View metadata, citation and similar papers at core.ac.uk brought to you by ﬁ"CORE

provided by Toulouse Capitole Publications

N°IDEI - 767

March 2013

Regularizing Priors for Linear Inverse Problems

Jean-Pierre Florens

Anna Simoni

' (' .o Toulouse

. ‘e . School
INSTITUT . . of ECOI‘]OITIICS

nnnnnnnnnn
INDUSTRIELLE


https://core.ac.uk/display/300456896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regularizing Priors for Linear Inverse Problems*

Jean-Pierre Florens' Anna Simoni?
Toulouse School of Economics CNRS and THEMA

This draft: March 2013

Abstract

This paper proposes a new Bayesian approach for estimating, nonparametrically, parameters
in econometric models that are characterized as the solution of a linear inverse problem. By
using a Gaussian process prior distribution we propose the posterior mean as an estimator and
prove consistency, in the frequentist sense, of the posterior distribution. Consistency of the
posterior distribution provides a frequentist validation of our Bayesian procedure. We show
that the minimax rate of contraction of the posterior distribution can be obtained provided that
either the regularity of the prior matches the regularity of the true parameter or the prior is
scaled at an appropriate rate. The scaling parameter of the prior distribution plays the role
of a regularization parameter. We propose a new, and easy-to-implement, data-driven method
for optimally selecting in practice this regularization parameter. Moreover, we make clear that
the posterior mean, in a conjugate-Gaussian setting, is equal to a Tikhonov-type estimator
in a frequentist setting so that our data-driven method can be used in frequentist estimation
as well. Finally, we apply our general methodology to two leading examples in econometrics:

instrumental regression and functional regression estimation.
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1 Introduction

In the last decade, econometric theory has shown an increasing interest in the theory of stochas-
tic inverse problems as a fundamental tool for functional estimation of structural as well as reduced
form models. The purpose of this paper is to develop an encompassing Bayesian approach to
stochastic linear inverse problems for nonparametric estimation of econometric models.

We construct a Gaussian process prior and show that the corresponding posterior mean is a
consistent estimator, in the frequentist sense, of the functional parameter of interest. Under mild
conditions, we prove that our Bayes estimator is equal to a Tikhonov-type estimator in the frequen-
tist setting. This result enables us to construct a data-driven method, based on a Bayes procedure,
for selecting the regularization parameter. Such a parameter is necessary in order to implement
in practice Tikhonov-type estimators and these estimators are very sensitive to the value of this
parameter. We show that the value selected by our data-driven method is optimal in a minimax
sense if the prior distribution is sufficiently smooth.

Stochastic inverse problems theory has recently been used in many subfields of econometrics
to construct new estimation methods. First of all, the theory of inverse problems has been shown
to be fundamental for nonparametric estimation of an instrumental regression function, see e.g.
Florens (2003), Newey and Powell (2003), Hall and Horowitz (2005), Blundell et al. (2007),
Darolles et al. (2011), Florens and Simoni (2012a). More generally, inverse problems theory has
been used for semiparametric estimation under moment restrictions, see e.g. Carrasco and Florens
(2000), Ai and Chen (2003), Chen and Pouzo (2012). In addition, it has been exploited for in-
ference in econometric models with heterogeneity — e.g. Gautier and Kitamura (2012), Hoderlein
et al. (2012) — for inference in auction models — e.g. Florens and Sbai (2010) — and for frontier
estimation for productivity analysis — e.g. Daouia et al. (2009). Functional estimation of reduced
form econometric and statistical models based on inverse problem theory has been developed, to
name only a few, by Hall and Horowitz (2007) and Johannes (2008). This large and incomplete
list of references highlights the importance that inverse problem theory has gained in econometrics.
We refer to Carrasco et al. (2007) and references therein for a general overview of inverse problems
in econometrics.

The general framework, which accommodates many functional estimation problems in econo-
metrics, is the following. Let X and ) be infinite dimensional separable Hilbert spaces over R and
denote by x € X the functional parameter that we want to estimate. For instance, x can be an
Engel curve or the probability density function of the unobserved heterogeneity. The estimating

equation characterizes = as the solution of the functional equation

W=Kz+U z€X, e, (1)



where y° is an observable function, K : X — ) is a known, bounded, linear operator and U is
an error term with values in ). Thus, estimating x is an inverse problem. More precisely, y° is a
transformation of a n-sample of finite dimensional objects and the parameter 6~ > 0 represents
the “level of information” of the sample, so that 6 — 0 as n — oo and for § = 0 (i.e. perfect
information) we have y° = Kz. Usually, we have that § = % and (1) is a set of moment equations
with % an empirical moment. In this paper we propose a Bayesian procedure for nonparametric
estimation of a large class of econometric models that write under the form (1) like moment equality
models, asset pricing functional estimation in equilibrium models, density estimation in structural

models that account for heterogeneity, deconvolution in structural models with measurement errors.

We illustrate two leading examples in econometrics that can be estimated by using our method.

Example 1 (Instrumental variable (IV) regression estimation). Let (Y, Z, W) be an observable real
random vector and z(Z) be the IV regression defined through the moment condition E(Y|W) =
E(z|W). Suppose that the distribution of (Z, W) is confined to the unit square [0,1]> and admits

a density fzw. The moment restriction implies that x is a solution to

By [E(Y |w)a( / / a(w, v) fzw (2, w)dwdz

where a(w,v) € L?[0,1]? is a known and symmetric function, Ey denotes the expectation with
respect to the marginal density fys of W and L2[0,1]? denotes the space of square integrable
functions on [0,1]2. This transformation of the original moment condition is appealing because
in this way its empirical counterpart is asymptotically Gaussian (as required by our Bayesian
approach). Assume that x € X = L2[0,1]. By replacing the true distribution of (Y, Z, W) with a

nonparametric estimator we obtain (1) with

v’ = By |E(Y|w)a(w,v) and Kz —/ / a(w, v) fzw (2, w)dwdz. (2)

O

Example 2 (Functional Linear Regression Estimation). The model is the following:
¢ / stz BEZ(s) =0, ZawelX(0,1]), E<ZZ><o (3)

and ¢|Z, 7% ~ N(0,72), with < -,- > denotes the inner product in L2[0,1]. We want to recover the
functional regression x. Assuming that Z is a centered random function with covariance operator
of trace-class, the most popular approach consists in multiply both sides of the first equation in (3)
by Z(s) and then take the expectation: E(£Z(t) fo s)Cou(Z(s), Z(t))ds, for t € [0,1]. If we
dispose of independent and identically dlstrlbuted data (&1, 721),...,(&n, Zn) we can estimate the

unknown moments in the previous equation. Thus, z is solution of (1) with y° := 1 3. & Z;(t),



U=21%.527t) and Vo € L*([0,1]) = Ko =13 < Z;, 0 > Zi(t). O

“n

A Bayesian approach to stochastic inverse problems allows to answer two important questions.
A first question concerns the way to incorporate in the estimation procedure the prior information
about the functional parameter which is often provided by economic theory or beliefs of experts.
This prior information may be particularly valuable in functional estimation since often the data
available are concentrated only in a region of the graph of the functional parameter so that some
parts of the function can not be recovered from the data. Therefore, the prior information allows
to “identify” the parts of the curve for which we have no data.

A second question concerns the selection in practice of the tuning parameter that is necessary in
order to compute the nonparametric estimator. In estimation based on inverse problem techniques
this parameter is known as the regularization parameter. The value of such a parameter affects
considerably the estimation result and it is very important to have an accurate way to choose it.

The Bayesian approach combines the prior and sampling information and proposes the poste-
rior distribution as solution to the inverse problem. It allows to incorporate prior information in a
natural way through the prior distribution as well as to select a value for the tuning parameter from
its posterior distribution by using a hierarchical structure. Unfortunately, many of the Bayesian
approaches to stochastic inverse problems proposed so far can not be applied to functional estima-
tion in econometrics. This is due to two main reasons. First, the majority of Bayesian approaches
do not work for functional observations and parameters because they consider a finite dimensional
projection of (1) and recover x only on a grid of points, see Chapter 5 in Kaipio and Somersalo
(2004) and Helin (2009), Lassas et al. (2009), Hofinger and Pikkarainen (2007), Hofinger and
Pikkarainen (2007), Neubauer and Pikkarainen (2008). Second, the existing Bayesian approaches
to inverse problems that consider models for functional estimation do not allow to accommodate
the econometric model of interest because of the different definition of the model’s error term U,
see Knapik et al. (2011).

Since the econometric model (1) differs from the stochastic inverse problems addressed by the
existing Bayesian inverse problems literature a specific Bayesian procedure must be developed. In
particular, we have to deal with the problem that the exact posterior mean of z in (1) (when a
conjugate-Gaussian setting is used) can be defined only in a complicated way as a measurable linear
transformation (see the explanation below) and it is not possible to compute it in practice. To over-
come this problem Florens and Simoni (2012b) construct a regularized posterior distribution for
the solution of an inverse problem. The mean of this distribution is easy to implement and works
well in practice but lacks a pure Bayesian interpretation. In fact, the regularization of the posterior
distribution is introduced ad hoc and cannot be justified by any prior-to-posterior transformation.
Therefore, it is not possible to construct a data-driven method based on a Bayes procedure for

selecting the reqularization parameter and the regularized posterior mean differs from a frequentist



Tikhonov-type estimator. The current paper proposes a pure Bayesian solution to this problem as

we explain in the next section.

1.1 Owur contribution

Our estimation procedure is based on a conjugate-Gaussian setting which is suggested by the
linearity of problem (1). On one hand, such a setting is appealing because the corresponding pos-
terior distribution can be computed analytically without using any MCMC algorithm which, even
if very powerful, slows down the estimate computation. On the other hand, a conjugate-Gaussian
Bayesian inverse problem has the drawback that the exact mean of the posterior distribution is, in
general, not defined as a linear estimator but as a measurable linear transformation (mit) which
is a weaker notion, see Mandelbaum (1984). In particular, there is no explicit form for the mit
estimator and so it is unclear how we can construct the Bayes estimator of x in practice. Moreover,

whether consistency of the mlt estimator holds or not is still an open question.

The first contribution of our paper is to provide a sufficient condition under which the exact
posterior mean, in a conjugate-Gaussian setting, has a closed-form and thus can be easily computed
and used as an estimator for = (as it is justified for a broad class of loss functions). We assume a
Gaussian prior distribution for z, with mean function zg € X and covariance operator 2y : X — X.
Then, in the case when X and ) are finite-dimensional and 2 and y° are jointly Gaussian, the
posterior mean of z is the linear estimator [zg + QoK *Var(y®)~'(y® — Kxo)] provided Var(y?)
is invertible, where Var(y5) denotes the marginal covariance operator of y°. However, when the
dimension of X and ) is infinite, the linear operator QoK *Var(y®)~! is only defined on a dense
subspace of ) of measure zero and is typically non-continuous (i.e. unbounded). This paper gives
a sufficient condition that guarantees that Var(y®)~! is continuous (and defined) on the whole
Y and shows that this condition is in general satisfied in many econometric models. Hence, we
provide a closed-form for the posterior mean of x that is implementable in practice and prove that
it is a continuous and linear (thus consistent) estimator defined on ). Under this condition, the
prior-to-posterior transformation can be interpreted as a regularization scheme and we do not need

to introduce an ad hoc regularization scheme as in Florens and Simoni (2012b).

Our second contribution consists in the study of frequentist asymptotic properties of the
conjugate-Gaussian Bayesian estimation of (1). For that, we admit the existence of a true z
that generates the data. We establish that the posterior mean estimator and posterior distribution
have good frequentist asymptotic properties for 6 — 0. Frequentist posterior consistency is defined
as the convergence of the posterior distribution towards a Dirac mass at the true value of x almost
surely with respect to the sampling distribution, see e.g. Diaconis and Freedman (1986, 1998).

This property provides the frequentist validation of our Bayesian procedure.



Besides proving frequentist consistency we also recover the rate of contraction of the risk as-
sociated with the posterior mean and of the posterior distribution. This rate depends on the
smoothness and scale of the prior as well as on the smoothness of the true z. Depending on the
specification of the prior this rate may be minimax over a Sobolev ellipsoid. In particular, (1) when
the regularity of the prior matches the regularity of the true z, the minimax rate of convergence
is obtained with a fixed prior covariance; (7i) when the prior is rougher or smoother at any degree
than the truth, the minimax rate can still be obtained if the prior is scaled at an appropriate rate

depending on the unknown regularity of the true z.

Our third contribution consists in proposing a new method for optimally selecting the regu-
larization parameter «. This parameter enters the prior distribution as a scaling hyperparameter
of the prior covariance and we construct an adaptive data-driven method for selecting it which is
based on an empirical Bayes (EB) approach. Because the posterior mean is, under our assumptions,
equal to a Tikhonov-type estimator for problem (1), our EB approach for selecting the regulariza-
tion parameter is valid and can be used also for frequentist estimators based on inverse problems
techniques.! Finally, the EB-selected regularization parameter is plugged into the prior distribution

of x and for the corresponding EB-posterior distribution we prove frequentist posterior consistency.

In the following, the Bayesian approach and the asymptotic results are presented for general
models of the form (1); then, we develop further results that apply to the specific examples 1 and 2.
In Section 2 we set the Bayesian model associated with (1) and the main assumptions. In Section 3
the posterior distribution of x is computed and its frequentist asymptotic properties are analyzed.
Section 4 focuses on the mildly ill-posed case. The EB method is developed in Section 5. Section

6 shows numerical implementations and Section 7 concludes. All the proofs are in the Appendix.

2 Model

Let X and Y be infinite dimensional separable Hilbert spaces over R with norm || - || induced
by the inner product < -, >. Let B(&X") and B()) be the Borel o-fields generated by the open sets
of X and ), respectively. We consider the inverse problem of estimating the function x € X which

is linked to the data 3 through the linear relation
Y =Kz +U, reX, ey (4)

where 1° is an observable function and K : X — J is a known, bounded, linear operator (we refer

to Carrasco et al. (2007) for definition of terminology from functional analysis). The elements °

!Notice that in general the posterior mean in a conjugate-Gaussian problem stated in infinite-dimensional Hilbert
spaces cannot be equal to the Tikhonov solution of (1). This is due to the particular structure of the covariance
operator of the error term U and it will be detailed later.



and U are Hilbert space-valued random variables (H-r.v.), that is, for a complete probability space
(S,S,P), U (resp. y°) defines a measurable map U : (S,S,P) — (V,B())), see e.g. Kuo (1975).
Realizations of 3 are functional transformations of the observed data. The true value of z that
generates the data is denoted by x,.

We assume a mean-zero Gaussian distribution on B(Y) for U: U ~ N(0,0%) where § > 0 is
the noise level and ¥ : ) — ) is a covariance operator, that is, ¥ is such that < §3¢1, ¢o >=
E(< U, ¢1 >< U, ¢g >) for all ¢1,¢2 € V. Therefore, ¥ is a one-to-one, linear, positive definite,
self-adjoint and trace-class operator. Because X is one-to-one the support of U is all )V, see Kuo
(1975) and Ito (1970). A trace-class operator is a compact operator with eigenvalues that are
summable. This property rules out a covariance ¥ proportional to the identity operator I and this
is a key difference between our model and the model used in a large part of the statistical inverse
problem literature, see e.g. Cavalier and Tsybakov (2002), Bissantz et al. (2007) and Knapik et al.
(2011). On the other side, a covariance ¥ different from I naturally arises in econometric problems
since the structure of the estimating equation (1) does not allow for an identity (or proportional to
identity) covariance operator, see examples 1 and 2.

Under model (1) and the assumption that U ~ N (0, §X) the sampling distribution P*, i.e. the

conditional distribution of y° given z, is a Gaussian distribution on B()):
Yolx ~ P* = N(Kz,o%). (5)

with 6 > 0 such that ¢ | 0. Hereafter, E,(-) will denote the expectation taken with respect to P.

Remark 2.1. The assumption of Gaussianity of the error term U in the econometric model (1)
is not necessary and only made in order to construct (and give a Bayesian interpretation to) the
estimator. The proofs of our results of frequency consistency do not rely on the normality of U. In
particular, asymptotic normality of y‘;\x — as in example 1 — is enough for our estimation procedure

and also for our EB data-driven method for choosing the regularization parameter. [J

Remark 2.2. All the results in the paper are given for the general case where K and ¥ are fixed
and known. This choice is made in order to keep our presentation as simple as possible. We discuss

how our results apply to the case with unknown K and ¥ through examples 1 and 2. [J

2.1 Notation

We set up some notational convention used in the paper. For positive quantities Mg and N
depending on a discrete or continuous index §, we write Ms < N5 to mean that the ratio Ms/Nj is
bounded away from zero and infinity. We write My = O(Ny) if My is at most of the same order as
Ns. For an H-r.v. W we write W ~ N for denoting that W is a Gaussian process. We denote by

R(-) the range of an operator and by D(-) its domain. For an operator B : X — ), R(B) denotes



the closure in ) of the range of B. For a bounded operator A : Y — X, we denote by A* its
adjoint, i.e. A* : X — Y is such that < Ay, ¢ >=< 9, A*p >, Vo € X, 1 € Y. The operator norm
is defined as [|A]| := supj4=1 |[[Ad|| = min{C > 0; [|[A¢[| < C||¢|| for all ¢ € V}. For a subset
Vi C Y, Aly, : Y1 — X denotes the restriction of A to the domain ;. The operator I denotes the
identity operator on both spaces X and Y, i.e. VY € X, p € Y, Iy = 1) and Lp = .

