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Abstract

We develop a model where a genetic test reveals whether an individual has a low or high
probability of developing a disease. A costly prevention e¤ort allows high-risk agents to
decrease this probability. Agents are not obliged to take the test, but must disclose its
results to insurers, and taking the test is associated to a discrimination risk.

We study the individual decisions to take the test and to undertake the prevention
e¤ort as a function of the e¤ort cost and of its e¢ ciency. If e¤ort is observable by
insurers, agents undertake the test only if the e¤ort cost is neither too large nor too
low. If the e¤ort cost is not observable by insurers, moral hazard increases the value
of the test if the e¤ort cost is low. We o¤er several policy recommendations, from the
optimal breadth of the tests to policies to do away with the discrimination risk.

JEL Codes: D82, I18.
Keywords: discrimination risk, informational value of test, personalized medecine.



1 Introduction

�Increasing the focus on prevention in our communities will help improve America�s
health, quality of life and prosperity. For example, seven out of 10 deaths among
Americans each year are from chronic diseases (such as cancer and heart disease), and
almost one out of every two adults has at least one chronic illness, many of which
are preventable�. This statement by the US Centers for Disease Control and Preven-
tion (CDC) reveals the crucial and increasing role played by prevention for health care
systems worldwide.

An important characteristic of prevention actions is that, while many individuals
may undertake prevention and thus incur its costs, the health and �nancial bene�ts
generally only accrue to the individuals who are at risk of developing the disease or
injury. There is evidence that, for many important health risks, individuals di¤er sig-
ni�cantly in how e¢ cient prevention is for them. For instance, the same CDC write
that �Several genetic disorders are associated with increased risk of premature heart
attacks. A relatively common disorder is familial hypercholesterolemia, which causes
high levels of "bad" cholesterol (low density lipoprotein, or LDL cholesterol) beginning
at birth. One out of 500 people in the United States may inherit this condition. Early
detection of this disorder can help reduce the burden of heart disease in the person with
hypercholesterolemia as well as in their family members.�

This in turn means that sizeable welfare gains would be reaped if it were possible
to identify individual characteristics associated to a larger e¢ ciency of prevention. One
way to uncover those characteristics is through genetic tests. The main thesis of Collins
(2010) (as well as other books, such as Davies [2010]) is precisely that genetic testing
is ever more reliable and allows not only to be better informed about individual health
risks, but also to use this information to individually tailor prevention. Collins insists
that improvement in the assessment of the risk of occurrence of a disease very often
allows the individual to take preventive action in order to prevent this disease from oc-
curring. �There are many diseases such as cystic �brosis or PKU, for which a particular
biochemical or DNA test result makes a very strong prediction about the likelihood of
illness, and interventions are available�(page 802). There is actually a whole range of
such prevention activities: �institution of drug therapies; (...) special diets; (...) surgery
or other options" (page 815). As Collins writes quoting a patient �I know early in my
life something I am substantially predisposed to. I now have the opportunity to adjust
my life to reduce those odds�(page 1070).

The objective of our paper is to try and assess the impact of o¤ering a (genetic)
test to individuals on both the private health insurance market and on the welfare of
individuals. More precisely, we aim at understanding under what circumstances such a
test would be voluntarily taken by individuals, what the consequences of the availability
of testing would be on the extent to which individuals undertake prevention e¤orts, and
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whether such a test would increase individual welfare. The simple model we develop
to answer these questions has the main ingredients of Collins�s story. Agents di¤er
in their risk to develop a disease, with two types (L and H) corresponding to two
levels of risk in the general population: a fraction � has the high probability pH of
developing the disease while the remainder has the low probability pL < pH . People
are born uninformed about their individual risk level, but can undertake a (genetic or
otherwise1) test in order to assess (without any error) whether they are of a low or high
type (in the former case, we talk about a negative test, versus a positive test in the latter
case). After the testing phase, agents decide whether to undertake a prevention e¤ort,
at a cost, in order to decrease the probability of occurrence of the disease. That is, we
model primary prevention (as opposed to secondary prevention, which does not a¤ect
the probability that the disease occurs, but decreases its severity).2 Collins (2010)
provides many examples of both primary and secondary prevention (�discoveries are
providing powerful new insights into both treatment and prevention�, page 1084).

We assume that prevention is e¢ cient at reducing the risk of illness only if the
individual�s test is positive (i.e., if he is of a high type). One can give several examples
of tests/illnesses with such features, ranging from prophylactic mastectomy in case of
mutated BRCA1 gene, to �intense medical surveillance and removal of polyps (that)
can be lifesaving for those at high risk�of colon cancer (page 1853). One reason why
prevention e¤ort may be e¢ cient only if an individual has a high type is that �it is a
combination of the genes that you have inherited and the environment that you live
in that determines the outcome. Hence the common saying, �genes load the gun, and
environment pulls the trigger�(page 1098). For instance, �Participants in the lifestyle
intervention group reduced their risk of developing full-blown diabetes by 58 percent.�
(page 1313). For macular degeneration, �it became clear that almost 80 percent of the
risk could be inferred from a combination of (...) two genetic risk factors, combined
with just two environmental risk factors (smoking and obesity)�(page 1169). Another
reason why e¤ort may be e¢ cient for high risk only is that it has to combine several
approaches, including drug therapies: �In many instances, dietary modi�cation turns
out to be insu¢ cient (...) Thus drugs in the class known as statins have become the
most widely prescribed in the developed world�(page 1313).

We assume perfect competition between pro�t-maximizing insurers, who observe
whether individuals have taken the test, and the result of the test. On the other hand,
insurers cannot force individuals to undertake the test, and/or the prevention e¤ort.
This corresponds to the situation labeled �disclosure duty� by Barigozzi and Henriet
(2011), and to the legal environment in New Zealand and the United Kingdom. Observe

1Alternatively, the �test�could be an exploration of family history, which Collins (2010, page 1084)
indeed dubs a �free genetic test�.

2We thus do not cover the illnesses that are entirely driven by genetic conditions and/or for which
there is no known prevention e¤ort (such as, for instance, Huntington desease).
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that this regulation is simply an extension to genetic testing of the generic regulation
for insurance existing in most countries : when buying insurance (health or otherwise),
buyers have to disclose the risk factors that they are aware of. For instance, health
insurers may ask questions about the family history of the patient, and patients who
lie or fail to disclose important elements may be penalized or even see their insurance
contract made void.

We also assume, in line with existing conditions, that genetic insurance (i.e., insur-
ance against the risk of a positive test) is not available in the market. Taking the test
then corresponds to a lottery, since it means (under disclosure duty and with separat-
ing insurance contracts) that the agent ends up with probability � with the contract
designed for high types, and with probability 1 � � with the contract designed for the
low type, rather than with the contract designed for uninformed agents and based on
the average risk �pH + (1 � �)pL. In other words, taking the test means supporting a
discrimination risk. We already know from previous literature (Hirshleifer, 1971) that,
in a classical von Neumann-Morgenstein expected utility framework, risk averse agents
will not undertake the test in the simple setting where the test does not allow to better
calibrate prevention e¤orts.

We then add the possibility for the individuals to exert some primary prevention
e¤ort in order to decrease their probability of bad health from pH to the lower p1H .

3

The availability of a prevention strategy should give stronger incentives to undertake
the test. Whether individuals make the prevention e¤ort and thus decrease their risk
is also of interest to the insurers. An open question is whether this prevention e¤ort
is observable by insurers. Prevention is easily observable when it takes the form of
surgery, or even drug therapy. It is much more di¢ cult to observe if it consists of
lifestyle changes such as dietary modi�cations or exercise. We thus cover the two cases,
treating �rst the situation where the prevention is observable, and then the case where
it is not observable by insurers. Throughout our analysis, we stress two dimensions of
the prevention e¤ort: its cost for the agent, and its e¤ectiveness, i.e. the amount by
which it reduces the risk of someone whose test is positive.4

We �rst study the benchmark situation where the e¤ort is observable, veri�able and
contractible by the insurers. Even in this simple situation, our results reveal that the
value of information given by the test has an interesting relationship with the cost of
the preventive actions. More precisely, we �rst point out that the genetic test generates
a valuable information only for intermediate levels of the prevention cost. When the
prevention e¤ort cost is low, even uninformed people (who do not take the test) make

3See Barigozzi and Henriet (2011) for a comparison of legal environments in a setting with observable
secondary prevention.

4We assume that the prevention e¤ort is useless for an agent of type L. This assumption is made
to simplify the analysis �our results would carry through qualitatively to the case where prevention is
e¤ective for type L as well, provided that the risk decreases more for type H than for type L.

3



the prevention e¤ort, although it is e¢ cient only with probability �. In such a case,
the genetic test precisely allows to forego the e¤ort (and its cost) if the test is revealed
negative. The value of the test, de�ned as the di¤erence in ex ante utility between
taking the test or not, is then increasing with the e¤ort cost, and may become positive
if both the cost and e¢ ciency of e¤ort are not too low. For intermediate values of the
e¤ort cost, agents undertake the prevention e¤ort only if they have a positive test.5 The
test then allows them to undertake the prevention e¤ort, and the value of the test is
decreasing in the e¤ort cost. This value if positive provided that the e¤ort cost is not
too large. Finally, when the e¤ort cost is large, even high type agents do not undertake
the e¤ort, and the value of the test is always negative since the only impact of taking
the test is to expose agents to the discrimination risk. As is intuitive, the value of the
test increases with the e¢ ciency of the prevention e¤ort.

We then turn to the case where e¤ort is not observable by insurers. Full insurance
would induce agents not to provide any e¤ort: we are facing a moral hazard problem,
solved by insurers by under-providing insurance.6 A naïve intuition would suggest
that this under-provision, by reducing the utility level with e¤ort (compared to the
perfect information case) is detrimental to the value of the test, whose only raison
d�être is to provide information allowing to calibrate the prevention e¤ort to one�s own
circumstances. We show that this intuition does not hold in general. More precisely,
this intuition is correct for the middle range of values of the e¤ort cost, where the e¤ort
is undertaken only in the case of a (positive) test. But it does not hold when the e¤ort
cost is low enough that prevention is undertaken both if uninformed or if tested positive.
In that case, we show that the value of the test is actually larger with than without
moral hazard, because moral hazard degrades more the utility when the test is not taken
(and e¤ort is undertaken) than when it is taken (and e¤ort undertaken only in the case
of a positive test). Roughly, this is true because insurers have to ration coverage more
to uninformed types than to high types in order to induce them to undertake the e¤ort.

Comparing further the cases with and without moral hazard, we obtain two main
results. First, for a given e¢ ciency level of prevention, the interval of (intermediate)
values of the e¤ort cost which are inducing agents to take the test (i.e., for which the
value of the test is positive) moves to the left as we introduce moral hazard consider-
ations. That is, quite counter intuitively, there exist combinations of e¤ort cost and
e¢ ciency such that the genetic test is undertaken if and only if e¤ort is not observable

5This corresponds to the following two observations by Collins (2010): �Information about an ele-
vated genetic risk may cause people to take actions they otherwise would have ignored� (page 1313),
and �She was aware that she was following diet and exercise routines that she probably should have
adhered to anyway, but she found the additional genetic information helpful in inducing a greater sense
of urgency to make these changes�(page 1461).

6For instance, Dave and Kaestner (2006) ��nd evidence that obtaining health insurance reduces
prevention and increases unhealthy behaviors among elderly men.�
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by insurers! Second, we �nd occurrences where the test is undertaken for lower val-
ues of the e¢ ciency of e¤ort when this e¤ort is unobservable than when it is observed
by insurers. Both results are due to the fact that the value of the test is larger with
than without moral hazard when the e¤ort cost is su¢ ciently low that even uninformed
agents undertake the prevention e¤ort.

