
Cooperation in the Presence of an Advantaged Outsider?

Guillaume Cheikbossian
Université de Montpellier 1 and Toulouse School of Economics (TSE)

Philippe Mahenc
Université de Montpellier 1 (LAMETA)

August 2012

– – – – – – – – – –
?

Cheikbossian: guillaume.cheikbossian@univ-montp1.fr
Mahenc: philippe.mahenc@univ-montp1.fr

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Toulouse Capitole Publications

https://core.ac.uk/display/300456949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract: This paper analyzes how the stability of the tacit cooperation within a fringe of sev-

eral identical firms is affected by the presence of a more effi cient firm which does not take part

in their cooperative agreement. The model assumes that the firms of the fringe adopt ‘stick and

carrot’strategies à la Abreu (1986, 1988) to support cooperation, while the outside firm plays its

one-period best response function to these strategies, regardless of the history of play. Assuming

a linear demand function and constant marginal costs, we then obtain conditions for the coopera-

tion within the fringe to be sustainable and focus on the most cooperative symmetric punishment

(MCSP) that sustains cooperation. We show that the MCSP is harsher when the number of firms

involved in the agreement is relatively large or when their relative cost disadvantage is relatively

small. However, both a larger number of firms and a larger cost disadvantage make it more diffi cult

to sustain the cooperation.

Keywords: Repeated Game; Tacit Collusion; Optimal Punishments; Cost Asymmetry, Outsider
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1 Introduction

Since the work of Friedman (1971), the vast majority of the literature on collusion in oligopolistic

markets has posited identical firms and that all of them participate in the cartel agreement. A few

theoretical works have investigated the relationship between the firms’effi ciencies and the collusive

behaviour, and have shown that asymmetries in the cost functions hinders, in general, collusion,

with the results depending crucially upon the profit sharing rule (e.g., Rothschild 1999, Vasconcelos

2005) and on whether side payments between firms are allowed (see Miklós-Thal 2011). Still, the

theory of tacit collusion has maintained the assumption that all the firms participate in the collusive

agreement, an assumption which is questionable, especially in a context where the oligopoly is made

up of heterogeneous firms. Indeed, a firm with a relatively high competitive advantage may find it

more profitable to opt out of an agreement which includes less competitive firms. In fact, this is

what is suggested by Vasconcelos’s analysis, where the most effi cient firm is shown to be the main

obstacle to the enforceability of the collusion.1 In the present article, we will investigate how the

stability of tacit cooperation between several identical firms is affected by the presence of a more

effi cient firm which does not take part in the cooperative agreement.

We employ an oligopoly model in which n symmetric firms, called the fringe, plus one cost-

advantaged firm, called the outsider, play a Cournot game over an infinite horizon. The firms of the

fringe adopt two-phase ‘stick-and-carrot’punishment schemes à la Abreu (1986, 1988) to support

their joint-profit maximizing behaviour. I.e., following any deviation, the firms of the fringe conform

to a ‘stick’, or, punishment, phase in which they produce a very high quantity (the punishment

output level) for one period (thus resulting in very low market price and profits during that period)

to generate a ‘carrot’in the possibility of a subsequent return to cooperative behaviour. Deviations

from the punishment simply cause it to begin again. As for the outsider, it is assumed to play in

every period its best response to the other firms’strategies regardless of the history. We then focus

on a subgame perfect equilibrium which supports perfect cooperation within the fringe and non-

cooperation between the fringe and the outsider. In this equilibrium, the cooperation among the

firms of the fringe makes them act as if they were a single firm, and hence the outcome corresponds

to that of a Cournot duopoly game.

As one would expect, there exists an infinity of punishment output levels which support perfect

cooperation within the fringe as a subgame perfect outcome. To tackle this problem, we thus

1Bae (1987) and Harrington (1991), by investigating the determination of the price of output quotas in heteroge-

neous cartels, reached the same type of conclusion.
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propose a selection criterion that requires equalizing the gains from defection in the cooperative

and punishment phases. We then show that this selection criterion singles out what we call the

most cooperative symmetric punishment (MCSP) in that it most relaxes the incentive compatibility

constraints, both in the cooperative and the punishment phases. In other words, the MCSP yields

the largest possible range of discount factors for which perfect cooperation within the fringe can be

sustained.

The MCSP crucially depends on both the size of the fringe and on the cost asymmetry between

the firms of the fringe and the outsider. More specifically, we show that perfect cooperation within

the fringe requires harsher punishment output levels when the fringe is relatively large or when the

cost asymmetry is relatively small. Intuitively, in those cases, each firm of the fringe has more to

gain from cheating on the production cut agreement in the cooperative phase. Harsher punishments

are then required to maintain the cooperation.

Next, we characterize the minimum value for the discount factor above which perfect cooperation

is sustainable as a subgame perfect outcome. In the context of this paper, this minimum value is

interpreted as a measure of the ease of cooperation between the fringe firms. We then show that

an increase in the size of the fringe causes perfect cooperation to be less feasible. This result is

consistent with the argument made by scholars of collective action, that overcoming the free-rider

problem becomes more diffi cult as the size of the collectivity increases (e.g., Hardin, 1982; Olson,

1982; Sandler 1992). As regards the cost asymmetry between the fringe and the outsider, it only

affects the ease of cooperation if the size of the fringe is suffi ciently small. If that is the case, a

greater cost asymmetry makes cooperation within the fringe increasingly diffi cult to sustain. The

intuition is that the larger the cost disadvantage of the firms of the fringe relative to the outsider,

the larger is the one-period loss from the first phase of the punishment strategy. Hence, more weight

has to be attached to the future stream of payoffs for the firms to comply with the punishment.

The long history of cartels has produced varied evidence that the strategic interaction with a

more effi cient outsider makes the stability of the cartel more precarious. In particular, the issue of

the strength of cooperation between small producers faced with an advantaged competitor proves

especially important for a number of commodity markets, such as cocoa, coffee, natural rubber, and

cotton (see, e.g., Gilbert, 1996). For instance, it is widely accepted that the reason for the failure of

the International Agreements on Cocoa (ICCAs) and Coffee (ICAs) in the 80s and 90s was the lack

of support from the dominant producer in the marketplace, i.e., Ivory Coast for cocoa and Brazil for

coffee (see Gayi, 2004). Similarly, observations on the market for lysine have shown that collusion

between three Asian-based firms collapsed in the early 90s, precipitating a severe price war, due
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to the emergence of a large-scale entrant and more effi cient competitor, namely the US-based firm

Archer Daniels Midland (ADM) (see de Roos, 2004, 2006).

The rest of this paper is organized as follows. In Section 2, we describe the basic model. In Section

3, we explore the infinitely repeated game and provide necessary and suffi cient conditions for perfect

cooperation within the fringe to be sustained as a subgame perfect outcome through the use of ‘stick-

and-carrot’strategies à la Abreu (1986, 1988). Section 4 derives the MCSP, depending on the size of

the fringe and on the cost asymmetry between the firms of the fringe and the outsider. This section

not only provides the lowest discount factor for the sustainability of the perfect cooperation, but

also investigates the impact of the size of the fringe and of the cost asymmetry on the sustainability

of cooperation. Finally, Section 5 offers some concluding comments.

2 The model

2.1 The stage game

We start by specifying the details of the stage game G. There are n+1 firms, indexed i = 0, 1, 2, ..., n,

which produce a homogenous product at constant marginal cost. Firm 0 has a marginal cost

normalized to 0, whereas all other firms of the fringe, i = 1, 2, ....n, incur a marginal cost c ≥ 0. Let

qi ∈ R+ be the output of firm i, for i = 0, 1, ..., n. Then Q =

n∑
i=0

qi is the aggregate output. The

inverse demand function is given by p (Q) = max {0, 1−Q}, with c < 1. Thus, the payoff function

of firm 0 is π0 (q0, q1, ..., qn) = p (Q) q0, while that of firm i, for i = 1, ..., n, is πi (q0, q1, ..., qn) =

[p (Q)− c] qi.

Let ri (q−i), for i = 0, ..., n, be the firm i’s single-period best reply to the vector of output levels

q−i = (q0, ..., qi−1, qi+1..., qn), so that ri (q−i) satisfies πi (ri (q−i) , q−i) ≥ πi (qi,q−i) for all q−i ∈ Rn+.

Thus, we have r0 (q−0) = max

{
0,

(
1−

n∑
i=1

qi

)
/2

}
, and ri (q−i) = max

{
0,

(
1− q0 −

∑
j 6=i

qj − c
)
/2

}
for i = 1, ..., n.

We focus on symmetric equilibria in the sense that all firms of the fringe produce the same level

of output. For the sake of simplicity, we will write r0 (q−0) = r0 (x) and ri (q−i) = ri (q0, x) if qi = x

for i = 1, ..., n. The non-cooperative equilibrium, both within the fringe and between the fringe

and the outsider, is characterized by a pair of output levels
(
qN0 , q

N
)
such that r0

(
qN
)

= qN0 and

ri
(
qN0 , q

N
)

= qN for i = 1, ..., n. We obtain
(
qN0 , q

N
)

=
(
1+nc
n+2 ,

1−2c
n+2

)
, and so the market clears at

price pN = (1 + nc) / (n+ 2).

To guarantee that each firm in the stage game has a positive market share, we make the following

assumption.
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Assumption 1: c < 1/2.

Write πN0 for π0
(
qN0 , q

N , ..., qN
)
, the payoff of the outsider, and write πN for πi

(
qN0 , q

N , ..., qN
)
,

the identical payoff for each firm of the fringe, when there is non-cooperation within the fringe. We

have

πN =

[
1− 2c

n+ 2

]2
, (1)

and

πN0 =

[
1 + nc

n+ 2

]2
. (2)

with πN0 > πN .