Let {¢;}; denote an orthonormal basis of X. The trace of a bounded linear operator A : ) — X
is defined as tr(A) =372, < (A*A)%goj, @; > independently of the basis {¢;};. If A is compact
then its trace writes ¢r(A) = > 22, A;, where {\;} are the singular values of A. The Hilbert-
Schmidt norm of a bounded linear operator A : J — X is denoted by ||A||gs and defined as
||A][3 ¢ = tr(A*A), see Kato (1995).

2.2 Prior measure and main assumptions

In this section we introduce the prior distribution and two sets of assumptions. (i) The first set
of assumptions (A.2 and B below) will be used for establishing the rate of contraction of the posterior
distribution and concerns the smoothness of the operator ¥~'/2K and of the true value z,. (i)
The assumptions in the second set (A.1 and A.3 below) are new in the literature and are sufficient
for having a posterior mean that is a continuous linear operator defined on ). The detection of
the latter assumptions is an important contribution because, as remarked in Luschgy (1995) and
Mandelbaum (1984), in the Gaussian infinite-dimensional model the posterior mean is in general
only defined as a mlit which is a weaker notion than that one of a continuous linear operator.
Therefore, in general the posterior mean has not an explicit form and may be an inconsistent
estimator in the frequentist sense while our assumptions A.1 and A.3 guarantee a closed-form (easy

to compute) and consistency for the posterior mean.

Assumption A.1. R(K) c D(X~1/?).

1/2

Since K and X are integral operators, ¥7'/¢ is a differential operator and Assumption A.1

demands that the functions in R(K) are at least as smooth as the functions in R(X/2). A.1
ensures that ©~Y/2 is defined on R(K) so that $~1/2K which is used in Assumption A.2 below,

exists.

Assumption A.2. There exists an unbounded, self-adjoint, densely defined operator L in the
Hilbert space X for which 3m > 0 such that < L, > > n|jp||?, Voo € D(L), and that satisfies

m||L™"z|| < |72 Kz < ml|L ]| (6)

on X for some a >0 and 0 < m <m < co. Moreover, L2 s trace-class for some s > a.

Assumption A.2 means that ¥~Y2K regularizes at least as much as L™ Because X~ 1/2K

must satisfy (6) it is necessarily an injective operator.



We turn now to the construction of the prior distribution of z. Our proposal is to use the
operator L™2% to construct the prior covariance operator. We assume a Gaussian prior distribution
poon B(X):

zlo, s ~p = N(mo, 2(20), To€X, Qo:=L"2% s>a (7)

with a > 0 such that a — 0. The parameter « describes a class of prior distributions and it may be
viewed as an hyperparameter. We provide in Section 5 an Empirical Bayes approach for selecting
it.

By definition of L, the operator g : X — X is linear, bounded, positive-definite, self-adjoint,
compact and trace-class. It results evident from Assumption A.2 that such a choice for the prior
covariance is aimed at linking the prior distribution to the sampling model. A similar idea was
proposed by Zellner (1986) for linear regression models for which he constructed a class of prior
called g-prior. Our prior (7) is an extension of the Zellner’s g-prior and we call it extended g-prior.

The distribution p (resp. P7¥) is realizable as a proper random element in X (resp. ) if
and only if Qg (resp. X) is trace-class. Thus, neither ¥ nor €y can be proportional to I so that,
in general, in infinite-dimensional inverse problems, the posterior mean cannot be equal to the
Tikhonov regularized estimator 2% := (al + K*K)~'K*y°. However, we show in this paper that
under A.1, A.2 and A.3, the posterior mean equates the Tikhonov regularized solution in the Hilbert
Scale generated by L. We give later the definition of Hilbert Scale.

The following assumption ties further the prior to the sampling distribution by linking the
smoothing properties of 3, K and Qé .

1
Assumption A.3. R(KQZ) C D(T71).

Hereafter, we denote B = X~ V2K QO% . Assumption A.3 guarantees that B and ©71/2B exist.

We now discuss the link existing between Assumption A.2, which quantifies the smoothness of
»~Y2K, and Assumption B below, which quantifies the smoothness of the true value z,. In order
to explain these assumptions and their link we will: (3) introduce the definition of Hilbert scale, (ii)
explain the meaning of the parameter a in (6), (iii) discuss the regularity conditions of X~1/2K
and of the true value of x.

(i) The operator L in Assumption A.2 is a generating operator of the Hilbert scale (X})ier
where V¢ € R, A; is the completion of (,cg D(L*) with respect to the norm ||z||; := ||L'z|| and is
a Hilbert space, see Definition 8.18 in Engl et al. (2000), Goldenshluger and Pereverzev (2003)
or Krein and Petunin (1966). For ¢ > 0 the space X; C X is the domain of definition of L':
X; = D(L'). Typical examples of X; are Sobolev spaces of various kinds.

(ii) We refer to the parameter a in A.2 as the “degree of ill-posedness” of the econometric
model under study and a is determined by the rate of decreasing of the spectrum of /2K (and
not only by that one of K as it would be in a classical inverse problems framework for (1)). Since

the spectrum of V2K is decreasing slower than that one of K we have to control for less ill-



posedness than if we used the classical approach.

(#i) In inverse problems theory it is natural to impose conditions on the regularity of x, by
relating it to the regularity of the operator that characterizes the inverse problem (that is, the
operator ¥~/2K in our case). A possible implementation of this consists in introducing a Hilbert
Scale and expressing the regularity of both z, and ¥~%/2K with respect to this common Hilbert
Scale. This is the meaning of - and the link between - Assumptions A.2 and B where we use the
Hilbert Scale (X})ter generated by L. We refer to Chen and Reiss (2011) and Johannes et al.
(2011) for an explanation of the relationship between Hilbert Scale and regularity conditions. The

following assumption expresses the regularity of x, according to A;.

Assumption B. For some 0 < 8, (z. — xg) € Xjg, that is, there exists a p, € X such that
B
(22— w0) = L Pp. (= Q¥ p.).

The parameter [ characterizes the “regularity” of the centered true function (z. — xo) and is
generally unknown. Assumption B is satisfied by regular functions z,. In principle, it could be
satisfied also by irregular x, if we were able to decompose z, in the sum of a regular part plus an
irregular part and to choose xg such that it takes all the irregularity of x,. This is clearly infeasible
in practice as x, is unknown. On the contrary, we could take xg very smooth so that Assumption
B would be less demanding about the regularity of x,. When X3 is the scale of Sobolev spaces,

Assumption B is equivalent to assume that (x, — xg) has at least 8 square integrable derivatives.

Remark 2.3. Assumption B is classical in inverse problems literature, see e.g. Chen and Reiss
(2011) and Nair et al. (2005), and is closely related to the so-called source condition which
expresses the regularity of the function x, according to the spectral representation of the operator
K*K defining the inverse problem, see Engl et al. (2000) and Carrasco et al. (2007). In our case,

the regularity of (z. — xp) is expressed according to the spectral representation of L. [J

Remark 2.4. Assumption A.2 covers not only the mildly ill-posed but also the severely ill-posed
case if (x4 — xo) in assumption B is infinitely smooth. In the mildly ill-posed case the singular
values of ¥~1/2K decay slowly to zero (typically at a geometric rate) which means that the kernel
of ¥71/2K is finitely smooth. In this case the operator L is generally some differential operator
so that L~! is finitely smooth. In the severely ill-posed case the singular values of ¥~ /2K decay
very rapidly (typically at an exponential rate). Assumption A.2 covers also this case if (x, — xq) is
very smooth. This is because when the singular values of ¥~1/2K decay exponentially, Assumption
A.2 is satisfied if L™! has an exponentially decreasing spectrum too. On the other hand, L~!
is used to describe the regularity of (x, — xg), so that in the severely ill-posed case, Assumption
B can be satisfied only if (z. — z¢) is infinitely smooth. In this case we could for instance take

L=(K*S'K )_% which implies a = 1. We could make Assumption A.2 more general, as in Chen

10



and Reiss (2011), in order to cover the severely ill-posed case even when (x, — x() is not infinitely
smooth. Since computations to find the rate would become more cumbersome (even if still possible)

we do not pursue this direction here. [

Remark 2.5. The specification of the prior covariance operator can be generalized as ng =
gQL_QSQ*, for some bounded operator ) not necessarily compact. Then, the previous case is a
particular case of this one for () = I. In this setting, Assumptions A.1 and A.3 are replaced by the
weaker assumptions R(KQ) C D(X~'/2) and R(KQL™®) c D(X~'), respectively. In Assumption
A.2 the operator ¥~Y/2K must be replaced by X /2K (@Q and Assumption B becomes: there exists
px € X such that (x, — xg) = QL Pp5,. 0O

Example 1 (Instrumental variable (IV) regression estimation (continued)). Let us consider the
integral equation (4), with y° and K defined as in (2), that characterizes the IV regression .
Suppose to use the kernel smoothing approach to estimate fyw and fzy, where fyw denotes
the density of the distribution of (Y, W) with respect to the Lebesgue measure. For simplicity we
assume that (Z, W) is a bivariate random vector. Let Kz, and Ky, denote two univariate kernel
functions in L2[0, 1], h be the bandwidth and let (yi, wi, zi);‘zl be the n-observed random sample.
Denote A : L?[0,1] — L?[0, 1] the operator Ay = [ a(w,v)p(w)dw, with a(w,v) a known function,
and K : L?[0,1] — L?[0, 1] the operator K¢ = 1 ) ] M < ¢(z), M >. Therefore,
K = AK so that the quantities in (2) can be rewritten as

= [ (Y|W_w)fw]() /a(w v thZKWh w)dw

n 4 h

and Kz = /a(w,v)lzn:W/x(z)IWi_z)dzdw (8)

Remark that lim, oo K¢ = fi (w)E(¢|w) = M;E(¢|w) where My denotes the multiplication oper-
ator by fir. If a = fiyz then Alim, K is the same as the integral operator in Hall and Horowitz
(2005).

In this example, the assumption that U ~ N(0,0%) (where U = y° — Kx) holds asymptotically
and the transformation of the model through A is necessary in order to guarantee such a convergence

of U towards a zero-mean Gaussian process. We explain this fact by extending Ruymgaart (1998).

It is possible to show that the covariance operator X, of % ey (yi— <z, KZ”‘ELZFZ) >> KW’h(,iUifw)

satisfies
<GLYnpr > — < é,Xpa >, ash—0, Yo, és € L20,1]

where S¢o = 02 fi (v)$2(v) = 02 M¢a(v) under the assumption E[(Y —2(Z))?[W] = 0% < co. Un-
fortunately, because 3 has not finite trace, it is incompatible with the covariance structure of a Gaus-

sian limiting probability measure. The result is even worst, since Ruymgaart (1998) shows that
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there are no scaling factors, with h = n~", for 0 < r < 1, such that n=" > | (yi— <, W >) X
W converges weakly in L2[0,1] to a Gaussian distribution (unless this distribution is de-
generate at the zero function). However, if we choose a(w,v) appropriately so that A is a compact
operator and A*A has finite trace, then \/n (y5 — Kx) = N(0,AXA*), in L?[0,1] as n — oo, where
‘=’ denotes weak convergence and AXA* =: ¥. The adjoint operator A* : L2[0,1] — L2[0,1] is
defined as: Vo € L?0,1], A*p = [a(w,v)p(v)dv and A = A* if a(w,v) is symmetric in w and v.
The operator ¥ is unknown and can be estimated by ¥ = A%Q Sy WA*

We now discuss Assumptions A.1, A.2 and A.3. While A.1 and A.3 need to hold both in
finite sample and for n — oo, A.2 only has to hold for n — co. We start by checking assumption
A.1. In large sample, the operator K converges to AM;E(¢|w) and it is trivial to verify that
D(X~1/?) = R(AMf%) D R(AMy) D R(AME(-|w)). In finite sample, the same holds with My and
E(-|w) replaced by their empirical counterparts. Next, we check the validity of assumption A.2 for
n — co. Remark that the operator ©/2 may be equivalently defined in two ways. It may be a
self-adjoint operator, that is /2 = (£1/2)* = (AMfA*)l/Q, such that ¥ = ©Y/2%1/2 or it may be
defined as $1/2 = AM;/2 so that ¥ = R/2(21/2)* where (21/2)* = Mf%A*. Thus, by using the
second definition, we obtain that ©~1/2K = (AMf%)*lAf( = fV;%AflAI? = fv;%f( and Vo € X,
[ limy, 00 V2K 2|| = ||E(z|w)]|%, where ||¢||% := [[p(w)]?fi(w)dw. This shows that, in the
IV case, assumption A.2 is a particular case of assumptions 2.2 and 4.2 in Chen and Reiss (2011).

Finally, we check assumption A.3 for both n — oo and finite sample. In finite sample this
assumption holds trivially since R(X) (= D(E71)) and R(K Qé) have finite ranks. Suppose that
the conditions for the application of the Dominated Convergence Theorem hold, then Assumption
A.3 is satisfied asymptotically if and only if ||[S~1A lim, e K Qé |2 < oo. This holds if € is ap-
propriately chosen. One possibility could be to set Qo = T*A*AT, where T : L%[0,1] — L?[0,1] is
a trace-class integral operator T'¢ = [ w(w, z)¢(z)dz for a known function w and T™ is its adjoint.
Define Qé = T*A*. Then,?

~ 1 ~ ~ ~
[[Z71A lim KQZ)?P = ||IZ7'A lim KT*A*|? <||=71A lim KT*A*||3¢ < tr(Z7'A lim KT*A%)
= tr(A*S7IA lim KT%) = tr(E(T* - |w)) < tr(T)||E(:|[W)|| < cc.

n—00

O

2.2.1 Covariance operators proportional to K

A particular situation often encountered in applications is the case where the sampling covari-
ance operator has the form ¥ = (K K™*)", for some r € R, and is related to the classical example

of g-priors given in Zellner (1986). In this situation it is convenient to choose L = (K*K )_% o

2This is because for a compact operator A : L?[0,1] — L?[0,1] and by denoting |A| = (A*A)Y?, we have:
1417 < [|All&s = | |AlllFs < tr(|A]) = tr(A).
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that Qo = (K*K)?*, for s € Ry. Because (K K*)" and (K*K)® are proper covariance operators only
if they are trace-class then K is necessarily compact. Assumptions A.1 and A.2 hold for » < 1 and

a =1 — r, respectively. Assumption A.3 holds for s > 2r — 1.

Example 2 (Functional Linear Regression Estimation (continued)). Let us consider model (3) and
the associated integral equation E(£Z(t) fo s)Cov(Z(s), Z(t))ds, for t € [0,1]. If we dispose
of i.i.d. data (&1, 21),. .., (&n, Zy) the unknown moments in this equation can be estimated. Thus,
z is solution of (4) with y° := 13" &Z,(t), U = L3, 6,Zi(t) and Vo € L2([0,1]) — K¢ =
LS < Zi,o > Zi(t). The operator K : L*([0,1]) — L*([0,1]) is self-adjoint, i.e. K = K*.
Moreover, conditional on Z, the error term U is exactly a Gaussian process with covariance operator
0% = 672K with 6 = % which is trace-class since its range has finite dimension. Thus, we can write
oY = %TQ(KK*)T with r = % Assumption A.l is trivially satisfied in finite sample as well as for

n — oo. We discuss later on how to choose L in order to satisfy assumptions A.2 and A.3.

3 Main results

The posterior distribution of x, denoted by u};, is the Bayesian solution of the inverse problem
(1). Because a separable Hilbert space is Polish, there exists a regular version of the posterior
distribution ,u};/, that is, a conditional probability characterizing ,u};/. In many applications X and
Y are L? spaces and L? spaces are Polish if they are defined on a separable metric space. In the
next Theorem we characterize the joint distribution of (z,%°) and the posterior distribution ,u}{ of

x. The notation B(X) ® B(Y) means the Borel o-field generated by the product topology.

Theorem 1. Consider two separable infinite dimensional Hilbert spaces X and ). Let z|a, s and

Y|z be two Gaussian H-r.v. on X and Y as in (7) and (5), respectively. Then,

(i) (x,9°) is a measurable map from (S,S,P) to (X x V,B(X) @ B(Y)) and has a Gaussian
distribution: (z,y%)|c,s ~ N((zo, Kxo), ), where Y is a trace-class covariance operator
defined as Y(p,1) = (2Qop + SQoK*h, K Qo + (6% + SKQK*)Y) for all (p,1) € X x
Y. The marginal sampling distribution of y°|a, s is Py ~ N (Kxq, (6% + gKQOK*)).