Finally, we assess the impact of the various ingredients of our model on ex ante
(expected) utility or welfare. We start from the situation where there is no insurance,
no genetic test and no prevention e¤ort available, and we measure the impact on welfare
of allowing each of these three ingredients as a function of the prevention e¤ort cost.
We also show that moral hazard is always detrimental to both the prevention e¤ort
decision and ex ante utility of agents. Observe that, in the light of the results presented
above, this is not a foregone conclusion. For certain combinations of prevention e¤ort
cost and e¢ ciency, the introduction of moral hazard considerations changes the testing
and e¤ort decisions of agents. At �rst sight, such a change could then be bene�cial to
the prevention decision and generate a larger welfare for agents if moral hazard were
to induce agents to test while uninformed agents do not undertake the e¤ort. We show
that this situation never happens because, for moral hazard to induce the test, the e¤ort
cost need to be low enough that uninformed agents do undertake prevention.

The welfare analysis allows us to make several policy recommendations. First, tar-
geted genetic tests (tailored for a speci�c disease) are to be encouraged rather than
a single, all encompassing test, since the value of the information may be positive for
certain health risks and negative for others. Second, our analysis provides no ground
for policies that would indiscriminately increase the prevention e¤orts by all agents (for
certain con�gurations of prevention e¢ ciency and costs, there is already too much e¤ort
at equilibrium). Third, since the presence of a discrimination risk explains why there is
less than optimal testing in our model, it is tempting to recommend that governments
do away with this risk. We study three possible ways to proceed and we show that two
of them actually decrease welfare! We recommend the creation of genetic insurance that
would be made mandatory in order to take the genetic tests. We do not recommend two
alternative policies: the strict prohibition of the use of genetic information by insurers
(which creates an adverse selection problem if agents are aware of their genetic risk
when buying health insurance), and requiring proof of health insurance when taking
the tests (since it would blunt incentives to test and to make the e¤ort when socially
optimal). Finally, although moral hazard may have some welfare enhancing properties
(when it decreases a prevention level that is socially too large), its overall impact on
welfare is always negative. We then call for the enlargement of the �disclosure duty�
approach to the prevention e¤orts, as well.
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Related literature
This paper is part of a growing literature dealing with genetic testing and the value

of information. An implication of the seminal paper by Hirshleifer (1971) is that, if
health risk is exogenously determined (i.e., there is no prevention e¤ort available), the
value of the information brought by the test is negative, because individuals are faced
with a discrimination risk. Doherty and Thistle (1996) have further shown that the
private value of information is non-negative only if insurers cannot observe consumers�
information status or if consumers can conceal their informational status.7 Several
papers have extended this analysis to settings with prevention e¤orts.8 As pointed out
in Ehrlich and Becker (1972), preventive actions can be primary or secondary.

Secondary prevention (or self-insurance) is analyzed in Barigozzi and Henriet (2011)
and Crainich (2011). Barigozzi and Henriet (2011) compare several regulatory ap-
proaches used in practice, from laissez-faire to the prohibition of tests. They show that
policyholders are better o¤ under a �disclosure duty� regulation, which is the one we
study in this paper and where policyholders cannot been forced by insurers to under-
take the test, but are obliged to disclose its results when known. The superiority of this
regulation method is mainly due to the fact that it does not create any adverse selection
problem for the insurers, while allowing to use the information provided by the test to
self insure against the damage.9 Crainich (2011) points out that the consequences of reg-
ulating the insurers�access to genetic information crucially depend on the nature of the
equilibrium in the health insurance market �whether pooling or separating. Crainich
(2011) also analyzes conditions to ensure that the genetic insurance market suggested
by Tabarrok (1994) induces the optimal level of secondary prevention. We come back
to this important point in section 6.

Primary prevention is considered in Doherthy and Posey (1998) and Hoel and Iversen
(2002). Both papers assume that policyholders are not required to inform insurers about
their test results and thus focus on the interplay between risk discrimination and adverse
selection. Our framework is closer to Hoel and Iversen (2002). We share the assumption
that only high risk people can reduce their health risk thanks to primary prevention
actions, but we di¤er when they assume that uninformed policyholders never undertake
preventions while we explore all cases in our paper. Also, Hoel and Iversen (2002) allow
for both compulsory and voluntary (supplementary) health insurance.

The main di¤erence between this paper and all the articles which introduce pre-
vention (primary or secondary) is that we assume that primary prevention (especially

7Rees and Apps (2006) study how redistributional policies can counteract the discrimination risk in
order to induce all buyers to supply their genetic information to the insurers.

8Another way to make testing more agreeable to individuals is to introduce a �repulsion from chance�
component to their utility, as in Hoel et al. (2006).

9Hoy and Polborn (2000) and Strohmenger and Wambach (2000) also study the impact of genetic
tests on the health insurance market in the presence of adverse selection.
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when it consists of lifestyle improvements such as exercising or eating healthy food) is
not observable by insurers, which gives rise to a moral hazard problem solve by providing
partial insurance coverage.10

2 Setting and notation

The economy is composed of a unitary mass of individuals. Each individual may be sick
with some probability, with sickness modeled as the occurrence of a monetary damage
of amount d. Individuals belong to one of two groups according to their risk: a fraction
� of individuals are of type H and have a high probability, p0H , of incurring the damage
(with 0 < � < 1), while the remaining fraction 1 � � is of type L and has a lower
probability, pL (with 0 < pL < p0H < 1). Therefore, the average risk in the society is
given by p0U = �p

0
H + (1� �)pL.

Individuals are not aware of the group they belong to (i.e., of their risk level) unless
they take a genetic test.11 The test is assumed to be costless and perfect, in the sense
that it tells the individual who takes it with certainty whether he is of type L or H.12

After having taken this test or not, individuals choose whether to exert some prevention
e¤ort. Unlike Barigozzi and Henriet (2011), we consider primary prevention �i.e., an
e¤ort which decreases the probability that the damage occurs, but does not decrease the
amount of the damage. For simplicity reason, we assume that the prevention decision
is binary and that the e¤ort cost (normalized to zero if no e¤ort is undertaken) c is
measured in utility terms rather than in money. The assumption of a utility cost �ts
better the behavior modi�cation type of prevention e¤ort, which is also the type of
prevention that is the most di¢ cult to observe for insurers. We further assume that
prevention has no e¤ect for a low risk individual, while it decreases the risk of a high
risk individual to p1H , with pL � p1H < p0H . We capture the prevention e¢ ciency through
� with � = p0H � p1H . The parameter � can take any value between zero (prevention
has no impact on risk, p1H = p0H) and �� = p0H � pL (prevention decreases the risk of
a type H agent to the level of a low risk agent, p1H = pL). The two characteristics of
the prevention technology, its cost c and e¢ ciency �, will play an important role in our
analysis.

10A recent exception is the paper by Filipova and Hoy (2009), which focuses on surveillance and more
precisely on the moral hazard risk of over-consumption of surveillance when �nancial costs are absorbed
by the insurance pool. Also, they concentrate on the consequences of information on prevention, while
we endogenize both the prevention and testing decisions.
11To shorten the text, we sometimes write that an individual is of type U when he is uninformed

about his own type and thus believes that he has type H with probability � and type L with probability
1� �.
12The cost of genetic tests decreases exponentially and is believed to cross the $1,000 mark within a

few years. See Collins(2011) and Davies (2010).
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We now come to the description of the insurance market. We assume that there
is a competitive fringe of pro�t-maximizing insurers. Insurers o¤er contracts that are
composed of a premium � to be paid before the risk realization, and of an indemnity (net
of the premium) I paid to the individual once and if the risk has materialized. Contracts
can of course be conditioned upon what the insurers observe. Contracts are o¤ered and
bought after the individuals have obtained information from the test (provided they
chose to take it), but before they exert any prevention e¤ort.

The timing of the model consists in four sequential stages: (1) insurers o¤er con-
tracts, (2) agents decide whether to take the test or not, (3) they choose one insurance
contract (or remain uninsured), and (4) they then exert or not some prevention e¤ort.

In the rest of the paper, we compute and compare the equilibrium allocations de-
pending upon what is observed by the insurers. Section 3 studies the simplest scenario,
where the insurers observe both whether an individual has taken the test or not, the
result of the test, and whether the individual exerts a prevention e¤ort or not. E¤ort
is both observable, veri�able and contractible, so that insurers are allowed to condition
the contract they o¤er on both the test result (when one is taken) and the prevention
e¤ort. Section 4 assumes that e¤ort is not observable or contractible, so that insurers
face a moral hazard problem. Section 5 studies the impact of introducing moral hazard
on testing and prevention. Section 6 investigates the welfare characteristics of the equi-
librium and discusses the role of the discrimination risk and how to move closer to the
�rst best allocation. Section 7 concludes and presents policy recommendations.

3 Perfect information

In this section, insurers can observe all relevant information. This allows them to
condition the contracts they o¤er on whether a test has been taken, its results and
whether e¤ort is provided or not. We then start by describing the contracts o¤ered by
the insurers, and we then move to the individuals�decisions of whether to test and to
make a prevention e¤ort.

3.1 Contracts o¤ered by the insurers

With perfect information, insurance contracts can be conditioned on both the intrinsic
risk of the individual (low, high or average if the individual has not taken the test)
and on whether the individual exerts e¤ort. By assumption, prevention has costs but
no bene�t when the individual is revealed by the test to be of a low type, so that
the contracts o¤ered to type L agents entail no prevention e¤ort. Competition forces
insurers to o¤er actuarially fair contracts, so that individuals prefer full insurance at
these actuarially fair terms. Insurers may then o¤er at most �ve contracts.
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One contract is destined to the low type agents (i.e., those who have taken a test
whose result has been negative, and who thus exert no e¤ort): the premium is denoted
by �L and the indemnity (net of the premium) by IL. The zero-pro�tability constraint
together with full coverage impose that

�L = pLd;

IL = (1� pL)d:

The expected utility of a low type agent buying this contract is then given by

UL = (1� pL)v(y � �L) + pLv(y � d+ IL)
= v(y � pLd) � v(cL);

where v(:) is a classical von Neumann Morgenstein utility function (v0(:) > 0; v00(:) < 0)
with y the individual�s exogenous income. We then denote by cL the consumption level
of a low type agent.

The second contract will be sold to the high type agent who is not exerting any
e¤ort. The same analysis as above results in

�0H = p0Hd;

I0H = (1� p0H)d;

and in an individual�s utility of

U0H = (1� p0H)v(y � �0H) + p0Hv(y � d+ I0H)
= v(y � p0Hd) � v(c0H);

where the superscript 0 indicates that the agent makes no e¤ort.
The third contract is aimed at the high type agent who is exerting e¤ort. We then

obtain that

�1H = p1Hd;

I1H = (1� p1H)d;

with a resulting individual utility of

U1H = (1� p1H)v(y � �1H) + p1Hv(y � d+ I1H)� c
= v(y � p1Hd)� c � v(c1H)� c;

where the superscript 1 indicates that the agent makes a prevention e¤ort. Observe
that the two di¤erences between U1H and U0H are the lower risk (recall that p1H � p0H)
and the utility cost of e¤ort c.
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Insurers also devise contracts to be sold to agents who are not taking the test and
not exerting any e¤ort. The risk level of these agents is given by

p0U = �p
0
H + (1� �)pL;

so that they are o¤ered a contract with

�0U = p0Ud;

I0U = (1� p0U )d;

which results in an individual�s utility level of

U0U = (1� p0U )v(y � �0U ) + p0Uv(y � d+ I0U )
= v(y � p0Ud) � v(c0U ):

Finally, the �fth contract is devised for the agent who is not taking the test but is
exerting e¤ort. The risk of this agent is given by

p1U = �p
1
H + (1� �)pL;

so that he is o¤ered a contract with

�1U = p1Ud;

I1U = (1� p1U )d;

and a corresponding individual�s utility of

U1U = (1� p1U )v(y � �1U ) + p1Uv(y � d+ I1U )� c
= v(y � p1Ud)� c � v(c1U )� c:

We now turn to the contract chosen by the agent, i.e. whether they take the test
and perform some prevention. Agents �rst choose whether to test, observe the result
and then decide whether to exert e¤ort. We then proceed backwards, solving �rst for
the prevention decision before looking at the testing decision.

