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Abstract

The analysis of socio-economic data often implies the combination of data bases

originating from di�erent administrative sources so that data have been collected

on several separate partitions of the zone of interest into administrative units. It

is therefore necessary to reallocate the data from the source spatial units to the

target spatial units. We propose a review of the literature on the simplest statistical

methods of spatial reallocation rules (spatial interpolation). We concentrate here on

the areal-to-areal change of support case when initial and �nal data have an areal

support with a particular attention to disaggregation for numerical data. There

are three main types of such techniques: proportional weighting schemes also called

dasymetric methods, smoothing techniques and regression based interpolation. We

propose a uni�ed formalization of the basic techniques with a synoptic table and

extensions of some of these methods to new cases.

Résumé

L'analyse des données socio-économiques engendre souvent l'usage combiné de plusieurs
bases de données venant de sources administratives di�érentes et pour cette raison cor-
respondant à des partitions di�érentes de la zone d'intérêt en unités administratives. Il
est donc nécessaire de réa�ecter les données des zones sources vers des zones cibles. Nous
proposons dans ce travail une revue de la littérature sur les méthodes statistiques basiques
de réa�ectation (interpolation spatiale). Nous nous concentrons ici sur le changement de
support de surface à surface avec une attention particulière au cas de la désagrégation
pour variable continue. Il y a trois grands types de telles techniques : les méthodes
dasymétriques, les méthodes de lissage et les méthodes à base de régressions. Nous pro-
posons une formulation uni�ée des diverses techniques de base avec un tableau synoptique
et des extensions de certaines d'entre elles à de nouvelles situations.

Keywords : areal interpolation, spatial disaggregation, pycnophylactic property, change

of support, polygon overlay problem.
Mots clefs : interpolation spatiale surfacique, désaggrégation spatiale, propriété pyc-

nophylactique, changement de support, problème de superposition de polygones.
JEL Classi�cation : : C21, C31, C53

1 Introduction

The origin of this work is in a collaboration with a French administration, the Midi-
Pyrenées DREAL (Direction Régionale Environnement Aménagement Logement) about
the merge of several administrative data bases with di�erent spatial support. It was
necessary for example to disaggregate the number of housing units, originally available at
the commune level, on a �ne regular square grid. Similarly, many administrative agencies
nowadays are facing the problem of merging information from di�erent administrative
origins collected on several incompatible partitions of the zone of interest into spatial
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units. An easy way to combine data on incompatible supports is to align them on a
common grid. For this reason, the EU directive 'INSPIRE' (2007), INfrastructure for
SPatial InfoRmation, states principles to �give infrastructure for spatial information to
support community environment policies�. One of its objectives is to ensure that �it is
possible to combine spatial data and services from di�erent sources across the community
in a consistent way and share them between several users and applications� and one
requirement is that reference data should �enable merging of data from various sources�.
The reasons for the existence of incompatible partitions is a historical lack of coordination
between collecting agencies, each using its favorite spatial division. Another origin can be
the changes of administrative boundaries through time so that the combination of data
from di�erent historical periods results in incompatible spatial supports. The support of
spatial data refers to the spatial domain informed by each characteristic. It is often that
one needs to combine national census statistics with other sources of data, for example
in geomarketing or natural sciences. Other examples of such situations arise when some
plani�cation task is undertaken such as where should a new school or store be located
and the planners need to transfer census data to their particular catchment areas. Even
when it is possible to reaggregate the data from the individual level, this solution is time
consuming and expensive and may raise con�dentiality problems. An easy way to combine
data on several di�erent supports is to align them on a common grid and to reallocate
all sources to this single target partition. This option (called "carroyage" in French) is
currently being exploited in France at INSEE.
This problem is also referred to as the areal interpolation problem. More generally, the
change of support problem may involve point-to-point, area-to-point or point-to-area in-
terpolation. For example, the point interpolation problem is the case of a target variable
available for a set of point locations and needed at another location where the data is not
available. Gotway and Young (2002) describe these di�erent types and give an overview
of the methods. We will focus here on the area-to-area case with a particular emphasis
on disaggregation. A discussion of some methods relative to this framework can also be
found in Goodchild et al. (1993) but we go one step further in the degree of formalization
and uni�cation.
After introducing the vocabulary and de�nitions in section 2, we will see that there are
three main types of such techniques in section 3. The �rst type is the family of propor-
tional weighting schemes, also called dasymetric methods, which are illustrated in Yuan
et al.(1997), Voss et al. (1979), Reibel and Bufalino (2005), Mennis and Hultgren (2006)
and Gregory (2002). The second type is made of regression based interpolation and can
be found in Flowerdew et al. (1991), Godchild et al. (1993), Flowerdew and Green (1992)
for the simplest ones. The third type comprises smoothing techniques which are described
for example in Tobler (1979), Martin (1989), Bracken and Martin (1991), Rase (2001) and
Kyriakidis (2004). The set of methods can be classi�ed by the type of variable they apply
to (continuous or discrete, extensive or intensive), the volume preserving property satis-
faction (pycnophylactic property), the presence of auxiliary information, and the use of
simplifying assumptions. We could not provide in a single paper the same level of details
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for the simple methods and for more complex ones so that we decided to concentrate on
the simple ones which are the ones more likely to be adopted by practitioners and to just
give some of the main references for the more complex methods. We use a simulated toy
example to illustrate some of the methods. In order to ease the practitionner's choice,
we present a synoptic table (Table 1) to summarize this classi�cation. We believe that
presenting the methods in such a uni�ed way can help the practitionners clarifying the
relationships between the very diverse presentations found in the literature. Note that a
more detailed and lengthy presentation for practitioners has been written for the DREAL
(Vignes et al., 2013). This work of clari�cation also lead us to �nd extensions of some of
these methods to new cases: for example in section 3.2.1, we extend the ordinary dasy-
metric weighting method to the case of an intensive target variable Y and an extensive
auxiliary quantitative variable X and in section 3.2.2 we show that the assumption of in-
tersection units nested within control zones is unnecessary. Finally, this approach helped
us laying the groundwork for a future mathematical evaluation of the respective accuracy
of the methods. A brief point on the current state of the literature about accuracy and
software issues is done in the conclusion.