Moreover, let A :Y — X be a P,-measurable linear transformation (P,-mlt), that is, V¢ € ), A¢p
is a Py-almost sure limit, in the norm topology, of Ard as k — oo, where Ay : Y — X is a sequence

of continuous linear operators. Then,

(ii) the conditional distribution /1}5/ of x given y° exists, is reqular and almost surely unique. It
is Gaussian with mean BE(x|y’, o, s) = A(y® — Kxo) + ¢ and trace-class covariance operator
Var(zly’, a,s) = g[Qo — AKQ] : X — X. Furthermore, A = QoK*(aX + KQoK*)™!
R((6T + LKQoK*)2).
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(iii) Under Assumptions A.1 and A.3, the operator A characterizing u}; is a continuous linear

operator on Y and can be written as
1
A=Q2(al +B*B)"{(x=7V2B) : Yy » & (9)

1
with B =Y"12KQ;.

Point (i) in the theorem is an immediate application of the results of Mandelbaum (1984), we
refer to this paper for the proof and for a rigorous definition of P,-mlt. As stated above, the quantity
Ay is defined as a P,-mlt, which is a weaker notion than that of a linear and continuous operator
and A is in general not continuous. In fact, since Ay is a P,-almost sure limit of Ay°, for k — oo,
the null set where this convergence is not satisfied depends on y° and we do not have an almost sure
convergence of Ay to A. Moreover, in general, A takes the form A = QoK*(aX + KQqK*)~! only
on a dense subspace of ) of P,-probability measure 0. Outside of this subspace, A is defined as the
unique extension of QoK*(aX + KQqK*)~! to ) for which we do not have an explicit expression.
This means that in general it is not possible to construct a feasible estimator for x.

On the contrary, point (i) of the theorem shows that, under A.1 and A.3, A is defined as a
continuous linear operator on the whole ). This is the first important contribution of our paper
since A.1 and A.3 permit to construct a point estimator for x — equal to the posterior mean — that is
implementable in practice. Thus, our result (7i4) make operational the Bayesian approach for linear
statistical inverse problems in econometrics. When assumptions A.1 and A.3 do not hold then we
can use a quasi Bayesian approach as proposed in Florens and Simoni (2012a,b). Summarizing,

under a quadratic loss function, the Bayes estimator for a functional parameter x characterized by
(1) is
1
foa =02 (ol + B*B)"HZ7YV2B)* (4’ — Kxp), with B=X"1/2KQY2,

Remark 3.1. Under our assumptions it is possible to show the existence of a close relationship
between Bayesian and frequentist approach to statistical inverse problems. In fact, the posterior
mean Z, is equal to the Tikhonov regularized solution in the Hilbert scale (Xs)scr generated by
L of the equation 71249 = $=12K gz + 212U, The existence of ¥~1/2K is guaranteed by A.1.
Since E(z|y°, a, s) = A(y° — Kxg) + 20, we have, under A.1 and A.3:

E(zly’,o,s) = L%l + L °K*ST'KL™*) 'L K*S™128 71240 — Kag) + 20
— (aL2S + T*T)flT*(gﬁ o T.’L'()) + T, T =T = 271/2}(7 gé — E*l/les

and it is equal to the minimizer, with respect to x, of the Tikhonov functional
15° = Tx|[* + allz — wo5.
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The model £71/2y% = Tz 4+ ¥~1/2U is the transformation of (1) through the operator ¥ ~1/2.
The quantities ©~Y2y% and ©~1/2U can not be interpreted as H-r.v. but have to be interpreted in
process form (as in Bissantz et al. (2007)), i.e. in the sense of weak distributions, see Kuo (1975).
More precisely, Z := %~1/2U is a Hilbert space process in Y if Z(p) :=< Z, o >: Y — L*(S,S,P) is
a random variable with zero mean and Covyz = I, where Covy : Y — ) is the covariance operator
characterized by < Covzp, v >=E(Z(9)Z(¢)), Ve, € V.

In the IV regression estimation, the equation Y2y = Tx + £~1/2U writes E(Y|W) AV%V =
E(x\W) fév + error and the posterior mean estimator writes

N T -1, r.
fo = (aLQS + KfWK> K <E(Y - xoyW)> - <aL2S +E [E(~\W)]ZD E [ (Y — zo|W)|Z] .
For xp = 0 this is, in the framework of Darolles et al. (2011) or Florens et al. (2011), the Tikhonov
estimator in the Hilbert scale generated by fiZLQS. O

3.1 Asymptotic analysis

We analyze now frequentist asymptotic properties of the posterior distribution /L%/ of x. The
asymptotic analysis is for § — 0. Let P** denote the sampling distribution (5) with x = z,, we
remind the definition of posterior consistency, see Diaconis and Freedman (1986) or Ghosh and
Ramamoorthi (2003):

Definition 1. The posterior distribution is consistent at x, with respect to P** if it weakly con-
verges towards the Dirac measure 0., at the point z., i.e. if, for every neighborhood U of x.,

p¥ (U0, e, s) — 1 in P -probability or P**-a.s. as § — 0.

Posterior consistency provides the basic frequentist validation of our Bayesian procedure be-
cause it ensures that with a sufficiently large amount of data, it is almost possible to recover the
truth accurately. Lack of consistency is extremely undesirable, and one should not use a Bayesian
procedure if the corresponding posterior distribution is inconsistent. Our asymptotic analysis is
organized as follows. First, we take the posterior mean Z, as an estimator for the solution of (1)
and study the rate of convergence of the associated risk. Second, we state posterior consistency and
recover the rate of contraction of the posterior distribution. We denote the risk (MISE) associated
with Zo by Eg,||£a — ][> where E,, denotes the expectation taken with respect to P™. Let {\;r}

denote the eigenvalues of L™!, we define:

ye=inf{7 € (0,15 YA < 0o} = inf{F € (0,1]; tr(L~H) < oo} (10)
j=1

We point out that v is known since it depends on L. For instance, v = ﬁ means that either L~!

a+
is trace-class but L~(1=%) is not trace-class for every w € R or that tr (L_(H‘w)) < 0o Vw € Ry but
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L~ is not trace-class. Since under A.2 the operator L~=2*

be larger than ai“ Thus, if v = m this implies that s > % since Nats) must be less than

Remark that the smaller the 7 is and the smaller the eigenvalues of L~! are.

is trace-class, the parameter v cannot
1

S
(ats)
Furthermore, we denote by X(I") the ellipsoid of the type

or equal to

X5(0) = {peX; pl3<T}, 0<T <o (11)

where ||¢||5 := ||LPp||. Our asymptotic results will be valid uniformly on &x3(T"). The following

theorem gives the asymptotic behavior of Z,,.

Theorem 2. Let us consider the observational model (4) with x, being the true value of x that

generates the data. Under Assumptions A.1-A.3 and B, we have

X ) 5 _atrats)
sup E; ||Ta — 2]|” = O | aets 4+ 0™ ats
(zx—z0)€XB(I')

with B = min(3, a + 2s).

The value a + 2s plays the role of a qualification in a classical regularization scheme, that is, it
limits to a + 2s the regularity of z, that can be exploited in order to improve the rate. It is equal
to the qualification of a Tikhonov regularization in the Hilbert scale (Xs)scr, see e.g. Engl et al.
(2000) Section 8.5.

The value of o that minimizes the rate given in theorem 2 is: o™ := k4§ ﬁw?ﬂﬂ), for some con-

stant x > 0. When « is set equal to o™ (i.e. the prior is scaling), then SUP (¢, —0) e (T) B |[£gmin—
8

B
> =0 <(55+a+7(a+5)> and this rate is equal to the minimax rate §°+e+2 if 8 < a + 2s and

N = m (which is possible only if s > %) If the regularity of the prior matches the regularity of

the truth through the relation s = § + % then a prior with o = o™ = xJ is non-scaling and still

provides the minimax rate of convergence if v = m (in this case B = [ since f = s— % < a+2s).

When s # § + % (and v = Q(QIJFS)) the prior must be scaled in order to achieve a minimax rate of

convergence: if s > 5+ % the prior has to spread out (to become rougher) while if s < 5 + % the

prior must shrink (to become smoother).?
i

In all the other cases where a # o™ the rate is slower than §°+e+2 but we still have consis-
tency provided that we set v < §€ for 0 < e < #ﬁs) Remark that since tr(L~2%) < oo under A.2
#ﬁis) > 1. Thus, 1 is a possible value for € which implies that consistency

is always obtained with a non-scaling prior even if the minimax rate is obtained only in particular

then v < %= so that

cases.

3Remark that a v smaller than implies that tr(L~") < tr(L'/9) < oo for some g > 1. This means that

1
2(a+s)
L~ is very smooth and its spectrum is decreasing fast. Thus, if (z. — o) is not very smooth then assumption B will

be satisfied only with a 8 very small. A small § will decrease the rate of convergence.

16



The same discussion can be made concerning the rate of contraction of the posterior distribution

which is given in the next theorem.

Theorem 3. Let the assumptions of Theorem 2 be satisfied. For any sequence Ms — oo the

posterior distribution satisfies

pi{z e X 1 ||z — z4]| > esMs} — 0

_B _aty(ats) ~
in P -probability as § — 0, where g5 = <a2<“+5> +83a7 Hate) ) and B = min(f3,a + 2s).

We refer to €5 as the rate of contraction of the posterior distribution. If the prior is fixed, that
is, a < ¢, then g5 = 6%. If « is chosen such that the two terms in 5 are balanced, that
is, a < o™, then g5 = 5m. The minimax rate 5% is obtained when 8 < a + 2s,
v = m and we set o = o™, In this case, the prior is either fixed or scaling depending whether
s equates B + % or not.

3.2 Example 1: Instrumental variable (IV) regression estimation (continued)

In this section we explicit the rate of theorem 2 for the IV regression estimation. Remark
1 . .1 . - -
that B*B = Q2 K*[o? fy] 'KQZ where fir = 1577, W, K has been defined before
display (8) and K* : L?[0,1] — L?[0,1], is the adjoint operator of K that takes the form: K*¢ =
LS Kz’hgfi_z) < @, Kw’h(}?"’_w) >, V¢ € L?[0,1]. The Bayesian estimator of the IV regression
1 .
is 20 = Q¢ (ol + B*B)~Y(Z7Y2B)*(y® — AKx). We assume that the true IV regression z, that

generates the data satisfies Assumption B. In order to determine the rate of the MISE associated

with . the proof of theorem 2 must be slightly modified. This is because the covariance operator
of U and K in the inverse problem associated with the IV regression estimation are changing with
n. Therefore, the rate of the MISE must incorporate the rate of convergence of these operators
towards their limits. The crucial issue in order to establish the rate of the MISE associated with
I is the rate of convergence of B*B towards Qéﬁ*ﬁﬁQé where £ = lim,,_y0o K = JwE(|W)
and 8% = lim, oo K* = fzE(:|Z). This rate is specified by Assumption (HS) below and we refer
to Darolles et al. (2011, Appendix B) for a set of sufficient conditions that justify this assumption.

Assumption HS. There exists p > 2 such that:

1 1
(i). E||B*B = Qi & &G ||? = O (n™! + h*);

(ii). EHQé(”r* —T9|? =0 (L + 1r?), where T* = E(-|Z) and T* = E(-|Z).

To get rid of ¢? it is sufficient to specify Qg as Qyo? so that B*B does not depend on o?
anymore and we do not need to estimate it to get the estimate of . The next corollary to theorem

2 gives the rate of the MISE of &, under this assumption.
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Corollary 1. Let us consider the observational model y° = Kz, + U, with y° and K defined as in
(8) and x, being the true value of x. Under Assumptions A.1-A.3, B and HS:

B aty(ats) 1
sup E. |20 — z.|* = (’)( <aa+s +n o Tt > (14 a2 (n + h2p>)

(w4 —z0)€X(T)
-2 1 2 1 2
a2 (4 n¥) (S n))
n nh

with B = min(B3, a + 2s).

In this example we have to set two tuning parameters: the bandwidth h and a. We can
a+s

set h such that h? goes to 0 at least as fast as n~' and a@ = a™® o« n Atetr(ets) . With this
1 1 1 1
choice, the rate of convergence of B*B towards 23 ﬁ*fiwﬁﬂg and of €25 7™ towards 25 7" will not

affect the rate in the MISE (that is, the rate will be the same as the rate given in theorem 2) if

B>2s+a— 2y(a+ s) and p > % We remark that when the prior is not scaling, ¢.e.

a = n~1 the condition [a?n]~! = O(1) is not satisfied. The rate of corollary 1, with a = ™" and
h = O(n~1/(0))  is minimax when a + 25 > 3 > a + 2s — $and v = 2(a1+8).

4 Operators with geometric spectra

We analyze now the important case where the inverse problem (1) is mildly ill-posed. We
denote with A;x the singular values of K and with A\;5 and Az the eigenvalues of ¥ and L
respectively. Assumption C states that the operators ¥~1/2 and KK* (resp. K*¥ 'K and L71)

are diagonalizable in the same eigenbasis and have polynomially decreasing spectra.

Assumption C. The operator ¥ ~V/2 (resp. K*S 71K ) has the same eigenfunctions {¢;} as KK*
(resp. {1} as L~Y). Moreover, the eigenvalues of KK*, > and L™! satisfy

aj PO < N <aj T, gm0 < Nn <6 and L' <N <Y, =12,

with ag > 0,¢9 > 1 and a,@, ¢, ¢, 1,1 > 0.

This assumption implies that K K* and K*K are strictly positive definite. For the setting
described by Assumption C we give in this section the exact rate attained by Z,.

Assumption C is standard in statistical inverse problems literature (see e.g. assumption A.3
in Hall and Horowitz (2005) or assumption B3 in Cavalier and Tsybakov (2002)) and, by using
the notation defined in 2.1, it may be rewritten as A\jx < j7%, \jx < j7° and \jp < 5L Under
Assumption C we may rewrite Xp(I') as Ap(l') :={p € X'; >, 328 < @, b; >2< T} and we may
explicitly compute ~: it is equal to ﬁ so that this value, and not ~, will appear in the rate.
The following proposition provides necessary and sufficient conditions for A.1, A.2 and A.3, when

C is satisfied.
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Proposition 1. Under Assumption C:
e A.1 is satisfied if and only if ag > 5 ;
e A.2 is satisfied if and only if a = ap — F > 0 and s > %;
o A.3is satisfied if and only if ag > co — s.
The following Proposition gives the minimax rate attained by Z,. Then,

Proposition 2. Let B, C hold, a = ap — % >0, s > % and ag > cg — s. Then we have

. . B _ 2a41
sup E..||2a — 4|7 <X @ots + da 20a+s) | (12)
(zx—z0)E€XB(I')

with 3 = min(B3, 2(a + s)). Moreover, (i) for a < § (fized prior),

on(s—3)
sup E,, ||[Ta — x> =<0 o5
(z4—z0)€X(T)
~a+s
(i) for o< 8tz (optimal rate of o),
B

To — @[} < §54at2

sup E;,
(2 —0) €X5(T)

The minimax rate of convergence over a Sobolev ellipsoid X3(I") is of the order ¢ +** 2. By the
results of the proposition, the uniform rate of the MISE associated with &, is minimax if the pa-
rameter s of the prior is chosen such that s = 3+ 3 and the prior is fixed (case (4)) or if 8 < 2(a+s5)

and the prior is scaling at the optimal rate (case (ii)). In all the other cases the rate is slower than
a+s
a+%
that since s > % then a fixed prior (¢ = 1) always guarantees consistency (even if the rate is not

the minimax rate but consistency is still verified provided that a =< §¢ for 0 < € < . Remark
always minimax).

This result, similar to that one in Theorem 2, means that when the prior is “correctly specified”
(“correct” in the sense that the regularity s — % of the trajectories generated by the prior is the
same as the regularity of z.) we obtain a minimax rate without scaling the prior covariance. On
the other hand, if s < 8+ %, i.e. the prior is “undersmoothing”, the minimax rate can still be
obtained as soon as 8 < 2(a + s) and the prior is shrinking at the optimal rate. When the prior is
“oversmoothing”, i.e. s > S+ %, the minimax rate can be obtained if the prior distribution spreads

out at the optimal « (the prior has to be more and more dispersed in order to become rougher).

In many cases it is reasonable to assume that the functional parameter x, has generalized

Fourier coefficients (in the basis made of the eigenfunctions {1);} of L™*) that are geometrically
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decreasing, see e.g. assumption A.3 in Hall and Horowitz (2005) and theorem 4.1 in Van Rooij

and Ruymgaart (1999). Thus, we may consider the following assumption.
Assumption B’. For some by > % and {1;} defined in Assumption C, < (z. — x0),; >x j~%.

Assumption B’ is often encountered in statistical inverse problems literature. Assumption B is
more general than Assumption B’ since it allows to consider the important case of exponentially
declining Fourier coefficients < (z. — x0),%; >. We use Assumption B’ to show sharp adaptiveness
for our Empirical Bayes procedure. If B’ holds then JI' < oo such that assumption B holds for
some 0 < 3 < by — % The following result gives the rate of the MISE when assumption B’ holds.

Proposition 3. Let B’, C hold with a = ag — 5 >0, s > % and ag > cg — s. Then,

2bp—1 _ 2a+1 2bp—1 _ _2a+41
205 ¢ +8a” 20t cy(F) < By, ||Za — 24])? < a?I(by > (2a+25)) + a2@F9) & +Ja 20t & () (13)

_ ats ~
where c1, ¢1, ¢c2, G2 and t are positive constants. Moreover, for a < §tote = av, and by = min(by, 2a+

254+1/2), )
2?@—1
E.,||Ta, — 2.||* < 6200+, (14)

2bg—1 2a+

1
When by < 2a+2s+ 1/2 the rate of the lower bound a2(@+s) 4§ 2(a+9) given in (13) provides,

up to a constant, a lower and an upper bound for the rate of the estimator Z, and so it is optimal.
2bp—1 ats
Thus, the minimax-optimal rate 020+ is obtained when we set a < d%ote if: either s = by (fixed

prior with a < 0), or s < by < 2a + 2s + 1/2 (shrinking prior), or s > by (spreading out prior).

