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Abstract

The Boston mechanism is criticized for its poor incentive and welfare performance com-

pared to the Gale-Shapley deferred-acceptance mechanism (DA). Using school choice data

from Beijing, I investigate parents' behavior under the Boston mechanism, taking into ac-

count parents' possible mistakes when they strategize. Evidence shows that parents are

overcautious as they play "safe" strategies too often. Wealthier/more educated parents are

less overcautious and perform slightly better because they have better outside options while

not being any more adept at strategizing. Parents who are always truth-telling experience

a utility gain in switching from the Boston mechanism to the DA, equivalent to a 7.1% de-

crease in the distance to a school. Among them, 44.2% are better off under the DA, while

35.5% are worse off.

KEYWORDS: the Boston Mechanism, the Gale-Shapley Deferred-Acceptance Mecha-

nism, School Choice, Bayesian Nash Equilibrium, Strategy-Proofness, Simulated Maximum

Likelihood



Given that monetary transfers are usually precluded in the allocation of students to pub-

lic schools, a centralized assignment mechanism is often necessary. Despite the increasing

popularity of school choice programs, the question about which assignment mechanism

should be used is still debated among researchers and policy makers.

At the center of the debate is the Boston mechanism, one of the most popular mech-

anisms in practice. It was used by the Boston Public Schools (BPS) from 1989 to 2005

before being abolished.1 The main criticism of the Boston mechanism is that it encour-

ages parents to "game the system." Namely, parents may have incentives to misreport their

preferences when submitting rank-ordered lists of schools (Abdulkadiroglu and Sonmez

(2003)). Schools also form a strict priority ordering of students, usually with lotteries as

tie-breakers. Each school �rst considers students who rank it �rst, and assigns seats in or-

der of their priority at that school. Then, each school that still has available seats considers

unmatched students who rank it second. This process continues until the market is cleared.

If a student ranks a popular school �rst and gets rejected, her chance of getting her second

choice is greatly diminished because she can only be accepted after everyone who lists that

school as their �rst choice.2

Since the mechanism is not strategy-proof the ability to strategize, or the level of sophis-

tication, might affect parents' or students' welfare. Experimental and empirical evidence

in previous literature suggests that parents strategize not at the same level (e.g., Abdulka-

diroglu, Pathak, Roth, and Sonmez (2006), Chen and Sonmez (2006), Lai, Sadoulet, and

de Janvry (2009), and Pais and Pinter (2008)). In a theoretical paper, Pathak and Sonmez

(2008) consider two types of parents: sincere (or naive) parents who always reveal their

preferences truthfully, and sophisticated parents who always play a best response against

others. They show that the mechanism may give an advantage to sophisticated parents.
1There are many school districts that still use the mechanism, e.g., Cambridge, MA; Charlotte-

Mecklenburg, NC; St. Petersburg, FL; Minneapolis, MN; and Providence, RI. The mechanism is also popular
in other countries and in other contexts, for example, China's college admissions.

2In real life, this is well known to some parents. For instance, the West Zone Parents Group in Boston,
recommended two types of strategies to its members in 2003: "One school choice strategy is to �nd a school
you like that is undersubscribed and put it as a top choice, OR, �nd a school that you like that is popular and
put it as a �rst choice and �nd a school that is less popular for a `safe' second choice."
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These results were instrumental in the BPS' decision. The Boston School Commit-

tee voted in 2005 to replace the Boston mechanism with the student-proposing Deferred-

Acceptance mechanism (henceforth, DA; Gale and Shapley (1962)), which is strategy-

proof: reporting true preferences is a weakly dominant strategy (Dubins and Freedman

(1981); Roth (1982)). A description of the reform can be found in Abdulkadiroglu, Pathak,

Roth, and Sonmez (2005).

One of the key arguments for the reform is that the Boston mechanism might penalize

less sophisticated parents, while the DA protects them. For example, the BPS Strategic

Planning Team claimed in 2005 that "a strategy-proof algorithm `levels the playing �eld'

by diminishing the harm done to parents who do not strategize or do not strategize well."

More importantly, policy makers are worried that poor and/or less educated parents are less

sophisticated. Therefore, under the Boston mechanism, "the need to strategize provides an

advantage to families who have the time, resources and knowledge to conduct the necessary

research," as stated by Thomas Payzant then BPS Superintendent (Payzant (2005)).

Researchers have not, however, reached a consensus on these arguments. There is no

evidence relating parents' sophistication level to family background, and there are mixed,

mainly theoretical and experimental, results on naive parents' welfare. A recent strand of

literature provides results in favor of the Boston mechanism (e.g. Featherstone and Niederle

(2008), Miralles (2008)). In particular, ? show that some naive parents can even be better

off under the Boston mechanism. Using �eld data from Beijing, this paper �lls the gap by

answering two questions: (i) whether poorer/less educated parents are more likely to be

naive and (ii) whether the Boston mechanism harms naive parents relative to the DA.

In the data, 914 students apply to four middle schools under a version of the Boston

mechanism, and schools use a random lottery to rank students without pre-determined pri-

orities. To evaluate parents' welfare, I use concepts of Bayesian Nash equilibrium and ex

ante ef�ciency.3 At the time of application, the lottery is unknown, and parents' preferences
3In terms of ex ante ef�ciency, Zhou (1990) shows that it is impossible to have a strategy-proof and

ef�cient mechanism that treats the same type of parents equally. Therefore, the DA is not ex ante ef�cient,
because it satis�es the other two properties.
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are private information.4 Parents maximize expected utility by selecting a rank-ordered list

of schools under uncertainties from two sources: other parents' behavior and the lottery.

The data contain parents' submitted lists of schools and family background, but not

their true preferences. The challenge is to estimate true preferences when parents are not

necessarily truth-telling.5 I assume a random utility model for parents' preferences over

schools, with normally distributed errors as in a multinomial probit model. Parents' poten-

tially heterogeneous sophistication is explicitly considered.

Under the assumption that everyone understands the uncertainty from the lottery, a

parent's sophistication depends on her assessment of other parents' behaviors, which are

determined by the joint distribution of their preferences and sophistication. A parent is

sophisticated if she assesses correctly; her subjective beliefs � the perceived probabilities

of being accepted by each school when submitting different lists � therefore match what are

implied by the true distribution. Less sophisticated parents have inaccurate beliefs, while

naive ones disregard the uncertainty and are always truth-telling.

While probably wrong, beliefs must satisfy the properties imposed by the mechanism,

e.g., moving a school upward in a list (weakly) increases the probability of being accepted

by that school. These properties lead to a set of dominated strategies, for instance, rank-

ing an unacceptable school �rst. Assuming these dominated strategies are not played in

equilibrium, I group certain lists together and, loosely speaking, the necessary equilibrium

conditions become necessary and suf�cient with respect to the new choice set.