3.2 The choice of prevention

We �rst look at agents who have taken the test in the �rst stage of the game. These
agents know with certainty (since the test is always correct) whether they are of type
L (negative test) or H (positive test). Agents of type L have no incentive to perform
the e¤ort and so buy the contract (�L; IL) giving them a utility level of UL.13 Agents

13 It is straightforward that agents prefer to be fully insured at an actuarially fair rate rather than not
buying any contract and shouldering their risk alone (Mossin 1968).
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of type H have the choice between two contracts (with and without e¤ort) and choose
the contract they prefer by comparing the utility level attained under the two contracts.
Then, they buy the contract with e¤ort provided that

U1H > U
0
H

, v(c1H)� c > v(c0H)
, c < cmax � v(c1H)� v(c0H): (1)

Not surprisingly, this condition imposes an upperbound on the cost of e¤ort. Observe
that, if this condition is satis�ed, then no insurance �rm will propose the no-e¤ort
contract (�0H ; I

0
H) at equilibrium. If one �rm were to do so, then another �rm would

propose the e¤ort contract (�1H ; I
1
H � ") with " small, would attract the patronage of all

H type, and would make a strictly positive pro�t.
We now look at agents who have decided not to take the test. These agents do

not know their true type, but only that they are of average type U . They choose the
contract specifying e¤ort o¤ered by insurers to type U if it gives them a higher utility
level than the same contract without prevention�i.e. if

U1U > U
0
U ;

, v(c1U )� c > v(c0U )
, c < cmin � v(c1U )� v(c0U ): (2)

We can apply the same reasoning as above to show that, if it is individually optimal
for an individual who has not taken the test to make a protection e¤ort (resp., not
to make an e¤ort), then only the corresponding contract (�1U ; I

1
U ) (resp., the contract

(�0U ; I
0
U )) will be o¤ered at equilibrium by private �rms to this individual.

There are two reasons why cmin < cmax if � > 0. First, as the cost of e¤ort does
not depend on the type, it is always e¤ective if type H, but not always e¤ective if type
U . Second, due to the higher actuarial premium paid by policyholders of type H, they
are characterized by a lower consumption, so that their marginal utility is higher. They
thus gain more than average type U from the lower premium made possible by the
prevention e¤ort.

Finally, it is easy to see that, if condition (1) is not satis�ed, then no agent chooses
to exert e¤ort at equilibrium, and our model boils down to a special case of Hoel et al.
(2002).

We then have the following result:14

Result 1 Depending on the cost of prevention c, we are in one of the following three
cases:
14To simplify notation, we write cmin and cmax rather than cmin(�) and cmax(�).
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a) c < cmin: all individuals who have chosen not to take the test buy a contract
prescribing prevention e¤ort, as well as agents who have taken a test and discovered
that they belong to the high risk type.

b) cmin < c < cmax: only individuals who have taken the test and who are of a high
risk type do buy a contract prescribing prevention.

c) c > cmax: no one buys a contract with prevention.

We now move to the �rst stage of the model, and assess under what circumstances
individuals choose to make the test.

3.3 To test or not to test

The �rst stage decision of an individual �i.e. whether taking the test is worth its while,
depends on the value of c, since it determines under what circumstances an individual
makes a prevention e¤ort. We cover in turn the three cases covered by Result 1: c > cmax
(so that e¤ort is never undertaken), c < cmin (so that e¤ort is always undertaken, except
if a test is taken and results in a low type), and �nally cmin < c < cmax (where the
e¤ort is undertaken only in the case of a positive test).

In all cases, we de�ne as the value of the test, denoted by 	(c;�), the di¤erence
between the utility the agent gets with and without taking the test (anticipating in both
cases the contract he will buy and whether he will make the prevention e¤ort). Recall
that the individual takes the test if and only if this value is positive.

3.3.1 No one undertakes prevention: c � cmax
Result 2 When c � cmax, 	(c;�) < 0, 8(c;�) so that the test is not taken.

Proof. In that case, we have

	(c;�) = �U0H + (1� �)UL � U0U
= �v(y � p0Hd) + (1� �)v(y � pLd)� v(y � p0Ud) < 0;

so that individuals do not test.
This is the well known (Hirshleifer, 1971) result of the negative value of a genetic test

whose results are observable and contractible but which does not allow the individual
to use the information to mitigate his risk. The intuition is that taking the test is like
buying a lottery, with a good outcome with probability 1� � and a bad outcome with
probability �. On the other hand, by not taking the test, the individual obtains a certain
payo¤ (since he is perfectly insured) at an actuarially fair rate. If the individual is risk
averse i.e. exhibits a concave utility function v(:) (in the expected utility framework),

12



he prefers the sure and actuarially fair payo¤ to the lottery. We call this drawback of
the test the discrimination risk, in line with Barigozzi and Henriet (2011).

Observe that 	 is independent of both the cost and e¤ectiveness of prevention, as
long as the cost c is larger than the threshold cmax. We then have that 	(c;�) � 	0 < 0
for c > cmax.

We now move to the case where e¤ort is undertaken even when the test is not taken.

3.3.2 Uninformed types undertake prevention: c � cmin
The value of the test is given by

	(c;�) = �U1H + (1� �)UL � U1U
= �(v(y � p1Hd)� c) + (1� �)v(y � pLd)�

�
v(y � p1Ud)� c

�
= (1� �)c�

�
v(y � p1Ud)�

�
�v(y � p1Hd) + (1� �)v(y � pLd)

��
: (3)

The �rst term in (3) measures the gain from the test, which allows to forgo the prevention
e¤ort cost c if the test proves negative (i.e., with probability 1 � �) while the terms
between brackets represent the drawback from taking the test (moving from a certain
payo¤ to a lottery with the same average payo¤, since e¤ort is undertaken even if the
test is not taken, but pays o¤ only if the agent has a high risk).

We are now in a position to state the following result:15

Result 3 When c � cmin, the value of the test, 	(c;�); is positive provided that the
prevention e¤ort�s cost c and e¢ ciency � are large enough. Formally,
a) there exists a unique value of �, denoted by ~�, such that 0 < ~� < �� and 	(cmin; ~�) =
0;
b) for all � � ~�, there exists a unique value of c; denoted by ~c1(�); such that 0 �
~c1(�) � cmin and 	(~c1(�);�) = 0;
c) 	(c;�) > 0 for all � > ~� and ~c1(�) < c < cmin;
d) for all � � ~�, ~c1(�) decreases with �;
e) ~c1( ��) = 0.

There are two main drivers behind this result. First, the value of the test increases
with the cost of prevention e¤ort, c: although this may seem counter-intuitive, it is due
to the fact that the test allows to forgo making the e¤ort when its results are negative.
Second, the value of the test also increases with the prevention e¢ ciency �: although
the expected monetary gain associated to a lower risk after prevention is the same
whether the test is taken or not, the marginal utility of money is larger when taking

15Most proofs are relegated to the Appendix. Throughout the paper, when varying �, we keep p0H
�xed and we decrease p1H . In other words, we replace p

1
H by p0H ��.
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the test, since the gain occurs when the individual pays the large premium associated
to being of type H rather than the average premium when the test is not taken.

Hence, when the e¢ ciency of prevention is low, the value of the test remains negative
for all values of c � cmin: any gain from taking the test (in terms of foregone cost of
e¤ort if the test results are negative) is too low to compensate for the discrimination
risk entailed by the test. When � is large enough, 	 becomes positive provided that
the e¤ort cost is large enough. Formally, we identify both a threshold ~� on e¤ort
e¢ ciency and on cost, ~c1, above which the value of the test is positive. The threshold
cost decreases with prevention e¢ ciency: the value of the test increases with �, so that
it remains positive for lower values of c as � increases. When � reaches ��, the value
of the test is positive for all values of c � cmin.

We then move to the intermediate case, where e¤ort is undertaken if and only if the
policyholder is of type H.

3.3.3 Only informed types undertake prevention: cmin < c < cmax

In such a case, the value of the test for a policyholder is given by

	(c;�) = �U1H + (1� �)UL � U0U ;
= �(v(y � p1Hd)� c) + (1� �)v(y � pLd)� v(y � p0Ud): (4)

In this case, taking the test allows to make the prevention e¤ort in case the test is
positive. Equation (4) then shows that the discrimination risk associated to testing is
mitigated by the lower premium, thanks to prevention, when the test is positive. It
is then easy to see that the value of the test increases with prevention e¢ ciency �,
but decreases with the cost of e¤ort c. This latter result is in stark contrast with the
one obtained when even uninformed types undertake prevention, where taking the test
allowed not to make the prevention e¤ort in case of a negative result.

We then obtain the following result.

Result 4 When cmin � c < cmax, the value of the test is positive provided that the
prevention e¢ ciency � is large while the e¤ort cost c is small. Formally,
a) for all � � ~� (as de�ned in Result 3), there exists a unique value of c; denoted by
~c2(�); such that cmin � ~c2(�) < cmax and 	(~c2(�);�) = 0;
b) 	(c;�) > 0 for all � > ~� and cmin < c < ~c2(�);
c) for all � � ~�, ~c2(�) increases with �;
d) ~c1( ~�) = ~c2( ~�) = cmin and cmin < ~c2( ��) < cmax.

The value of the test is positive provided that prevention is cost e¤ective (same
threshold ~� as in Result 3) and that the cost of e¤ort is low enough. As e¤ectiveness
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increases, the threshold cost ~c2 below which the value of the test is positive increases,
so that the test is undertaken for larger values of c.

Figure 1 provides a graphical illustration of the value of the test as a function of
prevention cost for four di¤erent values of the prevention e¢ ciency. Throughout the
paper, graphical illustrations are based on the following assumptions: v(c) =

p
c, y = 5;

d = 3; � = 0:3; pL = 0:1, p0H = 0:6, so that �� = 0:5.

Insert Figure 1 around here

3.4 Testing and e¤ort at equilibrium

We now summarize our results so far in the following proposition.

Proposition 1 a) If the e¢ ciency of prevention is low enough (� � ~�), the test is
never chosen, whatever the prevention cost.

b) If the e¢ ciency of prevention is large enough (� > ~�), the test is chosen only if
the prevention cost takes intermediate values: ~c1(�) � c � ~c2(�):

c) The set of values of the prevention cost compatible with agents taking the test in-
creases with the prevention e¢ ciency.