When s < by (resp. s > bg) the trajectories generated by the prior are less smooth (resp. smoother)

than z, and so the support of the prior must be shrunk (resp. spread out). When § = n~! the rate
(2bg—1)

n 20ote) is shown to be minimax in Hall and Horowitz (2007).

Moreover, if we set 8 = sup {B > 0; (zx — x0) satisfies B’ and Zj 328 < (w4 — z0), 5 >2< oo}
2bp—1
then g = by — % and the rate §2(o+%) is uniform in z, over AX(I') and equal to the optimal rate of

proposition 2.
In the following theorem we give the rate of contraction of the posterior distribution for the

maldly ll-posed case.

Theorem 4. Let the assumptions of Proposition 2 be satisfied. For any sequence Ms — oo the

posterior probability satisfies

pi{z e X ||z — 24| > esMs} — 0

2bp—1 1 _ _2a+1 -
in P™-probability as § — 0, where ¢5 = | ailets) +f2a 4<a+5)>, a >0, a = 0 and by =

min(f3,2(a + s) + 1/2). Moreover, (i) for a < § (fized prior):

2(bgAs)—1
56 = 6 4(a+s)
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ats
and (ii) for o < dtote (optimal rate of v ):

2§Q—1
85 = 54(b0+0) .

ats
The rate of contraction is minimax if by < 2(a+s)+1/2 and o < d%+*. Depending on the relation
between s and by the corresponding prior p is shrinking, spreading out or fixed, see comments after

proposition 3.

4.1 Example 2: Functional Linear Regression Estimation (continued)

We develop a little further Example 2. Here, the covariance operator ¥ is proportional to
K (as shown in section 2.2.1): §¥ = L:K The operator K : L*([0,1]) — L*([0,1]), defined as
Vo € L*([0,1)), K¢ = 13, < Z;, ¢ > Zi(t), is self-adjoint, i.e. K = K*, and depends on n. It
converges to the operator K, defined as Vo € L2([0,1]), Ky = fol p(s)Cov(Z(s), Z(t))ds, which is
trace-class since E||Z;||? < oco. Choose L = K~!, and suppose that the spectrum of K declines at
the rate j7, ag > 0, as in Assumption C (for instance, K could be the covariance operator of a
Brownian motion). Then, j7% = j7%, g > 1 and ag = cg. Moreover, we set Qg = K23, for some
5> % (so that lim, o Q0 = K 25) and assume that z, satisfies Assumption B’. The posterior
mean estimator takes the form: &, = K®(al + K1) "1 K3(y% — Kxg) + 0, for which the following

lemma holds.

Lemma 1. Let K : L*([0,1]) — L%([0,1]) have eigenvalues {\jr} that satisfy aj~™ < \jgx <

aj=%, for a,a > 0 and ag > 0. Assume that E||Z;||* < oo. Then, under Assumption B’ with
_ag(25+1)
bp > max {ag,aps}, § > ﬁ and if a« X a, =n 2boteo | we have

_ 2bg—1
E,.||fa. — |2 = o(n —+>

The rate and the assumptions in the Lemma are the same as in Hall and Horowitz (2007).

5 An adaptive selection of a through an empirical Bayes approach

As shown by theorem 1 (7ii) and Remark 3.1, the parameter a of the prior plays the role of
a reqularization parameter and {Z,}a>0 defines a class of estimators for x, which are equal to a
Tikhonov-type frequentist estimator. We have shown that for « decreasing at a convenient rate,
this estimator converges at the minimax rate. However, this rate and the corresponding value for
« are unknown in practice since they depend on the regularity of x, which is unknown. Thus, it
is very important to have an adaptive data-driven method for selecting « since a suitable value

for « is crucial for the implementation of the estimation procedure. A data-driven method selects
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a suitable value & for « if the posterior distribution of x computed by using this & still satisfies
consistency in a frequentist sense at an (almost) minimax rate.

We propose in sections 5.1 and 5.2 a data-driven method based on an Empirical Bayes proce-
dure for selecting &. This procedure can be easily implemented for general operators K, ¥ and L

satisfying Assumptions A.1 and A.3.

5.1 Characterization of the likelihood

The marginal distribution of y‘s\a, s is
5 g .
Yola,s ~ Py, Po=N| Kz, 0+ —-KQK" ). (15)
o

The marginal distribution P, is obtained by marginalizing P* with respect to the prior distribution
of . This requires the implicit assumption that, conditionally on z, y° is independent of « since
« is considered here as a random variable (hyperparameter). The following theorem, which is
an application of Theorem 3.3 in Kuo (1975), characterizes a probability measure Py which is

equivalent to P, for every a > 0 and characterizes the likelihood of P, with respect to Pp.

Theorem 5. Let Py be a Gaussian measure with mean Kxg and covariance operator 6%, that is,
Py = N(Kxg,0%). Under Assumptions A.1 and A.3, the Gaussian measure P, defined in (15) is

equivalent to Py. Moreover, the Radon-Nikodym derivative is given by
A2 P

H SN (16)

)\2+oz

where {¢;, )\]2} are the eigenfunctions and eigenvalues of BB*, respectively.

5 -1/2,,.
< K ’E ©wi>
Y 0 iZ and ¥1/2

In our setting: z; = NG @; is defined under assumption A.3.

5.2 Adaptive Empirical Bayes (EB) procedure

dlogv(a)
a

Let v denote a prior distribution for « such that = via~! + vy for two constants

vy > 0, 9 < 0. An EB procedure consists in plugging in the prior distribution of x|a, s a value for
a selected from the data y°. We define the marginal mazimum a posteriori estimator & of a to be

the maximizer of the marginal log-posterior of a|y® which is proportional to log [dP o V(oz)}
& = arg max S(a, 1) (17)
_ dP
)
S(as) = lo ( () (18)

1 [ «a A2 <yl — Ko, X120 >2
= —Z log< 2) +—15 ! ]—l—logy(oz).
24— a+ A a+ A 4
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In an equivalent way, & is defined as the solution of the first order condition %5’ (o, %) = 0. We

denote Sys(a) := %S(a,y‘s) where

> X A< —Kx,2_1/2 >2\ dl
( Z Y ‘ ! >+ ogv(a) and S, (a&) =0.

ala —|— )\2 §(a + A%)2 do
j=1 j=1 J

(19)

Our strategy will then be to plug the value &, found in this way, back into the prior of x|a, s and

then compute the posterior distribution ,u};ﬁ and the posterior mean estimator Z4 using this value

of a. We refer to 4 as the EB-estimator and to pu) sa 8 the EB-posterior. Examples of suitable

priors for « are: either a gamma distribution or a beta distribution on (0, 1).

5.3 Posterior consistency for the EB-posterior (mildly ill-posed case)

In this section we study existence of & and the rate at which & decreases to 0 and show posterior

consistency of ,u}{d.‘l When the true x, is not too smooth, with respect to the degree of ill-posedness

ats
and the smoothness of the prior, then & is of the same order as o, (= d%+!) with probability that
approaches 1 as § — 0. Moreover, we state that the EB-posterior distribution ,u5 -~ concentrates

around the true z, in probability.

Theorem 6. Let B’ and C hold with a = ag — %0 >0, s > % and ag > ¢y — s. Let v be
a prior distribution for o such that dl%”() = via ! + 1 for two constants v1 > 0, vy < 0.
Then, with probability approaching 1, there exists & such that Sya(d) =0 and & =< 5”01725% for
n=mnl(bp—a—2s—1/2>0) and any (bp +a) > n > max{by — s —1/4,0}. If in addition n > 1/2,

then for any sequence Mgy — oo the EB-posterior distribution satisfies

u?{d{xe)(: llz — .|| > esMs} — 0 (20)

bo— 4

in. P*-probability as § — 0 where e5 = 62Co+atm and by = min(bg, 2a + 25 + 1/2).

The consistency of the EB-estimator 4 follows from posterior consistency of u}{d. The theorem
says that the posterior contraction rate of the EB-posterior distribution is minimax optimal when
bp < a+ 2s+1/2. In all the other cases the rate is slower. To get a minimax contraction rate
also for the case where by > a + 2s + 1/2 we should specify the prior v for a depending on by and
a in some convenient way. However, this prior would be unfeasible in practice since by is never
known. For this reason we do not pursue this analysis since it would have an interest only from a

theoretical point of view while the main motivation for this section is the practical implementation

4For simplicity of exposition we limit this analysis to the case where K, ¥ and L have geometric spectra (maldly
ill-posed case, see section 4). It is possible to extend the result of theorem 6 to the general case at the price of
complicate much more the proof and the notation. For this reason we do not show the general result here.
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of our estimator.

Remark 5.1. While this theorem is stated and proved for a Normal error term U, this result holds
also for the more general case where U is only asymptotically Gaussian. In appendix A we give
some hints about how the proof should be modified in this case. Therefore, our EB-approach works

also in the case where U is only approximately Gaussian.

6 Numerical Implementation

6.1 Instrumental variable regression estimation

This section shows the implementation of our proposed estimation method for the IV regres-
sion example 1 and its finite sample properties. We simulate n = 1000 observations from the

following model, which involves only one endogenous covariate Z and two instrumental variables

W = (Wla W2)7

Wi 0 1 03

Wi = e ~ N ’
Wa 0 0.3 1
V; ~ N(O, 0'12)), Z; = 0.1w; 1 + 0.1w; 2 + v;
g ~N(0,(0.4)%),  u; = —0.50; + ¢
Yi = 2+(Zi) +

for i = 1,...,n. Endogeneity is caused by correlation between u; and the error term v; affecting

the covariates. The true x, is the parabola z.(Z) = Z2%. In all the simulations we have fixed
oy = 0.27. We do not transform the data to the interval [0,1] and the spaces of reference are
X =Y = L*(Z), where L?(Z) denotes the space of square integrable functions of Z with respect to
its marginal distribution. Moreover, the function a(w,v) is chosen such that K : L?(Z) — L*(Z) is
the (estimated) double conditional expectation operator, that is, Vo € L2(Z), Ko = E(E(¢|W)|Z)
and the functional observation y° takes the form y°(Z) := E(E(Y|W)|Z). Here, E denotes the
estimated expectation that we compute through a Gaussian kernel smoothing estimator of the
joint density of (Y, Z,W). The bandwidth for Z has been set equal to @“(Z )n=/% and in a
similar way the bandwidths for Y and W.

The sampling covariance operator is L¢ = o2E(E(¢|W)|Z), Vi € L?*(Z), under the assumption
E[(Y — 2.(Z))?[W] = 02, and it has been replaced by its empirical counterpart. Following the
discussion in section 2.2.1 we specify the prior covariance operator as £y = woo?K* for s > 1 and

wo a fixed parameter. In this way the conditional variance o2 in ¥ and Qg simplifies and does not
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need to be estimated.

We have performed simulations for two specifications of xg, wy and s (where xy denotes the
prior mean function): Figure 1 refers to zo(Z) = 0.95Z% + 0.25, wp = 1 and s = 2 while Figure 2
refers to z¢(Z) = 0, wp = 2 and s = 15. We have first performed simulations for a fixed value of «
(we have fixed @ = 0.9 to obtain Figures la-1b and Figures 2a-2b) and in a second simulation we
have used the « selected through our EB method.

Graphs la and 2a represent: the n observed Y’s (magenta asterisks), the corresponding y°
(dotted blue line) obtained from the observed sample of (Y, Z, W), the true z. (black solid line),
the nonparametric estimation of the regression function E(Y|Z) (yellow dashed line), and our
posterior mean estimator Z,, (dotted-dashed red line). We show the estimator of E(Y|Z) with the
purpose of making clear the bias due to endogeneity. Graphs 1b and 2b represent: the prior mean
function zy (magenta dashed line), the observed function y° (dotted blue line) obtained from the
observed sample of (Y, Z, W), the true z, (black solid line), and our posterior mean estimator &,
(dotted-dashed red line).

Graphs 1c and 2¢ draw the log-posterior log [%V(OZ)} against « and show the value of the
maximum a posteriori & We have specified an exponential prior for a: v(a) = 11e 1 Va > 0.
Finally, graphs 1d and 2d represent our EB-posterior mean estimator &4 (dotted-dashed red line)
— obtained by using the & selected with the EB-procedure — together with the prior mean function
zo (magenta dashed line), the observed function y° (dotted blue line) and the true z, (black solid

line).

6.2 Geometric Spectrum case

In this simulation we assume X = ) = L?(R) with respect to the measure e™"*/2 g0 that the
operator K is self-adjoint. We use the Hermite polynomials as common eigenbasis for the operators

K, ¥ and L. The Hermite polynomials {H,};>0 form an orthogonal basis of L?(R) with respect

—u?/2 The first few Hermite polynomials are {1,u, (u? — 1), (v® — 3u),...} and

u?/2.

to the measure e
an important property of these polynomials is that they are orthogonal with respect to e~
Jz Hl(u)Hj(u)e_“2/2du = /nnld;;, where §;; is equal to 1 if [ = j and 0 otherwise. Moreover,

they satisfy the recursion Hjq(u) = uH;(u) — jH;—1(u) which is used in our simulation. We fix:
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d=1/n,a0 =1, cg = 1.2 and s = 1, thus the simulation design is:

5 = Ti I g H,
j=0 m(”‘) ’ ’
oo jao

K = Z Vot - > H;
- j—25

Q. = WO;)\/M<H]','>H]'

y5 = Kx.,+U

with z,(u) = u? and U = \FN( , ). Moreover, we fix: 7 = 10 and wy = 5. The inner product
is approximated by discretizing the integral fR Hj(u) - e~ " /2dy with 1000 discretization points
uniformly generated between —3 and 3. The infinite sums are truncated at j = 200.

We have first performed simulations for a fixed value of a (we have fixed @ = 0.9 to obtain
Figure 3a) and in a second simulation we have used the « selected through our EB method.

Graph 3a represents: the prior mean function xy (magenta dashed line), the observed function

% (dotted blue line), the true z, (black solid line), and our posterior mean estimator &, (dotted-

dashed red line).

Graph 3b draws the log-posterior log [%V(a)} against « and shows the value of the maximum
a posteriori &. We have specified a Gamma prior for a: v(a) < ale™1%% Vo > 0. Finally, graph 3c
represents our EB-posterior mean estimator Z4 (dotted-dashed red line) — obtained by using the &
selected with the EB-procedure — together with the prior mean function zy (magenta dashed line),

the observed function 3° (dotted blue line) and the true z, (black solid line).

7 Conclusion

This paper develops a Bayesian approach for nonparametric estimation of parameters in econo-
metric models that are characterized as the solution of an inverse problem. We consider a conjugate-
Gaussian setting where the “likelihood” is only required to be asymptotically Gaussian. For “like-
lihood” we mean the sampling distribution of a functional transformation of the sample.

We first provide a point estimator — the posterior mean — that: (i) has a closed-form, (ii) is
easy to implement in practice, (iii) has a pure Bayesian interpretation and (iv) is consistent in a
frequentist sense. Second, we provide an adaptive data-driven method to select the regularization
parameter. This method, while constructed for a Bayesian model, can be used for selecting the
regularization parameter for frequentist estimators. This is due to the fact that, under mild condi-
tions, the posterior mean estimator in a conjugate-Gaussian setting is shown to be the same as a

Tikhonov-type estimator.
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Appendix

In all the proofs we use the notation (\;,;,%;); to denote the singular value decomposition of B (or
equivalently of B*), that is, By; = \j¢; and B*p; = A;¢; where ¢; and ¢; are of norm 1, Vj. We also
use the notation I(A) to denote the indicator function of an event A and the notation =% to mean “equal in
distribution”. In order to prove several results we make use of Corollary 8.22 in Engl et al. (2000). We give
here a simplified version of it adapted to our framework and we refer to Engl et al. (2000) for the proof of
it.

Corollary 2. Let (X;), t € R be a Hilbert scale generated by L and let S7V/2K : X — Y be a bounded
operator satisfying Assumption A.2, Yx € X and for some a > 0. Then, for B = X"Y2KL™% s> 0 and
vl <1

WL al| < |I(B*B)Eal| < e(v)||L~ " z]] (21)
holds on D((B*B)?) with c(v) = min(m”,m") and ¢(v) = max(m”,m"). Moreover, R((B*B)?) =
Xy(ars) = D(LY@F), where (B*B)% has to be replaced by its extension to X if v < 0.