In practice, indeterminacy regarding parents' behavior arises because (i) there are schools

worse than the outside option and (ii) some probabilities in parents' beliefs might be zero.

I provide evidence that indeterminacy exists in the data and propose solutions while main-
4In previous literature, some papers assume complete information, for example Ergin and Sonmez (2006),

Kojima (2008), and Pathak and Sonmez (2008). They focus on Nash equilibrium and ex post ef�ciency.
Recently, the ex ante view has become more common, for example, Abdulkadiroglu, Che and Yasuda (2008,
Forthcoming), Featherstone and Niederle (2008), and Miralles (2008).

5Hastings, Kane, and Staiger (2008) estimate the demand for schools under the assumption that students
are truth-telling under the Boston mechanism. They use data from Charlotte-Mecklenburg Public School
District in 2002, where the mechanism had just been implemented. The truth-telling assumption may be more
likely to be valid in their setting than others. I also estimate the model under the truth-telling assumption, and
it is rejected when tested against the model with strategic behavior.
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taining the model's point identi�cation. A method of simulated maximum likelihood, sim-

ilar to that in a multinomial probit, is used for estimation.

Results reject the hypothesis that everyone is naive, and also reject that everyone is

sophisticated. Parents understand the rules well, but they are overcautious, as they avoid

top ranking the school with best quality and smallest quota more often than their best re-

sponses would prescribe.6 Income and education offset overcautiousness slightly, because

wealthier/more educated parents' true preference order is more likely to be a best response.

There is no evidence of these parents being more sophisticated, as these �ndings are driven

by the fact that they have a better outside option.

The data include information on how much attention parents pay to uncertainty in the

game. Poorer parents pay more attention, which implies that they try to �nd a best response.

However, paying more attention does not mitigate, and sometimes even worsens, their

overcautiousness.

To evaluate the effect of replacing the Boston mechanism with the DA, I simulate out-

comes under both mechanisms, assuming preferences do not change across mechanisms.

If other parents are overcautious and behave as in the data, both naive and sophisticated

parents suffer a signi�cant utility loss under the DA, amounting to a tripling of the distance

to a school. For naive parents, only 8% are better off under the DA, while 71.5% are worse

off. The negative effects are larger for sophisticated parents, and decrease with parents'

income and education because of the outside option.

If everyone is either sophisticated or naive and no one is overcautious, switching from

the Boston to the DA has mixed effects. Sophisticated parents suffer a utility loss equivalent

to increasing the distance to a school by 90.6%. Among them, only 11.5% are better off,

while about 68.0% are worse off. Naive parents on average have a utility gain under the

DA, although the gain amounts to decreasing the distance to a school by merely 7.1%. The

DA helps about 44.2% of naive parents but hurts 35.3% of them.
6This overcautiousness is related to, but different from, the "small school bias" found in experimental

studies (Chen and Sonmez (2006), Calsamiglia, Haeringer, and Klijn (2010)). Namely, schools with fewer
slots are ranked at lower positions than those in the true preference. Instead of focusing on the true prefer-
ences, overcautiousness compares observed behaviors with best responses.
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Other Related Literature There is a growing literature using real life data to study as-

signment problems. For example, ? compare a strategy-proof mechanism with a non-

strategy-proof one using a data set on MBA students' course-allocations. Braun, Dwenger,

and Kubler (2010) study the strategic behavior in the centralized university admissions in

Germany, and Carvalho and Magnac (2009) investigate the college admission with exams

in Brazil.

This study also relates to the literature on testing whether an equilibrium is played

in real life games. For example, Chiappori, Levitt, and Groseclose (2002) and Kovash

and Levitt (2009) study professional sports, and Hortacsu and Puller (2008) examine the

strategic bidding in an electricity spot market auction. Hortacsu and Puller characterize

a Bayesian-Nash equilibrium model and compare actual bidding behavior to theoretical

benchmarks. The dif�culty in estimating a Bayesian-Nash equilibrium lies in specifying

the beliefs. Under some technical assumptions, they show the best response is also ex post

optimal, i.e., seeing other players' behavior would not change one's behavior. Thus, they

can just look at the ex post optimality without evaluating the beliefs. In contrast, the current

study allows players to make mistakes and derives identi�cation independent of beliefs.

Another related strand of literature is the estimation of simultaneous games of incom-

plete information. Most studies need the condition of consistent beliefs to derive moment

conditions or choice probabilities, e.g., Seim (2006), Bajari, Hong, Krainer, and Nekipelov

(2010), Aradillas-Lopez (2007a), and Aradillas-Lopez (2007b). Given the small number of

players, identi�cation requires multiple game plays and equilibrium beliefs which are cor-

rect and stable across game plays. I relax these assumptions and allow inaccurate beliefs.

In the following, Section 2 describes the two school choice mechanisms and the data

from Beijing. Section 3 formalizes the school choice problem under the Boston mech-

anism as a Bayesian game. Restrictions on parents' behavior are derived under various

assumptions, and I also characterize choice probabilities and propose a method of simu-

lated log-likelihood. Section 4 presents reduced-from results, while Section 5 shows the

model estimation. In particular, I present the correlation between sophistication and family
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background in both sections. Section 6 shows the counterfactual analysis for replacing the

Boston with the DA mechanism. The paper concludes in Section 7.

1 The Two Mechanisms, Background, and Data

1.1 Deferred-Acceptance Mechanism

The DA mechanism works as follows:

(i) Each school forms a strict priority ordering of students with rules which are deter-

mined by state or local laws. In the Boston schools, for example, it depends on sibling

enrollment, distance to schools, and a lottery.

(ii) Schools announce their enrollment quota and students submit rank-ordered lists of

schools.

(iii) With priority orderings and submitted lists, the matching process has several rounds:

Round 1. Every student applies to her �rst choice. Each school rejects the lowest-

priority students in excess of its capacity and temporarily holds the other students.

Generally, in:

Round k. Every student who is rejected in Round (k � 1) applies to the next choice

on her list. Each school pools new applicants and those who are held from Round (k � 1)

together and rejects the lowest-priority students in excess of its capacity. Those who are

not rejected are temporarily held by the schools.

The process terminates after any Round k when no rejections are issued. Each school

is then matched with students it is currently holding.

If schools use the same factor, e.g., the same test score or lottery, and rank students

in the same way, the DA is equivalent to the serial dictatorship mechanism (Abdulka-

diroglu and Sonmez (1998)). Following their priority order, essentially, students sequen-

tially choose their favorite among schools which still have available seats.
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1.2 Boston Mechanism

Similarly, the Boston mechanism asks students to submit rank-ordered lists, uses pre-

de�ned rules to determine schools' ranking over students, and has multiple rounds:

Round 1. Each school considers all the students who rank it �rst and assigns seats in

order of their priority at that school until either there is no seat left or no such student left.