We already know from Hirshleifer (1971) that the value of the test for agents is
negative in the absence of prevention e¤ort. Prevention may increase the value of the
test, because the test determines whether prevention has a bene�t or not. Hence, a large
enough e¢ ciency of prevention is a necessary condition for the test to be taken, as shown
in part a) of Proposition 1. Part b) is less intuitive. Recall that if the prevention cost
is low (c < cmin), prevention is undertaken in the absence of test. The gain from taking
the test is then that it allows not to do a prevention e¤ort if the test is negative. The
test then allows to save the prevention cost c (with probability 1��). If the prevention
cost is too low, then this gain from taking the test is dominated by the discrimination
risk such that the value of the test remains negative. If the prevention cost is larger
(cmin < c < cmax), agents undertake prevention only if they obtain a positive test.
Taking the test is then a necessary condition to make the prevention e¤ort, and the
gain from the test decreases with the cost of prevention. If this cost is too large, the
value of the test remains also negative.

The following proposition states when prevention is undertaken as a function of its
cost and e¢ ciency.
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Proposition 2 a) If the e¢ ciency of prevention is low enough (� � ~�), then all agents
undertake prevention if its cost is low enough (c < cmin) while no one undertakes pre-
vention otherwise (if c > cmin).

b) If the e¢ ciency of prevention is large enough (� > ~�), then everyone undertakes
prevention if its cost is low enough (c < ~c1(�)), only people of type H undertake pre-
vention if its cost is intermediate (~c1(�) � c � ~c2(�)) while no one makes a prevention
e¤ort otherwise (i.e., if c > ~c2(�)).

We illustrate the results of Propositions 1 and 2 on Figure 2, which depicts the
thresholds ~c1 (in yellow), cmin (in blue), ~c2 (in green) and cmax (in purple) as functions
of �. With this numerical example, the value of ~� is 4%. The area between the curves
~c2(�) and ~c1(�) represents the combinations of prevention cost and e¢ ciency for which
agents take the test, and where they make an e¤ort only if this test is positive. Outside of
this region, no individual takes the test. Combinations of (c;�) located below the cmin
and ~c1(�) curves are such that everyone makes the prevention e¤ort, while combinations
above the cmin and ~c2(�) curve are such that no prevention e¤ort is made.

Insert Figure 2 around here

We now move to the case where both the test and its results are observable and
contractible, but where the prevention e¤ort is not.

4 Unobserved prevention e¤ort

In that case, we have a moral hazard problem, since the desired prevention e¤ort has to
be induced by the insurer by adequately crafting the insurance contracts. We proceed
as in section 3 and we �rst study the contracts proposed by the insurers before moving
to the choice of prevention e¤ort and of testing by the agents.

4.1 Contracts o¤ered by the insurers

First, observe that contracts without prevention e¤ort are unchanged, compared to
the previous section. These are the contracts o¤ered to low-type (for whom making a
prevention e¤ort is not worthwhile), (�L; IL), to the high type (�0H ; I

0
H) and the average

type (�0U ; I
0
U ) who need not be induced to make an e¤ort.

Look now at the contract o¤ered to a high type who the insurer would like to induce
to make an e¤ort, which we denote by (�1H ; I

1
H). For a type H individual to make
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an e¤ort, it must be the case that the following incentive compatibility (IC hereafter)
constraint holds:

(1� p1H)v(b1H) + p1Hv(d1H)� c � (1� p0H)v(b1H) + p0Hv(d1H); (5)

where b1H and d1H denote the consumption level of a type H individual buying the
(�1H ; I

1
H) contract in case they are lucky and in case the damage occurs�i.e.,

b1H = y � �1H ;
d1H = y � d+ I1H :

The IC constraint (5) states that the individual, when buying the contract (�1H ; I
1
H),

is at least as well o¤ making an e¤ort (the LHS of (5)) than pretending to make one
(the RHS of (5)). It is straightforward to see that such a result cannot be attained
if the individual is provided with full coverage, since in that case consumption levels
are equalized across states of the world (b1H = d

1
H), and the individual never makes an

e¤ort. As pointed out by Shavell (1979), in such a case, the only way for the insurer
to induce e¤ort making is then to restrict the coverage o¤ered to the individual (the
competition between insurers ensures that the contracts remain actuarially fair). We
denote the contracts as

�1H = �Hp
1
Hd;

I1H = �H(1� p1H)d;

where �H is the (maximum) coverage rate o¤ered to individuals of type H in order to
induce them to make an e¤ort. The value of �H is implicitly obtained by solving the
IC constraint (5) with equality. Restated in terms of c, we then obtain that

c = �(v(b1H)� v(d1H)): (6)

The IC constraint (6) equalizes, on its LHS, the cost of e¤ort with its bene�t on the
RHS, given the contract o¤ered to a high type pretending to undertake prevention. This
bene�t is the product of the e¢ ciency of the prevention e¤ort, �, with the utility gap
between the two states of the world (sick or healthy) when making the e¤ort. We have
that b1H > d

1
H : the insured is better o¤ if the damage does not occur, which gives him

the exact incentive needed to support the prevention e¤ort cost c.
Observe that the same argument as in the previous section explains why the insurers

o¤er either the contract (�1H ; I
1
H) or the contract (�

0
H ; I

0
H) to individuals of type H,

depending upon which of the two contracts gives more utility to these buyers. In other
words, competition among insurers ensures that only the utility-maximizing contract
(given the observability constraints) is o¤ered to types H.
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Insurers face a similar problem with the individuals who have not taken the test.
The e¤ort-inducing contract o¤ered to them is (�1U ; I

1
U ) with

�1U = �Up
1
Ud;

I1U = �U (1� p1U )d;

and with �U satisfying the following incentive compatibility constraint

c = ��(v(b1U )� v(d1U )); (7)

with

b1U = y � �1U ;
d1U = y � d+ I1U ;

and b1U > d
1
U .

We obtain the following useful lemma.

Lemma 1 a) �U < �H < 1.
b) �H and �U are decreasing in c: There exists a maximum value of c, denoted by �cH
(respectively, �cU ) such that e¤ort by type H (resp., U) may be induced only if c � �cH
(resp., c � �cU ). Moreover, �cU < �cH .

Observe that there are two e¤ects at play, both pushing towards a larger coverage
rate for type H than for type U . First, the expected e¤ectiveness of the prevention e¤ort
is larger for type H than for an average type, since for the latter there is a probability
1�� that his e¤ort is actually worthless. Second, the utility gap between the good and
bad states of the world is larger for type H than for type U for a given coverage level,
because the insurance premium is larger for H than for U . Both e¤ects explain why it
is necessary to underprovide insurance by a smaller amount for a type H than for an
average type in order to induce them to undertake the costly prevention e¤ort.

The amount of coverage o¤ered to type i 2 fH;Ug equalizes his cost and bene�t of
prevention e¤ort, with the latter equal to the product of the e¢ ciency of prevention,
�, by the utility di¤erence between good and bad states of the world when making
the e¤ort (see equations (6) and (7)). As the cost of e¤ort increases, it is necessary
to increase this utility di¤erence, and hence to reduce the coverage �i o¤ered to an
individual of type i. At the limit, this coverage tends toward zero, determining the
maximum value of the e¤ort cost, �ci, compatible with inducing prevention e¤ort for
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type i. Intuitively, this maximum prevention cost �ci is lower for type U (when e¤ort
works with probability �) than for type H.16

Figure 3 illustrates Result 1 for our numerical example.

Insert Figure 3 around here

We now move to the prevention choice of agents.

4.2 The choice of prevention

An individual of type H chooses the contract inducing e¤ort (with the expected utility
denoted by U1MH

H ) rather than the other one proposed to his type if

U1MH
H > U0H

, (1� p1H)v(b1H) + p1Hv(d1H)� c > v(c0H)
, c < cMH

max � (1� p1H)v(b1H) + p1Hv(d1H)� v(c0H): (8)

Likewise, the condition under which it is optimal for an individual who has not taken
the test to exert some prevention e¤ort is

U1MH
U > U0U ;

, (1� p1U )v(b1U ) + p1Uv(d1U )� c > v(c0U )
, c < cMH

min � (1� p1U )v(b1U ) + p1Uv(d1U )� v(c0U ): (9)

The following result parallels Result 1.

Result 5 Uninformed agents undertake the e¤ort provided that c � cMH
min < min[cmin; �cL];

while type H agents exert the prevention e¤ort provided that c � cMH
max < min[cmax; �cH ].

The maximum values of the prevention cost inducing (uninformed or type H) agents
to make a prevention e¤ort decrease when this e¤ort is not observable by the insurers.
The intuition for this result rests on the observation that contracts intended for e¤ort-
making agents are actuarially fair both with and without moral hazard, and di¤er only in
the lower coverage rates o¤ered with moral hazard. It is well known (Mossin, 1968) that

16As for the bene�t of prevention, it need not increase with prevention e¢ ciency, because a larger value
of � decreases the utility gap between states of the world for a given coverage level (both consumption
levels b1i and d

1
i increase by the same amount with �, but the marginal utility is larger in the bad state

of the world �i.e., with d1i ). The non monotonic relationship between the prevention e¢ ciency � and
the level of coverage � in ex ante moral hazard model has already been pointed out in Bardey and Lesur
(2005).
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agents prefer full coverage when o¤ered actuarially fair terms. It then results that the
introduction of moral hazard degrades the utility obtained with the contract intended
for e¤ort-making agents, decreasing the maximum values of the e¤ort cost compatible
with making the e¤ort.

We now move to the value of the genetic test.

4.3 To test or not to test

The value of the test depends upon whether e¤ort is undertaken at equilibrium �i.e.,
of how c compares with cMH

min and c
MH
max . As in the previous section, we consider three

cases according to the value taken by the prevention cost.

4.3.1 No one undertakes prevention: c � cMH
max

It is easy to see that

Result 6 For c � cMH
max, 	

MH(c;�) = 	(c;�) = 	0 < 0, 8(c;�) so that the test is not
taken.

Result 2 extends to the case with moral hazard, which is intuitive since we are back
to the case where no prevention e¤ort is undertaken, so that there is complete insurance
at full coverage.

We now consider the case where even uninformed types make the prevention e¤ort.

4.3.2 Uninformed types undertake prevention: c � cMH
min

Individuals decide to take the test if

	MH(c;�) = �U1MH
H + (1� �)UL � U1MH

U > 0

, �
�
(1� p1H)v(b1H) + p1Hv(d1H)� c

�
+ (1� �)v(cL)�

�
(1� p1U )v(b1U ) + p1Uv(d1U )� c

�
> 0:

We �rst discuss the following lemma.

Lemma 2 When c � cMH
min , we have that

a)
@	MH(c;�)

@c
> 1� � if �! ��;

b) 	MH(0;�) = 	(0;�) for all �:

As in the situation without moral hazard, taking the test allows to save on the cost
of e¤ort in case the test is negative �i.e., with probability 1 � �. Additionally, with
moral hazard, insurers decrease their coverage to keep the incentive for policy holders
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faced with a larger cost of e¤ort to exert this prevention e¤ort. This decreases both the
utility of individuals who receive (with probability �) a positive test and of those who
do not take the test (and undertake prevention in all cases). The sign of the di¤erence
between these two a¤ects is in general ambiguous, because types U and H di¤er both
in coverage (�U < �H) and in risk (p1H � p1U ). When � ! ��, the risks of both types
converge when they undertake prevention, while the coverage rate remains lower for
type U than for type H (because prevention is e¤ective only with probability � for type
U). We then obtain that a larger e¤ort cost degrades more the utility of type U than
of type H, because there is a larger utility gap between states of the world for type U
(formally, d1U < d

1
H < c

1
U = c

1
H < b

1
H < b

1
U ), who then su¤ers more at the margin from

the decrease in coverage rate. This in turn increases the value of the test, compared to
the case where prevention is observable. Part b) of Lemma 2 is straightforward since
the unobservability by insurers of the prevention e¤ort does not matter when this e¤ort
is costless.