A Preliminary Lemmas

Lemma 2. Let X = Y = L*([0,1]) and K and K be operators from X to Y such that K¢ =
LS < Ziyp > Zi(t) and Ko = fol ©(s)Cov(Z(s), Z(t))ds, Vp € X, where Z € L?([0,1]) is a
centered random function. Then, if B||Z||* < co we have

E,.||K — K|[? = o(%)

A.1 Proof of Lemma 2

Let || - ||zs denote the Hilbert-Schmidt norm. Since Cov(Z(s), Z(t)) = E(Z(s)Z(t)) we have

~ ~ SRS R 9
1K~ RIP <K = Rlfhs = | [ 2= 00) - Bz(s)2(0)] dsa

so that

n

E,.|[K- K| < / / Bo. [ 30 2:0)200) — BUZ(9)2(0))] dsr

n

= / / Var ! ZZZ( )Zi(t)]dsdt
=1
- / / [% Z Var(Z;(s)Z;(t)) + % > Cov(Zi(s)Zi(t), Z(5)Z; (t))} dsdt

>7

/ / B(72(5) Z(1))dsdt = + B / / (22(5)2° (1)) dsit = | Z]]*

since Cov(Z;(s)Z;(t), Z;(s)Z;(t)) = 0.

30



Lemma 3. Let the assumptions of Theorem 6 be satisfied. Then,

1
Sy5<a) = 51 -8 — 83— (Sua + 841,) +uvi— + 1o
(6%
where

1 bofsf% 1 bofsfl

2
25"

1
ats ¢y < 5 < 55_11(50 > s)+ 25 ats Gy,

1 _2(ats)+1

- 2(a+s)+1 1
g PG < (S1—Sw) <

2(a+s) 63 4+ —
2a”

1
2

N[
M

i i)\?]—%a-i-bo) S, Ngi i)\?
NG jzl(a+)\2)4 ’ CoVe & (e A

with & ~ N(0,1) and ¢3, c4, ¢4 are positive constants.

A.2 Proof of Lemma 3

We develop S, (o) by using the fact that under Assumption C there exist A, A > 0 such that \j —(ats) <
Aj < Aj70F) for j =1,2,.... Then,

1 A3

= D - § — 0 < K(z. — 20), 0
220 a+)\2 5a+/\2)2>\ (@ = o) 05 >
1 2)2

z K(xy — 20), 05 U, o,

25 a+)\22>\J2< (s — x0), 05 >< U, @; >

100
52 QJMQ <U<p]> =8 — 8 — S5 — Sy

Let us start by computing Ss:

1 oo
- < K(x, — , 5 >
"2 ; 5(a+ )\2 Py e T 00

—2(a+s —2a—2bg 1 -—4a—25—2bg

1 (o) oo ]
75 zz: (o + j—2(a+9))2 DY Z (a + j—2(a+s))2

‘—4a—25—2bg

The function f(j) = (=g defined on R is always decreasing in j when by > s. When by < s, f(j) is

1
increasing for j < j and decreasing for j > j where j = (%a) e Therefore, to upper and lower
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bound S; we have to consider these two cases separately. First, if by < s:

1 > j—4a—23—2b0 1 e ]—411 25—2bg 1 bo-s—1 oo 2(s—bo) 1 bo-s—3

— - > — - > ats - du:= — ats :
2% ; (@t 2@tz = 25 Z (o + j—2@+))z = 25 /u (u2Ga+s) 1 12T 25 ca(w);
1 x - —4a—25—2bg 1 J +—4a—2s5—2bg bo—s— 1 o) 2(s—bo)

— Z B — o(ats) 2 < Z S “2(ats) + « Oa+s 2 / 7;&4_8) 2du

26 = (a+3j ) 26 = (a+3j )2 w (U +1)

G—4a—2s5—2b
j 0

_ bg—s—L [ 42(s—bo)
= atataa a+s —  du
J a_|_j—2(a+e)) +a /u (u2(a+s) + 1)2 >

_ (1—4a—2s—2bq)
( 2a+s+bo 2(a+s)

IA
I
/\

[ () Fa T o) | = &a"F 4w
= « T ats C4 y = —« a-—+s C4 H
25 (a + a2atstbo)? 26 ’
0

1 25—2179
1—4a—2s—2bg 1

1
_ ( 2a+s+bg 2(a+s) oo w2(s—?0) ~ L —2TE2T 25200 (5—bg) 2(ats)
where u = (75—170 ) ,eq(u) = fE 7(u2(a+5>+1)2du and ¢4 (u) := (2a+s+bo) R (e

c4(u). Second, if by > s:

1 oo 74a 25—2bg 1 bo—s—1 e8] u2(57b0) 1 bo—s—12 ~
% Z Oé +j_2(a+g)) Z 27504 ats /ﬁ 7(u2(a+s) T 1)2d’u = %a a+s C4(U),

1 0o 74a 2s—2bg 1 j74a72572b0 bo— 57% 0o u2(5*b0)
28 < = | + a ats - _du+
20 Z:: (a +j—2(a+9)) - 20\ (« +J—2(a+s))2 =1 [3 (u2(a+s) +1)2
1 g=s-1/2 1
< — ats —.
< 25& cq (@) 55

where @ = %@ By defining ¢4 = ca(w)I(by < s)+ca(@)I(bg > s) and é4 = é4(w)I(by < s)+ca(@)I(bo > s),
the first line of inequalities of the lemma is proved.

We analyze now Ss. Let {¢;} denote a sequence of independent N (0, 1) random variables; we rewrite Ss as

A3 <U,p; >

K(zs —20),0; > ——L—
; \/S Oé—|—)\2) /7/\]'2 < (m ZII()) Pj > /76)\32

22
J
< K(Z’* — 930),(,0]' > fj.

1
%; (a+ 222/ A

S3 =

This series is convergent if, for a fixed a, E||S3]|> < oo. This is always verified because:

IS, A
EllS 2 o J —2(a+bo)
1511 5;(“@4;

1 o0 o0

o ) e e

IA

and it is finite if and only if by > 1 — a which is verified by assumption. Therefore, S3 is equal in distribution

to a Gaussian random variable with 0 mean and variance § > > j=2(atbo) 5

)\4
j=1 a+)\2)4.7

5In the case where U is only asymptotically A/(0, §%) then the analysis of Sz requires to use the Lyapunov Central
Limit theorem. In particular we have to check the Lyapunov condition: for some o > 0
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<U,p;>>
6>\j2

Lyapunov Central Limit Theorem to term Sy, below:

Consider now term S4. Since ~ i..d. X3, we center term S; around its mean and apply the

1 A2 <U,p; >2 1SS A2
S = - s (S 1) + 5 I = Sia + Su.
4 2 ; (a4 A%)2 oAy 2 ; (a+A?) * 4
For that, we verify the Lyapunov condition. Denote ¢ := (%ﬁ;rz — 1) and it is easy to show that
2 3 ats
E|9|? = 8.6916, thus Z;’;l E % =38. 69162 %(LS))G which is upper bounded by
< zy [ i j6ats) o j-6(ats)
< 8.6916
2 a+>\2 — ; Oé_|_j—2(a+s) Z_; Oé—|-j_2(a+s))
Z—6(a+s)+1 - 6(a+s)
J —3— gt u
= 8.6916 | ————— 2(ats) _ d
[y o [
—o0 6(a+s)
- —3=5rey |96 v
= 8.6916« @fs) {2 +/1 (2o T l)ﬁdu]
since the function f(j) = % is increasing in j for 0 < j < j := « ~2@t and decreasing for j > j.

By using the lower bound of Var(Sy,) given in Lemma 4 below we obtain:

o

ats 6(a+ts)
(Var(Sa)) —3/2 ZE 4(ats)+1 u

—3/2 oo
~ Sats —3= 307 |96
o FaEs) cs) o 7 2t {2 —|—/1 e 1)ﬁdu]

IN

1
6916 ( =
a+A2 8696(2

1
= o 4(ats)

N

4
which converges to 0 so that the Lyapunov condition is satisfied and Sy, =4 %(2 Z;’;l (04:\#)4) ¢ where
J

£~ N(0,1). 6

Term Sy is non random and we subtract it from S; to obtain:

sosu = AN Y e ey
1—Sp = ¢ - _
2 = ala+ )\?) = (a4 \2)2 20 = (a4 A3)?
RS .
- 2a = ((y —+ ]—2(a+5)) 20 = (aj2(a+s) + 1)2 .
(Var(Ss))~re/2 3" N < K(ze — x0), 05 > QE\< U,p; > —E(< U,p; >)[2¢ = 0.
5(0(+)\J2-)2)\j2 R » IR

i=1

If this condition is satisfied then S3 is equal in distribution to a Gaussian random variable with mean

j—2(2a+s=bg)

A4
oo
Zj:l WE < U ©w; > and variance 5 Z] 1 m]

i—2(atbo)+coy, (<U,«pj>
ar | —=—
NG

). Asymptotically, this mean

is 0 and the variance is equal to the expression for E||S3||? given above.
SIn the case where U is only asymptotically N'(0, %) then a remark similar to the one for term Sz applies.
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—4(a+s)

Since m is a decreasing function of j we have

o0

Ey RS SRS SR S
2a J;  (at2lats) 4 1)277 — 2¢ st (aj2(ats) + 1)2 = 2a J;  (at2(ets) 4 1)2 2a(a +1)2°

By denoting c3(a) = |, > mdu, with @ defined above, and since @iz < 1 for a fixed «, after some

U +1)
_ 2(ats)+1 2(ats)+1 . ~ _
algebra we conclude that o~ 2@+ c3() < (S1 — Swp) < 307 2@+ ¢3(d) + 5. By defining &3 = c3(4),

the second line of inequalities of the lemma is proved.

Lemma 4. Let the assumptions of Theorem 6 be satisfied and S3, Siq be as defined in Lemma 3.
Then, for o and ¢ fized, we have

1 _ at2s—bo+} 1 1 _ at2s—bo+}

5@ @ts) 5 < Var(Ss) < SI(bO >a+2s)+ 5@ (ats) s, (22)
1 _4(ats)+1 17¢, 4(a+s)+1

Qa 2(a+s) Cg < Var(84a) S 37;601 2(a+s) (23)

where cs, C5, cg and Cg are positive constants.

A.3 Proof of Lemma 4

We start by considering Var(S3) = 5 Zj 1 (a+)\2)4j’2(a+b°) Under assumption C, we can rewrite

—4(a+s)—2a—2bg —4(a+s)—2a—2bgy

Va/r(Sg) =3 Z] 1 W The functlon f( ) W
in j when by > a + 2s. When by < a + 2s, f(j) is increasing for j < j and decreasing for j > j where

defined on R, is always decreasing

a+2s+bg
these two cases separately. Let us start with the case by < a + 2s:

j= (Ma) Her Therefore, in order to find an upper and a lower bound for Var(S3) we consider

1 j—4(a+s) 2a—2bg 1 at2s—bg+3  [O0  g,2a+45—2bo 1 a+2s—bg+3
Var(S > = - > _q  (ats —  du=:a G :
G/'"( 3) - 5 ; (a +] 2(a+s) ) 5 /1 (u2(a+s) + 1)4 U 506 05(@)
1 3 j—4(a+€) 2a—2bg 1 7a+237b0+% 1_ j (a—i—s) 2a—2bg 1 7a+257b0+%
Var(S) < 5 meay T 0 s S STy T ) s
j=1
= Lo [ Gzers-ag) (2254 o es(w) ) =: la—mﬁ#ﬁgs(g)
5 4(a+s) )
where u = (%) s . Next, we consider the case by > a + 2s:
1 _,,,_*_25_,,0_,_% e’} 2a+4s 2bg 1 _a+25‘ b0+2 B
Var(Ss) = Gao T / e e o es@)
1 j74(a+s)72a72b0 at2s— b0+2 o] 2a+4s 2bg
Var(S < —-| V—/— T (a9 ——————du
( 3) =5 (a+j72(a+s))4 j:1+ / u2 a+s) +1)
1 1 _ (1+2a+4s—2bg) B
< g—Fga ety c5(Q)
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where @ = 2@, By defining ¢5 = cs5(u)I(by < a + 2s) + cs5(@)I(bg > a + 2s) and &5 = é5(u)l(by <
a+ 2s) + c5(a)I(bg > a + 2s), the first inequalities in (22) is proved.

. . . —4(a+s)
Under assumption C, the variance of Sy, rewrites as Var(Siq) < 5 ZJ 1 m The function

. (ats)
fG) = % defined on R, is increasing in j for j < j and decreasing for j > j where j = « ~ T,

We can lower and upper bound Var(Ss,) as follows:

1 j—4ats) 1 L o uilats) 1 _4ats)+1
> = —>7——m Y T gu= s e
Va'f'(84a) 2 Z (a +]72(a+5)) 2 /1 (u2(a+s) + 1)4du 2@ Ce,
]:
1 i j*4(a+5) 1 aat+s)+1 1- 3*4(‘1+5) 1 aat+s)+1
< = - — 2(a+s) < - — 2(a+s)
Var(Sia) < 5 ; CE =5 (a g 2oy T “
1  _ 1t4a+as Cg _1tdatas 17cg +1 _1+4(ats) 17¢¢ _1+atats)
= —q 20ats) 4 —q 20ats) =  —¢ 2(ats) —: ——( 2(at+s) |
32 2 32 32

B Proofs for Section 3

B.1 Proof of Theorem 1

(i) See the proof of Theorem 1 (i) and (ii) in Florens and Simoni (2012b).
(ii) See Theorem 2 and Corollary 2 in Mandelbaum (1984) and their proofs in Sections 3.4 and 3.5, page
392.
(iii) The P,-mlt A is defined as A := QoK*(aX+ KQoK*)~! on R((6X+ gKQOK*)%), see Luschgy (1995).
Under A.3, the operator QoK*(aX + KQoK*)~! can equivalently be rewritten as

OZOEK S V2(al + £ V2KO K S~ Y/2)" 1512 = 2 B*(al + BB*) s/
— QZ(al + B*B)"{(Z"V2B)* + Q2 [B*(al + BB*)~' — (al + B*B)"'B*|5~1/2
= QF(al + B*B)"{(=7V/2B)* (24)

since [B*(al + BB*)~! — (al + B*B)~!B*] is equal to
(ol + B*B)'[(al + B*B)B* — B*(al + BB*)](al + BB*)™!

which is zero. By using expression (24) for QoK*(aX + KQoK*)~! we show that QoK* (a2 + KQoK*)~!
is bounded and continuous on ). By Assumption A.3 the operators B and X~/2B exist and are bounded.
Under A.1 the operator B is compact because it is the product of a compact and a bounded operator. This
implies that B*B : X — X is compact. Because < (al + B*B)¢, ¢ > > al|4||?, V¢ € X we conclude that
(al + B*B) is injective for @« > 0. Then, from the Riesz Theorem 3.4 in Kress (1999) it follows that the
inverse (ol + B*B)~! is bounded.

Finally, since the product of bounded linear operators is bounded, QoK *(aX + KQyK*)~! is bounded,
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i.e. there exists a constant C' such that for all ¢ € V: [[QK*(aX + KQoK*) || < Cllg||. Since
Qo K*(aX + KQoK*)~! is linear and bounded on Y, it is continuous on the whole Y and A := QqK*(aX +
KQuE*)~! = Q2 (ol + B*B)~}(S~V/2B)* on .

B.2 Proof of Theorem 2
The difference (Z, — z.) is re-written as

To — Ty = —(I— AK)(J?* —330) + AU :=C1 + Cs,

where the expression of A is given in (9). We consider the MISE associated with Z,: E,, | |§:a —x||? = ||01 1%+

E.,||C2||? and we start by considering the first term. Our proof follows Natterer (1984).
we can use the left part of inequality (21) in Corollary (2) with v = and z = (ol + B*B)~ 1LS( Ty — xo)

to obtain (25) below:

a+s

1
Il = (@l + B*B)" (572 B)* K] (x. — xo)|*
[T = L*(al + B*B)"Y(X7Y2B)* K|L™5L* (2. — x0)||?
(ol + B*B) Y2~ YV2B)* KL™°|L* (. — x0)||?

1€l

= IIL -

- 2(+-N*BB> 7 (al + B'B) 'L (. — o) I (25)
—92 S " B—s N s—3 s )

B (CH- )H (B” B)mm (al + B*B)~!(B*B)2@+9 (B* B) 2+ L* (z. — )|

= -2 5 2(a+s 2
(a+5)ll (B*B)7@ (al + B*B) " w|| (26)

where 8 = min(8,a + 2s) and w := (B*B) 2(atn) L*(xz, — x). Now, by using the right part of inequality (21)

in Corollary (2) with v = ajrf (remark that |v| <1 is verified) and © = L*(z. — x¢) we have that

sup  [[LPOLS (2 — o)
(z—z0)EXB(T)

sup lwl] < ¢
(#—x0)EXB(T)

sup [z« —20)ll3

)

a+ 8) (z+—z0)EXE(T)
)
)

sup [[(2« — @o)llsl[ L7
(20 —0)E X5 ()

IN
ol
/N /N /N N
o)
I
™
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where in the penultimate line the equality holds for 3 = 8. Remark that ||LB*B [| = 1if B = B and is
bounded if 3 < 8. Finally,
243

5 0o )\7,+s
sup |(B*B)2@+ (al + B*B) 'wl||* = sup J
(2. —0)€ X5 (T) (a0~ ey () = (0 + AF)?

< w, i >?