Generally, in:

Round k. The kth choice of the students who have not yet been assigned is considered.

Each school that still has available seats assigns the remaining seats to students who rank

it as kth choice in order of their priority at that school until either there is no seat left or no

such student left.

The process terminates after any round k when every student is assigned a seat at a

school, or if the only students who remain unassigned listed no more than k choices. Unas-

signed students are then matched with available seats randomly.

1.3 Boston Mechanism in Beijing

I study school choice in the largest neighborhood of Beijing's Eastern City District in 1999.

Students could apply to four middle schools with a total quota of 960, as determined by the

Education Bureau. To be included in this neighborhood, a student must be enrolled as a 6th

grader in one of seven given elementary schools in 1999. A more detailed description of

the education system and the matching is available in Lai, Sadoulet, and de Janvry (2009).

The neighborhood adopted a version of the Boston mechanism in which schools' rank-

ing over students was solely determined by a random lottery (single tie-breaker). Students

could submit a list ranking up to four schools. Upon submission, a computer-generated

10-digit number was randomly assigned to each student, and then the admission proceeded

as previously described.7

Students' outside option was mainly the 28 public schools in the district, including the
7The same mechanism was used in all Beijing's neighborhoods in 1999, including those in other districts.
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four to which they could apply through the mechanism. They might attend a public school

without going through the mechanism in three ways. (i) Schools admit students directly if

their parents are employed by the school, if they have received at least a city-level prize in

academic or special skill achievements, or if a considerable payment is made to the school.8

(ii) Besides the quota announced, some top schools admit additional students by offering

an admission exam. (iii) Schools admit some transfer students who are not satis�ed with

their assignment and make a payment to the accepting school.

Other possible outside options were not very relevant at that time. Speci�cally, pri-

vate schools were not well developed in 1999. Besides, there was no strong incentive for

students to transfer out of the district, because the Eastern City District had both an advan-

tageous location and a very good reputation for educational quality. Such transfers were

only possible when there was a formal relocation of parents or an even higher payment

made to the out-of-district accepting school.

1.4 Data

The data in this study come from two sources: submitted lists, elementary school enroll-

ment, grade 6 test scores, and home addresses in 1999 are provided from administrative

data, and all other information is from a district-level survey in early 2002.

Chinese middle schools provide three years of education � grades 7-9 � so the survey

covered all students in the district enrolled in the last year of middle school, as well as

their parents. Dropping out or repeating grades was negligible in these schools, and inter-

district transfers were extremely rare as discussed above. Hence, the survey population

is close to the population of students who entered middle schools in the district in 1999.

A questionnaire directed to parents collected information on their educational attainment
8Such payments, or "ze xiao fei" (literally, "fees for choosing a school"), may depend on the student's

ability and parents' connection. Unfortunately, information on these payments is not publicly available.
Since 2008, the education authority of Beijing has regulated that such fees cannot be more than 30,000 yuan
(Source: http://www.bjedu.gov.cn/publish/portal0/tab67/info11554.htm). This is slightly above the average
disposable income among urban residents of Beijing in 2008, 24,725 yuan. The out-of-pocket cost for parents
may easily exceed this limit. For example, a blog post claims that some people paid 250,000 yuan to get into
a very good elementary school in 2011 (Source: http://blog.sina.com.cn/s/blog_6ce3959f0102dr2x.html).
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and income, as well as retrospective information on their preparedness for making school

choice decisions in 1999.

1.4.1 Heterogeneity among the Middle Schools

The four schools are highly differentiated on two dimensions: enrollment quota and quality.

Table 1 shows that School 1 has the smallest quota, 63 seats. Note that this does not imply

that its size is small because it also enrolls students from other neighborhoods. School 4

has the largest quota, 360 seats.

Table 1: Middle Schools: Quota and Quality
Schools Quota School_Scores: Average Test Scorea Ranking in the districtb
1 63 559.27 1
2 227 522.91 7
3 310 508.47 14
4 360 470.13 28
Total 960
a. Average test score of the graduating class in the high school entrance exam in 1999, out of 600.
b. Ranking based on average test score among all 28 public schools in the district.

School 1 also has the best quality as measured by the performance of the school's

graduating class in the high school entrance exam in 1999. The exam is city-wide and

high-stakes, and thus it is a factor that parents weigh heavily in determining school quality.

As column 3 shows, these schools span the quality distribution of the 28 schools in the

district, with better schools having smaller quotas.

1.4.2 Students' Characteristics and Behavior: A First Look

Using their elementary school enrollment, I identify 914 students as quali�ed applicants

in this neighborhood in 1999. The 46 "missing" students, i.e., the difference between the

total quota (960) and the number of observed students (914), may have come from three

sources: (i) enrollment quota is usually larger than the number of students; (ii) some may

have skipped the mechanism and gone to schools outside the district in 1999; and (iii) some

may have transferred to schools outside the district after 1999.
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Students in (ii) and (iii) may have made that decision because they were unsatis�ed with

the expected or realized school assignment, and thus sample selection may arise. However,

as discussed above, (ii) and (iii) are plausibly negligible, although this cannot be veri�ed. I

therefore focus on the 914 observed students.9

The distribution of submitted lists in 1999 and middle school enrollment in 2002 are

shown in Table 2. About 20% did not participate in the centralized mechanism and took

their outside option directly, while 60.77% of the non-participants were still enrolled in one

of the four schools in 2002. The majority submitted a full list with three or four schools;

only 7.44% submitted a partial list which ranks one or two schools. Overall, in 2002, only

10.07% of the students were enrolled in a school other than the four schools.10 The best

in the district, School 1, enrolled 147 of the 914 students, more than double its quota.

Enrollment at any other school was lower than its announced quota.

Table 2: Distribution of Submitted Lists in 1999 and Middle School Enrollment in 2002
Submitted Lists in 1999 Middle School Enrollment in 2002

Freq. Percent School 1 School 2 School 3 School 4 Othera
Not Participating 181 19.80% 58 20 25 7 71
Full Lists 665 72.76% 73 185 237 152 18
4 Schools 558 (61.05%) 57 155 203 126 17
3 Schools 107 (11.71%) 16 30 34 26 1

Partial Lists 68 7.44% 16 19 22 8 3
2 Schools 58 6.35% 10 18 20 7 3
1 School 10 1.09% 6 1 2 1 0
Total 914 100% 147 224 284 167 92

a. "Other" means one of the other 24 public middle schools in the district.

In the estimation, I focus on students' family background (Parent_Inci, Parent_Edui),

ability (Own_Scorei,Awardsi), gender (Girli), and distance to each school (Distancei;s).

Table 3 presents their de�nitions.