2.2 Cooperation within the fringe

Assume now that the firms of the fringe collude and jointly choose a common level of output q

so as to maximize the sum of their profits. Yet, they continue playing non-cooperatively with the

outsider, so that the outcome resembles that of a Cournot duopoly game between the fringe and

the outsider. The cooperative output from the viewpoint of the fringe is given by the maximization

of
n∑
i=1

πi (q0, q, ..., q) = (p (Q)− c)nq with respect to q, where Q = nq + q0. The best reply of

any firm of the fringe to the output level q0 produced by the outsider is thus given by the function

Ri (q0) = max {0, (1− q0 − c) /2n}. The non-cooperative equilibrium between the fringe, which acts

as if it were a single firm, and the outsider is thus given by a pair of output levels
(
qC0 , q

C
)
such that

r0
(
qC
)

= qC0 and Ri
(
qC0
)

= qC , for i = 1, ..., n. Hence, when the firms of the fringe fully cooperate

with each other, we have
(
qC0 , q

C
)

=
(
1+c
3 , 1−2c3n

)
.

Write πC0 for π0
(
qC0 , q

C , ..., qC
)
, the payoff of the outsider, and write πC for πi

(
qC0 , q

C , ..., qC
)
,

for i = 1, ..., n, the identical payoff for each firm of the fringe when there is cooperation within the

fringe. The market price equilibrium is pC = (a+ c)/3, and then

πC =
1

n

(
1− 2c

3

)2
, (3)

and

πC0 =

(
1 + c

3

)2
. (4)

We can verify that πC − πN = n2 − 5n + 4 ≥ 0, which is positive for n ≥ 4. Hence, to make

the problem interesting, we shall make the following assumption throughout the remainder of our

analysis.

Assumption 2. n ≥ 4.
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Moreover, we have that πC0 −πN0 = (1− 2c)(n− 1) ≥ 0. In other words, the outsider always benefits

from cooperation within the fringe. This is because cooperation within the fringe reduces output

levels and increases the market price, which in turn increases the profit of the outsider.

3 The infinitely repeated game

3.1 Preliminaries

The n+1 firms play an infinitely repeated game with discounting. Let G∞ (δ) be the repeated game

obtained by repeating G infinitely often, and where δ ∈ (0, 1) is the discount parameter per period for

each player. We assume that the output produced by each firm in each period is perfectly observed

by all firms. Let q0(t) ∈ R+ and q−0(t) = (q1(t), ..., qn(t)) ∈ Rn+ be respectively the output level

produced by the outsider and the vector of outputs produced by the n firms of the fringe in period t.

Hence, a (finite) history in period t ≥ 1 is h(t) = (h0(t), h−0(t)), where h0(t) = (q0(1), ..., q0(t− 1))

and h−0(t) = (q−0(0), ..., q−0(t− 1)). Let Ht be the set of t-period histories. We further define the

initial history to be the null set, H0 = {∅}, and H to be the set of all possible publicly observable

histories, H =
∞
∪
t=0

Ht. A pure strategy for firm i in G∞ (δ), for i = 0, 1, 2, ..., n, is a mapping from

the set of all possible histories into the set of output levels, σi : H → R+.

Let σ−0 = (σ1, ..., σn) be the strategy profile of the firms of the fringe. Any strategy profile σ =

(σ0, σ−0) generates an output path {q0 (σ) (t), q−0 (σ) (t)}∞t=0 defined inductively by (q0 (σ) (0), q−0 (σ) (0)) =

σ (∅) and (q0 (σ) (t), q−0(σ)(t)) = σ (t) ((q0 (σ) (0), q−0 (σ) (0)) , ..., (q0 (σ) (t− 1), q−0 (σ) (t− 1))) for

all t ≥ 1. An outcome path {q0 (σ) (t), q−0 (σ) (t)}∞t=0 thus implies an infinite stream of stage-game

payoffs {πi (q0 (σ) (t), q−0 (σ) (t))}∞t=0 for firms i = 0, 1, ..., n. The discounted payoff to firm i from

the infinite sequence of stage-game payoffs {πi(t)}∞t=0 is given by
∞∑
t=0

δtπi(t), so that its payoff in

G∞ (δ) obtained with the strategy profile σ is

πδi (σ) =

∞∑
t=0

δtπi (q0 (σ) (t), q−0 (σ) (t)) . (5)

A strategy profile σ is a Nash equilibrium in G∞ (δ) if σ0 is a best response to σ−0 and if σi, for

i = 1, ..., n, is a best response to σ−0\i = (σ1, ..., σi−1, σi+1, ..., σn) and to σ0. And it is a subgame

perfect equilibrium in G∞ (δ) if after every history h ∈ H, σ |h (i.e., the continuation of σ after h) is

a Nash equilibrium in the corresponding subgame. We will restrict attention to stationary subgame

perfect equilibria (SSPE), i.e., equilibria in which after any history, a stationary profile of actions is

played thereafter, and which also satisfy the additional requirement of symmetry within the fringe,

in the sense that all firms of the fringe produce the same level of output at every history.
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3.2 The two-phase punishment—cooperation scheme

Throughout the paper, we suppose that the firms of the fringe adopt ‘stick-and-carrot’strategies à

la Abreu (1986, 1988) to support the joint-profit maximizing level of output as a subgame perfect

equilibrium. Formally, for any level of output q0 produced by the outsider in period t, consider two

levels of output produced by any firm of the fringe as functions of q0, i.e., (q̂ (q0) , q̃ (q0)), and define

a two-phase punishment—cooperation profile σ (q̂ (q0) , q̃ (q0)) to be ‘stick-and-carrot’ strategies in

which all firms of the fringe produce q̃ (q0) in the first period and thereafter play q̂ (q0), with any

deviation from these strategies causing this prescription to be repeated. Intuitively, q̃ (q0) is the

‘stick’, involving a high level of output and q̂ (q0) is the ‘carrot’, involving a low and cooperative

level of output. The punishment specifies a single-period penalty followed by repeated play of the

carrot. Deviations from the punishment simply cause it to begin again.

Again, we are concerned with the best subgame perfect equilibrium from the viewpoint of the

firms of the fringe and we further assume that the outsider plays in every period its best response to

the other firms’strategies regardless of the history, i.e., σ0 (h(t)) = r0 (q−0(t)) for all h(t). During

the cooperative phase within the fringe, we thus pay attention to the levels of output q̂ (q0) =

Ri
(
qC0
)

= qC for i = 1, ..., n and r0
(
qC
)

= qC0 . During the punishment phase, we are concerned

with the levels of output q̃ (q0) = x and r0 (x) = qx0 . This strategy profile will be henceforth denoted

by σ∗
(
qC , x

)
, where qC is the short notation for

(
qC0 , q

C
)
and x = (qx0 , x).

The profile σ∗
(
qC , x

)
can sustain the cooperation within the fringe as a subgame perfect equi-

librium output path if and only if a single period deviation from the strategy (and sticking to it

subsequently) after any history is not profitable for any firm of the fringe. There are two kinds

of histories to check. The first is that no single deviation has taken place in the previous periods,

so that the firms are in a cooperative phase. The second state to check is the one where a firm

deviated from the cooperative agreement in the previous period, so that the firms are currently in

the punishment phase.

Suppose first that the firms of the fringe are in a cooperative phase, i.e., they all produce qC

and the outsider produces qC0 , and that firm i considers deviating from qC . The deviator maximizes

πi
(
qC0 , q

C , ..., qi, ..., q
C
)

= max
{

0,
(
1− qi − (n− 1) qC − qC0 − c

)
qi
}
with respect to qi and hence

the optimal deviation output is given by qD = (n+ 1) (1− 2c) /6n.

Let πD = πi
(
qC0 , q

C , ..., qD, ..., qC
)
be the optimal deviation profit for each firm i in the fringe.

We have

πD =

[
(n+ 1) (1− 2c)

6n

]2
. (6)
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The deviation payoff given by (6) is decreasing in c. Hence, the greater the cost advantage of the

outsider, the lower is the temptation to deviate from the cooperative phase for each firm of the

fringe. Moreover, a larger size of the fringe also reduces the deviation payoff.

Now, let πP (x) = πi (r0 (x) , x, ..., x) denote the payoff of firm i of the fringe when each fringe

firm produces x units of output while the outsider best responds to this level. Let V P be the present

discounted value of the payoffs following a deviation, that is,

V P = πP (x) +
δ

1− δ π
C . (7)

No firm of the fringe has an incentive to deviate from σ∗
(
qC , x

)
in the cooperative phase if and only

if

πD + δV P ≤ 1

1− δ π
C . (8)

Intuitively, (8) says that the one-shot deviation gain from the cooperative phase plus the discounted

payoff of entering the punishment phase next period must not exceed the payoff from continued

cooperation. Rearranging this inequality and using (7), we have the following incentive compatibility

constraint along the cooperative path

δ ≥ δC (x) =
πD − πC

πC − πP (x)
. (9)

Suppose now that one firm deviated from σ∗
(
qC , x

)
in the previous period, so that the firms of

the fringe are in the punishment phase in the current period. Suppose also that firm i considers

deviating from x and let πDP (x) be the optimal deviation payoff during the punishment phase,

i.e., πDP (x) = πi
(
r0 (x) , x, ..., qDP (x) , ..., x

)
where qDP (x) = arg max

qi

πi (r0 (x) , x, ..., qi, ..., x). No

firm of the fringe has an incentive to deviate from σ∗
(
qC , x

)
during the punishment phase if and

only if

πDP (x) + δV P ≤ V P . (10)

Intuitively, the one-shot deviation gain from the punishment phase plus the discounted payoff of

staying in the punishment phase next period must not exceed the present value of abiding by the

punishment rule (which guarantees a return to the cooperative phase next period). Rearranging

this inequality and using (7), we have the following incentive compatibility constraint along the

punishment path:

δ ≥ δP (x) =
πDP (x)− πP (x)

πC − πP (x)
. (11)

Hence, the strategy profile σ∗
(
qC , x

)
is subgame perfect if and only if

δ ≥ max
{
δC (x) , δP (x)

}
. (12)
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We are now ready to determine the set of punishment output levels x for which the strategy profile

σ∗
(
qC , x

)
forms a subgame perfect equilibrium.

