this note is to relax the assumption of perfect capital
markets and to illustrate the consequences of liquidity constraints on the investment decisions.
Before developing our model, we emphasize that taking into account costly external financing may
lead to challenging stopping problems. Let us consider a decision maker who needs to finance the
investment cost I. Assume that banks are in perfect competition and offer consol bonds with the
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following covenant: if the borrower is unable to pay the coupon, the firm is forced to default. As
a consequence, the market price at time t of the bond is

D(Xt ,c) = Et

[∫ t+Tc◦θt

t
e−r(s−t)cds

]
=

c
r

(
1−
(

Xt

c

)α)
11{Xt≥c}

where

α =
1
2
− µ

σ2 −

√(
µ

σ2 −
1
2

)
+

2r
σ2 .

Consequently, the expected project’s payoff for the decision-maker investing at time t by entering
in the debt contract with covenant to finance the sunk cost I is

Πt = Et

[∫ t+Tc◦θt

t
e−r(s−t)(Xs− c)ds

]
,

where θt is the shift operator2 and where c has to be computed so that D(x,c) ≥ I, otherwise the
debtholders refuse to lend I. Because the competition between banks is assumed to be perfect, we
must have D(Xt ,c) = I if the investment is made at time t . The participation constraint D(x,c) = I
has several important consequences. We observe that for a fixed x, the function D(x, .) defined on
[0,x] is convex with D(x,0) = D(x,x) = 0. thus, D(x, .) reaches a maximum at c∗(x) = (1−α)−

1
α x

and therefore the participation constraint is satisfied if and only if

D(x,c∗(x)) =−α(1−α)−(
1
α
+1) x

r
≥ I. (2.1)

For any x satisfying the participation constraint (2.1), there are two levels c1,c2 with c1 ≤ c∗ ≤ c2

for which D(x,ci) = I. It is obvious that the decision-maker will choose the smallest coupon c1

and thus Π(Xt) can be expressed as

Π(x) = E
[∫ Tc1

0
e−rsXs ds

]
− I =

x
r−µ

− c1

r−µ

(
x
c1

)α

.

Using
c1

r

(
1−
(

x
c1

)α)
= I, we may rewrite Π as

Π(x) =
x− c1(x)

r−µ
− rI

r−µ

and thus, the decision-maker has to solve the optimal stopping problem

sup
τ∈T

Ex
[
e−rτ

Π(Xτ)
]
. (2.2)

To the best of our knowledge, solving (2.2) remains an open question. In particular, there is no
guarantee that the optimal stopping time is a threshold strategy. To circumvent the difficulty,
we will assume that the decision-maker can store her cash-flow X and thus control the payment
process. This is the topic of the next section.

2See for instance Revuz and Yor [19] page 36 for the definition of the shift operator.
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3 Optimal stopping for a cash-constrained firm

3.1 The model

We consider a firm with an activity in place that generates a cash-flow process. The firm faces
liquidity constraints because it has no access to capital markets. Consequently, the firm defaults
as soon as the cash process hits the threshold 0. The manager of the firm acts in the best interest
of its shareholders and maximizes the expected present value of dividends up to default. At any
time the firm has the option to invest in a real option that increases the drift of the cash generating
process from µ0 to µ1 > µ0 without affecting its volatility σ . This growth opportunity requires a
fixed investment cost I that must be financed only by using the cash reserve.

The mathematical formulation of our problem is as follows. We start with a probability space
(Ω,F ,P), a filtration (Ft)t≥0 and a Brownian Motion W = (Wt)t≥0 with respect to Ft . In the
sequel, Z denotes the set of positive non-decreasing right continuous and Ft-adapted processes
and T , the set of Ft-adapted stopping times. A control policy π = (Zπ

t ,τ
π ; t ≥ 0) models a

dividend/investment policy and is said to be admissible if Zπ
t belongs to Z and if τπ belongs

to T . We denote the set of all admissible controls by Π. The control component Zπ
t therefore