Table 4 further summarizes these variables. In the estimation, most of the variables

are expressed in logarithms and de-meaned. I present summary statistics of the raw data
9As a robustness check, I impute 46 additional students by drawing from the observed 914 students to

"complete" the data. A few experiments show that the results are not sensitive to the imputation as long as
the imputation is not extreme.
10This is another piece of indirect evidence that transferring to another district is rare, as it is already

unusual for students to choose a within-district school other than the four "inside" ones.
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Table 3: De�nitions of Main Variables
Variables De�nition Source

Parent_Inci Parents' income yuan/month in 2002 Survey in 2002
Parent_Edui Parents' average years of education Survey in 2002

Girli =1 if student i is a girl Survey in 2002
Own_Scorei Elementary Chinese + math, out of 200 Administrative data
Awardsi District level awards in elementary school Survey in 2002
Distancei;s Walking distance to School s in 1999, km Administrative data

for the full sample and 3 subsamples � non-participants, participants submitting partial

lists, and participants submitting full lists. Non-participants have richer and more educated

parents than average, and they have higher test scores and have earned more awards. This

is consistent with the earlier discussion that parents' income and students' ability increase

the quality of their outside option. The same pattern of parental income and education is

observed for participants submitting partial lists, although these students have lower test

scores and have earned fewer awards than average.

Table 4: Summary Statistics
Full Sample Non-Participant Partial List Full List

Used in Estimation Raw Data Raw Data
Variables Transformation Mean Mean Mean Mean Mean

Parent_Inci Log, de-meana 0.00 3664.01 4249.07 4191.12 3450.87
(0.82) (3468.85) (2457.23) (2069.04) (3782.76)

Parent_Edui De-mean 0.00 13.44 14.28 14.19 13.14
(2.24) ( 2.24) (2.57) (2.13) (2.07)

Girli None 0.52 0.52 0.51 0.49 0.53
(0.50) (0.50) (0.50) (0.50) (0.50)

Own_Scorei Log, de-mean 0.00 183.56 187.09 178.41 183.12
(0.08) (11.66) (7.84) (15.55) (11.83)

Awardsi De-mean 0.00 0.73 1.12 0.51 0.65
(1.00) (1.00) (1.29) (0.82) (0.90)

Distancei;1 Log, de-meanb -0.02 2.31 2.64 1.94 2.27
(0.76) (2.27) (2.31) (1.25) (2.32)

Distancei;2 Log, de-meanb -0.12 2.22 2.55 1.89 2.16
(0.86) (2.29) (2.31) (1.41) (2.35)

Distancei;3 Log, de-meanb 0.13 2.51 2.95 2.21 2.42
(0.66) (2.21) (2.17) (1.34) (2.28)

Distancei;4 Log, de-meanb 0.02 2.41 2.84 1.84 2.35
(0.82) (2.20) (2.14) (1.43) (2.28)

# of Obs. 914 914 181 665 68
Standard deviations in parentheses. a. More precisely: "log(Parent_Inci+1), de-mean";
b. The mean here is that of all 4 distances.
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2 Model: Boston School Choice as A Bayesian Game

In this section, the school choice problem under the Boston mechanism is formalized as a

Bayesian game. There are:

(i) a set of students/parents, figIi=1;

(ii) a set of schools, fsgSs=0, S � 3, where School 0 is the outside option;11

(iii) a capacity vector, fqsgSs=1;
PS

s=1 qs � I ,
PS

s=1 qs � qs0 < I , and qs0 < I , 8s0 6= 0.

(iv) students' rank-ordered lists, fCigIi=1, where Ci =
�
c1i ; :::; c

S
i

�
, cki 2 fsg

S
s=0, 8k =

1; :::; S;

(v) schools' priorities over students, determined solely by a random lottery.

At the start of the game, each school announces its capacity, qs. There are enough seats

to accommodate all the students, i.e.
PS

s=1 qs � I; no school has enough seats to enroll all

students, qs0 < I , 8s0; and every school is signi�cantly big, in the sense that not all students

can be accommodated by the other (S � 1) schools,
PS

s=1 qs � qs0 < I .

Parents or students submit their choice lists,Ci =
�
c1i ; :::; c

S
i

�
where cki is the kth choice.

Ci is a full list if it ranks all S schools; otherwise, it is a partial list. They may submit partial

lists or submit (0; :::; 0). In the latter case, the student is not considered in the mechanism.

After collecting fCigIi=1, the mechanism assigns each student a random number which

determines her priority at all schools. In this case, all students have the same ex ante

priority, although pre-determined priorities can be considered as well. With the lists and the

random lottery, the admission proceeds as described in the previous section. After students

receive their assignments, they can choose the outside option if they are not satis�ed.

In the following, "student" and "parent" are used interchangeably. I �rst present the set-

up and the benchmark case where everyone is (equally) sophisticated and shares a common

prior. I then extend the model to the case where parents have heterogeneous levels of

sophistication. The de�nition of sophistication is formalized in due course.
11When the number of schools is less than 3, truth-telling is a dominant strategy.
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2.1 Set-Up

The utility of student i attending school s (s = 1; ::; S) is de�ned as:

ui;s = �s +X i�X + Zi;s�Z + "i;s

where �s is school s's �xed effect; X i 2 RK1 are i's characteristics, such as test score,

parents' income, and parents' education, etc.; Zi;s 2 RK2 are student-school speci�c at-

tributes, e.g., the distance from i's home to s, and Zi � fZi;sgSs=1; "i;s 2 R includes all

other factors, and "i � f"i;sgSs=1.

The utility when choosing the outside option is normalized to zero. Equivalently, the

utility of attending any school s 6= 0 should be interpreted as the difference between at-

tending s and choosing the outside option. If a school is worse than the outside option,

ui;s < 0, it is de�ned as unacceptable. Otherwise, it is acceptable.

The following assumptions are maintained throughout the paper:

AM.1. Parents are expected utility maximizers who know their own preferences, fui;sgSs=0,

as well as the function of ui;s and its parameters.

AM.2. (X i;Zi) are i.i.d. over i with C.D.F. G (X;Z) which is common knowledge,

while (X i;Zi) is private information of i.

AM.3. "i ? (X i;Zi) and "i � N (0;�) i.i.d. over i, with C.D.F. F� ("i) and

V ar ("i;1) = 1. "i is private information of i, while its distribution is common knowl-

edge.

AM.4. A parent does not participate, or submits (0; :::; 0), if and only if no school is

acceptable.

The assumption that (X i;Zi) is private information is made for ease of exposition.

When I is large, similar results hold if (X i;Zi) is common knowledge, or if i knows a

�xed number of others' (Xj;Zj). Appendix A.3 discusses this in detail.

AM.3 allows an arbitrary correlation between any "i;s and "i;s0 . For example, some

schools are better at sciences, while others are better at arts. Students who like sciences
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more than arts have positive shocks for some schools, and negative shocks for others.