In the punishment phase, the outsider optimally responds to the punishment output x, thereby

producing

r0 (x) =


1−nx
2 if x < x̃,

0 otherwise,
(13)

where x̃ = 1/n corresponds to the threshold value of the punishment output level above which the

market price turns out to be nil for all x ≥ x̃, thereby driving the outsider out of business during

the punishment period. Each firm within the fringe then obtains

πP (x) =

 x
[
1−2c−nx

2

]
if x < x̃,

−cx otherwise.
(14)

The punishment payoff function changes when x ≥ x̃ because (again) the market price becomes

zero, so that the firms of the fringe produce and give the good for free. Clearly, in that case, the

profit of any firm of the fringe is negative. However, even if the market price is positive (i.e., when

x < x̃), the punishment profit may still be negative due to dumping, with a market price which falls

short of c. This is the case for x ≥ (1− 2c) /n. One can also observe that πP (x) is decreasing in x

for any x ≥ (1− 2c) /2n. The idea is that raising the punishment output floods the market, which

exerts a downward pressure on the market price. Nevertheless, the loss entailed by the punishment

should be recouped by reverting back to cooperative behaviour.

We can now determine the optimal deviation payoff for the firm which defects from the punish-

ment phase. Anticipating the outsider’s best reply to x, the payoff function for the deviator i is

given by

πi (r0 (x) , x, ..., qi, ..., x) =

 max{0, [1− qi − (n− 1)x− 1−nx
2 − cqi]} if x < x̃,

max {0, [1− qi − (n− 1)x− c] qi} otherwise.
(15)

Note that the firm which deviates from the punishment phase can always choose not to produce

(with a payoff equal to 0) if it cannot get positive profits. Denote by x̂ = (1− 2c) / (n− 2) and x̂′ =

(1− c) / (n− 1) two peculiar punishment outputs levels. As shown below, they are the minimum

punishment threats required to drive the deviator out of business depending on whether the market

price is positive or nil on the punishment path.

Maximizing the above payoff function with respect to qi, we obtain the optimal deviation output
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during the punishment phase, i.e.,

qDP (x) =



1−2c−x(n−2)
4 if

{
either c ≥ 1

n and x < x̂,
or c < 1

n and x < x̃,

1−c−x(n−1)
2 if c < 1

n and x̃ ≤ x < x̂′,

0 otherwise.

(16)

When x < x̃, the market price is positive and hence the outsider is better off producing r0 (x) > 0,

as one can see from (13). In this situation, the deviator also produces strictly positive quantities

whenever x < x̂. When c < 1
n , we have x̃ < x̂, so that x < x̂ whenever x < x̃. If however c ≥ 1

n , we

have x̂ ≤ x̃ and hence the relevant constraint is indeed given by x̂.

When the punishment output is relatively large, i.e., when x ≥ x̃, the market price is equal to 0

and hence the best response of the outsider is to stay out of the market, i.e., r0 (x) = 0. However,

it might possible that the behaviour of the deviator, by producing a lower level of output than the

agreed punishment output level, gives rise to a positive market price, so that the optimal deviation

output is positive. For this situation to happens, one must have for x ∈ [x̃, x̂′), which necessarily

implies x̃ < x̂′ and c < 1
n . In all other cases, i.e., c ≥

1
n and x ≥ x̂ or c < 1

n and x ≥ x̂′, we have

qDP (x) = 0.

Substituting (16) into (15) yields the optimal deviation payoff function

πDP (x) =



[
1−2c−x(n−2)

4

]2
if
{
either c ≥ 1

n and x < x̂,
or c < 1

n and x < x̃,[
1−c−x(n−1)

2

]2
if c < 1

n and x̃ ≤ x < x̂′,

0 otherwise.

(17)

πDP (x) is decreasing in c whenever the market price induced by a deviation from the punishment

path is positive. In other words, the higher the cost advantage of the outsider, the lower is the

incentive to deviate from the punishment phase for any firm of the fringe even though the outsider

is driven out of business, which happens when c < 1
n and x̃ ≤ x < x̂′, arranging a market price

equal to 0 in the absence of a deviation.

We now state the following lemma, which will prove useful.2

Lemma 1. Let x̄ = 2γ/3n be the highest solution to πC −πP (x) = 0, with γ = 1−2c. A necessary

condition for the strategy profile σ∗
(
qC , x

)
to be a SSPE is then that x ≥ x̄.

The punishment output level must be suffi ciently large for the strategy profile σ∗
(
qC , x

)
to be

a subgame perfect equilibrium. Punishments which are too small strengthen the incentives to
2All the proofs are given in the Appendix.
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deviate either from the cooperative phase by raising πP (x), or from the punishment phase by

raising πDP (x).

4 The most cooperative symmetric punishment

We now determine the strongest credible punishment in the sense that x ∈ [x,+∞) is chosen to

minimize the continuation value following a deviation given by (7) subject to the incentive constraints

(8) and (10). This requires that the incentive constraint along the punishment phase (10) holds with

equality, or equivalently that δ = δP (x). Suppose it is not. Then the punishment output level x

can be raised so as to decrease both πDP (x) and the continuation valuation V P until (10) holds

with strict equality. Indeed, since πP (x) is decreasing in x for any x ≥ γ/2n, V P is also decreasing

in x on [x,+∞), since γ/2n < x̄. Furthermore, decreasing V P makes the incentive constraint along

the cooperative path, given by (8), more likely to be satisfied, because πC and πD do not depend

on x. Note that when πDP (x) = 0, the harshest punishment V P = 0, i.e., the punishment level

such that the losses incurred by the firm during the punishment phase are exactly recouped by the

cooperative profits in the following periods, can be sustained since the incentive constraint (10)

holds as an equality.3

Typically, there are multiple punishment levels such that δ = δP (x) and such that the incentive

constraint in the cooperative phase (8) holds. To deal with this multiplicity problem, we use the

following selection criterion. Observing that δC (x) is decreasing in x, we further impose that (8)

holds with strict equality, i.e., δ = δC (x), so that we focus on the strongest credible punishment

levels satisfying δC (x) = δP (x). From (14) and (17), both payoff functions πP (x) and πDP (x)

are not everywhere differentiable on [x,+∞), and moreover πDP (x) may be non-monotonic on this

set. Hence, the equation δC (x) = δP (x) may admit several solutions. Therefore, we single out the

highest value of x, say x∗, satisfying this equality. In turn, we ensure that δP (x) is strictly increasing

in x on [x∗,+∞). Hence, x∗ corresponds to the (strongest credible) punishment level which implies

the largest possible range of discount factors for which cooperation within the fringe can be enforced

as an SSPE. We call this punishment level the most cooperative symmetric punishment (MCSP). In

other words, the MCSP is the punishment output level which most relaxes the incentive compatibility

constraints both in the cooperative and the punishment phases.

First, using (8) and (10), equation δC (x) = δP (x) becomes
[
πDP (x)− πP (x)

]
=
[
πD − πC

]
,

3When the most severe punishment can be sustained, Abreu (1986) has shown that the ‘stick and carrot’strategy

is optimal in the set of symmetric stationary strategies.
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which reduces to

πDP (x)− πP (x) =

[
γ (n− 1)

6n

]2
. (18)

As a result, our selection criterion requires that the net gain from deviating from the cooperative

path is equal to that from deviating from the punishment path. Building on the previous analysis,

we will distinguish in what follows between two cases: first, c ≥ 1
n , and second, c <

1
n .

4.1 Case 1: c ≥ 1
n
, a high competitive disadvantage of the fringe

Recall that c ≥ 1
n is equivalent to x̂ ≤ x̃, which means that the best deviation profit from the

punishment path can be equal to 0 (for x ≥ x̂) even though the market price is positive (for x < x̃).

When c ≥ 1/n, there are three types of punishment regimes, depending on the severity of the

punishment output level relative to x̂ and x̃. When the punishment output level is higher than x̃,

the outsider is driven out of business (see (13)), since the market price falls down to 0, while the

deviator cannot do better than cutting its production level to 0 (see (16)). The MCSP which solves

(18) in [x̃,+∞) will be denoted by x1 whenever it exists. If not, we turn to less severe punishment

levels inside [x̂, x̃). In this case, the market price is positive and the outsider is better off remaining

active in the market. But again, in this case, the best deviation from the punishment path is to cut

the production level to 0. The MCSP which solves (18) in [x̂, x̃) will be denoted by x′1 whenever it

exists. Otherwise, given Lemma 1, we focus on less severe subgame perfect punishments within the

interval [x̄, x̂). In this case, the market price is still positive and both the outsider and the deviator

are active in the market. The MCSP, if it exists, which solves (18) in [x̄, x̂) will be denoted by x′′1 .

Proposition 1. Assume that c ≥ 1
n . Furthermore, let f(n) be the lowest value of c which satisfies

x1 − x̃ = 0. Then, the strategy profile σ∗
(
qC , x

)
admits a unique MCSP given by : (i) x1 ≥ x̃ if

n ≥ 9 and c ≤ f(n); (ii) x′1 ∈ [x̂, x̃) if n ≥ 9 and c > f(n); (iii) x′′1 ∈ [x̄, x̂) if n < 9.