Finally, observe that the value of the test may not always increase in prevention
e¢ ciency, because the utility of an uniformed type may increase more with � than that
of a type H, due to the partial and endogenous coverage o¤ered by insurers to both
types in order to induce them to make the prevention e¤ort.

We then obtain the following result.

Result 7 When c � cMH
min , the value of the test is positive provided that the prevention

e¢ ciency � and the e¤ort cost c are large enough. Formally, assume that � is large
enough. We then have that
a) there exists a (unique) value of c; denoted by ~cMH

1 (�); such that ~cMH
1 (�) < cMH

min and
	MH(~cMH

1 (�);�) = 0. Moreover, ~cMH
1 ( ��) = 0;

b) 	MH(c;�) < 0 for c < ~cMH
1 (�) and 	MH(c;�) > 0 for c > ~cMH

1 (�):

This result is similar to the one obtained without moral hazard (Result 3): Lemma 2
implies that the value of the test is larger with than without moral hazard when c � cMH

min

and � ! ��; so that we can identify a threshold e¤ort cost level above (respectively,
below) which agents do (resp., do not) undertake the test.17 Observe that Result 7
concentrates on large values of � while Result 3 is stronger and shows the existence of a
threshold value of � above which the value of the test is positive for low enough values
of c. The fact that, unlike in the perfect information case, the value of the test may not
always increase with � explains this weaker statement.

We now turn to the case where e¤ort is undertaken if and only if the policyholder�s
type is high.

17We will compare the threshold costs with and without moral hazard in section 5.

21



4.3.3 Only informed types undertake prevention: cMH
min < c < c

MH
max

The value of the test for a policyholder is here given by

	MH(c;�) = �U1MH
H + (1� �)UL � U0U

= �
�
(1� p1H)v(b1H) + p1Hv(d1H)� c

�
+ (1� �)v(cL)� v(c0U ):

The next lemma states how prevention cost and e¢ ciency a¤ect the value of the
test:

Lemma 3 For cMH
min < c < c

MH
max, we have that

a)
@	MH(c;�)

@�
> 0;

b)
@	MH(c;�)

@c
< 0:

With intermediate values of c, the prevention e¢ ciency � a¤ects the value of the
test only through its impact on the utility level attained by agents who obtain a positive
test (and thus make the prevention e¤ort). This impact is twofold. The direct impact
of a larger e¢ ciency � lowers both the risk and premium, for a given coverage level �i,
i = fU;Hg and thus increases the utility of this individual. The indirect impact of �
takes place through variations in the coverage rate. If the coverage rate �i increases
with �, this indirect impact reinforces the direct one. We show in the proof that, even
if the coverage rate decreases with �, the direct impact is larger than the indirect one,
so that the value of the test always increases with � when cMH

min < c < c
MH
max . The impact

of a higher prevention cost on the value of the test works similarly: the direct impact
decreases the utility of the individual with a positive test (who makes the prevention
e¤ort) for a given insurance contract, while the indirect impact of c on the insurance
contract is to decrease the coverage rate �H proposed by the insurer (see Lemma 1),
further damaging the utility of this individual and thus the value of the test.

Observe that the sign of the impact of c and � on the value of the test is the same
as without moral hazard: the moral hazard e¤ects, through variations in the coverage
rate �H , either reinforce the direct impact on the value of the test, in the case of c,
or are swamped by the direct e¤ect, in the case of �. This is in stark contrast with
the previous section, where the fact that moral hazard a¤ects the insurance contracts
o¤ered to both types H and U (since they both undertake prevention and are o¤ered
insurance contracts with partial coverage) renders the sign of the impact of c and � on
the value of the test ambiguous in general.

We then obtain the following result.
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Result 8 When cMH
min � c < cMH

max, the value of the test is positive provided that the
prevention e¢ ciency � is large while the e¤ort cost c is small. Formally, assume that
� is large enough. We then have that
a) there exists a unique value of c; denoted by ~cMH

2 (�); such that cMH
min � ~cMH

2 (�) < cMH
max

and 	MH(~cMH
2 (�);�) = 0. Moreover, cMH

min < ~c
MH
2 ( ��) < cMH

max;
b) 	MH(c;�) > 0 for cMH

min < c < ~c
MH
2 (�);

c) ~cMH
2 (�) increases with �:

This result is also similar to the one obtained without moral hazard (Result 4), with
the same caveat as explained after Result 7, due to the ambiguity of the impact of
prevention e¢ ciency on the value of the test when only type H makes the prevention
e¤ort.

We now take stock of what we have learned when prevention is not observable, and
we compare our results with the perfect information case.

5 The impact of introducing moral hazard on testing and
prevention

We �rst summarize our results with unobservable prevention e¤ort in the following
propositions. They follow closely Propositions 1 and 2 obtained in the absence of moral
hazard.

Proposition 3 A su¢ cient condition for the test to be taken is that the e¢ ciency
of prevention is large enough and that the prevention cost takes intermediate values:
~cMH
1 (�) � c � ~cMH

2 (�): Moreover, the threshold ~cMH
2 (�) increases with �.

The main di¤erence with Proposition 1 is due to the fact that, as we have underlined
in section 4.3.2, the value of the test need not always be increasing in the e¢ ciency of
prevention when the cost of prevention is low enough that even uninformed types take
the test. This prevents us from determining a speci�c prevention e¢ ciency threshold
above which individuals take the test for speci�c values of prevention also. This also
prevents us from assessing how the lowest prevention cost compatible with taking the
test varies with the prevention e¢ ciency. Except for these caveats, the main gist of
our results is not a¤ected by the introduction of moral hazard: the test is undertaken
provided that the prevention e¢ ciency is large enough, and that prevention costs take
intermediate values.

The following proposition states when preventions is undertaken as a function of its
cost and e¢ ciency and parallels Proposition 2.
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Proposition 4 a) If the e¢ ciency of prevention is large enough, then everyone under-
takes prevention if its cost is low enough (c < ~cMH

1 (�)), only people of type H undertake
prevention if its cost is intermediate (~cMH

1 (�) � c � ~cMH
2 (�)) while no one makes a

prevention e¤ort otherwise (i.e., if c > ~cMH
2 (�)).

b) If the e¢ ciency of prevention is low enough that 	MH(c;�) < 0 8c, then all agents
undertake prevention if its cost is low enough (c < cMH

min ) while no one undertakes pre-
vention otherwise (if c > cMH

min ).

The same caveats apply for Proposition 4 as for Proposition 3, compared to the
situation where prevention is observable.

Figure 4 provides a graphical illustration of the value of the test as a function of
prevention cost for �ve di¤erent values of the prevention e¢ ciency. It is based on the
same assumptions as those used to depict Figures 1 to 3, and is the equivalent, with
moral hazard, of Figure 1.

Insert Figure 4 around here

Each curve on Figure 4 shows the value of the test as a function of prevention cost
for a given value of prevention e¢ ciency. All curves have the same shape, so we start
by focusing on any curve �i.e., on any given e¢ ciency �. We observe that 	MH is �rst
increasing and convex in c: This complements nicely our analytical �nding of Lemma
2 that the slope of 	MH is larger than 1 � � when � ! ��. The curve 	MH is then
(as proved in Lemma 3) decreasing in c until it reaches 	0 for c > cMH

max.
18 Finally, a

striking characteristic of Figure 4 is that 	MH(cMH
min ;�) is increasing in �: although a

larger prevention e¢ ciency does not always increase the value of the test for all values
of c such that even untested types undertake e¤ort, the maximum value of the test is
indeed increasing with � in our numerical example.

We now look at the impact of the unobservability of the prevention e¤ort. We
�rst assume that � is �xed, and look at how the testing and prevention decisions
are a¤ected by moral hazard as a function of the cost of prevention e¤ort, c. We
assume that � is close to ��, and that cMH

min < cmin < cMH
max < cmax (the case where

cMH
min < cMH

max < cmin < cmax can be treated similarly and does not bring any new
insight, so we leave it to the reader).

We then obtain the following proposition.

18A close examination of Figure 4 reveals that 	MH is indeed not always increasing in � when
c < cMH

min, as suggested in section 4.3.2: we obtain that 	
MH increases with � for low values of c, and

then decreases with � for larger values of c < cMH
min.
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Proposition 5 Assume that � is large enough (close but not equal to ��). Then
(a) there exists a threshold cMH

min < ĉ < cmin such that the value of the test is larger (resp.,
lower) with than without moral hazard for all prevention costs below (resp., above) this
threshold;
(b) for ~cMH

1 (�) < c < min[~c1(�); ~c
MH
2 (�)], the value of the test if positive with moral

hazard but negative without: agents take the test if and only if there is moral hazard;
(c) for max[~c1(�); ~cMH

2 (�)] < c < ~c2(�), the value of the test if positive without moral
hazard but negative with: agents take the test if and only if there is no moral hazard;
(d) the maximum value of the test is higher under moral hazard than without:

	MH(cMH
min ;�) > 	(cmin;�):

We give the intuition for this proposition, starting with part (a). Recall that the
value of the test is de�ned as the di¤erence between the expected utility of taking the
test and of remaining uninformed about one�s own risk. We know that the value of the
test is larger with than without moral hazard when the e¤ort cost is so low that even
uninformed agents undertake the prevention e¤ort (a direction consequence of Lemma
2). The reason is that, moral hazard damages more the utility of the uninformed type
than that of type H, through a lower coverage.19 By contrast, the value of the test
is lower with than without moral hazard when only type H undertakes the prevention
e¤ort (i.e., for intermediate values of the prevention cost). In that case, uninformed
and low type agents receive the same contract (and thus utility level) with and without
moral hazard. The contract o¤ered to type H with moral hazard is degraded compared
to the situation without moral hazard because of the partial coverage o¤ered, hence
lowering the value of the test. Since the value of the test is continuous in prevention
cost whether prevention is observable or not, the intermediate value theorem implies
that there exists a cost threshold below (resp., above) which the value of the test is
larger (resp., lower) with than without moral hazard.

Part (b) shows that, for some values of the prevention cost low enough that even
uninformed agents undertake prevention, the value of the test is positive if and only
if prevention is not observable. Recall that the value of the test is negative for very
low values of the prevention cost (since the discrimination risk trumps the gain from
foregoing the cheap prevention e¤ort if tested positive), whether prevention is observable
or not. The result then obtains directly from the observation that the value of the test
increases faster with e¤ort cost with than without moral hazard (thanks to the increase
in coverage rate of type H) when � is large enough. Similarly, part (c) establishes that,
for larger values of the e¤ort cost (such that the value of the test is lower with than

19As we explain after Lemma 2, this is true for � large enough that the main di¤erence between these
two types of agents is the coverage rate they buy, rather than their riskiness.
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without moral hazard), agents undertake the test at equilibrium if and only if there is
no moral hazard.

Finally, we give the intuition for part (d). In both cases (with and without moral
hazard), the value of the test is measured for the prevention cost that renders uninformed
agents indi¤erent between making the e¤ort or not (anticipating the contract they obtain
in each case). They also obtain the same contract in case of a negative test, or if they
remain uninformed and do not exert any prevention. We then obtain that the value of
the test is larger with moral hazard if the di¤erence in utility levels between uninformed
and type H agents is larger with moral hazard than without. We show that it is the
case when prevention e¢ ciency is close to its maximum, because, while the risks of
the two types of agents converge in that case, the lower coverage o¤ered by insurers to
uninformed types (as opposed to type H) when prevention is not observable is especially
detrimental to them.