AM.4 is somewhat restrictive. It requires that the outside option does not change af-

ter parents observe the matching outcome, and it also rules out the possible uncertainty

aversion of parents. Appendix A.4 discusses this in detail.

2.2 Benchmark: Homogeneous Sophistication

In the following, everyone is (equally) sophisticated and is endowed with a common prior.

Namely, they have the same information and correctly use this information in the same

way.

2.2.1 Strategy, Payoff, and Decision Making

A strategy �i (X i;Zi; "i), possibly in mixed strategies, is a mapping from i's "type" space

to the set of all probability distributions over possible lists: RK1+SK2+S ! �(C). The total

number of pure strategies or possible lists in C is �nite, L � S!
�
1
S!
+ 1

(S�1)! + :::+
1
1!

�
.12

Each element in C is a rank-ordered list of k different schools, where k = 0; :::S.

The payoff to i can be characterized in two steps: (i) other parents' actions, C�i, are

given; and (ii) instead of C�i, other parents' strategies, ��i, are given.

Given C�i, if �i = C is a pure strategy, the expected payoff to i is:

Vi (C;C�i) �
SX
s=1

[as (C;C�i)max (ui;s; 0)] ;

where only max (ui;s; 0) matters because parents choose the outside option whenever the

assigned one is unacceptable; and as (C;C�i) is the probability of student i being accepted

by s given (C;C�i). as (C;C�i) is completely determined by the random lottery, and the

following lemma summarizes its properties.

Lemma 1 Given any C and C�i, as (C;C�i) has the following properties:
12Notice that those lists in which one school appears multiple times are excluded, as they are obviously not

optimal. Other obviously dominated lists are also not considered.
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(i) A seat is guaranteed if participating: 8C 6= (0; :::; 0),
PS

s=1 as (C;C�i) = 1;

(ii) In any two lists, if a school is listed after a same ordering of schools, the proba-

bility of being accepted by that school is the same when submitting either of the two lists:

as (C;C�i) = as (C
0; C�i), 8C;C 0 2 C, s.t., cK = c0K = s and ck = c0k, 8k � K � S:

(iii) Moving a school up (or including an otherwise omitted one) in the list weakly

increases the probability of being accepted by that school: as (C 0; C�i) � as (C;C�i),

8C;C 0 2 C, s.t., cK = c0K0 = s, K 0 < K � S, and ck = c0k, 8k < K 0:

(iv) If school s is top ranked, the probability of being accepted by that school is at least

qs=I: as (C;C�i) � qs=I;8C 2 C, s.t., c1 = s.

Proofs are collected in Appendix A.1; these properties can, however, be easily veri�ed

given the mechanism. Similarly, since �i is a probability distribution over pure strategies,

as (�i; C�i) shares the above properties and Vi (�i; C�i) can be de�ned in the same way as

Vi (C;C�i).

Now, instead, suppose that (�i; ��i) is given. i's expected payoff is de�ned as:

Vi (�i; ��i) �
L(I�1)X
n=1

�
Pr
�
Cn�i played under ��i

�
Vi
�
�i; C

n
�i
�	

=
SX
s=1

L(I�1)X
n=1

�
Pr
�
Cn�i played under ��i

�
as
�
�i; C

n
�i
��
max (ui;s; 0) ;

where the probability that other parents choose Cn�i, Pr
�
Cn�i played under ��i

�
, is:

Z
Pr
�
Cn�i played under ��i (X�i;Z�i; "�i)

�
dG (X�i;Z�i) dF� ("�i) ;

Given that others play ��i, i's probability of being accepted by s when playing �i can be

written:

As (�i; ��i) �
L(I�1)X
n=1

Pr
�
Cn�i played under ��i

�
as
�
�i; C

n
�i
�
;

which may be individual-speci�c because Pr
�
Cn�i played under ��i

�
might differ across i.
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The expected payoff is simpli�ed as Vi (�i; ��i) =
PS

s=1As (�i; ��i)max (ui;s; 0) :

Furthermore, denote B (�i; ��i) � (A1 (�i; ��i) ; :::; As (�i; ��i)) : � (C)! [0; 1]S as

i's beliefs. By de�nition, As (�i; ��i) is a probability weighted sum of as (C;C�i), 8C and

C�i. Therefore, it is straightforward to verify that the properties of as (C;C�i) in Lemma

1 still hold for As (�i; ��i). With the beliefs, I de�ne sophistication as follows.

De�nition 1 Given homogeneous sophistication, i is sophisticated if her beliefs areB (�i; ��i).

Given her beliefs, parent i chooses a strategy to maximize her expected utility:

�i (X i;Zi; "i) 2 arg max
�̂i2�(C)

SX
s=1

As (�̂i; ��i)max (ui;s; 0) . (1)

i's optimal strategy may not be unique: (i) the operator max (ui;s; 0) creates multiple

payoff-equivalent lists if some schools are unacceptable; and (ii) additional payoff-equivalent

lists arise if As (�i; ��i) is zero for some s. This indeterminacy presents a challenge for

empirical analysis, since it complicates the characterization of choice probabilities.

2.2.2 Symmetric Bayesian Nash Equilibrium

To mitigate the indeterminacy problem, I consider a symmetric equilibrium in which all

parents employ the same strategy, i.e., �i (X i;Zi; "i) = �j (Xj;Zj; "j) 8i 6= j; if ui;s =

uj;s 8s. Given that everyone is an expected-utility maximizer, the symmetry only requires

that, when there are multiple solutions to their maximization problem, parents all use the

same rule to choose one strategy, pure or mixed.

De�nition 2 A mixed-strategy symmetric Bayesian Nash equilibrium in the Boston school

choice game with homogeneous sophistication is a common strategy �� 2 �(C), s.t.,

�� (X i;Zi; "i) 2 arg max
�2�(C)

SX
s=1

As
�
�; ���i

�
max (ui;s; 0) , given (X i;Zi; "i) , 8i;

and there are common equilibrium beliefs, B� (C; ��) � B
�
C; ���i

�
, 8i and C.
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The existence and a characterization of such an equilibrium is presented in Proposition

1.

Proposition 1 There always exists a symmetric Bayesian Nash equilibrium in the Boston

school choice game. In any symmetric equilibrium,

(i) equilibrium beliefs are such that As
�
C; ���i

�
2 (0; 1) 8s, 8C 6= (0; :::; 0);

(ii) if at most one school is unacceptable, i plays a pure strategy with probability one;

(iii) if i plays mixed strategies, with probability one she has at least two unacceptable

schools; furthermore she only mixes over lists in which the unacceptable schools are ex-

cluded, or included after the acceptable ones.

This paper estimates a large game played once, and thus multiplicity of equilibrium

is not a concern for estimation, as there is only one equilibrium being played in the data.