The MCSP, i.e., the punishment output level which most relaxes the incentive compatibility con-

straints on both the cooperative and punishment paths, depends on both the number of firms within

the fringe and on their competitive disadvantage relative to the outsider. First, it must be remem-

bered that the two incentive constraints depend on the harshness of the punishment. The higher

the punishment output level, the lower is the profit of any firm of the fringe on the punishment

path (i.e., ∂πP (x) /∂x < 0). This makes the incentive constraint for cooperation more likely to

be satisfied (i.e., ∂δC (x) /∂x < 0). However, a harsher punishment also raises the temptation to

deviate from the punishment path, which tightens the incentive constraint on this path. We indeed
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show, in the proofs of Proposition 1 and 2, that ∂πP (x) /∂x > 0 for any punishment output level

above the one which makes the two incentive constraints binding.

Now observe that the lower the size of the fringe, the lower is the gain from cheating on the

cooperative path, given by πD − πC . Intuitively, with a small number of firms within the fringe,

each firm has a relatively large market so that the potential gain of deviating by producing beyond

the production cut agreement is relatively low. Therefore, when the size of the fringe is relatively

low (i.e., n < 9) a relatively low punishment output level x′′1 ∈ [x̄, x̂) is suffi cient to sustain the

cooperation among the firms of the fringe and to satisfy the two incentive compatibility constraints.

Point A in Figure 1 shows a parameter configuration (n, c) for which the MCSP is x′′1 . Treating the

size of the fringe as a continuous variable, we show in the Appendix that the threshold value of n

below which the MCSP is given by x′′1 is precisely equal to ñ =
(
9 +
√

73
)
/2 ' 8.77.

As the number of firms increases to a certain point (i.e., n ≥ 9) the higher temptation to deviate

from cooperation requires harsher punishments. However, in this case, the interval within which

the punishment output levels can fall depends on the competitive disadvantage of the firms of the

fringe. More specifically, consider now the dotted arrow in Figure 1 which depicts from point A,

and for a given level of c, an increase in the size of the fringe above 9. Cooperation then requires

a punishment output level x′1 harsher than x
′′
1 , as is the case at point B, provided that c > f(n).

In this case, the best deviation profit from the punishment path is equal to 0, but the outsider still

makes a positive profit since the market price remains positive.

Now consider that the cost disadvantage of the firms of the fringe, for a given size n, decreases,

as depicted by the bold arrow starting from point B in Figure 1. If c becomes smaller than f(n),

cooperation requires a punishment output level x1 harsher than x′1, as is the case at point C. An

explanation of this is that the benefit from cheating on the cooperative path is decreasing in c.

The larger the competitive disadvantage of the firms, the lower is the benefit from cheating on the

production cut agreement. Conversely, the lower the cost competitiveness of the firms, the higher is

the incentive to defect from the punishment path because of the high level of production prescribed

by the punishment scheme. Therefore, when c is relatively large (i.e., c > f(n)), a relatively low

punishment output level (i.e., x′1 ∈ [x̂, x̃)) is suffi cient to sustain the cooperation, thus relaxing

the incentive constraint on the punishment path. Finally, a relatively low cost disadvantage (i.e.,

c ≤ f(n)) together with a large size of the fringe requires the highest punishment level (i.e., x1 ≥ x̃).

Note again that in this case, the market price falls to 0, so that the best deviation profit from the

punishment phase for any firm of the fringe as well the profit of the outsider are both equal to 0.
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4.2 Case 2: c < 1
n
, a low competitive disadvantage of the fringe

Recall that c < 1
n is equivalent to x̃ < x̂′, which means that the best deviation profit from the

punishment path can be positive (for x < x̂′) even though the market price is equal to 0 in the

absence of a deviation (for x ≥ x̃).

As in the previous case, when c < 1
n , there are three types of punishment regimes, depending on

the severity of the punishment output level relative to x̂′ and x̃. First, when the punishment output

level is higher than x̂′, then both the market price and the best deviation profit from the punishment

path are equal to 0. Furthermore, in this case, the profit of a firm which abides by the punishment

rule is the same as that prevailing when c ≥ 1/n and x ≥ x̃. Therefore, the MCSP which solves (18)

in [x̂′,+∞) must still be given by x1, provided it exists. If not, we turn to less severe punishment

output levels within the interval [x̃, x̂′). In this case, the market price is still equal to 0 if all firms of

the fringe abide by the punishment rule. If however a firm decides to deviate from the punishment

path, it produces a level of output lower than the agreed punishment level. This causes a positive

market price so that the deviator makes positive profits, as shown by (17). Provided it exists, the

MCSP within the interval [x̃, x̂′) will be denoted by x′2. If it does not exist, then we look for a

solution to (18) in the interval [x̄, x̃). In this case, the profit of a firm in the punishment phase and

that of the deviator are identical to those obtained in the previous case, where c ≥ 1/n and [x̄, x̂)

(since now x̃ < x̂). Therefore, if it exists, the MCSP which solves (18) in [x̄, x̃) must be given by

x′′1 .

Proposition 2. Assume that c < 1
n . Furthermore, let h(n) be the lowest value of c which satisfies

x1 − x̂′ = 0, and g(n) the highest value of c which satisfies x′2 − x̃ = 0. Then, the strategy profile

σ∗
(
qC , x

)
admits a unique MCSP given by (i) x1 ≥ x̂′ if n ≥ 9 or if n < 9 and c ≤ h(n); (ii)

x′2 ∈ [x̃, x̂′) if n ∈ {7, 8} and c ∈ (h(n), g(n)]; (iii) x′′1 ∈ [x̄, x̃) if n ∈ {7, 8} and c > g(n) or if

n < 7 and c > h(n) > g(n).

The characterization of the MCSP when c < 1
n is slightly more complicated than when c ≥

1
n . One

can observe that there are two sets of parameters under which the MCSP with c < 1
n is exactly the

same as when c ≥ 1
n . When the size of the fringe is relatively small (i.e., n < 9), the lowest MCSP is

still given by x′′1 , but now there is a lower bound to the competitive disadvantage of the firms (i.e.,

c > g(n) if n = {7, 8} or c > h(n) if n < 7). If this additional constraint is not satisfied (i.e., when

c ≤ h(n)), then the MCSP is given by x1, which was obtained in the previous case (i.e., c ≥ 1
n ) for

a relatively low disadvantage cost (i.e., c ≤ f(n) provided c ≥ 1
n ) and a relatively large size of the

fringe (i.e., n ≥ 9). In the current size, this last condition (i.e., n ≥ 9) also guarantees that x1 is the
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MCSP independently of the disadvantage cost. Finally, there is now a new punishment level given

by x′2, which holds only for intermediate values of the size of the fringe (i.e., n ∈ {7, 8}) and of the

disadvantage cost (i.e., c ∈ (h(n), g(n)].

The driving forces behind the results in Proposition 2 are the same as those underlying Propo-

sition 1. Again, this can be explained with the help of a figure. Point A in Figure 2 represents a

parameter configuration for which n < 9 and c is relatively large (i.e., c ≥ max {h(n), g(n)}). As the

incentive to deviate in the cooperative phase is relatively low, cooperation within the fringe can be

supported by the MCSP which involves the least severe punishment output level x′′1 . An increase

in the size of the fringe, for a given level of c, raises the temptation to deviate from the cooperative

path, which may require a punishment output level x′2 harsher than x
′′
1 . This is illustrated by the

dotted arrow from point A to point B in Figure 2. Observe that the parameter configuration for

which x′2 is the MCSP is quite limited (i.e., n ∈ {7, 8} and h(n) < c ≤ g(n)4). This restricted

parameter area corresponds to the situation where a firm which deviates from the punishment path

causes a positive market price, by producing less than the agreed punishment level, thus obtaining

positive profits.

Now assume that the cost disadvantage of the firms of the fringe, for a given size n, decreases

below h(n), as depicted by the bold arrow starting from point B in Figure 2. Just as for an increase

in n, a greater cost competitiveness increases the temptation to deviate from the cooperative path.

This thus requires a punishment output level x1 harsher than both x′2 and x
′′
1 , as shown by point C

in Figure 2. When n ≥ 9, the MCSP is also given by x1 independently of c because in that case the

assumption that c < 1/n necessarily implies c ≤ h(n) < 1/n. This parameter area corresponds to a

situation where the best deviation profit from the punishment path is equal to 0 (just as the market

price is in the punishment path). To summarize, a relatively large size of the fringe and a relatively

small disadvantage cost require greater punishment output levels than in the reverse situation.

Combining Propositions 1 and 2, one can conclude that the MCSP is characterized by the

harshest punishment output level x1 independently of n, when the cost disadvantage of the firms

of the fringe is low enough, i.e., when c ≤ h(n) ≤ 1/n ≤ f(n)). In particular, this is the case when

the fringe is as effi cient as the outsider, i.e., when c = 0. However, we cannot state that the MCSP

is given by x1 independently of c, if n is large enough (or that it is given by the lowest punishment

output level x′′1 independently of c if n is low enough). This is a clear illustration of the fact that

4Using the expression of h(n) given by (A9) and that of g(n) given by (A16) in the Appendix, we have that c

must lie in the interval
([√

73− 7
]
/2
√

73; 1/11
]
' (0.0904; 0.0909] when n = 7, and

([√
919− 24

]
/2
√

919; 2/19
]
'

(0.1042; 0.1052] when n = 8.
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the existence of different punishment regimes relies on the cost asymmetry between the fringe and

the outsider.