2 Data, de�nitions and notations

The variable of interest that needs to be interpolated is called the target variable and
it needs to have a meaning on any subregion of the given space. YD will denote the value
of the target variable on the subregion D of the region of interest Ω.We restrict attention
to the case of quantitative target variables (see for example Chakir (2009) for the case of
categorical target variables).
In the general area-to area reallocation problem, the original data for the target variable is
available for a set of source zones that will be denoted by Ss; s = 1, · · · , S and has to be
transferred to an independent set of target zones that will be denoted by Tt; t = 1, · · · , T .
The variable YSs will be denoted by Ys for simplicity and similarly for YTt by Yt. The
source zones and target zones are not necessarily nested and their boundaries do not
usually coincide. Figure 1 illustrates these two partitions of the region of interest.

With a set of source zones and target zones, one can create a set of doubly indexed
intersection zones As,t = Ss ∩ Tt, s standing for the index of the source zone and t for
that of the target zone. For simplicity, YAs,t will be denoted by Ys,t. Figure 2 illustrates
the partition with intersection zones with a zoom on a particular target on the left. Many
methods involve the areas of di�erent subregions (sources, targets or other). We will
denote by | A | the area of any subregion A.

Most of the methods will then �rst proceed to the interpolation of the data from the
source to the intersection and in a second step combine the interpolated intersection values
to get the target interpolated values. This combination step will require an aggregation
rule: one needs to explain how the value of the target variable Y on a zone Ω, YΩ, relates
to the value of Y on a set of subzones Ωk, k = 1, · · · p forming a partition of Ω. The
literature distinguishes between two types of aggregation rules. Let us start with two
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examples: population and population density. The overall population PΩ of a region Ω
is obtained by simple summation of the population of each subregion PΩk

. Same is true
for any counting variable and such variables are named extensive. Otherwise stated, an
extensive variable is a variable which is expected to take half the region's value in each half
of the region. Now the population density YΩ of the region Ω can be obtained from the
densities of the subregions YΩk

by a weighted average with weights given by wΩk
= |Ωk|
|Ω| ,

since

YΩ =

∑
k PΩk

| Ω |
=
∑
k

| Ωk |
| Ω |

PΩk

| Ωk |
=

p∑
k=1

wΩk
YΩk

.

This type of variable is called intensive with weights wΩk
. More generally linear aggre-

gation takes the general form

YΩ =

p∑
k=1

wΩk
YΩk

,

for a set of weights wΩk
. If all weights are equal to 1, the variable is called extensive

and it is called intensive otherwise. For variables such as population density, we will
make use of the following areal weights matrix: the (s, t) element of the areal weights

matrix W is given by the ratio ws,t = |As,t|
|Ss| which is the share of the area of source zone

s that lies in target zone t. Another example of intensive variable is given by the average
price of housing units in a given subregion for a data set of house prices. In this case,
the weighting scheme is di�erent and is given by wΩk

= nk

n
, where nk is the number of

housing units in Ωk and n is the total number of housing units n =
∑
nk. More generally,

proportions and rates are intensive variables. Although never really stated, the weights
are not allowed to depend upon Y but they may be related to another extensive variable
Z by

wΩk
=
ZΩk

ZΩ

. (1)

In that case note that wΩ = 1 and that
∑

k wΩk
= 1. These notions of extensive/intensive

variables are also found in physics. Some variables are neither extensive nor intensive: the
target variable YA de�ned by the maximum price on the subregion A is neither extensive
nor intensive.
Let us show that it is always possible to associate an intensive variable to a given extensive
variable by the following scheme. If Y is extensive, and if wA is a weighting scheme of
the form (1), the variable

ỸA =
YA
ZA

(2)

is intensive since

ỸΩ =

∑
k YΩk

ZΩ

=
∑
k

ZΩk

ZΩ

YΩk

ZΩk

=
∑
k

wΩk
ỸΩk

.