However, it matters for counterfactual analyses where an equilibrium must be selected. In

such cases, I focus on the equilibrium that has been played in the data.

Proposition 1 leaves some indeterminacy: Parents may rank unacceptable schools un-

systematically in equilibrium, as long as all unacceptable schools are ranked after the ac-

ceptable schools. This claim is formalized later in Proposition 2, and I make the following

assumption:

Assumption UNACCEPTABLES In a symmetric Bayesian Nash equilibrium, if some or all

of the unacceptable schools are included in the list, they are ranked according to their true

preference order among themselves after the acceptable schools. Moreover, the excluded

unacceptable schools are always less desirable than those included.

It is not implausible that parents follow this strategy in real life. The symmetric equi-

librium also requires that parents play the same mixed strategy. The following assumption

further clari�es the possible pure strategies in equilibrium mixed strategies:

Assumption MIXING When playing mixed strategies, everyone follows the same mixing rule

in equilibrium. Namely, if, without loss of generality, ui;1> ui;2> :::ui;K> 0 > ui;K+1>
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... > ui;S , whereK < (S � 2), i only submits the following lists with positive probabilities:

(c1i ; :::; c
K
i , 0; :::; 0)where all included schools are acceptable; (c

1
i ; :::; c

K
i ; (K + 1); 0; :::; 0);

(c1i ; :::; c
K
i , (K + 1), (K + 2); 0; :::; 0); ...; and (c1i ; :::; c

K
i , (K + 1); (K + 2); :::; S);

where every one of them is a best response. LetmK;l, l � K , denote the probability that an

l-school list is submitted while onlyK schools are acceptable. mK;l is common to everyone,

and is independent of the identities of the acceptable schools.

One should ideally show the existence of such a symmetric equilibrium. Unfortunately,

I have not found a proof or a disproof, and thus leave it to future research.

2.2.3 Estimation

With Proposition 1 and Assumptions UNACCEPTABLES and MIXING, I characterize the

probabilities that each list is played in equilibrium. I assume equilibrium beliefs, B�, are

known and set S equal to 4 in the following.

Characterization of Choice Probabilities Given (X i;Zi; B
�;�) where � are the un-

known parameters, the conditional probability of i choosing Ci, Pr (CijX i;Zi; B
�;�), is:

(i) if Ci = (0; 0; 0; 0), Pr (ui;s < 0, for all sjX i;Zi; B
�;�);

(ii) if Ci = (c1; 0; 0; 0),m1;1 � Pr (ui;c1 > 0 > ui;s, for s 6= c1jX i;Zi; B
�;�) ;

(iii) if Ci = (c1; c2; 0; 0),
m2;2 � Pr (Ci is a best response; ui;c1 ; ui;c2 > 0 > ui;s, for s 6= c1; c2jX i;Zi; B

�;�)

+m1;2 � Pr (ui;c1 > 0 > ui;c2 > ui;s, for s 6= c1 6= c2jX i;Zi; B
�;�) ;

(iv) if Ci = (c1; c2; c3; c4),
Pr (Ci is a best response; ui;c1 ; ui;c2 ; ui;c3 > 0jX i;Zi; B

�;�)

+m1;4 � Pr (ui;c1 > 0 > ui;c2 > ui;c3 > ui;c4 jX i;Zi; B
�;�)

+m2;4 � Pr (Ci is a best response; ui;c1 ; ui;c2 > 0 > ui;c3 > ui;c4jX i;Zi; B
�;�) :

Part (i) says that the probability of not participating equals the probability that all

schools are unacceptable. The probability of submitting a one-school list, by part (ii), is the

mixing probability m1;1 times the probability that only one school is acceptable, because

parents may submit a two-school or a full list (m1;2;m1;4 � 0).
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Part (iii) shows that the likelihood of submitting a two-school list comes from two

scenarios: (a) there are two acceptable schools, and (b) there is only one acceptable school.

In (a), students may submit either a two-school or a full list,13 and thus the probability of

optimally ranking two acceptable schools is weighted by the mixing probability, m2;2. In

(b), the �rst choice must be acceptable and the second choice unacceptable. The omitted

schools are unacceptable and worse than the second choice.

Similarly, in part (iv), parents submit a full list in three cases: (a) there are at least

three acceptable schools, (b) there are two acceptable schools, and (c) there is only one

acceptable schools. Again, the last two cases contribute to the likelihood because of the

mixing assumption, while in case (a) there is no possibility of mixing.

The mixing probabilities are independent of (X i;Zi; B
�) due to Assumption MIXING.

Moreover,m1;1 +m1;2 +m1;4 = 1 andm2;2 +m2;4 = 1.

Simulated Maximum Likelihood Estimation Since the equilibrium beliefs, B�, are

unknown, I use the empirical beliefs, B̂, as an approximation.14 The model is estimated by

the following (simulated) maximum likelihood:

max
�

IX
i=1

ln
h
Pr
�
CijX i;Zi; B̂;�

�i
(2)

The choice probabilities are simulated by the smoothed logit-smoothed accept-reject sim-

ulator (Chapter 5, Train (2009)) which is described in Appendix A.6.15

13It is also possible to submit a three-school list, but it is equivalent to submitting a four-school/full list.
14The distribution of equilibrium strategies is approximated by the 914 observations, plus 9 rank-ordered

lists which are not played by anyone in the data. 5,000 samples of random draws from the distribution are
created. Each sample consists of 914 random draws from the 923 data points, with replacement. Fixing
other parents' submitted lists in each sample, I then calculate B̂n for parent 1. Namely, parent 1 experiments
the 24 full lists. The probability of being accepted by each school given any list are calculated by drawing
1,000 independent sets of lotteries and running the mechanism 1,000 times. It is suf�cient to consider the
full lists only, because either the beliefs associated with partial lists can be derived from those associated
with the full lists, or the partial lists are dominated. After repeating this for the 5,000 samples, I calculate
B̂ =

P5000
n=1 B̂

n=5000. Note that B̂ may have many elements equal to 0 or 1 given the observed data. This
contradicts the results in Proposition 1, and as a remedy I perturb the system a little so that all elements fall
within (0; 1) � the maximum absolute difference between the original and the perturbed is 7:282� 10�8.
15In Appendix A.2, I discuss an alternative approach which uses equilibrium constraints and solves B� as

a function of �, a �xed point.
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2.3 General Case: Heterogeneous Sophistication

In the following, I relax the sophistication assumption, and allow parents to make mistakes

when forming their beliefs. Mistakes may be due to information differences and/or different

abilities to process information. Under the maintained assumptions, a particular structure

on the beliefs and some dominated strategies are identi�ed.