4.3 The minimum discount factor

We can now determine the minimum discount factor such that the two incentive compatibility

constraints are binding. That is, we substitute the MCSP which solves (18) into (9) or (11). From

the analysis of the previous section, we have that the MCSP can take four different expressions,

depending on c, n, and on the interval within which the punishment output level x can fall.

We start by considering Case 1. If n ≥ 9 and c ≤ f(n), then the MCSP is x1, given by (A1) in

the Appendix. This also implies πP (x1) = −cx1 since x1 ≥ x̃. Substituting πP (x1), πC given by

(3), and πD given by (6) into δC (x) given by (9), we obtain

δ1(n) =
(n− 1)2

(n+ 1)
2 . (19)

Suppose now that n ≥ 9 and c > f(n), so that the MCSP is x′1, given by (A5) in the Appendix.

This also implies πP (x′1) = x′1 [(γ − nx′1) /2], since x′1 ∈ [x̂, x̃). Substituting πP (x′1), π
C , and πD

into (9), we obtain again δ1(n) given by (19). This is not surprising, since πDP (x1) = πDP (x′1) = 0,

and thus (18) yields that −πP (x1) = −πP (x′1) = πD − πC . It follows that δC (x1) = δC (x′1) =[
πD − πC

]
/πD.

Now if n < 9, the MCSP is x′′1 , given by (A6) in the Appendix. We also have πP (x) =

x′′1 [(γ − nx′′1) /2], since x′′1 < x̂ ≤ x̃. Substituting πP (x′′1), πC , and πD into (9), we obtain

δ′1(n) =
(n− 1) (n+ 2)

2

24n (n− 2)
, (20)

which is lower than 1 for any 4 ≤ n < 9.

We now consider Case 2. If n ≥ 9 or n < 9 and c ≤ h(n) < 1/n, the MCSP is given by x1 and

hence π (x1) = −cx1 since x1 ≥ x̃. Hence, the threshold value of the discount factor is the same

as when n ≥ 9 and 1/n ≤ c ≤ f(n), namely, δ1(n) given by (19). If n ∈ {7, 8} and c > g(n) or if

n < 7 and c > h(n) > g(n), the MCSP is given by x′′1 , and hence π
P (x′′1) = x′′1 [(γ − nx′′1) /2], since

x′′1 < x̃. It follows that the threshold value of the discount factor has the same expression as that

obtained when n ≤ 9 and c ≥ 1/n, namely, δ′1(n) is given by (20).

Finally, suppose that n ∈ {7, 8} and h (n) < c ≤ g(n) so that the MCSP is x′2 given by (A13) in

the Appendix. We then have π (x′2) = −cx′2, since x′2 ≥ x̃. Now, substituting πP (x′2), π
C , and πC
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into (9), we obtain

δ′2(n, c) =
γ2 (n− 1)

4

4n

[
γ2 − n [c (17c+ 1) + 2] + n2 [5c(1− c) + 1] + 3c

√
γ2 (n− 1)

4 − 36n2c [(n− 1)− cn]

] .
(21)

The next proposition summarizes these results.

Proposition 3. The minimal threshold for the discount factor above which the strategy profile

σ∗
(
qC , x

)
forms an SSPE is given by

(i) δ1(n) if (ia) n ≥ 9; or n < 9 and c ≤ h(n) < 1/n;

(ii) δ′1(n) if (ia) n < 9 and c ≥ 1/n; or n ∈ {7, 8} and h(n) < g(n) < c < 1/n; or n < 7 and

g(n) < h(n) < c < 1/n;

(iii) δ′2(n, c) if n ∈ {7, 8} and h (n) < c ≤ g(n) < 1/n.

Clearly, δ1(n) is increasing in n and approaches 1 as the size of the fringe goes to infinity. One can

also verify that δ′1(n) is increasing in n for n ≥ 5.5 Furthermore, since δ′1(8) is strictly lower than

δ1(9), one can conclude that when c ≥ 1/n, an increase in the size of the fringe generally makes

cooperation more diffi cult to sustain (except if the fringe increases from 4 to 5 firms). For c ≥ 1/n,

the evolution of the minimum discount factor as a function of the size of the fringe is depicted in

Figure 3. It is discontinuous because the MCSP is itself discontinuous at ñ =
(
9 +
√

73
)
/2 ' 8.77.

For c < 1/n, there is a (restricted) parameter configuration, i.e., n ∈ {7, 8} and c ∈ (h(n), g(n)],

which gives rise to a third expression for the minimum discount factor, viz., δ′2(n, c). We show in

the Appendix, Section 6.4, that δ′1(6) < δ′2(7, c) < δ′2(8, c) < δ1(9), as depicted in Figure 4. In

other words, when c < 1/n, we still obtain that the cooperation within the fringe is more diffi cult

to sustain as the size of the fringe increases.

Keeping the size of the fringe n constant, we can also evaluate the impact of a change in c on

both the MCSP and the sustainability of cooperation within the fringe. First, observe that both

δ1(n) and δ′1(n) are independent of the cost disadvantage of the fringe. In other words, equalizing

the net benefits from deviating from the cooperative and punishment paths may yield a punishment

threat (i.e., the MCSP x1, x′1, or x
′′
1 , depending on the parameter configuration), which makes the

sustainability of the cooperation within the fringe immune to its disadvantage cost. Yet, whether

the relevant minimal discount factor is given by δ1(n) or δ′1(n) depends on the relation between

5The sign of the derivative of δ′1(n) with respect to n is the same as the sign of n3 − 6n2 + 6n − 4. Using

Mathematica, one obtains that it admits a unique real root given by n̄ ' 4.95, under (above) which the polynomial

is negative (positive).
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c and n. Furthermore, still depending on the parameter pair (c, n), the minimum discount factor

might also be given by δ′2(n, c), which is a function of c.

If n < 7, the lowest discount factor is δ1(n) when c ≤ h(n), but it is given by δ′1(n) when

c > h(n). And one can easily verify that δ′1(n) > δ1(n) for any n < 7. If n ∈ {7, 8}, then the

lowest discount factor is δ1(n) when c ≤ h(n), but is δ′2(n, c) when c ∈ (h(n), g(n)], or δ′1(n) when

c > g(n). We show in the Appendix, Section 6.4, that δ′2(n, c) is increasing in c and furthermore

that δ1(n) < δ′2(n, c) < δ′1(n) for n ∈ {7, 8} and c ∈ (h(n), g(n)]. Finally, if n ≥ 9, then the lowest

discount factor is given by δ1(n) independently of c. In other words, cooperation within the fringe

is more diffi cult to sustain as the cost asymmetry increases, provided the size of the fringe is lower

than 9 firms. When the size of the fringe is larger than 9 firms, then the cost disadvantage of the

firms (relative to the outsider) has no effect on the diffi culty in sustaining the cooperation within

the fringe. Yet, in this case, the MCSP depends on c, since it is given by x1 for c ≤ f(n) and by

x′1 < x1 for c > f(n).

What intuition can we now provide about the effects of changes in the size and the competitive

disadvantage of the fringe on the minimum discount factor?

As regards the impact of the size of the fringe, the results illustrated in Figures 3 and 4 are in line

with the traditional literature on tacit collusion in symmetric oligopoly games. It becomes harder to

collude with more firms because of the greater incentive to deviate from the cooperative agreement.

Indeed, in a similar model, i.e., in a Cournot market with linear demand and constant marginal

costs, but with all firms being identical and participating in the collusive agreement, the critical

discount factor is increasing in the number of firms involved in the agreement whether firms use

Nash-reversion strategies (see Vives, 1999, p. 307) or stick-and-carrot strategies (see Motta, 2004,

p. 171). A general explanation still available here is that a larger number of firms has the effect

of decreasing the individual collusive profit, thereby increasing the net gain from deviating in the

cooperative phase, captured by πD−πC . One important difference from the traditional literature is

that the deviating firm gains less in our setup, since the resulting outcome following the deviation is

an (asymmetric) triopoly. Moreover, the MCSP requires equalizing the gains from deviating in the

cooperative and the punishment phases. When the increase in the number of firms within the fringe

leads to a more severe punishment regime, the gain from cheating in the punishment phase reflected

by πDP (x)−πP (x) rises. This partly offsets the increase in πD−πC . However, a harsher punishment

output level also raises the loss due to the punishment in the cooperative phase (i.e., πC − πP (x)),

which causes a decline of δC (x). This effect contradicts the overall result that an increase in n at

the MCSP makes cooperation less likely. We can thus conclude that the direct, positive effect on
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the minimum discount factor caused by an increase in the size of the fringe dominates the induced

negative effect associated with a consequent switch to a more severe punishment regime.

The same reasoning helps separate the intricate effects of changes in the competitive disadvantage

of the fringe on the minimum discount factor. As previously seen, the overall result is that an

increase in c does not make it easier to sustain the cooperation. This is far from intuitive, since a

decrease in the competitiveness of the fringe leads to a reduction in the net gain from deviating in

the cooperative phase, which, on the contrary, strengthens the incentive to cooperate. Nevertheless,

the equalization of deviation gains required by the MCSP implies a reduction in the net gain from

deviating in the punishment phase. This can be achieved by a softer punishment regime, which in

turn reduces the one-period loss caused by punishment in the cooperative phase, thereby dampening

the incentive to cooperate. As a result, the latter effect dominates the direct, negative impact on

the minimum discount factor of the lower gain from cheating in the cooperative phase.