With our numerical example, Proposition 5 holds for all values of �, as illustrated
in Figure 5 for the case where � = 0:1 < �� = 0:5.

Insert Figure 5 around here

We now endogenize the decision to take the test and study the impact of introducing
moral hazard on the amount of prevention e¤ort at equilibrium.

Proposition 6 Introducing moral hazard considerations (weakly) decreases the fraction
of the population exerting the prevention e¤ort.

To prove this proposition, observe �rst that, for values of (c;�) such that the test-
ing decision is not a¤ected by moral hazard, the fraction of the population exerting the
prevention e¤ort either remains constant or decreases. This is a straightforward conse-
quence of the fact (see Result 5) that cMH

min < cmin and that c
MH
max < cmax. We now show

that the same result holds if (c;�) is such that the introduction of moral hazard changes
the testing decision. Proposition 5 has shown that two situations may occur. The �rst
one happens when (c;�) are such that the test is taken if and only if there is moral
hazard. This case materializes when the e¤ort cost is low enough (c < ~c1(�) < cmin)
that, without moral hazard, all individuals choose to remain uninformed and to un-
dertake the prevention e¤ort. The decision to take the test when moral hazard exists
then induces low type agents not to exert the e¤ort, decreasing the prevention e¤ort
(since c < ~cMH

2 (�) < cMH
max). We then obtain that introducing moral hazard decreases

the fraction of the population exerting the prevention e¤ort at equilibrium by a fac-
tor 1 � �. A similar phenomenon appears when the e¤ort cost is large enough that
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agents take the test if and only if there is no moral hazard. The cost is large enough
(c > ~cMH

2 (�) > cMH
min ) that, with moral hazard, agents remain uninformed and do not

exert e¤ort while, without moral hazard, agents take the test and exert e¤ort if they
are of type H (since c < ~c2(�) < cmax). Hence, moral hazard also decreases prevention
e¤ort from a fraction � of the population to zero.

The analysis we have performed up to now in this section looks at the impact of
introducing moral hazard for a given value of �. We now look at how this impact varies
as a function of �. The value of the test is larger with than without moral hazard when
the prevention cost is low enough that uninformed agents undertake the e¤ort. This
suggests that making the test may be compatible with lower values of the prevention
e¢ ciency with than without moral hazard. Unfortunately, the larger value of the test
with moral hazard can only be proven for large values of �. Resorting to numerical
simulations, we obtain that the minimum value of � above which there exists an interval
of prevention cost values compatible with taking the test is lower (at 3.4%) with than
without moral hazard (where ~� = 4%). We then have that

Proposition 7 Introducing moral hazard considerations may induce individuals to un-
dertake the genetic test for lower values of the prevention e¢ ciency �.

Up to now, we have concentrated on the value of the test, and on the testing and
prevention decisions of agents. We now look at their welfare level.

6 Welfare analysis

In this section, we investigate the impact of the availability of (observable or not)
prevention e¤ort, testing and insurance on the ex ante welfare of agents. We then
contrast these results with the �rst best allocation, and we discuss three ways to do away
with the discrimination risk that is at the root of the non optimality of the equilibrium
allocation studied here.

We start from the simplest case where prevention is not available, and we then
add sequentially the availability of prevention and of testing in order to measure their
individual impact on welfare. We illustrate our results with the help of Figures 6 and 7,
which depict welfare (ex ante utility) as a function of the prevention cost c, for a given
value of �, under various scenarios.

Insert Figure 6

We start from the simplest situation where prevention is not available. In that
case, whether the test is available or not plays no role: policyholders do not take the
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test since it has only drawbacks, namely the discrimination risk. The ex ante utility
level is then v(c0U ) which is of course independent of c. This utility level corresponds
to the horizontal line on Figure 6.20 We then introduce the possibility to exert e¤ort
but assume that the genetic test is not available. In that case, agents are uninformed
about their individual risk and exert e¤ort if and only if the e¤ort cost is lower than the
threshold cmin (see Result 1). Their ex ante utility is given by v(c1U ) � c for c < cmin,
and v(c0U ) for c � cmin. We represent this utility level on Figure 6. The vertical distance
between this utility level and the horizontal line (denoted by A on Figure 6) represents
the ex ante utility gain from the prevention technology. It obviously decreases linearly
(at a rate of one) with the cost of e¤ort.

The next step consists in introducing the testing technology, assuming that the
prevention e¤ort is observable and the prevention e¢ ciency � is large enough that the
test is worth taking for certain values of c. We know from Result 3 that the test is
taken only if the e¤ort cost c is comprised between ~c1 and ~c2. For c < ~c1, agents remain
uninformed and exert e¤ort, so that their utility remains v(c1U )� c, while if c > ~c2 they
also remain uninformed but do not exert e¤ort, with a utility level of v(c0U ). For c in
between ~c1 and ~c2, agents test and their ex ante utility is �(v(c1H)� c) + (1� �)v(cL),
which decreases with c at a rate of � since the test enables those who, with probability
�, are of a high type to make the prevention e¤ort at a cost c. Figure 6 depicts the
value of the test as a function of the cost of prevention (vertical distance labeled B). It
is composed of the gain from the targeted e¤ort, minus the discrimination risk.

Before turning to the impact of moral hazard, we study the �rst best allocation
in order to look for ways to improve upon the equilibrium allocation studied in this
paper.21

The �rst best allocation maximizes the expected welfare of the (ex ante identical)
individuals. Given risk aversion, the �rst best allocation should perfectly ensure against
both the risk of being of type H (or discrimination risk) and the health risk, and should
thus give the same (ex post) consumption to all individuals.22 The test gives information
that can be acted upon to reduce the health risk and is then prescribed to everyone.
High type agents are all prescribed to do the prevention e¤ort provided that its cost
is not too large. From an ex ante perspective, if e¤ort is prescribed for types H, the
average probability to incur the damage in the economy equals p1U and the individuals�
expected utility is v(c1U ) � �c because of the probability � of being of type H and of
having to do the e¤ort. If type H agents are told not to make the e¤ort, all agents

20This level is larger than the expected ex ante utility in case no insurance exists, which is given by
p0Uv(y � d) + (1� p0U )v(y).
21The comparison between �rst best and equilibrium allocations under various assumptions is more

easily made assuming away moral hazard. Moreover, the introduction of moral hazard would not change
signi�cantly the arguments made here.
22We assume that the e¤ort cost, being a utility cost, is not ensurable.
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obtain ex ante a utility level of v(c0U ) based on the higher average risk p
0
U . So, the �rst

best solution entails e¤ort for all agents of type H if and only if

v(c1U )� �c � v(c0U )

, c <
v(c1U )� v(c0U )

�
=
cmin
�
:

The welfare level attainable under the �rst best allocation is represented on Figure 6. It
corresponds to v(c1U )� �c if c < cmin=� and to v(c0U ) otherwise. Its slope with respect
to c equals the probability of having to make the e¤ort, which is � if the e¤ort cost is
low enough, and zero otherwise.

The vertical distance C on Figure 6 represents the utility di¤erence between expected
welfare levels attained at the �rst-best and at the equilibrium allocation studied in this
paper. The discrimination risk explains this di¤erence, through two channels. First, the
discrimination risk may bias the prevention decision of agents away from the �rst best
level, leading to too much prevention (if c < ~c1) or to too little of it (if ~c2 < c < cmin=�).
Second, even when the prevention decisions are �rst best optimal (when ~c1 < c < ~c2),
the discrimination risk by itself entails a decrease in the ex ante utility. It is then
very tempting to infer as policy recommendation that the discrimination risk should
be banned in order to move us closer to the �rst best allocation. It is important to
remain cautious in this area, since there are di¤erent ways for a planner to do away
with the discrimination risk, and since these di¤erent ways have very di¤erent welfare
implications.

By far the best way to remove discrimination is to create a market selling insurance
against the discrimination risk. Testing would then be allowed only after having shown
proof of subscription to this �genetic insurance�. In other words, it would be illegal
to perform the genetic test without �rst purchasing this insurance. Tabarrok (1994)
has shown that creating this insurance market would allow to decentralize the �rst best
allocation.23 To the best of our knowledge, no country has adopted such a policy, and
no such insurance exists.

Another, much more travelled route to get rid of the discrimination risk consists in
prohibiting insurers from asking the test results and from using this information. This
corresponds to the �strict prohibition� regulation studied by Barigozzi and Henriet
(2011) and implemented in Austria, Belgium, Denmark, France, Germany, Israel, Italy,
Norway and the US. Note that, in that case, nothing prevents individuals from taking the
test before buying insurance contracts, as assumed in our model. Even though insurers
are prohibited from asking the test results, nothing prevents them from proposing menus
of contracts that will be self selected by agents according to their (private) information

23Crainich (2011) analyzes conditions to ensure that the genetic insurance market suggested by Tabar-
rok (1994) induces the optimal level of secondary prevention.
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about their genetic risk. In other words, strict prohibition introduces adverse selection
into the insurance market, and Barigozzi and Henriet (2011) show that this results into
strict prohibition being weakly dominated by the disclosure duty approach!

There is a third way to get rid of the discrimination risk, which is less demanding than
the �rst one, since it does not entail the creation of a new insurance product covering
this risk. As with Tabarrok (1994), agents would have to show proof of insurance before
taking a test, but the insurance concerned is classical health insurance, rather than the
(empirically non available) genetic insurance.24 In other words, agents would have to
take the test (if they wish to) after having bought health insurance, and not before. This
would prevent insurers from distorting coverage rates in order to extract from agents
their private information regarding their type, since this private information would not
exist at the stage where agents buy health insurance contracts. Competition among
insurers would then drive premia to their actuarially fair levels: insurers would o¤er a
contract with the sure consumption level of c0U if the agent performs no prevention, and
of c1U otherwise. Agents would decide about the prevention e¤ort after having tested
(or not), as in the sequence studied above, and would then perform prevention provided
that its cost is low enough, and more precisely, that25

c < v(c1U )� v(c0U ) = cmin:

The expected welfare of agents is then v(c1U ) � c if c < cmin and v(c0U ) if c � cmin.
This corresponds to the utility when the test is not available while e¤ort is, and is thus
weakly dominated by the disclosure duty situation studied in the rest of the paper.
The intuition is that the provision of a pooling insurance contract interferes with the
prevention decision, leading to too much prevention if the e¤ort cost is lower than cmin,
and to too little for larger values of this cost.

This comparison of three ways to get rid of discrimination risk shows that the only
way to proceed to increase welfare consists in creating a new product, namely genetic
insurance, while making it mandatory for those who wish to take genetic tests. The
other ways to get rid of discrimination risk end up being detrimental for ex ante welfare,
either because of adverse selection by insurers, or because the pooling of health insurance
interferes with the incentives to do the prevention e¤ort.

We now turn to Figure 7, which depicts the impact of making the prevention e¤ort
unobservable when the testing technology is available (but entails a discrimination risk).
Lemma 4 in the Appendix shows that moral hazard reduces the two cost thresholds
below which, respectively, policyholders exert e¤ort if uninformed about their own risk

24A similar mechanism (although in a di¤erent context) can be found in Cochrane (1995).
25Observe that agents are indi¤erent about testing or not, since the pay o¤ they obtain (either v(c1U )�c

or v(c0U )) depends only upon e¤ort and not upon their type.
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level (cMH
min < cmin) and if they know their type to be H (cMH

max < cmax). Moreover, the
ex ante utility is lower with moral hazard, even when the testing decision is the same
than without moral hazard, because of the lower coverage implied by the unobservability
of the prevention e¤ort. Figure 7 represents this welfare loss of moral hazard as the
vertical distance D between the two curves.