B

< £. [l (28)
< sup 7) sup w
x>0 (@ + )\f) (z«—z0)E€Xp(T)

and combining (26)-(28) with the fact that (supyso A% (a + A?)71)2 = a2(b=Dp2b(1 — 5)20-0) for 0 < b < 1

(and in our case b = %), we get the result

sip a2 < asfee (1 - 0200 (2 )22 (2D sy = 0 (oPe0)
(T« —x0)EXp(T) a+s a+s

Next, we address the second term of the MISE. To obtain (29) below, we use the left part of inequality

(21) in Corollary (2) with v = 4= and = = (al + B*B)"Yx~Y/2B)*U:

E,.||AU|]? = E,. |03 (aI + B*B)~"(£~/?B)"U| 2
E,.||L~*(al + B*B)"Y(2~Y2B)*U||?

E,.[Co?

< (2 *B) 3@t * V=1 —1/2 py*77()2
= € <a—|—s)Ex* (B*B)>@+9 (ol + B*B)~ (%7 /"B)"U|| (29)
= —2 S * ﬁ * —1 px* * -1 % ﬁ

oc <a+8>t7’((3 B)2@+9 (ol + B*B)"'B*B(al + B*B)~}(B*B) =@+ )

s AVL%QVH_’Y o

< 6c? v BBV -
= <a+8> PN ;<( )1, >
< —2( 8 '\ 2(d-1) 2d(1 _ 7\2(1—d)= —2~(a+s)
< Jdc <a+s)a d=*(1 —d) e(y)tr(L ) (30)

where d = %jf;ﬁﬂ) and which is bounded since tr(L~27(¢+%)) < oo by definition of y. The last inequality

has been obtained by applying the right part of Corollary 2 with v =+ to E;‘;l < (B*B)"¢;,v; >. In fact,

S < (BB)Yy, 1 >= 332, < (B*B)21y, (B*B) 2 >= Y27 [[(B*B)2 ][> <e(y) X, [|L77 )y =

e(y) Xy < Ledodyyy, L@k )y >=g(y)tr(L=27(0 ),
Therefore, E,, ||C2||? = (’)((5042(‘1_1)> and sup(,, _u0)ex,(r) Ea.

. 2 B __a+~y(a+s)
Fo—x|*=0 (aa+s +da”  G@Fo )

B.3 Proof of theorem 3

Let E5Y be the expectation taken with respect to the posterior uéy. By the Chebishev’s inequality, for
es > 0 small enough and My — oc:

1

myfr € Xtz —aul > esMs} < By ||z — ol
E5;
1
e <‘|E($|yé, @,s) — 17*||2 + trVaT(x|y5, a, 5))
EsMs
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1

and we have to determine the rate of Var(z|y’, o, s). Since Var(z|y®, a,s) = £[Qg — AKQg] = 6Q& (ol +
1
B*B)~'QZ we have: trVar(z|y’,a,s) = 6tr(L™%(al + B*B)"'L™%) = &tr(RR*) with R = L™%(al +

B*B)~2. Let || - ||gs denote the Hilbert-Schmidt norm. By using the left part of Corollary 2 with v = P
we get
trVar(aly’,a,s) = 6tr(R*R) = 6||R|[3s =6 ) || Ry
j=1
—2f 8 — * - -1 2
< 0 () YoIIB'B) I (ol + BB) by

j=1
s oo ats —27
:6*2< ) J < (B*B)"y;,1; >
[4 ats ; Ct-f—)\? ( )wﬁwj
s >\a+>72’\/ [e'e]
- 6272<a+s>sgp a+ A3 Z< (B B)"45, 95 >
25
—2 S >\;+S = * \Y/2
= o (a—l—s)su-p + A2 ZH(B B) 1/’”
J J j:1
< 4 72< s ) v=1,v(] 1—v tr(L 2v(a+s) — S _
O ) L CRO L ) vim s =

which is finite because tr(L*QV(‘”S)) < 00. The last inequality has been obtained by applying the right part
of Corollary 2. Now, by this and the result of Theorem 2:

1 B __atvy(ats)

— (qya+s ) (a+s) 3 — mji 2
s?Mg(a + o )), B = min(8, a + 2s)

u};f{x X |l — x| >esMs} = (’)p(

a+~vy(a+s)
Sa+e) ) we have pY {z € X : ||x — z.|| > esMs} — 0.

B
in P*+-probability. Hence, for e5 = (2@ + S2a

B.4 Proof of Corollary 1

Let BB = OF fr L mg, R = (oI + B*B)™!, Ry = (al + B*B)~!, ©1/2p = (A*)—lfiffﬁé,
w

»-1/2B = (A*)*lfLng, & = fwE(|W) = lim, o K and 8* = fzE(:|Z) = lim,_,., K*. Moreover, we
define §° = ARz, + U and &, = Qé Ro(2712B)*(5° — Afxg). We decompose (2, — ) as

(Fa—2) = (Fa—2.)+QFRa(ZV2B)*(4° — AR o) — OF Ra(S-12B)*(5° — ARo)

= (Fo—T) + Qg [Ra(z_l/zB)*Af( - Ra(z—wB)*Aﬁ} (T4 — x0)

02 [Ra(z—WB)* - Ra(Zfl\/?B)*] U
= (ia — Cﬂ*) + A1 + Ao
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I) Convergence of E||(Zo — z.)||>. This rate is given in theorem 2 (since this term depends on operators
that do not vary with n).
II) Convergence of ;.
B2 = E|Q <fza [(21/23)*ARL5 — (21/23)*/\@5] + (Ro — Ra)(El/2B)*AﬁL5) L* (2, — x0)]|?
- E|Q: ( [B B-B'B } + Ro(B°B — B*B)RQE?TB) L* (s — 20)|?
= E[QRa [B*B - E*‘E] AR L*(z, — o)

E[|Q§ RalE|IQg (K [fw] 'K — & [fw] T R)IPIL*RaL® (. — z0)|PPa”.

IN

The last term HL SRoL* (24 — x0)||?a? is equal to term C; in the proof of theorem 2 while EH éR |2 =
O(a™2) and E||Q0 (K*[fw] 'K —&*[fw] ' R)||> = O(n~'+h?) under assumption HS since E[|Qg (f(*[f 71K —
& [fw]'R)||? = E||B*B — B*B||>. Therefore, E||20;||? = O (072(71*1 + W)aa%s).

IIT) Convergence of As.

B2 = B/ (éaKE“QB)* — (2712B)"] + (Ro — Ra><2—”23>*) ulf®

—_~—

< 2E||0Z Ra|(7Y2B)* — (8-12B)*|U|? + 2E||L*Ra(B"B — B*B)Ro(S-1/2B)*U|[?
= 29[271 + 29[272.

We start with the analysis of term 2 ; where we use the notation 7 = E(-|W), T* = E(:|Z), T = E(|W)
and T* = B(|2):

%1 < BI0dRIPEI (2 28) - (5 B) ) Ul
= E|\Q§Ra||2E\|((A*)*(T—T)Qg) Ul
— E||QF Ra|PE|Q2 (T - T)* Z s BanE =2 e~ w)| |2
h ) h | 7

1. 1. 1 K
< E[Qf Ra|I”ElQg (T — 7)*|IE| [nh > i— <.,
= O(a?(n" 4+ h*)((nh)~" + h>"))

1.
since E||Q2 (T —T)*||> = O(n~' +h?¢) under assumption HS. Finally, term 25 5 can be developed as follows:

A0 = E|OQ RW(~ ﬁ) “Ro(S-1/2B)*U||?
W fW
< E|Q} R||2E||m( Li ﬁ*f )||2E|L8Ra<zl/23>*U|2
w
_ ofaut e
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since the last term is equal to term Cy in the proof of theorem 2 and E||Q¢ (K* K — R L ﬁ) 12 =
O(n=! 4+ h??) under assumption HS. By writing E||Zo — z.||> < 2E||Za — z.||? + 2E|[2; + 912||2 and by
putting all these results together we get the result.

C Proofs for Section 4

C.1 Proof of Proposition 2

Let us consider the singular system {);, p;,%,} associated with B. Under Assumption C there exist
A, A > 0 such that A\j—(e+s) < A; < M\j~(@+9)  Therefore, the risk associated with #, can be rewritten as:

. ) a2 ) 5j—2s—2(a+s)
Ez*Hxa_ﬁ*H = Zm<($*—xo),wj> +ZWZA1+A2
J J

We have that sup(,__gq)ex, ) Al = SUDY™ . 26 < (3., —20) 1 >2 <T Al and

1 2
sup Al = o2 sup = < (Tx — 20),¥; >
Y, 528 <(wo—w0)ah; >2<T ¥, 528 < (@ —z0) p; >2<T . (a +3 2(a+s))2 s Vg
._Qﬁ
2 J .23
= « sup ) < (@ —20), 05 >
Z]_ G2 < (we—m0),1p; >2<T r (a +7 2(a+s))2 * J
2 j2

(67 Sup WF

1
2(ats)

The supremum is attained at j = « ECD) (W) as long as f < 2(a+s). If B> 2(a+ s) then

28

Sup; W = 1. Consequently,
Sup Al = O"‘%Sb%(l ) Il M L, B = min(B,2(a + s))
(x4 —zo)eX(T) 2(a+8)

by using the convention (1 — b)z(l_b) = 11if b = 1. In order to analyze term A2 we first remark that the

—2s—2(a+s)

summand func‘mon f () = m

= (#220) . Thus,

defined on R is increasing for j < j and decreasing for j > j where

00 -—25—2(a+s) J —25 2(a+s) o —25 2(a+s)
| <y L S
3 (a + ]—2(a+s)) — a +J_2 a+s) ‘ a +J_2 a+s))
- Jj=J
 2a41 0 1 31 2s—2(a+s)  2at1 /00 1
& da 20ets) dt < < d——r———— + da 20+ dt
o /E [tfa(t2(a+s) + 1)]2 <A < (a +j72(a+s))2 + o« : [tfa(tQ(cH»s) + 1)}2

where = (2£22)" T | Denote o) = [ dt and replace j by its value to obtain

1
[t—a(tQ(a+s)+1)]2

2
5Q_%Cg(ﬂ S AQ S 6Q_% ( E) +t(1 2= 2(a+g))4(a_’_8)) = 604_%62(6'
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Therefore, Ay = da~ 2@+ . Finally, let G = b20(1 — b)20-0)T,

_B _2at1l . B _ Zatl
Q@ G + o Het ca(t) < sup E. ||ia — 2> < a®#G 4+ da 2at) o (%),

(zx—z0)€Xs (T)

_a+s
this proves (12). By replacing « < ¢ (resp. « < §#+a+1/2) in this expression we get (i) (resp. (ii)).

C.2 Proof of Proposition 3

The proof proceeds similar to the proof of Proposition 2, so we just sketch it. The risk E,,

Lo — $*||2
associated with &, rewrites as the risk in section C.1. The only term that we need to analyze is Al since

the analysis of A2 is the same as in C.1. By using Assumption B’

1 j—QbQ
Al = o — < (1, —x0), 0 >2=0a? —_—
; (a +]72(a+s))2 ( ) J ; (a +‘772(a+s))2
and the function f(j) := ﬁ defined on R is decreasing in j if by > 2a + 2s. If by < 2a + 2s then

1
f(j) is increasing for j < j and decreasing for j > j where j = o~ 2@rs) (%éﬁ) e Therefore, to

upper and lower bound A; we have to consider these two cases separately. If by < 2a + 2s

, [ j=2bo , J j=2bo & j=2b
« — i< A <« — o5 T & —
/3 (o + j—2(a+s))2 J 1 ; (a + j—2(a+s))2 jz_; (o + j—2(a+9))2
2bg—1 0o u4(a+s)—2b0 ) jl—2b0 2bg—1 S u4(a+s)_2b0
(a+s) _— < < _— (a+s) -
& 2(at /u (ug(a+s) + 1)2 du < A [0 B + o 2(at+ L (u2<a+s) n 1)2du

1
_ bo (ats) oo gAats)—2bg =
where u = (72%_23_50) . Denote ¢1(u) = f@ (TG du and replace j by its value. Then,

2
a%ofsl)cl(y) <A < a224(ba+le) <C1(u) +Ql_2b0 <2a2—é_2j__)bo> ) = a%%&l(g),
a S

If bg > 2a + 2s:

-—2bo

2 [ j b 2 J o [ g2t
e ——r G <A< +a / 5 dj
| wy R T MR R P

g1 [0 glats)—2bo 9 g1 [0 gilats)—2bo
TaFey  _du< A < TaFey -
< o [] (u2(a+s) + 1)2 du< A <a“+a /71 (uQ((H-S) n 1)2du

1
where & = a2@+s). By using the notation defined above we obtain:

2bg—1 2bp—1
aQ(a+s)Cl(ﬂ) <A < a2 + az(a+s)cl(ﬂ)

2bp—1 ~
Since the integral in ¢ (@) is convergent, the upper bound is of order a@+= where by = min(bo, 2a+2s+1/2).

Summarizing the two cases and by defining: ¢; = ¢1(u)l(by < 2(a + 3)) + c1(@)I(bo > 2(a + s)) and
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¢ =2 (w)l(bo < 2(a+s))+c1(a)l(bo > 2(a+ s)) we have

2bg—1 2bg—1

aTemrcy < Ay < aI(by > (2a + 25)) + @@ &y

By using the upper and lower bounds for A; given in the proof of Proposition 2 we get the expression in
(13):

2bg—1

2bg—1 a
a?@T ¢p + 6o 2<a+3>c2 () < By, ||#a — 2.|]> < &®I(by > (2a + 25)) + Q2T &) 4 5a7ﬁ52(t_).

a+s

By replacing o < §o+a we obtain (14).

C.3 Proof of Theorem 4

We use the same strategy used for the proof of theorem 3. The trace of the posterior covariance operator

is:
—25
1
tr[Var(z|y®, o, s) _521 < Qo(al + B*B) Y, ¢ >= 527a+]72(a+8)
J

Since f(j) := #j‘(a“ is increasing in j for j < j and decreasing for j > j where j = (as/a)_2<“1+5> then

we can upper and lower bound the trace of the posterior covariance operator as:

o0 J
52]‘(]’) < tr[Var(zly’, a, s)] Z —|—5Zf
J=J j=1
_ 2a41 oS} t2a s jl 2s _ 2at1 oo 24/.2(1
ats T at < <o—t Hate v
& S 2t /{ Bt 1 1dt < trlVar(zly’, a,s)] < 60z e + do et /g B T 1dt

(1-2s)

@6(1_%&(5) < tr[Var(x|y6,a,s)]§5a_%t 2(a+s)

2a+1
+ da” 2(a+s) t
a—+ s @ @(3

where t = (s/a)_2<a1+5> and ro(f) = [ tz(fji:)“dt. Thus, tr[Var(z|y’, a,s)] < da” Aats, By the Chebi-

shev’s inequality and Proposition 3, for €5 > 0 small enough and M5 — oo

1
Bl e Xl =l >esds) < oy (Bl 0,8) 2 + trVar(ely’, . 9))
55
1 2b0 1 2a-+1 ~ .
op(ﬁ( TF + o 2(a+s>)), bo = min(bo, 2(a + s) +1/2)
e5M;
Zbgfl a+1
in P=+-probability. Hence, for e5 = (a3@ts 4452 v ~ate ) we conclude that ) {z € X : ||[x—z.|| > esMs} —

ats 2691
0. For a < § we obtain (7). To obtain (ii): arginf, es = §Pote and inf, es = §4Go+a).
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C.4 Proof of Lemma 1
Let us denote: s = ag8, Ry = (ol + K't2%)~1 R, = (al + K'*?)~1 &, = K’R,K*(y° — Kxo) + 0.
Then,

E, |[#a — 2. = EgllaRa(z. —20) + K°R KU
E.. ||aRo(x, — 20) + (Ra — Ro) (22 — 0) + Ro KU + (Ro K% — R K*)U||?

< 2B, ||aRy (2, — o) + Ra K®U||? 4+ 4B, ||a(Ra — Ra) (@, — 20)|[?
+4E, ||[(Ro K% — Ry K®B)U||? =: 24, + 4 A5 + 4As.
2bg—1 _ ag+1
The rate of term A, is given by Proposition 3 with§ = n~1, a = % and s = aps: A; < (oﬂ””o +n o 25*“(})

By using the result of Lemma 2 and a Taylor expansion of the second order of the function K?25+1 around
K (that is, K25t1 = K251 4 (25 + 1)K%(|K — K|) + O(|K — K|?)) we obtain

Ay = Eg [la(Ra — Ra)(x* - x0)||2 =E;, RQ(K%—H - K2§+1)QRQ)($* - xO)HZ
= E,.[|Ra (25 + DE* (K = K|) + O(K = K[2)) aRa)(z. = 20)|*

< O(Em* RoK%||?E,.

K — K|PE,_|lafa(z. - 20)])

+0 (o || Ral PE.. || (K = KPIPEs. [laRae, — 20)] )

2a 2bg—1 2bg—1

__<90 2907~ 00—
) (’I’L_loé Zsfaq a2s+a0) + 0O (n—2a—2azs+a0)

where we have used the facts that: E, ||R,K?%|]? = O (of 231‘10) and B, ||[(K — K)?|? =0 (n=2). The

latter rate is obtained as follows: for some basis {¢;}:

(K - K)?|P = ”ztlllglz < (K= K)¢,0; >*= Hztlllglz < (K = K)¢,(K - K)gp; >°
Sj=1 <154

< sup Y O||(K - K)|PI(K — K)g,l?
lloll<1 4=

= K =K YK ~ K)psll* = [[(K — K)IPIK — K)l[s-
j=1

Thus, the proof of Lemma 2 implies: E$*||(I~( - K)?||? < (Ew* ||([~( — K)QH%S) =0 (n‘z). Next,

A = EI*H(RaK% - RQK—%)UW = EI*H(RaK% - K%Ra)UW
Ez*HRa(OéKzg + K2§f{2§+1 o Otf{2§ _ K2§+1R2§)RQUH2
E,_||Ra [a(K2§ — K%) + K%(K — K)f(ﬂ R.U|P?