corresponds to the total amount of dividends paid out by the firm up to time t and the control
component τπ represents the investment time in the growth opportunity. A given control policy
(Zπ

t ,τ
π ; t ≥ 0) fully characterizes the associated investment process (Iπ

t )t≥0 which belongs to Z

and is defined by relation It = I11t≥τπ . We denote by Xπ
t the cash reserve of the firm at time t under

a control policy π = (Zπ
t ,τ

π ; t ≥ 0). The dynamic of the cash process Xπ
t satisfies

dXπ
t = (µ011t<τπ +µ111t≥τπ )dt +σdWt−dZπ

t −dIπ
t , Xπ

0− = x.

For a given admissible control π , we define the time of bankruptcy by

τ
π
0 = inf{t ≥ 0 : Xπ

t ≤ 0},

and the firm value Vπ by

Vπ(x) = Ex

[∫
τπ

0

0
e−rsdZπ

s

]
.

The objective is to find the optimal return function which is defined as

V (x) = sup
π∈Π

Vπ(x), (3.3)

and the optimal policy π? such that
Vπ?(x) =V (x).

Thus, we model the interaction between dividends and investment as a mixed singular con-
trol/optimal stopping problem. We show that problem (3.3) can be reduced to a stopping problem
that we solve quasi explicitly.
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3.2 Value of the firm with no growth option.

Assume for the moment that the firm has only access to one of the two technologies (say, technol-
ogy i = 0 for drift µ0 and technology i = 1 for drift µ1). The cash process
Xi = (Xi,t)t≥0 therefore satisfies

dXi,t = µidt +σdWt−dZi,t .

We are back in the classical distribution problem studied in Jeanblanc and Shiryaev [11], Radner
and Shepp [16] or Asmussen and Taksar [1], the firm value is Vi(Xi,t∧τi,0) where

Vi(x) = sup
Zi∈Z

Ex

[∫
τi,0

0
e−rsdZi,s

]
. (3.4)

Computations are explicit and we have:

Proposition 3.1 (Jeanblanc and Shiryaev (1995))

(i) (Firm value)

– The firm value Vi is given by: Vi(x) =
fi(x)
f ′i (xi)

0≤ x≤ xi,

Vi(x) = x− xi +Vi(xi), x≥ xi,
(3.5)

where

fi(x) = eα
+
i x− eα

−
i x, xi =

1
α
+
i −α

−
i

ln
(

α
−
i

α
+
i

)2

, (3.6)

and where α
−
i < 0 < α

+
i are the roots of the equation

1
2

σ
2x+µix− r = 0.

(ii) (Optimal policy)

– The process L∗ = {L∗t ; t ≥ 0} defined by

L∗t = (x− xi)
+ 11t=0 + Lxi

t 11t>0 (3.7)

is an optimal policy for problem (3.4). In Equation (3.7), the process Lx∗i denotes the
solution to the Skohorod problem at xi for the drifted Brownian motion µi t + Bt , that

is Lxi
t = max

[
0, max

0≤s≤t
(µis+σWs− xi)

]
.

It is worth noting that the function fi defined on [0,∞) is non negative, increasing, concave on
[0,xi], convex on [xi,∞) and satisfies f

′
i ≥ 1 on [0,∞) together with

Li fi− r fi = 0 on [0,xi] where Li is the infinitesimal generator of the drifted Brownian motion
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µit +σWt . Remark also that Vi is concave on [0,xi] and linear above xi. Finally, it is also impor-
tant to note that there is no obvious comparison between x0 and x1 (see for instance Rochet and
Villeneuve [18] Proposition 2). Coming back to our problem (3.3), we deduce from these standard
results that the strategies