Insert Figure 7

7 Conclusion

We have studied the situation where a costless genetic test perfectly informs an indi-
vidual about his risk of developing a speci�c disease in the future. This information
allows the individual to better inform his decision to undertake a costly prevention ef-
fort, which reduces his probability of incurring the health damage in the case the genetic
test is positive. The drawback of the genetic test is that its results are used by insurers
to price their insurance policies, so that agents undertaking the test are faced with a
discrimination risk. We �rst show that, when the prevention e¤ort is observable, the
pros of the test are larger than its cons when the prevention e¢ ciency is large while its
cost is neither too low nor too high. We then obtain that, when e¤ort is not observ-
able by insurers, the private value of the genetic test is not always increasing with the
e¢ ciency of prevention. Also, and contrary to the intuition, the value of the test may
actually be larger when e¤ort is not observable, so that the test may be taken for lower
values of the prevention e¢ ciency than when prevention is observable.

What policy implications can we derive from this paper? Even when e¤ort is observ-
able, there is too little testing since people choose to test only for intermediate values of
the prevention e¤ort cost, while the �rst best allocation calls for testing for a larger set
of values of this cost. The equilibrium prevention level can be too small or too large:
while optimality calls for only type H to perform e¤ort, with a low prevention cost there
is actually too much prevention (all undertake the e¤ort) while with a large prevention
cost there is too little of it (no one exerts the prevention e¤ort). This model then does
not provide ground to recommend policies that would result in a general increase in pre-
vention e¤orts by all. Pushing for more testing would not be advisable either, because
of the utility cost (the discrimination risk) that is associated to taking the test.

Since this discrimination risk is at the root of the ine¢ ciencies exhibited by the equi-
librium allocation (both because it decreases directly the utility of agents and because
it biases their testing and prevention decisions away from the socially optimal levels),
the main recommendation is to get rid of this risk. We have shown that, out of three
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ways to proceed to make discrimination risk disappear, only one allows to decentralize
the �rst best allocation: completing the insurance markets by creating a �genetic insur-
ance�against the risk of a positive test, and making this insurance mandatory in order
to test. The other two procedures studied actually result in a worse ex ante welfare
level than the equilibrium allocation studied here: the �strict prohibition� regulation
introduces adverse selection into the problem, while requiring that agents buy health
(as opposed to genetic) insurance before testing defeats the purpose of the test because
it suppresses the agents�incentive to tailor their prevention decision to the test result.
Our main recommendation is then to combat discrimination risk by making genetic
insurance mandatory, together with implementing the disclosure duty regulation on the
testing decision and results.

Moral hazard considerations further reduce ex ante welfare. This is true even though
moral hazard may actually induce agents to take the test, for certain con�gurations of
the e¤ort cost and e¢ ciency parameters for which the test would not be taken without
moral hazard. Also, this happens even though taking the test allows to make the e¤ort
only if it is socially worthwhile. The reason is that moral hazard, by decreasing the
coverage rate o¤ered to those insurers want to induce to exert the prevention e¤ort,
reduces more the utility of uninformed than of informed types. So, even if moral hazard
may have bene�cial e¤ects on both the testing and prevention decisions, its net impact
on welfare is always negative. This calls for policy measures that would make prevention
e¤ort more easily observable by insurers. One prominent such measure would consist
in enlarging the scope of disclosure duty to prevention decisions: insurees could not be
obliged to perform such an e¤ort, but would be required to disclose truthfully whether
they have stopped smoking or perform physical exercise regularly. In other words, one
conclusion of our work is that disclosure duty should be embraced not only for genetic
tests, but also for the prevention activities whose desirability they inform.

Another policy recommendation concerns the breadth of the tests, measured by the
number of health problems a genetic test shows light on. There is a lot of talk and
projections about decoding the whole genome of individual human beings, allowing to
screen for as many potential risk issues as possible in a single, global test. As long as
discrimination risks persist, such a global test has a lower value than the sum of narrower
tests aiming at a single health issue at a time. Even if the value of the global test is
positive, it may include information on speci�c diseases for which the con�guration of
prevention cost and e¤ectiveness is such that agents would prefer not to be informed
about these speci�c risks. At the limit, the value of a global test may be negative, even
though the value of several of its components is positive. We then advocate the issue
of targeted rather than all encompassing tests, allowing the individuals to choose the
tests whose value is positive.
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8 Appendix

8.1 Proof of Result 3

a) First note that c1H � c0H = (p0H � p1H)d while c1U � c0U = �(p0H � p1H)d, so that
cmin = cmax = 0 if � = 0, and that 	(0; 0) < 0. We also know that @cmin=@� =
�dv0(c1U ) > 0 (so that cmin > 0 if � > 0) which, together with @	(c ;�)=@c > 0 and
@	(c;�)=@� > 0, implies that

d	(cmin;�)

d�
=
@	(cmin;�)

@c

@cmin
@�

+
@	(cmin;�)

@�
> 0:

Finally, we know that 	(0; ��) = 0 and that cmin > 0 when � = ��, which imply that
	(cmin; ��) > 0. The continuity of 	(c;�) in � together with the fact that 	(c;�) is
strictly increasing with � for any c implies, by the intermediate value theorem, that
there exists a unique value 0 < � < ��, denoted by ~�, such that 	(cmin; ~�) = 0.
b) By the same reasoning as above, we know that 	(cmin;�) > 0 for all � > ~�.
The fact that @	(c ;�)=@c > 0 and that 	(0;�) � 0 for all � > ~� imply, by the
intermediate value theorem, that there exists a unique value of c; denoted by ~c1(�);
such that 0 � ~c1(�) � cmin and 	(~c1(�);�) = 0;
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c) Straightforward since @	(c ;�)=@c > 0:
d) We have by de�nition that 	(~c1(�);�) = 0 so that

d	(~c1(�);�)

d�
=
@	(~c1(�);�)

@~c1(�)

@~c1(�)

@�
+
@	(~c1(�);�)

@�
= 0:

Our claim then results from the fact that @	(c ;�)=@c > 0 and that @	(c ;�)=@� > 0
for all c and �.
e) Straightforward since 	(0; ��) = 0:

�

8.2 Proof of Result 4

a) First, part a) of the proof of Result 3 has shown that 	(cmin;�) > 0 for all � > ~�.
Second, Result 2 has shown that 	(cmax;�) < 0 for all �: The fact that @	(c ;�)=@c =
�� < 0 then implies, by the intermediate value theorem, that there exists a unique value
of c; denoted by ~c2(�); such that cmin � ~c2(�) < cmax and 	(~c2(�);�) = 0;
b) Straightforward since @	(c ;�)=@c = �� < 0:
c) We have by de�nition that 	(~c2(�);�) = 0 so that

d	(~c2(�);�)

d�
=
@	(~c2(�);�)

@c

@~c2(�)

@�
+
@	(~c2(�);�)

@�
= 0:

Our claim then results from the fact that @	(c ;�)=@c < 0 and that @	(c ;�)=@� =
�dv0(c1H) > 0 for all c and �.
d) The fact that ~c1( ~�) = ~c2( ~�) = cmin comes from the de�nitions of ~�, ~c1(�) and ~c2(�).
The fact that cmin < ~c1( ��) < cmax comes from the observation that 	(cmin; ��) > 0
while 	(cmax; ��) < 0.

�

8.3 Proof of Lemma 1

a) �H and �U are respectively implicitly determined by

c = (p0H � p1H)(v(b1H)� v(d1H))

and,
c = �(p0H � p1H)(v(b1U )� v(d1U )):

It is worth noticing that �U = �H in the special case � = 1 (since p1U = p
1
H). Then, let

us consider the following function

F (�U ; �) = �(p
0
H � p1H)(v(b1U )� v(d1U ))� c:
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The implicit function theorem gives

d�U
d�

= � @F (�U ; �)=@�

@F (�U ; �)=@�U

=

�
p0H � p1H

� �
v(b1U )� v(d1U ) + ��U

�
p1H � pL

�
d
�
v0(d1U )� v0(b1U )

��
��
�
p1Uv

0(b1U ) + (1� p1U )v0(d1U )
� > 0:

b) The implicit function theorem implies:

@�H
@c

= � 1

�d
�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H)

� < 0:
The coverage rate �H attains the minimum value of zero when

c = �cH = �(v(y)� v(y � d)):

We proceed similarly to prove that �U is decreasing in c, and that the minimum value
of �U = 0 is reached when

c = �cU = ��(v(y)� v(y � d));

so that �cU < �cH .

�

8.4 Proof of Result 5

We have respectively

cMH
min � cmin = (1� p1U )v(b1U ) + p1Uv(d1U )� v(c0U )�

�
v(c1U )� v(c0U )

�
= (1� p1U )v(b1U ) + p1Uv(d1U )� v(c1U ) < 0

and

cMH
max � cmax = (1� p1H)v(b1H) + p1Hv(d1H)� v(c0H)�

�
v(c1H)� v(c0H)

�
= (1� p1H)v(b1H) + p1Hv(d1H)� v(c1H) < 0:

Also, When c = �cH , we have �H = 0 so that the agent is not insured at all (and is
indi¤erent between making the prevention e¤ort or not). His utility is then lower than
what he gets under U0H , where he is fully insured at an actuarially fair price (without
e¤ort). Since U1MH

H is decreasing in c (because of both the direct e¤ect of a higher c
and the indirect impact through the decrease in coverage rate) while U0H is not a¤ected
by c, we have that cMH

max < �cH . The proof that c
MH
min < �cL is obtained in a similar way.

�
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8.5 Proof of Lemma 2

a) We have that

@	MH(c;�)

@c
= 1� �

+�

�
(1� p1H)p1Hd

@�H
@c

�
v0(d1H)� v0(b1H)

��
�
�
p1U (1� p1U )d

@�U
@c

�
v0(d1U )� v0(b1U )

��
:

We then have that
@	MH(c;�)

@c
� @	(c;�)

@c
= 1� �

if and only if

�

"
(1� p1H)p1H

�
v0(d1H)� v0(b1H)

��
p1Hv

0(b1H) + (1� p1H)v0(d1H)
� # � " p1U (1� p1U ) �v0(d1U )� v0(b1U )�

�
�
p1Uv

0(b1U ) + (1� p1U )v0(d1U )
�# :

If �! ��, this condition simpli�es to

�2
�

v0(d1H)� v0(b1H)
pLv0(b1H) + (1� pL)v0(d1H)

�
�
�

v0(d1U )� v0(b1U )
pLv0(b1U ) + (1� pL)v0(d1U )

�
:

A su¢ cient condition is�
pLv

0(b1U ) + (1� pL)v0(d1U )
� �
v0(d1H)� v0(b1H)

�
�
�
pLv

0(b1H) + (1� pL)v0(d1H)
� �
v0(d1U )� v0(b1U )

�
;

() v0(d1U )v
0(b1H) � v0(b1U )v0(d1H);

which is true since d1U < d
1
H for �! ��.

The proof of part b) of the lemma is straightforward.