Reversely, if one starts from an intensive variable Y with weighting scheme wA of the form
(1), it can be transformed into an extensive variable by

ỸA = ZAYA. (3)

5



Indeed we have

ỸΩ = ZΩYΩ = ZΩ

∑
k

wΩk
YΩk

=
∑
k

ZΩk
YΩk

=
∑
k

ỸΩk
.

Depending on the relative sizes of sources and targets, the areal interpolation problem can
be rather of aggregation or disaggregation type. If sources are much smaller in size
than targets, one will recover a target value by aggregating sources that will fall inside this
target and possibly a few border intersections: this is an aggregation type. In the reverse
situation a given target will contain intersections of itself with possible several sources. An
intermediate case is when the sizes of sources are comparable to that of targets. Figures
3 and 4 illustrate these cases. We will concentrate here on the disaggregation type.
One property which is often quoted is the so called pycnophylactic property. According
to Rase (2001), this name comes from the Greek words �pyknos� for mass and �phylax�
for guard. This property requires the preservation of the initial data in the following
sense: the predicted value on source Ss obtained by aggregating the predicted values on
intersections with Ss should coincide with the observed value on Ss. In the case of an
extensive variable, this is equivalent to

Ys =
∑

t:s∩t6=∅

Ŷs,t.

In the case of an intensive variable with weighting scheme given by wA, this is equivalent
to

Ys =
∑

t:s∩t6=∅

ws,tŶs,t.

In the literature, one usually encounters this property for the extensive case.
One assumption which is often used to compensate for the absence of information is that
of homogeneity. For an extensive target variable, we will say that it is homogeneous in
a given zone A if it is evenly distributed within A, meaning that its value on a sub-zone of
A is equal to the share of the area of the sub-zone times its value on A. For an intensive
variable, we will use the same vocabulary when the variable is constant in each sub-zone
of A. The two notions indeed correspond to each other by the relationships (2) and (3).

Let us introduce the toy example that will be used to demonstrate some properties.
On Figure 5, we can see a square divided into 25 equal cells and three source regions made
of unions of cells. The Figure present the values of an auxiliary variable X in the center
panel and the values of two target variables Y1 on the left and Y2 on the right. We can
see that there is inhomogeneity within sources. The target zones are visible on Figures 6
through 9 which compare some methods through the targets prediction errors.

3 Methods

One early method cannot easily be classi�ed as the others. It is called �point in polygon�
and we will describe it �rst. The others fall into three main classes: the class of dasymetric
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methods, the class of regression methods and the class of smoothing methods.
Some methods use auxiliary information contained in the observation of an additional
related variable X to improve the reallocation. When this information is categorical, the
level sets of this variable de�ne the so called control zones. The spatial support of this
auxiliary information can be at the source, target, intersection level or control levels. To
expect that the use of X improves the reallocation of Y , we need to believe that Y and
X are correlated enough. This raises some questions since Y as well as X are spatial
variables hence they can be spatially autocorrelated and it is unclear how to take this
into account to correct the classical correlation measures.
Some methods require additional assumptions on the target variable, like for example Y
is homogeneous on the sources, or on targets, or the distribution of Y is known to be
Poisson or gaussian. We start with the most elementary methods requiring no additional
information and complexify progressively.

3.1 Elementary methods

3.1.1 Point in polygon

The centroid assignment method also called �point in polygon� allocates the source data
Ys to a target Tt if and only if the source polygon centroid is located within the target
polygon. The areal data is thus collapsed to a point datum via a representative point
such as the centroid. Voss et al. report that it is the least accurate method. Moreover, it
does not satisfy the pycnophylactic property.

3.1.2 Areal weighting interpolation

It can be applied to an extensive or intensive variable and does not require auxiliary
information. For an extensive variable, it is based on the homogeneity assumption that
YA is proportional to the area | A |. It thus consists in allocating to each subregion a
value proportional to the fraction of the area of the source that lies within that subregion.
For s such that s ∩ t 6= ∅,

Ŷs,t =
| As,t |
| Ss |

Ys. (4)

After the combination step, this results in the following formula

Ŷt =
∑

s:s∩t6=∅

| As,t |
| Ss |

Ys. (5)

For an intensive variable with areal weights, it is based on the assumption that Y is
uniform on the sources. It thus consists in allocating to the intersection As,t the value of
Ys leading to

Ŷs,t = Ys. (6)
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After the combination step, this results in the following formula

Ŷt =
∑

s:s∩t6=∅

|As,t|
|Tt|

Ys. (7)

It is easy to see that this method does satisfy the pycnophylactic property.
From now on, all subsequent methods require additional auxiliary information except in
section 3.3.1.