5 Conclusion

In this paper, we explored the ability of several identical firms to maintain perfect cooperation

in a quantity-setting supergame in the presence of a low-cost firm which does not take part in

the cooperative agreement. The less competitive firms, collectively referred to as the fringe, are

assumed to adopt two-phase punishment schemes in the style of Abreu (1986, 1988) to sustain the

joint-profit maximizing outcome, while the outsider is assumed to play its one-period best response

to the fringe firms’strategies in every period. We focused on the maximal punishment regime that

can be enforced, referred to as the MCSP, and then determined the minimal threshold value for the

discount factor above which perfect cooperation can be sustained as a (stationary) subgame perfect

equilibrium.

An important insight to be gained from this analysis is that the firms’ability to sustain the coop-

eration in the presence of a more competitive and non-cooperative firm depends crucially, and in a

quite complex way, on the number of firms involved in the agreement and on their cost disadvantage

relative to the non-participating firm. Indeed, the MCSP and the corresponding minimal discount

factor result from the interplay between the firms’incentives to deviate from the cooperative agree-

ment, on the one hand, and on their incentives to deviate from the punishment phase, on the other.

The overall insight is that the MCSP requires less severe punishments when the fringe either is

at a higher competitive disadvantage, or is smaller. At lower levels of the MCSP, the minimum

of patience needed to cooperate is higher than if firms were at a lower competitive disadvantage.

Hence, cooperation proves more diffi cult although deviation is less beneficial. By contrast, when the
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fringe is smaller, cooperation is easier, essentially because deviation is less beneficial. This positive

effect on cooperation more than offsets the negative effect due to the lax punishment.

A theoretical exercise such as this may have some derived practical value. For instance, it is

well known that governments of the United States, the European Union, China, and India widely

subsidize their cotton farmers despite the World Trade Organisation’s ruling some of these subsidies

illegal6 . Clearly, subsidies provide their recipients with a noticeable competitive advantage relative

to the rival producers in some of the poorest regions of the world, especially in West Africa, and

finally push down the market price. Our analysis suggests that tacit cooperation based on ‘stick and

carrot’strategies may be a useful retaliatory device in the hands of farmers who find themselves at

a lower competitive disadvantage because they are not subsidized.

In the model presented, we admittedly made the most simple assumptions about cost and de-

mand. Nonetheless, the derivations proved rather complicated, albeit feasible, and the intricate

features of our results may carry over to more general functional forms. One interesting exten-

sion would be to assume that the outsider has a strategic behaviour more sophisticated than just

playing non-cooperatively in each period of the game. For example, there might be attempts to

cooperate between the outsider and a firm cheating on the fringe agreement. Alternatively, since

cooperation within the fringe benefits the outsider, one could imagine that the latter takes part in

the punishment.

6 Appendix A

6.1 Proof of Lemma 1

For condition (9) to be satisfied, we must have πC − πP (x) ≥ 0, otherwise each firm of the fringe would

have an incentive to deviate from qC during the cooperative phase so as to enter in the punishment phase

and get higher profits. Clearly, when x > x̃, πC − πP (x) is positive since π (x) = −cx < 0. When

x ≤ x̃, we have πC −πP (x) = (1/18n) [3nx− 2γ] [3nx− γ]. Hence, πC −πP (x) = 0 has two solutions:

x = γ/3n and x̄ = 2γ/3n. Furthermore, the second derivative of πC−πP (x) with respect to x is positive,

which implies that this function has a global minimum. It follows that πC −πP (x) is positive if and only if

x ∈ [0, x]∪ [x̄,+∞), otherwise πP (x) ≥ πC . This last case might be possible because πP (x) internalizes

the best reply function of the outsider. Hence, the cartel could act as a Stackelberg leader by choosing x

so as to maximize πP (x), in which case we would have πP (x) ≥ πC . But in that situation, the strategy

profile σ∗
(
qC , x

)
is not subgame perfect because any firm within the fringe would have an incentive to

6 see http://www.guardian.co.uk/global-development/poverty-matters/2011/may/24/american-
cotton-subsidies-illegal-obama-must-act, http://www.guardian.co.uk/environment/2010/nov/15/cotton-
subsidies-west-africa, http://www.washingtonpost.com/wp-dyn/content/article/2010/06/02/AR2010060204228.html
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deviate from the cooperative phase in order to get πP (x) instead of πC . To summarize, the incentive

compatibility constraint (9) in the cooperative phase can be satisfied if and only if x ∈ [0, x] ∪ [x̄,+∞).

We now show that, for any x ∈ [0, x], the incentive compatibility constraint (11) in the punishment

phase cannot be satisfied. Indeed, to ensure subgame perfection, one must also have πDP (x) ≤ πC .

Suppose this inequality does not hold. Then any firm would have an incentive to deviate in the cooperative

phase to earn πD ≥ πC . This would be worthwhile because in the subsequent period, i.e., when punishment

begins, the cheater would deviate again to get a greater profit level than that obtained along the cooperative

path, thereby triggering the same defection scenario forever. Formally, πDP (x) ≥ πC implies δP (x) ≥ 1,

so that (11) cannot be satisfied. Since x < x̃, we have x ≤ x̃ for any x ∈ [0, x], and hence πDP (x) =

[(γ − x(n− 2))/4]
2. This function is decreasing on [0, γ/(n− 2)], and then increasing for any x ≥ γ/(n−

2). Since x < γ/(n− 2), πDP (x) is decreasing on [0, x] and reaches a minimum in x on [0, x]. Evaluating

at x the profit of the deviator along the punishment path, one obtains πDP (x) = [γ (n+ 1) /6n]
2, which

is greater than πC (The inequality πDP (x) ≥ πC reduces to (n − 1)2 ≥ 0). It follows that the incentive

compatibility constraint (11) cannot be satisfied for x ∈ [0, x]. Therefore, a necessary condition for the two

incentive compatibility constraints to be simultaneously satisfied is that x ∈ [0, x] ∪ [x̄,+∞).

6.2 Proof of Proposition 1

When c ≥ 1/n, πDP (x) = 0 for any x ≥ x̂ as shown by (17). However, the payoff function πP (x) during

the punishment phase depends on whether x ∈ [x̂, x̃) or x ≥ x̃ as shown by (14). Suppose first that x ≥ x̃

which implies πP (x) = −cx. In that case, (18) has only one solution:

x1 =
1

c

[
γ (n− 1)

6n

]2
. (A1)

The punishment output x1 is relevant if x1 ≥ x̃. The equation x1 − x̃ is quadratic in c and therefore

x1 − x̃ = 0 has two roots, viz.,

f(n) =
n(n+ 7) + 1− 3

√
n (n+ 2) (2n+ 1)

2 (n− 1)
2 . (A2)

and

F (n) =
n(n+ 7) + 1 + 3

√
n (n+ 2) (2n+ 1)

2 (n− 1)
2 . (A3)

Furthermore, the second derivative of x1 − x̃ with respect to c is positive, which implies that this function

has a global minimum in c. Therefore, we have x1 ≥ x̃ for any c /∈ (f(n), F (n)). First, recall that

assumption 1 states that c < 1/2, which guarantees that any firm has a positive market share in the stage

game. Second, one can easily verify that f(n) ≤ 1/2, this inequality being equivalent to (n− 1)2 ≥ 0, and

that F (n) > 1/2. It follows that one can have x1 ≥ x̃ only for c ≤ f(n).
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Since we are in the case c ≥ 1/n, one must also verify that f(n) ≥ 1/n. We have

f(n)− 1/n =
n3 + 5n2 + 5n− 2− 3n

√
n (n+ 2) (2n+ 1)

2n (n− 1)
2 . (A4)

The numerator of this expression is positive if
[
n3 + 5n2 + 5n− 2

]2 ≥ 3n3 (n+ 2) (2n+ 1). This in-

equality can be equivalently rewritten as (n − 1)2(n + 2)(n + 1)(n2 − 9n + 2) ≥ 0, which is verified for

any n ≥ ñ with ñ =
(
9 +
√

73
)
/2 ' 8.77.

Therefore, if n ≥ 9 and 1/n ≤ c ≤ f(n), then x1 (greater than x̃) solves (18). Finally, to ensure that

x1 is the MCSP, we need to verify that δ
P (x) is increasing in x for any x ≥ x1 ≥ x̃. Again, for any x ≥ x̂,

we have πDP (x) = 0, implying that δP (x) = −πP (x) /[πC − πP (x)]. Since πP (x) is always decreasing

in x, clearly, δP (x) is increasing in x whenever x ≥ x̂. Since x1 ≥ x̃ ≥ x̂, x1 given by (A1) is indeed the

MCSP when n ≥ 9 and 1/n ≤ c ≤ f(n).

If c > f(n), then x1 < x̃, implying that x1 is not the MCSP. Then, if (18) admits a solution, it

must be lower than x̃. We now investigate whether there exists a solution within the interval [x̂, x̃). When

x ∈ [x̂, x̃), we have πP (x) = x [(γ − nx) /2] and still πDP (x) = 0. In this case, (18) has two roots. The

lower root is γ
[
3n−

√
n (n+ 2) (2n+ 1)

]
/6n2, which is negative for any n ≥ 4. The upper root is

x′1 =
γ
[
3n+

√
n (n+ 2) (2n+ 1)

]
6n2

. (A5)

The punishment output x′1 is relevant only if x̂ ≤ x′1 < x̃. The inequality x′1 < x̃ reduces to c > f(n),

while the inequality x′1 ≥ x̂ reduces to (n + 1)(n2 − 9n + 2) ≥ 0, which is equivalent to the inequality

f(n) ≥ 1/n or n ≥ 9. Therefore, if n ≥ 9 and c > f(n) > 1/n, then x′1 solves (18) on [x̂, x̃). Furthermore,

this punishment level is the MCSP because, again, δP (x) is increasing in x whenever x ≥ x̂.