π
0 = (Z0

t ,0) =
(
(x− x0)+11t=0 +Lx0

t (µ0,W )11t>0 , ∞
)
, (3.8)

and
π

1 = (Z1
t ,0) = ((x− I)− x1)+11t=0 +Lx1

t (µ1,W )11t>0 , 0) (3.9)

lead to the inequalities V (x)≥V0(x) and V (x)≥V1(x− I). Strategy π0 corresponds to the invest-
ment policy “never invest in the growth option (and follow the associated optimal dividend pol-
icy)”, while strategy π1 corresponds to the investment policy “invest immediately in the growth
option (and follow the associated optimal dividend policy)”. Finally, note that, because the in-
equality x− I ≤ 0 leads to immediate bankruptcy, the firm value V1(x− I) is defined by: V1(x− I) = max

(
0,

f1(x− I)
f ′1(x1)

)
, 0≤ x≤ x1 + I,

V1(x− I) = x− I− x1 +
µ1
r , x≥ x1 + I.

(3.10)

3.3 Value of the firm with a growth option

The dynamic programming principle3 gives the following representation for the value function

V (x) = sup
π∈Π

Ex

[∫ (τπ∧τπ
0 )
−

0
e−rsdZπ

s + e−r(τπ∧τπ
0 )V1(Xπ

(τπ∧τπ
0 )
−− I)

]
, (3.11)

Because V (Xt) =V1(Xt) on the set {t > τ}, the strategy Zπ
s = 0 for 0≤ s≤ t and τπ = t leads to

V (x)≥ E
[
e−r(t∧τπ

0 )V (Rt∧τπ
0
)
]
,

where R = (Rt)t≥0 denotes the cash reserve process generated by the activity in place in ab-
sence of dividend distribution, that is dRt = µ0dt + σdWt . It results from the Markov prop-
erty that the process (e−r(t∧τπ

0 )V (Rt∧τπ
0
))t≥0 is a supermartingale which dominates the function

max(V0(.),V1(.− I)). Thus, according to optimal stopping theory, V dominates the Snell envelope
of the process (max(V0(Rt),V1(Rt− I)))t≥0. Let us consider the stopping time problem with value
function

φ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)max(V0(Rτ∧τ0),V1(Rτ∧τ0− I))

]
, (3.12)

where τ0 = inf{t ≥ 0 : Rt ≤ 0}. In accordance with the foregoing, we have V ≥ φ . The following
result characterizes the value function in terms of φ .

Theorem 3.1 For all x ∈ [0,∞), V (x) = φ(x).

The rest of the note is devoted to the proof of Theorem 3.1.
3We refer to Décamps and Villeneuve [6] Proposition 3.1 for a proof.
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3.3.1 A verification Theorem.

Proving Theorem 3.1 amounts to show the reverse inequality V (x)≤ φ(x). This requires a verifi-
cation result for the Hamilton-jacobi-Bellman (HJB) equation associated to problem (3.11). One
indeed expects from the dynamic programming principle, the value function to satisfy the HJB
equation

max(1− v′, L0v− rv,V1(.− I)− v) = 0. (3.13)

The next proposition shows that any piecewise function C2 which is a supersolution to the HJB
equation (3.13) is a majorant of the value function V .

Proposition 3.2 (verification result for the HJB equation) Suppose we can find a positive function
Ṽ piecewise C2 on (0,+∞) with bounded first derivatives4 and such that for all x > 0,

(i) L0Ṽ − rṼ ≤ 0 in the sense of distributions,

(ii) Ṽ (x)≥V1(x− I),

(iii) Ṽ ′(x)≥ 1,

with the initial condition Ṽ (0) = 0 then, Ṽ (x)≥V (x) for all x ∈ [0,∞).

Proof of Proposition 3.2 We have to prove that for any control policy π = (Zπ
t ,τ

π ; t ≥ 0), Ṽ (x)≥
Vπ(x) for all x > 0. Let us write the process Zπ

t = Zπ,c
t +Zπ,d

t where Zπ,c
t is the continuous part

of Zπ
t and Zπ,d

t is the pure discontinuous part of Zπ
t . Using a generalized Itô’s formula (see Del-

lacherie and Meyer [7], Theorem VIII-25 and Remark c) page 349), we can write

e−r(τπ∧τπ
0 )Ṽ (Xπ

(τπ∧τπ
0 )
−) = Ṽ (x)+

∫ (τπ∧τπ
0 )
−

0
e−rs(L0Ṽ (Xπ

s )− rṼ (Xπ
s ))ds

+
∫ (τπ∧τπ

0 )
−

0
e−rsṼ

′
(Xπ

s )σdWt−
∫ (τπ∧τπ

0 )
−

0
e−rsṼ

′
(Xπ

s )dZc
s

+ ∑
s<τπ∧τπ

0

e−rs(Ṽ (Xπ
s )−Ṽ (Xπ

s−)).