3.2 Dasymetric weighting

Bajat et al. (2011) trace this method back to the 19th century with George Julius Poulett
Scrope in 1833 mapping the classes of global population density. The word dasymetry
was introduced in the English language by J. K. Wright (1936). The class of dasymetric
weighting methods comprises generalizations of areal weighting methods. In order to
improve upon areal weighting, the idea is to get rid of the assumption of the count
density being uniform throughout the source zones because this assumption is almost never
accurate. For re�ecting density variation within source zone, they use other relevant and
available information X to distribute Y accordingly. This approach should help allocating
Ys to the small intersection zones within the sources provided the relationship between X
and Y be of a proportionality type with a strong enough correlation. Of course it replaces
the previous assumption by the assumption that the data is proportional to the auxiliary
information on any subregion. This raises the question of how to check the validity of
this assumption.
These methods are described in the literature for an extensive variable Y and an extensive
auxiliary information X. However it can be adapted to the case of intensive Y as we will
see below.
There are some classical examples of auxiliary information for socio-demographic count
data or other socio-economic trends coming from road structure or remotely sensed urban
land cover data. Yuan et al. (1997) observe a high correlation between population counts
and land cover types.
These methods satisfy the pycnophylactic property.

3.2.1 Ordinary dasymetric weighting

It is assumed here that the auxiliary information is known at the intersection level and
that it is of a quantitative nature. It might seem di�cult to �nd auxiliary information at
intersection level but the following example should convince the user that it is possible.
Voss et al. (1979) and Reibel and Bufalino (2005) propose to use the network of road
segments with auxiliary variables like length of roads or number of road nodes to allocate
demographic characteristics such as population or number of housing units,. The weight
of a given subzone is then proportional to the aggregate length of streets and roads in
that subzone.
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For the case of an extensive target variable with an extensive auxiliary quantitative vari-
able X, the following formulae extend (4) and (5) by substituting X for the area:

Ŷs,t =
Xs,t

Xs

Ys. (8)

yielding after the combination step:

Ŷt =
∑

s:s∩t6=∅

Xs,t

Xs

Ys. (9)

We propose to extend this method to the case of an intensive target variable with weights
given by wA = ZA

ZΩ
for a given variable Z and an extensive auxiliary quantitative vari-

able X. We de�ne the corresponding extensive variables Ỹ and intensive variable ˜̃X by
introducing the transformations from intensive to extensive ỸA = ZAYA and from exten-

sive to intensive ˜̃XA = XA

ZA
. The following formula is obtained using the correspondence

intensive-to-extensive given by (2) (see the annex for a proof).

Ŷt =
∑

s:s∩t6=∅

Xs,t

Xs

Zs
Zt
Ys. (10)

Similar formulae can be obtained easily in the case Y extensive with X intensive and Y
intensive with X intensive.
Let us illustrate this method with the toy example introduced at the end of section 2.
Figure 6 presents a comparison between the results of the areal weighting method and the
dasymetric method for target variable Y1. Figure 7 does the same for target variable Y2.
In each target we can see the true value of Y1 (left) and the value of the prediction (right)

and the relative prediction error below ( Ŷ1−Y1

Y1
). We can see that the dasymetric method

yields better results than areal weighting for variable Y2 because of the inhomogeneity
within sources (indeed the sum of squared errors is 10 percent smaller for dasymetric).
However for variable Y1, for which the level of inhomogeneity within sources is not as
high, this is not the case and areal weighting is doing better than dasymetric with a ratio
of sum of squared errors of 48 percent.

3.2.2 Dasymetric weighting with control zones

This is the case when the auxiliary information is categorical, its level sets thus de�ning
the so called control zones. The most classical case, called binary dasymetric mapping, is
the case of population estimation when there are two control zones: one which is known
to be populated and the other one unpopulated. It is assumed that the count density is
uniform throughout control zones. A �rst step estimates these densities Dc for control
zone c by

D̂c =

∑
s∈c Ys∑

s∈c | Ss |
,
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where s ∈ c may have several meanings (containment, centroid, percent cover). For this
method, it is often assumed in the literature that intersection units are nested within
control zones in which case the intersection zone prediction is given by

Ŷs,t =
| As,t | D̂c(s,t)∑

t′:s∩t′ 6=∅ | At′,s | D̂c(t′,s)

Ys,

where c(s, t) denotes the control zone which contains the intersection zone As,t. One
can see through this formula that this is the same as using ordinary dasymetric with
the auxiliary information being a �rst step crude estimate of variable Y based on the
assumption that its corresponding intensive variable (3) is constant throughout control
zones. The assumption that intersection units are nested within control zones is not
so restrictive since it can be restated as �the control zones are unions of intersections
units�: control zone information being rather coarse, they can be designed to respect
this constraint. However let us prove that this assumption is unnecessary. Indeed if one
denotes by As,t,c the intersection between source zone s, target zone t and control zone c,
the following gives a prediction for the target values

Ŷt =
∑

s:s∩t6=∅

∑
c | As,t,c | D̂c∑

t′
∑

c | As,t′,c | D̂c

Ys.

Mennis and Hultgren (2006) illustrate this approach with American census data using land
cover auxiliary information coming from manual interpretation of aerial photographs.