Finally, suppose that n < 9, implying that c ≥ 1/n > f(n). In this case, neither x1 nor x′1 can be the

MCSP. If (18) admits a solution, then it must be lower than x̂, implying πDP (x) ≥ 0 and V P ≥ 0. In

this case, we have πP (x) = x [(γ − nx) /2] and πDP (x) = [(γ − x(n− 2))/4]
2. Equation (18) has two

roots, namely γ/3n and γ(5n − 2)/3n (n+ 2). The lower root does not satisfy Lemma 1 and hence the

relevant solution is the upper root (satisfying Lemma 1), i.e.

x′′1 =
γ(5n− 2)

3n (n+ 2)
. (A6)

One can check that x′′1 < x̂ reduces to −n2+ 9n−2 > 0, which implies that n < 9. Finally, to ensure that

x′′1 is the MCSP, we need to verify that δ
P (x) =

[
πDP (x)− πP (x)

]
/[πC − πP (x)] is also increasing in

x on [x′′1 , x̂). When x < x̂, we have

δP (x, n, γ) =
9n [γ − x(n+ 2)]

2

8 (γ − 3nx) (2γ − 3nx)
. (A7)
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Calculating the derivative of this expression, we have

∂δP (x, n, γ)

∂x
=

9γn [γ − x(n+ 2)] [γ (5n− 8)− 9nx (n− 2)]

8 (γ − 3nx)
2

(2γ − 3nx)
2 . (A8)

This derivative is positive whenever x ≥ γ/(n+ 2) > x̄ > γ(5n− 8)/9n(n− 2). Since x′′1 > γ/(n+ 2),

we have that δP (x) is increasing in x on [x′′1 , x̂). Since δP (x) is also increasing in x for any x > x̂, x′′1 is

the MCSP for any n < 9.

6.3 Proof of Proposition 2

When c < 1/n and x ≥ x̂′, we have πDP (x) = 0 and πP (x) = −cx since x̂′ > x̃. Again, (18) has one

solution, given by (A1) . One must verify that x1 ≥ x̂′. The equation x1 − x̂′ = 0 is quadratic in c and

hence has two roots, viz.,

h(n) =

√
(n− 1)

3
+ 9n2 − 3n

2

√
(n− 1)

3
+ 9n2

, (A9)

and

H(n) =

√
(n− 1)

3
+ 9n2 + 3n

2

√
(n− 1)

3
+ 9n2

. (A10)

Furthermore, the second derivative of x1 − x̂′ with respect to c is positive, which implies that this function

has a global minimum in c. Therefore, we have x1 ≥ x̂′ for any c /∈ (h(n), H(n)). Again, one can observe

that H(n) > 1/2, while that h(n) < 1/2. Since one must have c < 1/2, one can have x1 ≥ x̂′ only for

c ≤ h(n).

Since we are in the case c < 1/n, we now evaluate the difference between h(n) and 1/n. We have

h(n)− 1/n =
(n− 2)

√
(n− 1)

3
+ 9n2 − 3n2

2n

√
(n− 1)

3
+ 9n2

(A11)

The numerator of this expression is positive if (n − 2)2[(n− 1)
3

+ 9n2] ≥ 9n4. This inequality can be

equivalently rewritten as (n− 1)
2

(n+ 2)
[
n2 − 9n+ 2

]
≥ 0, which is verified for any n ≥ ñ, where

ñ =
(
9 +
√

73
)
/2. We then have h(n) ≥ 1/n for any n ≥ 9, while the inequality is reversed for any

n < 9. Hence, when c < 1/n, x1 solves (18) if n ≥ 9 or if n < 9 and c ≤ h(n) < 1/n. Finally, when

x ≥ x̂′, we have δP (x) = −πP (x) /[πC − πP (x)]. Since πP (x) is always decreasing in x, δP (x) is

increasing for any x ≥ x̂′. Therefore, when c < x̃ and n ≥ 9 or n < 9 and c ≤ h(n) < 1/n, x1 given by

(A1) is the MCSP.

Suppose now that n < 9 and h(n) < c < 1/n, so that there does not exist a punishment output level

higher than x̂′ satisfying (18). We then look for a punishment level satisfying (18) lower than x̂′. When

x < x̂′, the profit functions πP (x) and πDP (x) depend on whether x ∈ [x̃, x̂′) or x < x̃, as shown by (14)
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and (17). Assume first that x ∈ [x̃, x̂′), implying πP (x) = −cx and πDP (x) = [(1− c− x (n− 1)) /2]
2.

Equation (18) then admits two roots, given by

κ′2 =
3n [(n− 1)− c(n+ 1)]−

√
γ2 (n− 1)

4 − 36n2c [(n− 1)− cn]

3n (n− 1)
2 (A12)

and

x′2 =
3n [(n− 1)− (n+ 1)] +

√
γ2 (n− 1)

4 − 36n2c [(n− 1)− cn]

3n (n− 1)
2 , (A13)

where γ = (1− 2c). We now show that κ′2 given by (A12) does not satisfy Lemma 1, i.e., that x ≥ κ′2.

The equation x− κ′2 is quadratic in c and has two roots, given by

c(n) =

(
n2 + 2n− 2

)
− n
√
n2 + 6n+ 33

(n2 + 16n− 4)
(A14)

and

C(n) =

(
n2 + 2n− 2

)
+ n
√
n2 + 6n+ 33

(n2 + 16n− 4)
. (A15)

The lower root c(n) is negative. Furthermore, the second derivative of x−κ′2 with respect to c is negative,

which implies that this function has a global maximum in c. Therefore x−κ′2 is positive (i.e., x ≥ κ′2) for any

c ∈ [0, C(n)]. Since we are in the case c < 1/n, a suffi cient condition to have x ≥ κ′2 is that 1/n < C(n).

A suffi cient condition for this last inequality to be satisfied is that 1/n <
(
n2 + 2n− 2

)
/(n2+16n−4) or

that n [n(n+ 1)− 18] + 4 > 0, which is indeed verified for any n ≥ 4. It follows that κ′2 does not satisfy

Lemma 1.

The punishment output x′2 is relevant if x̃ ≤ x′2 < x̂′. The inequality x′2 < x̂′ is equivalent to c > h(n).

Furthermore, x′2 − x̃ is quadratic in c and hence x′2 − x̃ = 0 has two roots, given by −1 and

g (n) =
n− 4

5n− 2
. (A16)

Since the second derivative of x′2− x̃ with respect to c is negative, x′2− x̃ has a global maximum and hence

x′2 ≥ x̃ only for c ≤ g(n).7

Recall that we are now in the case n < 9 and h(n) < c < 1/n. First, one can observe that the sign

of g(n) − 1/n is the same as the sign of (again) n2 − 9n + 2, which is negative for n < 9 (thus implying

7 With this constraint, we can now verify that the term under the radical in the numerator of (A13), i.e.,

(1− 2c)2 (n− 1)4 − 36n2c [(n− 1)− cn], is positive for any c ≤ g(n). The derivative of this term with respect

to c is −4(1− 2c)2(n− 1)4 − 36n2 [(n− 1)− 2cn], which is negative since c < 1/n < (n− 1)/2n for any n ≥ 4. Now

replacing c by g(n) in the term under the radical in (A13), we obtain
[
3(n3 − 8n2 + 3n− 2)/(5n− 2)

]2, which is
strictly positive. This implies that the term under the radical in the numerator of (A13) is strictly positive for any

c ≤ g(n).
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g(n) < 1/n). Second, we must verify that g(n) > h(n). We have

g (n)− h(n) =

3

[
n(5n− 2)− (n+ 2)

√
(n− 1)

3
+ 9n2

]
2(5n− 2)

[√
(n− 1)

3
+ 9n2

] . (A17)

The numerator of this expression is positive if −n5+15n4−51n3−31n2−8n+4 ≥ 0 or if n3(−n2+15n−

51) ≥ 31n2 + 8n− 4. The right-hand term of this inequality is always positive, while the left-hand term is

positive only if n ∈
[(

15−
√

21
)
/2,
(
15 +

√
21
)
/2
]
' [5, 21; 9, 79]. Therefore, a necessary condition for

g (n)− h(n) to be positive is that n = {6, 7, 8} since we are now assuming that n < 9. However, one can

easily verify that the above inequality is not satisfied for n = 6, but only for n = 7 or n = 8.8 Hence, x′2

solves (18) only for n ∈ {7, 8} and h(n) < c ≤ g(n) < 1/n.

Finally, to ensure that x′2 is the MCSP, we need to verify that δ
P (x) =

[
πDP (x)− πP (x)

]
/[πC −

πP (x)] is also increasing in x on [x′2, x̂
′). When x < x̂′, we have

δP (x, n, c) =
9n
[
4cx+ [(1− c)− x(n− 1)]

2
]

4 [9nxc+ (1− 2c)2]
. (A18)

Calculating the derivative of this expression with respect to x, we have

∂δP (x, n, c)

∂x
=

9n
{
x(n− 1)2

[
9nxc+ 2(1− 2c)2

]
− (1 + c)

[
c2(n− 8)− c (3n− 8) + 2(n− 1)

]}
4 [9nxc+ (1− 2c)2]

2 .