Since Ṽ satisfies (i), the second term of the right hand side is negative. On the other hand, the first
derivative of Ṽ being bounded, the third term is a square integrable martingale. Taking expecta-
tions, we get

Ex

[
e−r(τπ∧τπ

0 )Ṽ (Xπ

(τπ∧τπ
0 )
−)
]
≤ Ṽ (x)−Ex

[∫ (τπ∧τπ
0 )
−

0
e−rsṼ

′
(Xπ

s )dZπ,c
s

]
+ Ex

[
∑

s<τ∧τ0

e−rs(Ṽ (Xπ
s )−Ṽ (Xπ

s−))

]
.

4in the sense of Definition 4.8 page 271 in Karatzas and Shreve [12].
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Since Ṽ ′(x)≥ 1 for all x > 0, we have Ṽ (Xπ
s )−Ṽ (Xπ

s−)≤ Xπ
s −Xπ

s−. Therefore, using the equality
Xπ

s −Xπ
s− =−(Zπ

s −Zπ
s−) for s < τπ ∧ τπ

0 , we finally get

Ṽ (x) ≥ Ex

[
e−r(τπ∧τπ

0 )Ṽ (Xπ

(τπ∧τπ
0 )
−)
]
+Ex

[∫ (τπ∧τπ
0 )
−

0
e−rsṼ

′
(Xπ

s )dZπ,c
s

]
+Ex

[
∑

s<τ∧τ0

e−rs(Zπ
s −Zπ

s−)

]

≥ Ex

[
e−r(τπ∧τπ

0 )V1(Xπ

(τπ∧τπ
0 )
−− I)

]
+Ex

[∫ (τπ∧τπ
0 )
−

0
e−rs dZπ

s

]
= Vπ(x),

where assumptions (ii) and (iii) have been used for the second inequality. �

We know already that V ≥ φ . Thus, to complete the proof of Theorem 3.1, it remains simply
to verify that φ satisfies the assumption of Proposition 3.2. This will clearly imply the reverse in-
equality V (x)≤ φ(x). To achieve this goal we start by solving explicitly optimal stopping problem
(3.12).

3.3.2 Solution to optimal stopping problem φ .

First, we have to know when V1(.− I) dominates V0. According to Décamps and Villeneuve [6]
Proposition 2.2, we have

Proposition 3.3 The following holds.

V (x) =V0(x) for all x≥ 0 if and only if
(

µ1−µ0

r

)
≤ (x1 + I)− x0.

Hereafter, we will denote by (H1) the strict inequality(
µ1−µ0

r

)
> (x1 + I)− x0

ensuring that the growth opportunity is worthwhile. Note that for all positive x, V (x)≥ φ(x)≥ θ(x)
where θ is the value function of optimal stopping problem

θ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0− I)

]
, (3.14)

where τ0 = inf{t ≥ 0 : Rt ≤ 0}. The value function θ represents the option to invest in the growth
opportunity when the manager decides to postpone dividend payments until investment. In line
with the intuition underlying Theorem 3.1, one anticipates that, if, for all positive x, the option
value θ(x) is larger than V0(x) then, we have the equalities V (x) = φ(x) = θ(x). A crucial point
will be to show that the inequality θ(x)>V0(x) holds for all positive x, if and only if it is satisfied at

9



the threshold x0 that triggers distribution of dividend when the firm is run under the technology in
place (see Lemma 3.8 hereinafter). In such a situation, the optimal dividend/investment policy will
be to postpone dividend distribution, to invest at a certain threshold b in the growth opportunity
and to pay out any surplus above x1 as dividend. Next proposition specifies all these points and
derives the solution to optimal stopping problem φ .