3.2.3 Two steps dasymetric weighting

This method aims at relieving the constraint of the ordinary dasymetric weighting that
the auxiliary information should be known at the intersection level, thus allowing a larger
choice of such information. It is assumed here that the information is known at the level
of some control zones which means that the auxiliary information has two components: a
quantitative one and a qualitative one. There is a constraint though on the control zones:
they should be nested within source zones. The �rst step is just an ordinary dasymetric
step using control zones as targets and the auxiliary information on control zones. In
this case, the intersection level is the source-control intersection which is the same as the
control level since controls are nested within sources. The second step performs areal
weighting with the controls as sources (using the controls estimates of the �rst step) and
the original targets as �nal targets. The homogeneity assumption used in the second step
concerns the control level but since control zones are usually smaller than source zones,
the assumption is less constraining. Gregory (2002) presents the implementation of this
approach with historical British census data.
If controls are not nested within sources, the method can be adapted by adding an addi-
tional step of areal weighting to distribute the control information on the control-source
intersections.
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3.3 Regression techniques

The dasymetric weighting schemes have several restrictions: the assumption of proportion-
ality of Y and X, the fact that the auxiliary information should be known at intersection
level and the limitation to a unique auxiliary variable (exceptionally two in the case of
two steps dasymetric). The regression techniques will overcome these three constraints.
Another characteristic of dasymetric method is that when predicting at the level of the
As,t intersection only the areal data Ys within which the intersection is nested is used for
prediction and this will not be the case for regression. In general the regression techniques
involve a regression of the source level data of Y on the target or control values of X. The
regression without auxiliary information of section 3.3.1 can be regarded as an extension
of the areal weighting method since it relies on the �proportionality to area� principle.
The regression with control zones of section 3.3.2 is a regression version of the dasymetric
weighting with control zones of section 3.2.2. The regression with auxiliary information at
target level of section 3.3.3 can be compared to ordinary dasymetric weighting of section
3.2.1.
These regression methods raise some estimation issues in the sense that very often the
target variable is non negative and therefore one would like the corresponding predictions
to satisfy this constraint. In order to solve this issue, people resort sometimes to Poisson
regression (as in Flowerdew et al., 1991), or ordinary least squares with constraints on
the coe�cients (see Goodchild et al., 1993), or lognormal regression (see Goodchild et al.,
1993).

3.3.1 Regression without auxiliary information

A �rst idea discussed in Goodchild et al. (1993) consists in deriving a system of equations
linking the known source values Ys to the unknown target values Yt using an aggregation
formula and an additional assumption of homogeneity of the target variable on the target
zones.
In the case of an extensive variable, the homogeneity assumption allows to allocate Y to
intersection units proportionally to their area yielding the following system

Ys =
∑
t

Ŷs,t =
∑
t

|As,t|
|Tt|

Ŷt

For the case of an intensive variable, the homogeneity assumption is that Y is uniform on
targets and that its weighting system is given by areal weights. This yields the following
relationship between source and target values

Ys =
∑
t

|As,t|
|Ss|

Ŷs,t =
∑
t

|As,t|
|Ss|

Ŷt

These systems are then solved using an ordinary least squares procedure forced through
the origin provided the number of source units is larger than the number of target units.
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This last condition is not satis�ed for disaggregation problems. In that case, one can
adapt the technique by combining it with the use of control zones as in section 3.3.2.

3.3.2 Regression with control zones

Using control zones as in section 3.2.2, Goodchild et al. (1993) propose a two steps
procedure where the �rst step is the technique of section 3.3.1 with controls playing the
role of targets. The number of such control zones is handled by the user and hence can
be forced to be smaller than the number of sources thus relieving the constraint on the
number of targets of section 3.3.1. The assumption of homogeneity on targets becomes
homogeneity on controls hence it not restrictive because the controls are usually built to
re�ect homogeneity zones for the target variable. At the end of the �rst step, one can
recover estimates of the target variable at the control level. Using the the uniformity on
control assumption, one gets from the control level to the control-target level. The second
step in Goodchild et al. (1993) involves a simple aggregation from the control-target
intersections level to the target level with homogeneity weights. Yuan et al. (1998) apply
rather a dasymetric second step which they call �scaling� using the �rst step target variable
prediction as an auxiliary variable, thus enforcing the pycnophylactic property. Reibel and
Agrawal (2006) superimpose a �ne grid on the set of source and target zones. They �rst
compute the proportion of each source zone corresponding to each land cover type and
then regress the target variable (population) at source level on theses proportions. With
the estimated coe�cients, they can derive a coarse grid cell based map of the population
surface. They rescale these estimates to impose the pycnophylatic property. Then with
an aggregation formula they get population estimates for any combination of grid cells,
namely for target regions.