2.3.1 Equilibrium Concept, De�nition of Sophistication, and Dominated Strategies

To highlight the heterogeneity in beliefs, denote i's belief asBi (C; ��i) � fAi;s (C; ��i)gSs=1 2

[0; 1]S , 8C, whereAi;s (C; ��i) �
PL(I�1)

n=1 Pri
�
Cn�i played under ��i

�
as
�
C;Cn�i

�
and the

probability measure Pri () is i's subjective assessment of an event's likelihood.

By the above notation, the extent to which parents can make mistakes is limited. They

may be wrong when assessing others' behavior and thus Pri () is individual speci�c; how-

ever they know the rules of the game and thus know as
�
C;Cn�i

�
precisely.

Since Ai;s (�i; ��i) is a probability weighted average of as (C;C�i), the properties of

as (C;C�i) still hold for As (�i; ��i), and the proof of the following lemma is omitted.

Lemma 2 Given ��i, Ai;s (�i; ��i) has the same properties as as (C;C�i) in Lemma 1.

I rewrite i's strategy as an explicit correspondence of beliefs, �i [X i;Zi; "i;Bi (�; ��i)]

and again consider a symmetric equilibrium.

De�nition 3 A mixed-strategy symmetric Bayesian Nash equilibrium in the Boston school

choice game with heterogeneous sophistication is a common strategy �� 2 �(C) s.t.,

��
�
X i;Zi; "i;Bi

�
�; ���i

��
2 arg max

�2�(C)

SX
s=1

Ai;s
�
�; ���i

�
max (ui;s; 0) , given (X i;Zi; "i) , 8i.

In this de�nition, the only requirement is that everyone is a subjective expected utility

maximizer; there is no restriction on subjective beliefs. The existence of such an equilib-

rium is thus guaranteed. This de�nition also provides a measure of sophistication in terms
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of how correct one's prediction of the game play is.16

De�nition 4 With heterogeneous sophistication, in equilibrium ��, i is sophisticated if

Ai;s
�
C; ���i

�
=

L(I�1)X
n=1

Pr
�
Cn�i played under ���i given B�i

�
as
�
C;Cn�i

�
, for all s and C,

where Pr
�
Cn�i played under ���i given B�i

�
is the objective (correct) probability of Cn�i

being played under ���i given B�i.

The above de�nition implies that if i is sophisticated, she plays a best response against

others with knowledge of their beliefs and of the distribution of their preferences.

Given the properties of beliefs in Lemma 2, a set of dominated strategies can be iden-

ti�ed. More importantly, these dominated strategies are independent of the beliefs as long

as they satisfy the properties in Lemma 2.

Proposition 2 Suppose i has at least one acceptable school, given beliefs Bi
�
�; ���i

�
,

(i) listing an unacceptable or the worst school as the �rst choice is strictly dominated;

(ii) listing an unacceptable or the worst before an acceptable school is weakly domi-

nated;

(iii) excluding an acceptable school from the list is weakly dominated;

(iv) if Ai;s
�
C; ���i

�
2 (0; 1), 8s and C 6= (0; :::; 0), moving s upward in the list strictly

increases the probability of being accepted by s and the dominances in (ii) and (iii) become

strict.

Intuitively, ranking a school �rst always gives a strictly positive probability of being

assigned to that school, and a parent should thus list better schools �rst. Besides, the

worst outcome of participation is being accepted by the worst school. By ranking better

schools before the worst school, a parent increases her child's chance of being assigned

to a better school. If a school is unacceptable, putting it at the bottom or omitting it also
16One common approach to model levels of sophistication is the level-k model introduced by Crawford

and Iriberri (2007). In that model no player plays best response and therefore no one is fully sophisticated.
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increases the likelihood of getting into better schools. The above results also hold in the

case of homogeneous sophistication, and a truth-telling strategy is not dominated according

to Proposition 2.

Assuming parents do not play dominated strategies, I characterize the choice proba-

bilities. The term "choice probabilities" is de�ned in a broad sense. With heterogeneous

beliefs, the model cannot predict the probability of each parent choosing a particular list; it

can only predict the probability that a choice falls into a group of lists.

Since weak dominance creates more indeterminacy, given the results in part (iv) of

Proposition 2, I consider two cases: (a) for any parent, all elements in her beliefs fall

within (0; 1); and (b) some elements in some parents' beliefs may be zero.

2.3.2 All Elements in Beliefs Are Positive

Given S = 4, I assign the lists into 15 groups, gn, n = 1; :::; 15. The criteria of grouping

are the number and identities of schools included in the list while the order among the listed

schools does not necessarily matter. The groups are of three types: (a) 5 groups in which

the lists include no more than one school; (b) 6 groups which include only two-school lists;

and (c) 4 groups of full lists. Appendix A.5 details the groupings and the characterization

of choice probabilities, the outline of which is given below.

For type-(a) groups, the choice probabilities are the same as those in the Bayesian

Nash equilibrium, since they are independent of beliefs. For the 6 groups of type (b),

the grouping is only based on which two schools are included in the list but not on their

ranking. For example, (s; s0; 0; 0) and (s0; s; 0; 0) are in the same group, but not (s; s00; 0; 0),

given s 6= s0 6= s00. The choice probabilities for these groups have two sources: either the

two included schools are the only acceptable schools, or only one of the two is acceptable,

and the other is unacceptable but better than the two excluded schools. Similar to those in

the Bayesian Nash equilibrium, the contributions of both sources to the choice probabilities

are weighted by mixing probabilities.

The remaining 4 groups of type (c) are differentiated by their last school. Namely,
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(s; s0; s00; s000) and (s0; s; s00; s000) are in the same group, while (s; s0; s000; s00) is in a different

one, given that s; s0; s00, and s000 are different. The choice probabilities for these groups

come from three sources: either the top three schools are all acceptable; two of the top

three are acceptable; or only one of the top three is acceptable. Again, the contributions of

last two sources are weighted by the mixing probabilities.

Three points should be highlighted here: (i) none of the choice probabilities involves

beliefs; (ii) after grouping, the model is complete, as it implies a unique distribution of

groups given a distribution of preferences;17 and (iii) the model implies a unique distribu-

tion of preferences given a distribution of groups, under the maintained assumptions AM.1-

AM.4 and Assumptions UNACCEPTABLES and MIXING. The model is thus estimated

by the (simulated) maximum likelihood:

max
�

IX
i=1

ln [Pr (Ci 2 gnjX i;Zi;�)] ; n = 1; :::; 15:

As for a multinomial probit, given the assumptions, there is a unique solution to the above

maximization problem, and thus the model is identi�ed. This is best illustrated in full-list

groups. Given any of these groups one knows which school is the worst; similarly, in a

multinomial probit the best school is known. The mixing probabilities present a further

complication. Fortunately, they are also identi�ed since the choice probability of the group

(0; 0; 0; 0) is independent of the mixing probabilities.