< 2B, ||Raa(K% — K*®)RLU||> + 2E,||Re K* (K — K)K® R, U||?

and 2E, ||Ro K (K — K)K¥R,U|? = O (of o n 2o 2(150;;10) by lemma 2 and since E,, ||R,K?%||? =

2a
O (oz_ 25+30). To obtain the rate for the first term we use a Taylor expansion of the second order of the
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function K?° around K (that is, K% = K2° 4 25K%"1(|K — K|) + O(|K — K|?) and the O term is negligible

as shown above):

~ ~ . o~ ~ ~ o~ ~ dag+1
E, ||[Raa(K® - K®RU|2 = O (El Rua||E,. || K — K|[*E.. KQs_lRaUHQ) ~0 (n_loz_iaﬂ’gg“) n_1>

by the result of lemma 2 and since E,_

o ~ _dag+1
O‘Ra”2 =0(1) and E,, K2571RaU||2 =0 (n’la 2‘*+a0). Remark
that to recover the rate for E,_| |I§' 25—1I:E,XU\ |2 a procedure similar to the one for recovering the rate for term

As in proposition 2 has been used. By putting all these results together we obtain

9 2bg—1 1 _ o+l 1 —_2ag 2bg—1 9 _o 2b-1
Ex*”xa_x*” — O(aa0+2s+n Q @012 4 @ @0t2s 2stag 4T fq T “q2stao

1 — dag+1 _2ag 9 ag+1
+n"ta @0@iHFDp —|—Oé Tstag " 4oy a0+2s)'

Finally, by replacing o with o, < n~ 2bo+“o the third to sixth terms are negligible with respect to the first

and second terms if by > s and by > ag. This concludes the proof.

D Proofs for Section 5

D.1 Proof of Theorem 5

To prove Theorem 5 we use Theorem 3.3 p.123 in Kuo (1975). We first rewrite this theorem and then
show that the conditions of this theorem are verified in our case. The proof of theorem 7 is given in Kuo
(1975).

Theorem 7. Let Py be a Gaussian measure on Y with mean m and covariance operator So and Py be another

Gaussian measure on the same space with mean m and covariance operator Si. If there exists a positive
1

definite, bounded, continuously invertible operator H such that So = SPHST and H — I is Hilbert-Schmidt,

then Py is equivalent to Py. Moreover, the Radon-Nikodym derivative is given by

o0 A2
_ 73 2
A 1™ (31)

L A2 )
with - the eigenvalues of H — I and z; a sequence of real numbers.

In our case: P, = P,, m = Kxg, So = 0% + gKQOK*, P, = Py and S1 = §X. We rewrite Ss as
1) 1 1 1
so= (054 2K0uK") = Vonh[1+ Leoko e n 2] wie = sins
o Q

with # = [[ + 25712KQyK*S~1/2] = (I + 2 BB*). In the following four points we show that H satisfies
all the properties required in Theorem 7.
1) H is positive definite. In fact, (I + L BB*) is self-adjoint, i.e. (I + 2BB*)* = (I + 2BB*) and Vo € Y,
v 70 1 1 1

<(I+=BB)p,p >=< 9> +— < B'p,B'p >= llell® + a||B*<p||2 > 0.
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2) H is bounded. The operators B and B* are bounded if Assumption A.3 holds, the operator I is bounded
by definition and a linear combination of bounded operators is bounded, see Remark 2.7 in Kress (1999).
3) H is continuously invertible. To show this, we first recall that (I + éBB*) is continuously invertible if
its inverse is bounded, i.e. there exists a positive number C such that ||(I + £ BB*)~l¢|| < C|l¢]|, Ve € V.
We have ||(I+ SBB*) ™ o|| < (sup; 52)llell =[], Ve € V.

4) (H — 1) is Hilbert-Schmidt. To show inhis we have to consider the Hilbert-Schmidt norm ||2 BB*||gg =
L/tr(BB*)?). Now, tr((BB*)?) = tr(QoT*TQT*T) < tr(Q)||T*TQT*T|| < oo since T := £~1/2K has

a bounded norm under Assumption A.1.

D.2 Proof of Theorem 6

We start by showing the first statement of the theorem and then we proceed with the proof of (20). Let

ats
1-r - T -
3, ¢4 and ¢4 be the constants defined in Lemma 3. Fix €5 = 6%+ for0 <r <1, a3 = (z—i(l + 65)) ot b

ap = (%(1 - 65))1’0% o7 where: p= o p= ;b = pI{by —a — 25 — 1/2 > 0} and (by + a) >
n > max{by — s — 1/4,0}. Remark that, since by — s — 1/4 > max{(by — 2s —a — 1), (bp — s — 1/2)},
bo —s—1/4 > (bo —2s —a —1/2) when by > a+2s+1/2 and 0 < €5 < 1 then the assumptions of
Lemmas 5 and 6 are satisfied. Moreover, ¢4 > ¢4, see the proof of Lemma 3. Because Sys(-) is continuous
on [agz, ], in order to prove the existence of an & such that Sy s(&) = 0 it is sufficient to prove that

P{Sys(a2) > 0and Sys(a1) <0} — 1 when 6 — 0. In fact,
P{3da; Sys(a@) =0} > P{Sys(&) =0 N & € (az,a1)} > P{Sys(az) > 0and Sys (1) < 0}.

From Lemmas 5, 6 and 7 we conclude that as 0 — 0: P{ Sys(a2) > 0 and Sys(a1) < 0} — 1 and so
& € (ag,a1) with probability approaching 1. This implies that we can write & as a (random) convex
combination of ay and ay: & = pas + (1 — p)a; for p a random variable with values in (0,1). Since ag — 0

faster than oy — 0 then:

s

ats ats C bo+a ats ats
& = op (5bo+t+ﬁ) + 5bo++a+ﬁ (1-p) [2(1 + 65)] ’ =:0p (5bo+t,+ﬁ) + §ToFar (1 — p)k1. (32)

Now, we proceed with the proof of (20). Define the event G := {& € (a2, 1)} and G€ its complement.
By the Markov’s inequality, to show that uga{Hm — .|| > esMs} — 0 in probability we can show that its

expectation, with respect P** converges to 0. Then,

E.. (n3aflle — z.l| > esMs}) = Eu. (3 a{llz — .| > esMs}(1 — Ig + 1))
= E.. (mallle — z.l| > esMs}ae) + Eq, (15 a{llx — 2.]| > esMs}e)

[|Ea — z*||21 n trVaT(:c|y5,6y,5)I
Mg ¢ esM; ¢

< E. (IGC)JFE:c*( (33)

where the last inequality follows from the Chebishev’s inequality. If n > 1/2, by lemma 7: E (Ig.) = P(G°) —
0. We then analyze the second term of (33). Let a. denote the optimum value of « given in proposition 3,

a+s

that is, a, = d%+e. By using the notation B(«a) := (ol + B*B)~! and B(a) := (al + QK*L 1K)~ and
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by adding and subtracting QéB(a*)(E’l/zB)*(y‘; — Kzg) we obtain:

02 B(G)(E"V2B) (¢ — Kxo) + 20 — 2.1

E.. (|l#a - 2.|Plc) = B,
1

<28, [|08 B(a) (s — &)B(aw) (E72B) (v — Kao)|*la

+2E, |08 B(a,)(S7Y2BY* (y — Kxo) + 20 — 2. Ia

<A4E,. ||B(&)(e. — &) [QgB(a*)(E*WB)*(yﬁ — Kxo) + x0 — 2. |||’ 1

jﬁm _m*Hz

B(@)(a. — )(xo — 2.)|Pc + 2E,.
— P + 4B, (0 — 6)2)1B(&) (w0 — 2.) [T + 2B [lda. — o],

+4E,.
<4E,.||B(8)(0 — 6)|PIGE,.

Zq

*

where the last inequality is due to the Cauchy-Schwartz inequality. By the first part of this proof & can be

written as in (32) so that there exists a positive constant 1 such that:

~ > 1 ay — & 2
B(@)(a. —&)|Ig = Eg(an—a)* sup » ——ass <9 > Ig < E < A IG>
||¢)H:1j;1 (& —|—J—2(a+s))2 J &

5 bo=bo+) 2
57— 0,(1) = (1= )iy
E

- (0p(1) + (1 = p)&1)?

E,,

= 0(1).

Moreover, ||B(&)(zo — x.)||*> = > % = a"2A; where A; is the term defined in the proof of

proposition 3 with the only difference that o must be replaced by &. With reference to the notation of that

proof we have:
2bp—1 2bg—1

a2@F 2e) < ||B(&) (w0 — x4)|)? < I(bo > 2(a + 5)) + a2+ 26,

Therefore,

2bg—1

_ ~bg—bg+7 ~
st By [0,(1) + (1 — p)a] Ko 2[57 (arte) — 0,(1) = (1 — p)ka)2e1 < By (am — )2 || B(@) (w0 — 2|21z

2(ats) 269 —1 2b9—1 5
< (555 (0 2 2a+ ) + STHTTE, [o,(1) + (1 - pha] 2

~bg—bg+7

[67 ¥ —0p(1) = (1 = p)ra]?,

~ 2bg—1
that is, By, (ax — &)? || B(&)(z0 — 4)||?Ig < §2®o+a+ then, we conclude that

2bg—1
Bg — at*HQI(;) < E..||#a — 2| [2(2 + 40(1)) + 40 (5z<b03a+m> ) (34)

E.. (|
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Let us turn to the analysis of the variance term:

trVar(zly’, a,s) = &tr [Qo(&l + B*B)™']
= 6tr [Qo(ew + B*B) "' + Qo[(&I + B*B)™' — (a.l + B*B) ']

§tr [Qo(awI + B*B) '] + étr [(dIJrB*B)*l( o, — &)(a.d + B*B) ' Q]

c—2s

= 6tr [Qo(a.d + B*B)~ +5Z aﬂ—m)(a J

.+ j72(a+s))
(=) 5 j—%
14—+ —_
Y ( + & Z (a* +j72(a+s))

j=1

IN

by using the expression for the trace of the variance in the proof of theorem 4. Therefore,
Oy
E. trVar(z|y’, &, s)lq = E,, (ffg> tr[Var(z|y’®, o, s)]
&

and by using (32) and the upper and lower bounds for tr[Var(z|y°, a., s)] derived in the proof of theorem
5b0—bo+7 2a+1

4 we conclude that E, trVar(z|y’,a,s)lg < E,, <M> S, *“TP . Denote my the rate of P(G)

given in Lemma 7, we conclude that:

E.. (u3o{llz — 2|l > esMs}) < O(ms) + Eq||Ea. — 02
Es s

2bp—1
40 | §2Co+atm 50=bo+7 _ 2at1 2
5 bo+a Sa 2(a+s)

*

op(1) + (1 — p)r1 e2Ms
1 b -1 2bg—1
= 0y (4757 ariti ) )

. 2bg—1 . .
which converges to 0 for g5 < §*®o+e+m since ms — 0 under the conditions of the theorem.

T

a+s
Lemma 5. Let the assumptions of Theorem 6 be satisfied and o = (E—S(l + 65)) 0T 6P where:

p—bo+a+?7 for i =nI{by —a—2s—1/2 >0}, n > max{(bp — 25 —a — 1), (bo — 2s —a — 1/2)1},

4(a+s)(bo+a)
bo+a+n

€5 = 54(b0+a), for every 0 < r < and ¢z, c4 be as in Lemma 3. Then,

P(Sys(a1) <0)—=1 as §—0.

D.3 Proof of Lemma 5

By using the notation of lemma 3 we write

Syé () := =83 — S35 —S4a+ (S1 — Sup) + % + 2
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where S35 and Sy, are independent zero-mean Gaussian random variables with variances equal to

IS A o 1 P}
Var($) =5 2 aayd T and VartSu) =5 ) (o Py
=1 J J

oo
j=1

respectively. By using the lower bound of Sy and the upper bound of (S; — Sy) provided in lemma 3 and
by denoting D(«) = Var(Ss) + Var(Ss) we obtain:

P(Sys(a1) <0) = P(S3+ 81 > ~So+ (81 — Sw) + % + )
1¢—-1 bo_ai:glm *2(2‘1(:?51 1/~ 72(a1+s)
> ples =50y T et tay - 5(C3 + g (14 21y)) (35)
[D(an)]

where ¢ denotes a N'(0,1) random variable. Moreover, let D“(«) be an upper bound for D(«) and D;(«) be

a lower bound for D(«) for every a. By the result in lemma 4 we can take

a+2s— 1/ 17 _4(a+s)
D) = 6 '(bo>a+2s)+&0 la” e 50 RGN (36)
at2s— 1 1 (a+ts)
Di(a) = (5_104_%24—/2054—5&742;*;;106 (37)

and by replacing the value of o and after some algebras we get:

_a+2s—bQ+1/2 17 _4(?+5)+)1

e ._at2s=bot1/2 |G bo+a Ce ._ Alats)+1 [ ¢ 2(bgta

D"(a1) = 6 '(bg>a+2s)+é6 16 botern —3(1 +€5) + —S§ 2o Farn) —3(1 + €5) .
C4 32 C4
_at2s—bg+1/2 1 _2(ats)+1/2
_a+2s—bg+1/2 e bo+a 7 ¢ bo+a

Di(ay) = 06716 dorara [3(1 + 65)] cs + 56(7b0+a+77) [3(1 + 65)] C6

Cyq C4

Remark that: (1) D%(ay) = (’)(5_4"5?;01):)1) when by < 1 +a+ 2s and (2) D%(a1) = O(57') when

by > % + a + 2s. Therefore, we analyze these two cases separately.

CASE I: by < % + a + 2s. By substituting the value of a; in the numerator of (35), factorizing the term
2(ats)

_ s)41
d~ 2®Fa) (in the first and second term of the numerator) and after some algebra we obtain

1 o 2ot t1 ~b0;b‘;al/2 25;?1);)1 _ s+at1/2
—50 2®oFa) (¢g ° ey’ es(1+e bota 4
P(S,s(a1) <0) > P(§> 2 (Cq 4 1/)25( 5) 2
[D(a1)]
15— 2t -~ ToTay BoTe e
5(5 bote gg 0 040 (1+55) bo+a(1+2V1)> —P<£> Ny n No >
= T I
[D(ai)]'/? [D(a1)]*  [D(an)]?

> P<€> Ny + N2 1>:1_¢'< Al T+ ak 1)
[D*(an)]?  [Di(en))? [D*(an)]? [Di(en))?

since Ny < 0 and Ny > 0, where ®(-) denotes the cumulative distribution function of a A(0,1) distribution.

_ 1 1 . .
> é\h 7 + D (N? 3 = —§ *ota)es 4 §*ota) | which converges to —oo as 6 — 0 if we choose
“(a)]2 (1)) 2

N

Therefore,

1—r
€5 = 0*Gota) for every 7 > 0.
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CASE II: by > % + a+ 2s. So, 77 = n. By substituting the value of a; in the numerator of (35) we obtain

_(atst1/24m) bg—s—1/2 afetl/2
—36 ot [E3(l+es)] ot ¢ 0T 41n

[D(a)]"?
a+s+1/2

ats+1/2 [ . — - . %
%5_ bo+a+n [2—2(1 —+ 65)i| Potati/z (63 —+ 52(bo-&a+n) |:z—i(1 —+ 65):| 2o+ )) (1 —+ 21/1)

P(Sys(an) <0) > P(g> +

[D(a)]"?

sy
[Dt(e)]®  [Dien)]

since Ny < 0 and Ny > 0, where ®(-) denotes the cumulative distribution function of a A'(0,1) distribution.

v
~
/N
I
Vv
[S]
2
T =
ok
S
s
o
N———
|
|

S

Remark that in this case we can rewrite D;(cq) as

B _a.+25b73—0+1/2 1 B _2(0.2»53:#1/2
_a+2s—bg+1/2 C ota _ _bg+a ¢ ~ bota
Dyay) = 67167 2totatn [3(1+65)] c5 + =8 Fotatn [3(1+65)} cs
Cyq 2 Cyq
- 2s4a—b, 1+ bg—a—2s—3/2+42 2s+a—bg+1+
and therefore, N Nz = §~ g Fatm 4§ TAGetarm = —§~ 2(bo+g+ﬂ>n(1 —o(1)) if 7 is
[D¥(a)]z  [Di(a1)]z
sufficiently big so that n > i(bo —25s—a— %) This quantity converges to —oo if n > by — 2s —a — 1.

Therefore, the condition which guarantees convergence is: 7 > max{(by —2s —a—1), (by —2s —a—1/2)1}.

a+s
Lemma 6. Let the assumptions of Theorem 6 be satisfied and oy = (%(1 - 65)) 0T 5P where:

C

p= bof‘:lin for (bo +a) > n > max{by — s —1/2,0}, 0 < e5 < 1, €3, ¢4 be as defined in Lemma 3.