3.3.3 Regression with auxiliary information at target level

This family of methods allow to use more than one auxiliary variable and of di�erent
natures (quantitative or categorical, or a mixture of both). In Flowerdew et al. (1991),
the emphasis is on extensive target variables with a Poisson or binomial distribution (case
1 hereafter) and in Flowerdew and Green (1992), it is on intensive target variables with a
gaussian distribution (case 2 hereafter). In the gaussian case, it is assumed that the target
variable YA on A is a sample mean of some underlying gaussian variable measured on a
number nA of individuals. Therefore the intensive weights are given by (1) with ZA = nA
and are approximated by areal weights when the counts nA are not known. In case 1, we
have Ys,t ∼ P(µs,t), and similarly in case 2 we have Ys,t ∼ N (µs,t,

σ2

ns,t
) where the means

µs,t are in both cases functions of some parameters β and the auxiliary information at
target level Xt. In case 2, moreover, it makes sense to assume that Cov(Ys,t, Ys) = σ2/ns.

With the EM algorithm. Except for a variant in Flowerdew and Green (1992) (see
paragraph 3.3.3), the interpolation problem is cast as a missing data problem considering
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the intersection values of the target variable as unknown and the source values as known
therefore allowing to use the EM algorithm to overcome the di�culty.
The algorithm is initialized with areal weighting estimates for µs,t. The E-step consists in
calculating the conditional expectation of Ys,t given the known values Ys. In case 1, this
yields the following formula

E(Ys,t | Ys) =
µs,t∑
t′ µs,t′

Ys

which yields the following predictor Ŷs,t = µ̂s,t∑
t′ µ̂s,t′

Ys and it is clear that the pycnophylactic

property is satis�ed.
In case 2, the corresponding formula is

E(Ys,t | Ys) = µs,t +
Cov(Ys,t, Ys)

V ar(Ys)
(Ys − µs) = µs,t + (Ys − µs)

where µs is obtained from the µs,t by applying the aggregation formula to the sources
subdivided into the intersections and by taking expectation on both sides yielding

µs = E(Ys) = E

(∑
t

ns,t
ns

Ys,t

)
=
∑
t

ns,t
ns

µs,t. (11)

Therefore the E-step yields the following predictor Ŷs,t = µ̂s,t + (Ys − µ̂s), where the µ̂s,t
come from the previous step and the µ̂s from the estimation version of (11).
One can then check that this step enforces the pycnophylactic property since∑

t:s∩t6=∅

ns,t
ns

Ŷs,t =
∑

t:s∩t6=∅

ns,t
ns

µ̂s,t +
∑

t:s∩t6=∅

ns,t
ns

(Ys − µ̂s) = µ̂s + Ys − µ̂s = Ys.

In the M-step, the intersection values obtained at the previous E-step are considered as
i.i.d. observations from the Poisson P(µs,t) in case 1 and from the gaussian N (µs,t,

σ2

ns,t
) in

case 2. Recall that in both cases, the intersection means are functions of some parameters
β and the auxiliary information at target level Xt plus possibly some information at
intersection level such as the area of the intersections. For example in case 1, Flowerdew
et al. (1991) consider population as target variable and geology as auxiliary information
assuming that the population density will be di�erent in clay areas (λ1) and in limestone
areas (λ2) so that µs,t = λt | As,t |, where λt is either λ1 or λ2 depending on whether
target zone t is in the clay or the limestone area. One then performs maximum likelihood
with a Poisson regression in case 1 and a weighted least squares in case 2.

Without the EM algorithm. In case 2, Flowerdew and Green (1992) describe a
simpli�ed alternative version in the case when one is ready to make the uniform target
zone assumption. Namely, since the auxiliary information X is available at target zone
level, it does not hurt to assume µst = µt. Let XT denotes the T × p design matrix where
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p is the number of explanatory factors in X and T the number of targets, µS denote the
S × 1 vector of source values, µT denote the T × 1 vector of target values, W denote
the weights matrix whose elements are given by ws,t = ns,t

ns
. If we combine the following

information:

• the relation between Y and X at target level:

µT = XTβ,

• the aggregation equation µs =
∑

t
ns,t

ns
µs,t

• the uniformity at target level assumption µst = µt,

we get the following regression equation

µS = WXTβ (12)

between target means at source level and auxiliary information at target level. Using
the data at the source level YS and equation (12), we can estimate the parameters β by
weighted least squares with weights ns. Then µ̂t = Xtβ̂ is a prediction for Yt.

Let us consider again the toy example de�ned earlier to illustrate this technique adapted
to the case of Poisson regression. Figure 8 (resp 9) compares the results of this regression
technique with the dasymetric method based on the same auxiliary information for Y1

(resp Y2). For Y1, the regression method is better than the dasymetric with a ratio of
sum of squared errors of 12 percent. For Y2 however, the dasymetric is better than the
regression with a ratio of sum of squared errors of 82 percent. The reason is that indeed
the variable Y2 has been constructed to be almost proportional to X (which is in line with
the spirit of dasymetric) whereas Y1 is not. Note that the dasymetric method uses more
information than the regression method because it uses the auxiliary value at intersection
level whereas the regression method uses it at target level.