Proposition 3.4 The following holds.

(A) If condition (H1) is satisfied then,

(i) If θ(x0) > V0(x0) then, the value function φ satisfies for all positive x,
φ(x) = θ(x).

(ii) If θ(x0)≤V0(x0) then, the value function φ has the following structure.

φ(x)=


V0(x) 0≤ x≤ a,
V0(a)Ex[e−rτa11τa<τc]+V1(c− I)Ex[e−rτc11τa>τc ] = Aeα

+
0 x +Beα

−
0 x a≤ x≤ c,

V1(x− I) x≥ c,

where τa = inf{t ≥ 0 : Rt ≤ a} and τc = inf{t ≥ 0 : Rt ≥ c} and where A,B,a,c are
determined by the continuity and smooth-fit C1 conditions at a and c:

φ(a) =V0(a),
φ(c) =V1(c− I),
φ ′(a) =V

′
0(a),

φ ′(c) =V
′
1(c− I).

(B) If condition (H1) is not satisfied then, for all positive x, φ(x) =V0(x).

Figures 1 and 2 illustrate cases (i) and (ii) of Proposition 3.4. We establish Proposition 3.4
through a series of lemmas. The first one derives quasi explicitly the value function θ .

Lemma 3.6 The value function θ is defined by θ(x) =
f0(x)
f0(b)

V1(b− I) x≤ b,

θ(x) =V1(x− I), x≥ b,
(3.15)

where f0 is defined in (3.6) and where b > I is defined by the smooth-fit principle

V
′
1(b− I)
f ′0(b)

=
V1(b− I)

f0(b)
. (3.16)

Proof of Lemma 3.6 It follows from Dayanik and Karatzas [5] (Corollary 7.1) that the optimal
value function θ is C1 on [0,∞) furthermore, from Villeneuve [20] (Theorem 4.2. and Proposition
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4.6) a threshold strategy is optimal. This allows us to use a standard verification procedure and to
write the value function θ in terms of the free boundary problem:{

L0θ(x)− rθ(x) = 0, 0≤ x≤ b, and L0θ(x)− rθ(x)≤ 0, x≥ b,
θ(b) =V1(b− I), θ ′(b) =V

′
1(b− I).

(3.17)

Standard computations lead to the desired result. �

The next Lemma characterizes the stopping region of optimal stopping problem φ .

Lemma 3.7 The stopping region S of problem φ satisfies S = S0∪S1 with

S0 = {0 < x < x̃ |φ(x) =V0(x)}

and
S1 = {x > x̃ |φ(x) =V1(x− I)},

where x̃ is the unique crossing point of the value functions V0(.) and V1(x− .).

Proof of Lemma 3.7 According to Optimal Stopping Theory (see El Karoui [9], Theorems 10.1.9
and 10.1.12 in Øksendal [15]), the stopping region S of problem φ satisfies

S = {x > 0 |φ(x) = max(V0(x),V1(x− I))}.

Now, from Proposition 5.13 and Corollary 7.1 by Dayanik-Karatzas [5], the hitting time τS =

inf{t : Rt ∈ S } is optimal and the optimal value function is C1 on [0,∞). Moreover, it follows
from Lemma 4.3 from Villeneuve [20] that x̃, defined as the unique crossing point of the value
functions V0(.) and V1(x− .), does not belong to S. Hence, the stopping region can be decomposed
into two subregions S = S0∪S1 with

S0 = {0 < x < x̃ |φ(x) =V0(x)},

and
S1 = {x > x̃ |φ(x) =V1(x− I)}.

�

We now obtain Assertion (i) of Proposition 3.4 as a byproduct of the next Lemma.

Lemma 3.8 The following assertions are equivalent:

(i) θ(x0)>V0(x0).

(ii) θ(x)>V0(x) for all x > 0.