(A19)

We need to show that the numerator of this expression is positive for any x ≥ x′2. Denote by Ψ(x, n, c) the

term in {.} in the numerator of this expression. Calculating the derivative of Ψ(x, n, c) with respect to x,

we obtain ∂Ψ(x, n, c)/∂x = 18n(n− 1)2[9nxc+ (1− 2c)
2
], which is positive, implying that Ψ(x, n, c) is

increasing in x. Therefore, a suffi cient condition for the numerator of ∂δP (x, n, c) /∂x to be positive for

any x ≥ x′2 is that Ψ(x, n, c)
∣∣
x=x′2

≥ 0. Unfortunately, one cannot obtain the sign of Ψ(x, n, c)
∣∣
x=x′2

independently of n and c. Therefore, we also calculate the derivative of Ψ(x, n, c) with respect to c. We

obtain ∂Ψ(x, n, c)/∂c = x(n − 1)2[9nx + 8 (1− 2c)] + (n − 6) + 24c2 + nc(4 − 3c), which is always

positive since n ∈ {7, 8} and c < 1/n. Therefore, a necessary and suffi cient condition for ∂δP (x, n, c) /∂x

to be positive for any x ≥ x′2 and c ∈ (h(n), g(n)] is that Ψ(x, n, c)
∣∣
x=x′2,c=h(n)

≥ 0 when n = 7 and

n = 8. When n = 7, we have Ψ(x, n, c)
∣∣
x=x′2,c=h(n),n=7

= 6174
√

73(
√

73−7)/5329 ' 15.28 > 0, while

when n = 8, we have Ψ(x, n, c)
∣∣
x=x′2,c=h(n),n=8

= 82944
√

919(
√

919 − 24)/844561 ' 18.80 > 0. It

follows that δP (x, n, c) given by (A18) is increasing in x for x ≥ x′2, and hence x
′
2 is the MCSP when

n ∈ {7, 8} and c ∈ (h(n), g(n)].

8 Using Mathematica, one finds that the relevant roots which solve g(n) − f(n) = 0 are given by n̂ =[
6 + (378− 3

√
1137])1/3 + (378 + 3

√
1137)1/3

]
/3 ' 6, 78 and ñ =

(
9 +
√

73
)
/2 ' 8.77.
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Suppose now that n ∈ {7, 8} and h(n) < g(n) < c < 1/n. Then, neither x1 nor x′2 can be the MCSP.

If (18) admits a solution, then it must be lower than x̃, implying πDP (x) ≥ 0 and V P ≥ 0. In this

case, we have πP (x) = x [(γ − nx) /2] and πDP (x) = [(γ − x(n− 2))/4]
2. As previously shown, (18)

admits one solution satisfying Lemma 1 which is given by (A6) provided that x′′1 ≤ x̃. One can easily

check that this last constraint is equivalent to c > g(n). Now, again assuming that c > h(n), suppose

that n < 7 (implying 1/n > h(n) > g(n)). In that case, we also have that neither x1 nor x′2 can be

the MCSP. Moreover, the inequality c > g(n) is necessarily satisfied since c > h(n). Thus, when n ≤ 7

and h(n) < c < 1/n, the solution to (18) is also given by x′′1 . Finally, to ensure that x
′′
1 is the MCSP, we

need to verify that δP (x) =
[
πDP (x)− πP (x)

]
/[πC −πP (x)] is also increasing in x on [x′′1 , x̃). For any

x < x̃, δP (x) is still given by (A7), which has been shown to be increasing in x for any x ≥ γ/(n+ 2).

Since x′′1 > γ/(n+ 2), x′′1 is the MCSP for n ∈ {7, 8} and g(n) < c < 1/n or n < 7 and h(n) < c < 1/n.

6.4 The minimum discount factor δ′2(n, c)

We show here that δ′2(n, c) is strictly lower than 1 and that it is increasing in c for h (n) < c ≤ g(n) < 1/n

and n = {7, 8}. When n = 7, we have

δ′2(7, c) =
18γ2

7
[
λ1(c) + c

√
λ2(c)

] , (A20)

where λ1(c) = 2 + 13c − 20c2 and λ2(c) = 36 − 438c + 487c2. We have λ′1(c) = 13 − 40c, which is

positive for any c < 1/7. Hence, λ1(c) is increasing in c, so that a suffi cient condition to have λ1(c) > 0

for any c ∈ (h(7), g(7)] is that λ1(0) = 2 > 0. Similarly, we have λ′2(c) = −438 + 974c, which is negative

for any n < 1/7. Hence, λ2(c) is decreasing in c and reaches a minimum at c = g(7) = 1/11. We

have λ2(1/11) = 25/121 > 0, implying that λ2(c) is positive for any c ∈ (h(7), g(7)]. Furthermore, the

derivative of δ′2(7, c) with respect to c is given by

∂δ′2(7, c)

∂c
=
−18γ

[
λ3(c) + 7 (3− 2c)

√
λ2(c)

]
7
√
λ2(c)

[
λ1(c) + c

√
λ2(c)

]2 , (A21)

where λ3(c) = 36−585c+536c2. We have λ′3(c) = −585+1072c, which is negative for any c < 1/7. Hence,

λ3(c) is decreasing in c, and furthermore is negative at c = h(7) =
[√

73− 7
]
/2
√

73, implying that λ3(c)

is negative for any c ∈ (h(7), g(7)]. We then need to evaluate the sign ofΨ (c) = λ3(c)+7 (3− 2c)
√
λ2(c).

We have Ψ′ (c) < 0 since λ′2(c) < 0 and λ′3(c) < 0. Evaluating Ψ (c) at c = h(7), we have Ψ (c) = 0,

and hence Ψ (c) is negative for any c ∈ (h(7), g(7)]. This implies that δ′2(7, c) is increasing in c and that

it reaches a maximum at c = g(7) = 1/11. We have δ′2(7, c)
∣∣
c=g(7) = 729/1295 ' 0.5629, and hence

δ′2(7, c) < 1 for any c ∈ (h(7), g(7)]. Furthermore, δ′2(7, c) reaches a minimum at c = h(7) and we have
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that δ′2(7, c)
∣∣
c=h(7) = δ1(7) = 9/16 = 0.5625. Since we also have δ′2(7, c)

∣∣
c=g(7) < δ′1(7) = 81/41 '

0.5786, we can conclude that δ1(7) < δ′2(7, c) < δ′1(7) for any c ∈ (h(7), g(7)].

When n = 8, we have

δ′2(8, c) =
2401γ2

32
[
λ4(c) + 3c

√
λ5(c)

] , (A22)

where λ4(c) = 49+308c−452c2 and λ5(c) = 2401−25732c+28036c2. We have λ′4(c) = 308−904c, which

is positive for any c < 1/8. Hence, λ4(c) is increasing in c, so that a suffi cient condition to have λ4(c) > 0

for any c ∈ (h(8), g(8)] is that λ4(0) = 49 > 0. Similarly, we have λ′5(c) = −25732 + 56072c, which is

negative for any n < 1/7. Hence, λ5(c) is decreasing in c, and reaches a minimum at c = g(8) = 2/19.

We have λ5(2/19) = 1089/361 > 0, implying that λ5(c) is positive for any c ∈ (h(8), g(8)]. Furthermore,

the derivative of δ′2(8, c) with respect to c is given by

∂δ′2(8, c)

∂c
=
−7203γ

[
λ6(c) + 24 (7− 4c)

√
λ5(c)

]
32
√
λ5(c)

[
λ4(c) + 3c

√
λ5(c)

]2 , (A23)

where λ6(c) = 2401− 33796c+ 30340c2. We have λ′6(c) = −33796 + 60680c, which is negative for any

c < 1/8. Hence, λ6(c) is decreasing in c, and furthermore is negative at c = h(8) =
[√

919− 24
]
/2
√

919,

implying that λ6(c) is negative for any c ∈ (h(8), g(8)]. We then need to evaluate the sign of Λ (c) =

λ6(c) + 24 (7− 4c)
√
λ5(c). We have Λ′ (c) < 0 since λ′5(c) < 0 and λ′6(c) < 0. Evaluating Λ (c) at

c = h(8), we have Λ (c) = 0, and hence Λ (c) is negative for any c ∈ (h(8), g(8)]. This implies that δ′2(8, c)

is increasing in c and that it reaches a maximum at c = g(8) = 2/19. We have δ′2(8, c)
∣∣
c=g(8) = 175/288,

and hence δ′2(8, c) < 1 for any c ∈ (h(8), g(8)]. Furthermore, δ′2(8, c) reaches a minimum at c = h(8), and

we have that δ′2(8, c)
∣∣
c=h(8) = δ1(8) = 49/81 ' 0.6049. Since we also have δ′2(8, c)

∣∣
c=g(8) = δ′1(8) =

175/188 ' 0.6076, we can conclude that δ1(8) < δ′2(8, c) < δ′1(8) for any c ∈ (h(8), g(8)].

Finally, we compare δ′2(7, c), δ
′
2(8, c), δ

′
1(6) and δ1(9). We have

δ′2(8, c)− δ′2(7, c) =
γ
[
λ7(c) + 16807c

√
λ2(c) + 1728c

√
λ5(c)

]
224

[
λ1(c) + c

√
λ2(c)

] [
λ4(c) + 3c

√
λ5(c)

] , (A24)

where λ7(c) = 5390 + 41083c − 75788c2. We have λ′7(c) = 41083 − 151576c, which is positive for any

c < 1/7. Hence, λ7(c) is increasing in c and furthermore λ7(0) > 0. It follows that δ′2(8, c)−δ′2(7, c) > 0

for any c ∈ (h(7), g(7)] ⊂ (h(8), g(8)]. Furthermore, the maximum of δ′2(8, c) is (again) δ
′
2(8, c)

∣∣
c=g(8) =

175/288 ' 0.6076, which is lower than both δ1(9) = (4/5)2 = 0.64. Finally, the minimum of δ′2(7, c)

is (again) δ′2(7, c)
∣∣
c=h(7) = 9/16 = 0.5625, which is greater than δ′1(6) = 5/9 ' 0.5556. We then have

δ′1(6) < δ′2(7, c) < δ′2(8, c) < δ1(9).
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