Alternative with control zone. In case 2, Flowerdew and Green (1992) consider
another alternative with a set of control zones assuming that auxiliary information is at
control zone level and that it is reasonable to believe that means are uniform on controls
µs,c = µc. The same arguments as above then yield the equations

µC = XCβ (13)

µS = WXCβ (14)

where XC denotes the C × p design matrix with C being the number of control zones, µC
denotes the C × 1 vector of control values, and W being the weight matrix at the source-
intersection-control levels. Using the data at the source level and equation (14), we can
estimate the parameters β by weighted least squares with weights ns. Then µ̂C = XC β̂
and using the aggregation equation for target and control, one gets that Ŷt =

∑
c
nc,t

nc
µ̂c is

a prediction for Yt. Note that one needs two sets of weights ns,c

ns
and nc,t

nc
.
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3.4 A short overview of more elaborate methods

3.4.1 Other regression methods

In this section, we brie�y describe alternative regression methods. A detailed development
of these more sophisticated techniques would require much more tools and notations.
Because one of our objectives is to give priority to the practitioner point of view, we
do not develop them in this presentation but just give some of the main references.
Murakami and Tsutsumi (2011) combine Flowerdew and Green EM algorithm approach
with a spatial econometrics regression model to take into account spatial autocorrelation
at the intersection unit level. Mugglin and Carlin (1998) propose a hierarchical bayesian
version of the Poisson regression method of Flowerdew et al. (1991) with a Markov chain
Monte Carlo estimation step and illustrate it on disease counts. The advantage of the
hierarchical bayesian approaches is that they provide full posterior distribution estimates
enabling accuracy evaluation but their approach requires that the spatial support of the
auxiliary information be nested within both targets and source units. Mugglin et al.
(2000) extend this approach introducing Markov random �eld priors on the source and
target mean parameters: this allows them to introduce some spatial autocorrelation in
the model. They illustrate their approach with population counts reallocation with 39
sources and 160 targets. Huang et al. (2002) introduce multiresolution tree structured
autoregressive models.

3.4.2 Smoothing techniques

Initially meant for visual display and exploratory analysis, smoothing techniques can solve
the point-to-point or the areal-to-point interpolation problems. By laying a �ne lattice
over the study area and predicting the target variable at each lattice node, they enable
mapping the target variable. However they can be used as an intermediate step towards
the areal-to-areal interpolation in the sense that once a point prediction is obtained, it
is enough to use aggregation rules (integrate the point prediction) to obtain target zones
predictions.
In this sense, choropleth mapping is a coarse interpolation technique which amounts, for
the intensive variable case, to allocate the areal data value to any point within the support
of the corresponding source unit.
Martin (1989) and Bracken and Martin (1991) propose an adaptive kernel density estima-
tion from the target variable values collapsed at the centroids of the source zones. This
method is not pycnophylactic. A similar kernel based method is described in Grasland
et al. (2000) with a discussion of the relationship between the choice of the bandwidth
parameter and the level of aggregation of the initial information.
Tobler (1979) introduces a spline based approach for areal-to-point interpolation. His
predictor is a discrete approximation (�nite di�erence algorithm) of the solution to an
optimization problem de�ning a type of interpolating spline with a smoothness criterion
based on second partial derivatives. He includes additional constraints such as non-
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negative point predictions and mass-preservation. His choice of smoothness criterion has
been criticized by Dyn et al. (1979). In contrast with Tobler's method which requires
a regular grid of prediction points, Rase (2001) adapts Tobler's procedure replacing the
regular grid by a triangulation of the space based on the observed centroids locations, and
using some kernel smoothing with inverse distance weighting instead of splines.
Kyriakidis (2004) casts the problem into a geostatistical framework. Indeed the reverse
problem of point-to-area interpolation is solved by the block Kriging in geostatistics which
is classical due to mining practices: it is of interest for example to predict the total ore
content of an area knowing the point data values. Kyriakidis (2004) shows that the
area-to-point problem can be solved with similar methods but requires the modeling
of all area-to-area and area-to-point covariances. The resulting prediction satis�es the
pycnophylactic property. Moreover he proves that choropleth mapping, kernel smoothing
and Tobler's pycnophylactic method can be viewed as particular cases of his framework,
corresponding to various ways of specifying the covariance model (choropleth mapping
corresponding to the absence of correlation at the point support level). A very interesting
aspect of the method is that it o�ers a measure of reliability (standard error of each
point prediction). The method can accomodate constraints such as maximum-minimum
allowable value or prescribed value of the target variable: for example, zero population
value over water bodies or high altitude regions. The method can handle large problems,
possibly using moving local neighborhoods. Yoo et al. (2010) adapt it to accomodate
more general constraints such as non-negativity. However estimating point covariance
from areal data is di�cult: it is possible for example with a maximum likelihood procedure
based on multivariate gaussian assumption. Liu et al. (2008) propose to combine this
approach with regression in an area-to-point residual kriging approach which can be used
to disaggregate the regression residuals. Other generalizations can be found in Kelsall
and Wake�eld (2002) with log-normal kriging.