(iii) S0 = /0.
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Proof of Lemma 3.8.
(i) =⇒ (ii). We start with x ∈ (0,x0). Let us define τx0 = inf{t : Rt < x0} ∈ T . The inequality
θ(x0)>V0(x0) together with the initial condition θ(0) =V0(0) = 0 implies

Ex

[
e−r(τx0∧τ0)

(
θ(Rτx0∧τ0)−V0(Rτx0∧τ0)

)]
> 0.

Itô’s formula gives

0 < Ex

[
e−r(τx0∧τ0)

(
θ(Rτx0∧τ0)−V0(Rτx0∧τ0)

)]
= θ(x)−V0(x) + Ex

[∫
τx0∧τ0

0
e−rt (L0θ(Rt)− rθ(Rt)) dt

]
≤ θ(x)−V0(x),

where the last inequality follows from (3.17). Thus, θ(x)>V0(x) for all 0 < x≤ x0. Assume now
that x > x0. We distinguish two cases. If b > x0, it follows from (3.5) and (3.15) that, θ(x)>V0(x)
for x ≤ x0 is equivalent to θ

′
(x0) > 1. Then, the convexity properties of f0 yields to θ

′
(x) > 1,

for all x > 0. If, on the contrary, b≤ x0 then, θ(x) =V1(x− I) for all x ≥ x0. Since V
′
1(x− I)≥ 1

for all x ∈ [I,∞), the smooth fit principle implies θ
′
(x)≥ 1 for all x ≥ x0. Therefore, the function

θ −V0 is increasing for x≥ x0 which ends the proof.

(ii) =⇒ (iii). Simply remark that equations (3.14) and (3.12) give φ ≥ θ . Therefore, we have,
φ(x)≥ θ(x)>V0(x) for all x > 0 which implies the emptyness of S0.

(iii) =⇒ (i). Suppose S0 = /0 and let us show that θ = φ . This will clearly imply θ(x0) =

φ(x0)>V0(x0) and thus (i). From Optimal Stopping theory, the process (e−r(t∧τ0∧τS)φ(Xt∧τ0∧τS))t≥0

is a martingale. Moreover, on the event {τS < t}, we have φ(RτS) =V1(RτS− I) a.s. It results that

φ(x) = Ex

[
e−r(t∧τS)φ(Rt∧τS)

]
= Ex

[
e−rτSV1(RτS− I)11τS<t

]
+ Ex

[
e−rt

φ(Rt)11t<τS

]
≤ θ(x) + Ex

[
e−rt

φ(Rt)
]
.

Now, it follows from (3.5), (3.10) that φ(x) ≤ Cx for some positive constant C. This implies
Ex [e−rtφ(Rt)] converges to 0 as t goes to infinity. We therefore deduce that φ ≤ θ and thus that
φ = θ . �

Figure 1 represents the value function of the optimal stopping problem φ under the assump-
tions of Lemma 3.8.
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Figure 1: θ(x0)>V0(x0)
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Assertion (ii) of Proposition 3.4 relies on the following lemma.

Lemma 3.9 Assume θ(x0)≤V0(x0) then, there are two positive real numbers a≥ x0 and c≤ x1+I
such that

S0 =]0,a] and S1 = [c,+∞[.

Proof of Lemma 3.9 From the previous Lemma we know that the inequality θ(x0) ≤ V0(x0)

implies S0 6= /0. We start the proof with the shape of the subregion S0. Take x ∈ S0, we have to
prove that any y ≤ x belongs to S0. As a result, we will define a = sup{x < x̃ |x ∈ S0}. Now,
according to Proposition 5.13 by Dayanik and Karatzas [5], we have

φ(y) = Ey

[
e−r(τS∧τ0)max(V0(RτS∧τ0),V1(RτS∧τ0− I))

]
.