Then,

P(S

plag) >0) =1 as §—0.

D.4 Proof of Lemma 6

This proof follows the line of the proof of Lemma 5, so some details are omitted. By using the upper

bound of Sy and the lower bound of (S; — Sy) provided in Lemma 3 we obtain:

P(Sys(az) >0) = P(Sy+Sia < —Sa+ (S1—Su) + % + 1)
bg—s—1/2 _ 2(ats)+1
—507 T At Bbay, MY JE— 567 (b > s)
=T (D(aa))"” .
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_ 4(a+ts)+1
:| 2(bg+a)

where ¢ denotes a N(0,1) random variable. Moreover, Vo let D¥(«) (resp. D;(«v)) denote the upper (resp.
0 2(gFa—m |:ES

the lower) bound for D(«a) defined in (36)-(37). By replacing the value of ay and after some algebras we get:
4(at+s)+1
+ T(]- — 65)

5 7a+25b7b0+1/2 5
D¥as) = 6 ' T(bo > a+2s)+ 5o Thoresa s [2(1 - 65)] o 1;& -
72(@2»3)4»1/2 5 - a+23b7b0+1/2
1 Cj(l o 65) ota + 5_1_‘_%0_% |:Z3(1 _ 65):| o+a o
4

_ 2a42s41/2 C
bopt+a—n —C6 | =
2 Cy
O(6™ ®oFa=m ) if by < % + a + 2s + 1. This condition is satisfied by assumption

Dl(OéQ)

_ 2(ats)+1/2

1

Remark that D"(as)
becausen>b0—s—%>bo—a—2s— 5
By substituting the value of as in the numerator and after some algebra we obtain
ats+1/2 a+s
atst1/ = a . “bota .__ats
P(S P %57 b?’r+t£f {i(l - 65)i| o C3 + 11 [5(1 — 65)] s BoFa
>0) > Pe<
(Sys(az2) ) = 3 [D(2)]1/2 +
by—s—1 bozect/2
— 1571 [ I(by > 5) + &40 boven [52(1 - 65)} R
[D(a2)]*/2 )
N. N,
= P <§ < 3 T + 4 1)
[D(az)]?  [D(az)]?
N. N, N. N,
> P<§< LA—— 41>:<I>< i+ 41>
[D*(az)]?  [Difa)]? [D*(a2)]*  [Die2)]?
since N3 > 0 and Ny < 0. Term N3 converges to +00, as § — 0, since
N at2s - _a+s+1/2 . a+s+1/2
L5~ Sotacn + gt [5(1 - 65)} ot (53 +2 [g—i(l —e)| T 52<bo+an>>
Ny _ = § Toraw .
[D¥(az2)]? ~ gtz 1/2
[0(1)1(170 > a+2s) + [5(1 —e)| T (M5 (1)

The asymptotic behavior of Ny is different depending on the sign of (bg — s — 1/2). So, we treat the two

_(bg—s—1/2)
bota=n [(bg > s)] - 1/2>

cases separately.
CASE I: by < s+ 1/2.
; s B bo—s—1/2
_1s4Rg <5+u B0—e] T s
Ny 4
Di(a)z , 1/2
[Di(az)]? ) _2egaiiye
o(1) + [5(1 —€5) ’ =
O e =k
Na 3 50 but slower than —28—— — oo,
[Di(az)]2 [D¥(az)]2

which is bounded if n > 1/4. If n < 1/4 then
20



CASE II: by > s+ 1/2.

bg—s—1/2
_qy2ats)t1/2 bo—s—1/2 [ . boTa .
-1 <5 ta00ta-m | I(by > s) + 6 bota-n 2(1—es) ? ¢y — 120

2(ats)+1/2

N, 4 2(a+s)+1/2
4 S e T e

[Di(a)]?

) . 2(a2»si+1/2 1/2
o+ [2-e)] " ]

Ny — —oo slower than Ny

which converges to —oo if by > s+n+1/4. However, in this case, T —=s
[Di(az)]? [D¥(a3)]2

ifbg <s+1/2+n.

Lemma 7. Let the assumptions of Theorem 6 be satisfied and a1, «s, Ny, No, N3, Ny, D"

and D; be defined as in lemmas 5 and 6. Let iy = I([DU(N3)]1/2 + D (N4)}1/2 < O) and iy =
a2 12

N1 N2
I <[Du(a1)]1/2 + Dr(aa 72 > O). Then,

n—bg—1/4+(bgAs+1/2)

P& ¢ (a2, 1)) = O<exp{—5_m(1 +o()(1—iy))} -6 bgta—n I+

_ 2sta—bg+n+1 bg—2s—a+2n—3/2 1
(exp{—5 botatn (14 0(1)(1 — 1))} —d Aotatm Zg) I (bo >a+2s+ 2> )

D.5 Proof of Lemma 7

The notation that we use in this proof has been defined in lemmas 5 and 6. We upper bound
P (& ¢ (az,a1)) by the probability of {& ¢ (ao, 1)} N {S,s(&) = 0} which is equal to the probability
of
({sya (a1) < 03N{S,s(az) < 0} N {S,s(a) <0, Ya € (awl)})u
({syé (a1) > 0} N {S,s(az) > 0} N {S,s(a) > 0, Ya € (ag,al)}).

This probability is upper bounded by

Y

P ({S,s(a1) <0NS,s(az) < 0}) + P ({Sys(c1) > 0N Sys(az) > 0})

Y

({Sya 042) < 0}) + P ({S s(ap) > 0})

o ; Ny >—|—<I>< Ny . Ny >I<b0<a+28+1)
[Du(a2)]*  [Di(w)] [D¥(e1)]?  [Di(an)] 2

Nl NQ 1
o I({bg>a+2s+ ). 39
’ ([Duml)] +[Dl<a1>]> <°> " *2) (39)

({s s(a1) < 0} N {S,s(az) < 0} U{S,s(ar) > 0} N {S,s( >>o})

IN

IN

N
[N

D=
[N

o1



. ~ Nj Ny ] N37
Let us start with the first term and denote iy = I ([D“(az)]l/z + RCBIRE < 0). Since TR > 0 and

— N <0 and since 2®(a) < e="/2 Ya < 0:
[Di(a2)]2

N3 Ny N3 N4(1—Z4)> _[Du<f§>]1/2_[lei4;4]1/2 1 _u2
P | — - — ; = ¢( - — T + ——e 2du
([D%aﬂP MMaﬂP) <[D%aﬁ] [Di(a2)]"? t[umﬁmm var
1 1 N3 _ Ny(1—174) ? N 67% Ny
2 2\ [D%a2)]? [Dy(ag)]'? =0\ [Dy(a2)]?
Lopd oL (A NgNa(1— i) __ Naln
2 p{ 2<D”aﬂ+aﬂwﬁmﬂ%mﬂfm>} [Di(as)]?

n—bo—1/4+(bgAs+1/2) _

=0 (exp{—éfmu o)1 —7)} —o [+l L4)

Nl=

IA
I
o
e}
o]

IN

where the o(1) term converges at a different rate depending whether by > s + 1/2 or by < s + 1/2. The

inequality in the third line is due to the fact that for two constants a; > 0 and as < 0: (—a; — a2)2 >

a? + 2ayaz. By denoting 7o = I ([Du(]c\y[i)]l/? + [Dl(gf)]l/z, > 0)7 we can use a similar reasoning for the third

i N _ N» .
term of (39) (since Drlar 7 < 0 and D7 > 0):
Nl N2 Nl Ng(l — ZQ) [Du(fll)]lﬂ B [D 5121:)2]1/2 1 w2
) T + i = & - T — /3 —|—/ - ' —¢e Zdu
D*(an)]?  [Difa))? D*(a1)]t [Difan) - Var
- . 2 -
1 1 —N1 Ng(l — ZQ) _u? NQZQ
< —expq—= - + e 2 -
2 2 ([D%al)]l/2 [Di(ar)]'? w=0 \ " [Dy(en)]?
<

L { 1 ( N2 Ly NiNo(1 — i) )} Nois

Lapd L (] _

2 2\ D*(e1) " [Du(an) Di(en)]"? [Dy(a1)]"?
2st+a—bo+n+1 bg—2s—a+2n—3/2 )

= O (exp{=0 T (L o() (1= B))p — 6 KR g

Ny
(D (o)) 2
and b = ﬁ: O(a+b) = P(a) + ¢p(a)b — M + O(b3), where ¢(-) denotes the density function of a
1)l 2
standard Nlorrlnal distribution. Hence,

To analyze the second term of (39) we use a Taylor expansion of ®(a + b) around a, for a =

SIS
SIS

Nl N2 o
® + = O(exp{—4§ Pote}(1+0(1
<[D“(oz1)] (Di(ar)] ) ( p{ H(L A+ of )))

since b = o(1). By retaining only the non-negligible terms we obtain the result.

References

Ai, C. and X., Chen (2003), Efficient estimation of models with conditional moment restrictions

containing unknown functions, Econometrica, 71, 1795-1843.

Agapiou, S., Larsson, S. and A.M., Stuart (2012), Posterior contraction rates for the Bayesian

52



approach to linear ill-posed inverse problems, arXiv:1203.5753.

Bissantz, N., Hohage, T., Munk,A. and F., Ruymgaart (2007), Convergence rates of general regu-
larization methods for statistical inverse problems and applications, SIAM J. Numer. Anal., 45,
2610-2636.

Blundell, R., Chen, X. and D., Kristensen (2007), Semi-nonparamtric IV estimation of shape-

invariant engel curves, Econometrica, 75, 1613-1669.

Carrasco, M. and J.P., Florens (2000), Generalization of GMM to a continuum of moment condi-
tions, Econometric Theory, 16, T97-834.

Carrasco, M., Florens, J.P., and E., Renault (2005), Estimation based on spectral decomposition
and regularization, Handbook of Econometrics, J.J. Heckman and E. Leamer, eds., 6, Elsevier,
North Holland.

Cavalier, L. and A.B., Tsybakov (2002), Sharp adaptation for inverse problems with random noise,
Proba. Theory and Related Fields, 123, 323-354.

Chen, X. and D., Pouzo (2012), Estimation of nonparametric conditional moment models with

possibly nonsmooth generalized residuals, Econometrica, 80, 277-321.

Chen, X. and M., Reiss, (2011), On rate optimality for ill-posed inverse problems in econometrics,
Econometric Theory, 27, Special Issue 03, 497-521.

Daouia, A., Florens, J-P. and L. Simar (2009), Regularization of nonparametric frontier estimators,
Journal of Econometrics, 168, 285-299.

Darolles, S., Fan, Y., Florens, J.P., and E., Renault (2011), Nonparametric instrumental regression,
FEconometrica, 79, 1541-1565.

Diaconis, P.W., and D., Freedman (1986), On the consistency of Bayes estimates, Annals of Statis-
tics, 14, 1-26.

Diaconis, P.W. and D., Freedman (1998), Consistency of Bayes estimates for nonparametric regres-

sion: normal theory, Bernoulli, 4, 411-444.

Engl, HW., Hanke, M. and A., Neubauer (2000), Regularization of inverse problems, Kluwer

Academic, Dordrecht.

Florens, J-P. (2003), Inverse problems and structural econometrics: the example of instrumental
variables. Invited Lectures to the World Congress of the Econometric Society, Seattle 2000.
In: M., Dewatripont, L.-P., Hansen, and S.J., Turnovsky, (Eds.), Advances in Economics end

econometrics: theory and applications, Vol.II, 284-311. Cambridge University Press.



Florens, J-P., Johannes, J. and S., Van Bellegem (2011), Identification and estimation by penaliza-

tion in nonparametric instrumental regression, Fconometric Theory, 27, 472-496.

Florens, J-P. and E. Sbal (2010), Local identification in empirical games of incomplete information,
FEconometric Theory, 26, 1638-1662.

Florens, J.P. and A., Simoni (2010), Regularizing priors for linear inverse problems, IDEI Working
paper, n. 621.

Florens, J.P. and A. Simoni (2012a), Nonparametric estimation of an instrumental regression: a

quasi-Bayesian approach based on regularized posterior, Journal of Econometric, 170, 458-475.

Florens, J.P. and A., Simoni (2012b), Regularized posteriors in linear ill-posed inverse problems,
Scandinavian Journal of Statistics, 39, 214-235.

Gautier, E. and Y. Kitamura (2012), Nonparametric estimation in random coefficients binary choice

models, Econometrica, forthcoming.
Ghosh, J.K. and R.V., Ramamoorthi (2003), Bayesian nonparametrics, Springer Series in Statistics.

Goldenshluger, A. and S.V., Pereverzev (2003), On adaptive inverse estimation of linear functionals

in Hilbert scales, Bernoulli.

Hall, P. and J., Horowitz (2005), Nonparametric methods for inference in the presence of instru-
mental variables, Annals of Statistics, 33, 2904-2929.

Hall,P. and J.L., Horowitz (2007), Methodology and convergence rates for functional linear regres-
sion, Annals of Statistics, 35, 70 - 91.

Helin, T. (2009), On infinite-dimensional hierarchical probability models in statistical inverse prob-

lems, Inverse Probl. Imaging, 3, pp. 567-597.

Hoderlein, S., Nesheim, L. and A. Simoni (2012), Semiparametric estimation of random coefficients

in structural economic models, CEMMAP working paper, CWP09/12.

Hofinger, A. and H.K., Pikkarainen (2007), Convergence rate for the Bayesian approach to linear

inverse problems, Inverse Problems, vol. 23, 2469-2484.

Hofinger, A. and H.K., Pikkarainen (2009), Convergence rate for linear inverse problems in the

presence of an additive normal noise, Stochastic Analysis and Applications, vol. 27, 240-257.

Ito, K. (1970), The topological support of Gauss measure on Hilbert space, Nagoya Math. J., 38,
181 - 183.



Johannes, J. (2008), Nonparametric estimation in functional linear model, in: Functional and

Operatorial Statistics, S. Dabo-Niang and F. Ferraty, editors, 215-221, Physica-Verlag.

Johannes, J., Van Bellegem, S. and A., Vanhems (2011), Convergence rates for ill-posed inverse

problems with an unknown operator, Fconometric Theory, 27, 522-545.

Kaipio, J., and E., Somersalo (2004), Statistical and computational inverse problems, Applied
Mathematical Series, vol.160, Springer, Berlin.

Kato, T. (1995), Perturbation theory for linear operators, Springer.

Knapik, B.T., Van der Vaart, A.W. and J.H., Van Zanten (2011), Bayesian inverse problems,
Annals of Statistics, 39, 2626-2657.

Krein, S.G. and J.I., Petunin (1966), Scales of Banach spaces, Russian Math. Surveys, 21, 85 - 160.
Kress, R. (1999), Linear integral equation, Springer.
Kuo, H.H. (1975), Gaussian measures in Banach spaces, Springer.

Lassas, M., Saksman, E. and S., Siltanen (2009), Discretization invariant Bayesian inversion and

Besov space priors’, Inverse Probl. Imaging, 3, pp.87-122.

Lehtinen, M.S., Paivéarinta, L. and E., Somersalo (1989), Linear inverse problems for generalised

random variables, Inverse Problems, 5, 599-612.

Luschgy, H. (1995), Linear estimators and radonifying operators, Theory Probab. Appl., 40, 167-
175.

Mandelbaum, A. (1984), Linear estimators and measurable linear transformations on a Hilbert
space, Z. Wahrcheinlichkeitstheorie, 3, 385-98.

Nair, M.T., Pereverzev, S.V. and U., Tautenhahn (2005), Regularization in Hilbert scales under

general smoothing conditions, Inverse Problems, 21, 1851-1969.

Natterer, F. (1984), Error bounds for Tikhonov regularization in Hilbert scale, Applicable Analysis,
18, 29-37.

Newey, W.K. and J.L., Powell (2003), Instrumental variable estimation of nonparametric models.
Econometrica, Vol.71, 5, 1565-1578.

Neubauer, A. and H.K., Pikkarainen (2008), Convergence results for the Bayesian inversion theory,
J. Inverse Ill-posed Probl., Vol. 16, 601-613.

ot
ot



Nussbaum, M. (1996), Asymptotic equivalence of density estimation and gaussian white noise,
Annals of Statistics, 24, No.6, 2399-2430.

Ruymgaart, F.H. (1998), A note on weak convergence of density in hilbert spaces, Statistics, 30,
331-343.

Tsybakov, A.B. (2004), Introduction a l’estimation non-paramétrique, Springer.

Van der Vaart, A.W. and J.A., Wellner (1996), Weak convergence and empirical processes, Springer,
New York.

Van Rooij, A.C.M. and F.H., Ruymgaart (1999), On inverse estimation, in: Ghosh, S. (Ed) Asymp-
totic, Nonparametric and Time Series, 579-613 (Dekker).

Zellner, A. (1986), On Assessing Prior distributions and Bayesian regression analysis with g-prior
distribution, in: Goel, P.K. and Zellner, A. (Eds) Bayesian Inference and Decision Techniques:

essays in honour of Bruno de Finetti, pp. 233-243 (Amsterdam, North Holland).

26