4 Conclusion

We have described the main classes of methods for the area-to-area spatial interpola-
tion problem including proportional weighting schemes also called dasymetric methods,
smoothing techniques and regression based interpolation. As we pointed out in the intro-
duction, we have focused on the basic methods which are more likely to be adopted by
practitioners, and a summary of the main characteristics of these methods can be found
in Table 1.
We have not addressed in this review the case of categorical target variable. Chakir (2009)
propose a technique for reallocating multinomial type data (namely land use shares) given
sampled information at a disaggregated level and observation of aggregated land use shares
with a generalized cross-entropy approach.
In terms of implementation of these methods in usual softwares, there is not much avail-
able. Bloom et al. (1996) describe their implementation of areal weighting from Flow-
erdew et al. (1991) with Mapinfo. With R, it is possible to use the �pycno� package by C.
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Brundson. From our experience with some real data cases, we believe that in large size
real applications, the more sophisticated methods are not yet manageable because of size
problems and are far too complicated to communicate to the public o�ces typical users.
Simplicity and convenience considerations are certainly the prime arguments for the best
choice.
As mentioned in the introduction, one motivation of this paper was to be a �rst step
for a further study of the comparative precision of these prediction methods. Let us
brie�y summarize what can be found in the literature so far. Overall one �nds two types
of point of views: methodological or empirical. Unfortunately, there is not much from
the methodological point of view since we only found the work of Sadahiro (2000) who
considers the point-in-polygon approach and compares it to the areal weighting scheme.
He uses a counting process with a �xed number of i.i.d. points with a given density to
model the target variable distribution. The target zone is modeled with a �xed shape but a
random position. The sources realize a tiling partition of the space with geometric shapes
(considered as unbounded to avoid boundary problems). The last step of the evaluation is
of an empirical nature. He �nds that the accuracy of point-in-polygon depends upon the
target zone size (the bigger the better) and the concentration of the underlying distribution
of points. One needs a concentration of points around the representative point in an area
of at most 12-15 percent of the total for the point-in-polygon to compare favorably with
the areal weighting method, which is quite unrealistic in applications. He also studies the
optimal location of representative points which is found to be at the spatial median of
the source zone.
The rest of this literature contains many papers of an empirical nature. The comparison of
areal weighting with the alternative dasymetric methods is found in Reibel and Bufalino
(2005), Voss (1992), Mennis (2006), Fisher and Langford (1995), Gregory (2002). The
dasymetric methods are always found to have better performance than the simple areal
weighting with reported improvements up to 71 per cent in relative mean square error
(Reibel and Bufalino, 2005).
The comparison of regression methods with several alternatives is found in Flowerdew
and Green (1992), Flowerdew et al. (1991), Reibel and Agrawal (2007), Gregory (2002).
Flowerdew et al(1991) �nd that the EM algorithm regression for the Poisson or binomial
models performs better than areal weighting by factors of 50− 60 per cent (Poisson case)
and 25− 55 per cent (Binomial case) in target deviance. Murakami and Tsutsumi (2011)
compare their spatial regression method to more classical regression approaches and �nd
that their spatial lag model performs better. Overall regression methods are found to
perform better than dasymetric methods.
For the smoothing methods, Goodchild and Lam (1980) compare areal weighting and
Tobler's pycnophylactic interpolation and they do not report any signi�cant advantage
for the smoothing method. This may be due to the fact that �count density gradients
are not in fact typically smooth up to and beyond tract boundaries� (from Reibel and
Agrawal, 2007).
Finally, it is important to point out that the only methods that come along with an accu-
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racy measure are area-to-point kriging and the hierarchical bayesian methods. We think
that more attention should be paid to systematic comparisons of the relative accuracies
of all these methods in the future.

5 Annex: Ordinary dasymetric weighting for intensive

target variable and extensive auxiliary variable

For an intensive target variable with weights given by wA = ZA

ZΩ
and an extensive auxiliary

quantitative variable X, we de�ne the corresponding extensive variable Ỹ using (3) by

ỸA = ZAYA and intensive variable ˜̃XA = XA

ZA
. Using (8) we have

ˆ̃Y s,t =
Xs,t

Xs

Ỹs =
Xs,t

Xs

ZsYs,

and therefore

Ŷs,t =
ˆ̃Y s,t

Zs,t
=
Xs,t

Xs

Zs
Zs,t

Ys =
Xs,t/Zs,t
Xs/Zs

Ys =
X̃s,t

X̃s

Ys,

which is similar to (8). After the combination step, we get

Ŷt =
∑

s:s∩t6=∅

Zs,t
Zt

Ŷs,t =
∑

s:s∩t6=∅

Zs,t
Zt

Xs,t

Xs

Zs
Zs,t

Ys =
∑

s:s∩t6=∅

Xs,t

Xs

Zs
Zt
Ys.
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Figure 5: Toy example. Data on cells. Y 1 (left), X (central), Y 2 (right)
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Figure 6: Toy example. Target variable Y1: Areal weighting (left) and dasymetric with
X (right)
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Figure 7: Toy example. Target variable Y2: Areal weighting (left) and dasymetric with
X (right)
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Figure 8: Toy example. Target variable Y1: Dasymetric (left) and Regression (right)
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Figure 9: Toy example. Target variable Y2: Dasymetric (left) and Regression (right)
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