Since x ∈ S0, x < x̃ and thus τS = τS0 Py a.s. for all y≤ x. Hence,

φ(y) = Ey

[
e−r(τS0∧τ0)V0(RτS0∧τ0)

]
≤ V0(y),

13



where the last inequality follows from the supermartingale property of the process (e−r(t∧τ0)V0(Rt∧τ0))t≥0.
Now, assuming that a < x0, (i.e. φ(x0)>V0(x0)) yields the contradiction:

φ(a) = V0(a)

= Ea

[
e−rτx0 11τx0<τ0V0(Rτx0

)
]

≤ Ea

[
e−rτx0V0(Rτx0

)
]

< Ea

[
e−rτx0 φ(Rτx0

)
]

≤ φ(a),

where the second equality follows from the martingale property of the process
(e−r(t∧τx0∧τ0)V0(Rt∧τx0∧τ0))t≥0 under Pa and the last inequality follows from the supermartingale
property of the process (e−r(t∧τ0)φ(Rt∧τ0))t≥0.

The shape of the subregion S1 is a direct consequence of Lemma 4.4 by Villeneuve [20]. The
only difficulty is to prove that c ≤ x1 + I. Let us consider x ∈ (a,c), and let us introduce the
stopping times τa = inf{t : Rt = a}, and τc = inf{t : Rt = c}, we have:

φ(x) = Ex

[
e−r(τa∧τc)max(V0(Rτa∧τc),V1(Rτa∧τc− I))

]
≤ Ex

[
e−r(τa∧τc)(Rτa∧τc− (x1 + I)+

µ1

r
)
]

= x− (x1 + I)+
µ1

r
+Ex

[∫
τa∧τc

0
e−rs(µ0− r(Rs− (x1 + I))−µ1)ds

]
.

Remark that, on the stochastic interval [0,τa∧ τc], Rs ≥ a≥ x0 Px a.s. and thus

µ0− r(Rs− (x1 + I))−µ1 ≤ µ0− r(x0− (x1 + I))−µ1 < 0,

by condition (H1). Therefore, φ(x)≤ x− (x1+ I)+ µ1
r for x ∈ (a,c). We conclude remarking that,

assuming the inequality c > x1 + I would yield to the contradiction

µ1

r
=V1(x1)< φ(x1 + I)≤ µ1

r
.

�

Figure 2 represents the value function of the optimal stopping problem φ under the assump-
tions of Lemma 3.9.
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Figure 2: θ(x0)<V0(x0)

x̃

We now finish the proof of Proposition 3.4. It follows from Lemma 3.9 that the structure of
the value function φ in assertion (ii) of Proposition 3.4 is a direct consequence of continuity and
smooth-fit C1 properties. Finally, consider case (B) of Proposition 3.4 and therefore assume that
condition (H1) is not satisfied. Similar arguments to those used for studying optimal stopping
problem θ easily yield to the relation

V0(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)V0(Rτ∧τ0− I)

]
.

The equality V (x) = φ(x) follows then from Proposition 3.3. �

As a final remark note that, if θ(x0) = V0(x0) then, we have that a = x0, c = b and the value
functions φ and θ coincide. Indeed, using same argument than in the first part of the proof of
Lemma 3.8, we easily deduce from θ(x0) =V0(x0) that θ(x) =V0(x) = φ(x) for x ≤ x0. Further-
more, (3.5) and (3.15) imply that, θ(x0) =V0(x0) is equivalent to θ ′(x0) =V ′(x0) = 1, which im-
plies that a= x0. The equality c= b follows then from relations (3.15) and (3.16). To summarize, if
θ(x0)=V0(x0) then, θ is the lowest supermartingale that majorizes e−r(τ∧τ0)max(V0(Rτ∧τ0),V1(Rτ∧τ0−
I)) from which it results that θ = φ .
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3.3.3 φ as a super solution to HJB equation (3.13).

We are now ready to prove that φ satisfies the assumptions of Proposition 3.2. Formally,

Proposition 3.5 φ is a supersolution to HJB equation (3.13).

Proof of Proposition 3.5 The result clearly holds if, for all positive x, φ(x) =V0(x) (that is, if
condition (H1) is not satisfied ). Assume now that condition (H1) is satisfied. Two cases have to
be considered.

i) θ(x0)>V0(x0).