�

8.6 Proof of Result 7

a) Start by assuming that � = ��. We know from Lemma 2 b) that

	MH(0; ��) = 	(0; ��) = 0:

Part a) of Lemma 2 shows that

@	MH(c; ��)

@c
� 	(c; ��)

@c
= 1� � for all c < cMH

min ;
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which implies that
	MH(c; ��) > 0 for all c < cMH

min :

We then have that ~cMH
1 ( ��) = 0:

Assume now that � < �� while remaining close enough. Observe that, by continu-
ity of 	 and 	MH in c, we have that

@	MH(c;�)

@c
� 	(c;�)

@c
= 1� � for all c < cMH

min and �! ��:

We know from Lemma 2 b) that

	MH(0;�) = 	(0;�) < 0:

Since 	MH(c;�) is continuous in c, we have that

	MH(cMH
min ;�) > 0:

By the intermediate value theorem, there exists a unique value of c; denoted by ~cMH
1 (�);

such that ~cMH
1 (�) < cMH

min and 	
MH(~cMH

1 (�);�) = 0.

b) The proof is straightforward by de�nition of ~cMH
1 (�) and by the intermediate value

theorem.

�

8.7 Proof of Lemma 3

a) Observe that, for cMH
min < c < c

MH
max, we have

	MH(c;�) = �
�
cMH
max � c+ v(c0H)

�
+ (1� �)v(cL)� v(c0U );

so that
@	MH(c;�)

@�
= �

@cMH
max

@�
:

The derivative of cMH
max with respect to � is

@cMH
max

@�
= v(b1H)� v(d1H) + �Hd

��
1� p1H

�
v0(b1H) + p

1
Hv

0(d1H)
�

+d
@�H
@�

�
1� p1H

�
p1H
�
v0(d1H)� v0(b1H)

�
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If @�H=@� > 0, it is clear that @cMH
max=@� > 0. On the contrary, if @�H=@� < 0, the

sign is a priori ambiguous. We have

@cMH
max

@�
= v(b1H)� v(d1H) + �Hdv0(b1H)

+�Hdp
1
H

�
v0(d1H)� v0(b1H)

�
+ d

@�H
@�

�
1� p1H

�
p1H
�
v0(d1H)� v0(b1H)

�
:

A su¢ cient condition to have @cMH
max=@� > 0 is then

�H +
@�H
@�

�
1� p1H

�
� 0:

Using the implicit function on the equation de�ning �H , we obtain

d�H
d�

=
v(b1H)� v(d1H) + ��Hd

�
v0(b1H)� v0(d1H)

�
�d
�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H)

� ;

whose denominator is always positive. Therefore, the previous su¢ cient condition be-
comes

�H � �
 
v(b1H)� v(d1H) + ��Hd

�
v0(b1H)� v0(d1H)

�
�d
�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H)

� ! �
1� p1H

�
, �d�H

�
p1Hv

0(b1H) +
�
1� p1H

�
v0(d1H) +

�
v0(b1H)� v0(d1H)

� �
1� p1H

��
� �

�
v(b1H)� v(d1H)

� �
1� p1H

�
, �d�Hv

0(b1H) � �
�
v(b1H)� v(d1H)

� �
1� p1H

�
;

which is always true since the RHS is negative.
b) The derivative of 	MH(c;�) with respect to c is

@	MH(c;�)

@c
= �

�
�1�

�
1� p1H

�
v0(b1H)

@�H
@c

p1Hd+ p
1
Hv

0(d1H)
@�H
@c

�
1� p1H

�
d

�
= �

�
p1H
�
1� p1H

�
d
@�H
@c

�
v0(d1H)� v0(b1H)

�
� 1
�
< 0:

�

8.8 Proof of Result 8

a) Recall that, for cMH
min < c < c

MH
max, we have

	MH(c; ��) = (1� �)v(cL) + �
�
(1� pL)v(b1H) + pLv(d1H)� c

�
� v(c0U ):
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Result 6 has shown that 	MH(cMH
max; ��) < 0:We now prove that 	

MH(cMH
min ;

��) > 0:We
have

	MH(cMH
min ; ��) = (1� �)

�
v(cL)� v(c0U )

�
(10)

+�
�
pL
�
v(d1H)� v(d1U )

�
+ (1� pL)

�
v(b1H)� v(b1U )

��
:

Note that the �rst term of (10) is positive. Moreover, using the mean value theorem,
we obtain that

v(d1H)� v(d1U ) = v0($)d(1� pL) (�H � �U ) ;
v(b1H)� v(b1U ) = v0(�)dpL (�U � �H) ;

with $ 2
�
d1H ; d

1
U

�
and � 2

�
b1H ; b

1
U

�
. Therefore, the second term of (10) becomes

pL
�
v(d1H)� v(d1U )

�
+ (1� pL)

�
v(b1H)� v(b1U )

�
= d(1� pL)pL (�H � �U )

�
v0($)� v0(�)

�
:

As �H > �U (Lemma 1) and $ < �, then the concavity of v(:) implies that
	MH(cmin; ��) < 0:
Moreover, Lemma 3 has shown that @	MH(c;�)=@c < 0 for cMH

min < c < cMH
max. As

	MH(c; ��) is continuous in c, the intermediate value theorem implies that there exist
~cMH
2 ( ��) 2]cMH

min ; c
MH
max[ such that 	

MH(~c( ��); ��) = 0. By continuity of 	MH(c;�) in �,
this threshold ~cMH

2 (�) also exists for value of � close enough to ��. Observe that, when
it exists, ~cMH

2 (�) < cMH
max since 	

MH(cMH
max;�) < 0 for all �. From now on, we consider

only values of � large enough that ~cMH
2 (�) exists.

b) The claim is straightforward since @	MH(c ;�)=@c < 0 by Lemma 3.
c) We have by de�nition that 	MH(~cMH

2 (�);�) = 0 so that

d	MH(~cMH
2 (�);�)

d�
=
@	MH(~cMH

2 (�);�)

@c

@~cMH
2 (�)

@�
+
@	MH(~cMH

2 (�);�)

@�
= 0:

Our claim then results from the fact that @	MH(c ;�)=@c < 0 and that @	MH(c ;�)=@� >
0 for all c and �.

�

8.9 Proof of Proposition 5

We �rst prove the following two lemmatas.

Lemma 4 We have (a) ~cMH
1 (�) < ~c1(�) and (b) ~cMH

2 (�) < ~c2(�) when �! ��:
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Proof. Result 3 has shown that ~c1(�) < cmin exists if � � ~� (de�ned as
	MH(cmin; ~�) = 0), with 	(c;�) < 0 for c < ~c1(�). Obviously, � ! �� > ~�, so
that ~c1(�) exists. Similarly, Result 7 shows that ~cMH

1 (�) exists for � ! ��, with
	MH(~cMH

1 (�);�) = 0. We then have that 	MH(c;�) > 	(c;�) for c < cMH
min (a con-

sequence of Lemma 2) implies that ~cMH
1 (�) < ~c1(�):

Result 4 has shown that cmin < ~c2(�) < cmax exists if � � ~�, with 	(c;�) > 0
for ~c1(�) < c < ~c2(�). Similarly, Result 8 shows that ~cMH

2 (�) < cMH
max exists for

� ! ��, with 	MH(c;�) > 0 for ~cMH
1 (�) < c < ~cMH

2 (�). We then have that
	MH(c;�) < 	(c;�) for any � when cMH

min < cmin < c < cMH
max (Lemma 5) implies

that ~cMH
2 (�) < ~c2(�):

Lemma 5 	MH(c;�) < 	(c;�) for any � when cMH
min < cmin < c < c

MH
max:

Proof. Recall that, when cmin < c < cMH
max, we have

	MH(c;�) = �
�
(1� p1H)v(b1H) + p1Hv(d1H)� c

�
+ (1� �)v(cL)� v(c0U );

	(c;�) = �
�
v(c1H)� 1

�
+ (1� �)v(cL)� v(c0U );

hence we obtain

	(c;�)�	MH(c;�) = �
�
v(c1H)� (1� p1H)v(b1H)� p1Hv(d1H)

�
> 0:

We now prove Proposition 5
Proof. (a) Recall that, when � is close enough to ��, we have that 	MH(0;�) =

	(0;�) and that 	MH(c;�) > 	(c;�) for c < cMH
min (see Lemma 2 for both), which

implies that 	MH(cMH
min ;�) > 	(c

MH
min ;�). Lemma 5 shows that 	

MH(c;�) < 	(c;�)
for cMH

min < cmin < c < cMH
max. By continuity of 	

MH(c;�) and 	(c;�) in c, the fact
that @	MH(c;�)=@c < 0 for cMH

min < c < cmin (see Lemma 3) and the intermediate
value theorem, we then have that there exists a unique value of c, denoted by ĉ, with
cMH
min < ĉ < cmin, and such that 	

MH(c;�) > 	(c;�) for c < ĉ, 	MH(ĉ;�) = 	(ĉ;�)
and 	MH(c;�) < 	(c;�) for ĉ < c < cmax. As for the latter inequality, observe that
	MH(c;�) = 	0 < 	(c;�) for cMH

max � c < cmax, while 	MH(c;�) = 	(c;�) = 	0 for
c � cmax.
(b) The proof of Lemma 4 shows that ~c1(�), ~cMH

1 (�) and ~cMH
2 (�) exist when �! ��.

The claim follows from the observation that 	MH(c;�) > 0 for ~cMH
1 (�) < c < ~cMH

2 (�)
(Results 7 and 8) while 	(c;�) < 0 for for c < ~c1(�) (Result 3).
(c) The proof of Lemma 4 shows that ~c1(�), ~c2(�) and ~cMH

2 (�) exist when � ! ��.
The claim follows from the observation that 	MH(c;�) < 0 for c > ~cMH

2 (�) (Result 3)
while 	(c;�) > 0 for ~c1(�) < c < ~c2(�) (Result 1 (b)).
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(d) We know that 	(c;�) is maximized at c = cmin, and we now show that from
	MH(cMH

min ;�) > 	(cmin;�) . We have that

	MH(cMH
min ;�) = �

�
(1� p1H)v(b1H) + p1Hv(d1H)� (1� p1U )v(b1U )� p1Uv(d1U )

�
+ (1� �)

�
v(cL)� v(c0U )

�
;

	(cmin;�) = �
�
v(c1H)� v(c1U )

�
+ (1� �)

�
v(cL)� v(c0U )

�
;

so that

	MH(cMH
min ;�) > 	(cmin;�)

, v(c1U )�
�
(1� p1U )v(b1U )� p1Uv(d1U )

�
> v(c1H)�

�
(1� p1H)v(b1H) + p1Hv(d1H)

�
:

If we assume that � = ��, the latter inequality becomes

(1� pL)
�
v(b1U )� v(b1H)

�
< pL

�
v(d1H)� v(d1U )

�
(1� pL)

�
b1U � b1H

�
v0(�) < pL

�
d1H � d1U

�
v0(�); (11)

with � > �. Using

b1U � b1H = (�H � �U )pLd;
b1U � b1H = (�H � �U )pLd;

the inequality (11) becomes
v0(�) < v0(�);

which is true.

By continuity of 	MH(cMH
min ;�) and of 	(cmin;�) in�, we obtain that 	

MH(cMH
min ;�) >

	(cmin;�) for �! ��.
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Figure 1 : Value of test as a function of c for several values of 
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Figure 2 : Value of c1 yellow, cmin blue, c2 green and cmax purple as a function of 
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Figure 3 : H and U U  H  as a function of c
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Figure 4 : Value of test with moral hazard as a function of c for several values of 
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Figure 5 : Comparison of value of test,

with right and without MH left, as a function of c for   0.1
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Figure 6 : Ex‐ante utility as a function of effort cost
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Figure 7 : Ex‐ante utility with and without moral hazard

Ex‐ante utility

D : Expected utility loss from moral
hazard

With

Without Moral Hazard
D

With
Moral 
Hazard

Without Moral Hazard

0 c
1
MHc 1c 2c2

MHc