In this case, φ = θ according to part (i) of Proposition 3.4. It remains to check that the
function θ satisfies the assumptions of Proposition 3.2. But, according to optimal stopping
theory, θ ∈C2[(0,∞)\b)], L0θ − rθ ≤ 0 and clearly θ ≥ V1(.− I). Moreover, it is shown
in the first part of the proof of Lemma 3.8 that θ

′
(x)≥ 1 for all x > 0. Finally, let us check

that θ
′
is bounded above in the neighbourhood of zero. Clearly we have that

θ(x)≤ sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0)

]
,

furthermore, the process (e−r(t∧τ0)V1(Rt∧τ0))t≥0 is a supermartingale since µ1 > µ0. There-
fore θ ≤V1, the boundedness of the first derivative of θ follows then from Equation (3.10).

ii) θ(x0)≤V0(x0).

In this case, the function φ is characterized by part (ii) of Proposition 3.4. Thus, φ = V0

on (0,a), φ = V (.− I) on (c,+∞) and φ(x) = Aeα
+
0 x +Beα

−
0 x on (a,c). Hence, φ will be

a supersolution if we prove that φ
′
(x) ≥ 1 for all x > 0. In fact, it is enough to prove that

φ
′
(x) ≥ 1 for x ∈ (a,c) because V

′
0 ≥ 1 and V

′
1(.− I) ≥ 1. The smooth fit principle gives

φ
′
(a) =V

′
0(a)≥ 1 and φ

′
(c) =V

′
1(c− I)≥ 1. Clearly, φ is convex in a right neighbourhood

of a. Therefore, if φ is convex on (a,c), the proof is over. If not, the second derivative
of φ given by A(α+

0 )2eα
+
0 x +B(α−0 )2eα

−
0 x vanishes at most one time on (a,c), say in d.

Therefore,
1≤ φ

′
(a)≤ φ

′
(x)≤ φ

′
(d) for x ∈ (a,d),

and
1≤ φ

′
(c)≤ φ

′
(x)≤ φ

′
(d) for x ∈ (d,c),

which completes the proof of Proposition 3.5 and thus concludes the proof of Theorem 3.1.
�

4 Future works.

While the real option literature has emerged and developed within the framework of perfect capital
markets, few papers have been interested in the financing of investment costs. However, when the
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assumption of perfect capital markets is released, new issues are emerging that have an interest
both in Mathematics and Finance. In particular, the interactions between liquidity management
and investment policies lead to the study of mixed stochastic control problems that are relatively
scarce in the applied probability literature. In the particular case where the firm have no access
to external financing, the real option problem associated to the optimal investment for a cash-
constrained firm is tackled by solving a stopping problem with a non linear payoff that exhibits
interesting properties in terms of investment decisions that are not predicted by the standard real
option theory. In the standard real option literature as well as in the optimal dividend policy liter-
ature, increasing the volatility of the cash process has an unambiguous effect: Greater uncertainty
increases both the option value to invest (see McDonald and Siegel [13]), and the threshold that
triggers distribution of dividend (see Rochet and Villeneuve [18]). An interesting feature of our
model is that an increase of the volatility can kill the growth option. Because the difference x1−x0

considered as a function of the volatility σ tends to µ1−µ0
r when σ tends to infinity. This implies

that for large volatility, condition (H1) is never satisfied and thus that the growth opportunity is
worthless which is in contradiction with the positive effect of uncertainty on the option value to
invest in the standard model of real option.
The study can be extended in two directions. From a mathematical viewpoint, it would be inter-
esting to know if the main result (Theorem 3.1) remains valid if one models the dynamics of cash
reserves with a more general class of regular diffusion. From a financial viewpoint, it would be
natural and more realistic to release the liquidity constraints by assuming that firms have access
to outside financing. In the state of our knowledge, this extension, if we focus on debt financing,
leads to the same type of problems that the ones described in the discussion of Section 2.
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