2.3.3 Some Elements in Beliefs May Be Zero

When parents are allowed to make mistakes, some elements in their beliefs are likely to be

zero. However, the more zeros are permitted in the beliefs, the less tractable the character-

ization of choice probabilities becomes. Facing this trade-off, I consider the following:

Assumption ZERO-PROB Some parents may expect that the probabilities of being assigned to

School 1 are zero if it is ranked third, fourth, or omitted, while other elements in the beliefs
17The choice probabilities of the 15 groups add up to 1.
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are always in (0; 1) for all parents.

School 1 has the smallest quota, 63 seats and is also the "best" school with the highest

average test score of graduating students. In the data, 228 parents rank School 1 �rst, and

it is impossible to get into School 1 unless it is ranked �rst.

I assume that all parents assign positive values to the probabilities of being assigned to

School 1 when it is ranked 2nd because: (i) 157 parents rank School 1 second, implying that

many have assigned a positive value to the probability; and (ii) it would otherwise require

possibly too restrictive assumptions to characterize the choice probabilities. For similar

reasons, I do not consider zero probabilities for School 2, the second "best" school.18

Under Assumption ZERO-PROB, if a parent does have these zero probabilities, it does

not matter if School 1 is ranked third or fourth as long as it is optimal not to rank it in the

top two.

Lemma 3 Under Assumption ZERO-PROB, for parent i with at least three acceptable

schools, there exists a cutoff, �ui � 0, which is a function of i's beliefs and preferences but

not of ui;1, such that School 1 is not ranked as a top two choice if and only if (ui;1 � ui;s0) <

�ui, where s0 is the second best school among schools s 6= 1.

If �ui = 0, Lemma 3 is consistent with truth-telling behavior. When �ui > 0, i takes

precautions by ranking School 1 low if it is not signi�cantly better than the others.

Since the zero probabilities create many payoff-equivalent lists, to simplify the analysis,

I make the following assumption regarding the mixed strategies in equilibrium.

Assumption ZERO-PROB-MIXING Given Assumption ZERO-PROB, in addition to the mixed

strategies speci�ed in AssumptionMIXING, if i's preferences are such that the list (c1; c2; 1; c4)

is a best response, and that ui;c4=min
�
ui;1; ui;2; ui;3; ui;4

	
and ui;s> 0 for s 6= c4, then i

mixes among:
18School 2 has the second smallest quota, 227 seats. In the data, there are 431 parents ranking School

2 �rst. However, there are 206 parents ranking School 2 second, while 75 ranking it 3rd or 4th. Further
discussion of this is found in Subsection 3.2.
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(i) (c1; c2; 1; c4), (c1; c2; c4; 1), and (c1; c2; 0; 0), if ui;c4> 0;

(ii) (c1; c2; 1; c4) and (c1; c2; 0; 0), if ui;c4< 0.

If i has zeros in her beliefs, as speci�ed in Assumption ZERO-PROB, (c1; c2; c4; 1) and

(c1; c2; 0; 0) are also best responses whenever (c1; c2; 1; c4) is a best response. Therefore,

the mixing patterns should be interpreted as a combination of parents without zeros in their

beliefs and those with zeros and playing these mixed strategies. The common strategy

assumption then implicitly requires that the group of parents with zeros be exogenously

determined. This may not be too restrictive if all parents expect a very small probability of

being accepted by School 1 when it is ranked third or fourth.

Moreover, if no one has zeros in their beliefs, the mixing probabilities should be such

that (c1; c2; 1; c4) is always being played with probability one given i's preferences. This

provides a test for Assumption ZERO-PROB.

Choice Probabilities and Estimation Putting together Proposition 2, Assumptions

UNACCEPTABLES, MIXING, ZERO-PROB, and ZERO-PROB-MIXING, I re-assign the

lists into 18 groups. The grouping now depends on how School 1 is ranked.

The new groups can be summarized by six types: (a) 5 groups in which the lists include

no more than one school; (b) 3 groups in which the lists only include School 1 and another

school; (c) 3 groups in which the lists only include two schools and exclude School 1; (d)

3 groups where the lists rank all four schools and School 1 is ranked top two; (e) 3 groups

where the lists rank all four schools and School 1 is ranked third; (f) 1 group where the lists

rank all four schools and School 1 is ranked fourth.

The detailed characterization is again shown in Appendix A.5. The choice probabilities

for groups of types (a) and (b) can be formulated the same as in the previous case. The main

difference is that for types (c)-(f), one has to consider how School 1 is ranked. Namely,

based on Lemma 3 and Assumption ZERO-PROB-MIXING, the choice probability takes

into account weather School 1 is optimally ranked top two or not.

For example, for groups of type (c), there is now a possibility that School 1 is acceptable

but is optimally not ranked top two. Thus, it may be excluded from the list because some
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parents expect the probability of being accepted by School 1 to be zero if it is ranked third.

The characterization takes this into account for groups of types (c)-(f).

I further assume the cutoff in Lemma 3, �ui, has the following form:

�ui = exp (�0 +X i�X + (Zi;2;Zi;3;Zi;4) �Z + Y i�Y ) ;

where Y i is correlated with beliefs but not with preferences; and the exponential function

ensures �ui is non-negative. The characteristics of School 1 are excluded due to Lemma 3,

and together with Y i, preferences and the cutoff are separately identi�ed.

Let �� be the set of parameters including the additional mixing probabilities and the co-

ef�cients in �ui. Similar to previous cases, the model is estimated by (simulated) maximum

likelihood: max��
PI

i=1 ln
�
Pr
�
Ci 2 �gnjX i;Zi;Y i; ��

��
, n = 1; :::; 18.

2.4 Relationship among the Different Cases

The relationship among the above three cases is such that: BNE � Positive_Belief �

Zero_Belief: The Bayesian Nash equilibrium (BNE) under homogeneous sophistication

is nested in the other two cases, where sophistication may be heterogeneous. The case

where all elements in everyone's beliefs are positive (Positive_Belief ) is nested in the

other case, where I allow some elements to be zero (Zero_Belief ).

Case TT , where everyone is truth-telling, is also considered in estimation. It is nested in

the two cases with heterogeneous sophistication: TT � Positive_Belief � Zero_Belief .

However, there is no clear nesting structure between TT and BNE. Some model selection

tests will be presented along with the estimation results.

2.5 Sophistication and Incentives

To see who is more strategic in the game, it is necessary to measure parents' sophistication.

Measures of individual sophistication are ideal; however, since our estimates of preferences

can only tell us the distribution of preferences conditional on (X i;Zi), the sophistication
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can only be measured conditional on (X i;Zi) as well.

With either heterogeneous or homogeneous beliefs, a parent is de�ned as sophisticated

if her beliefs are the (correct) equilibrium beliefs. With the large number of players, the

empirical beliefs, B̂, as discussed in Section 2.2.3, provide a good approximation of the

equilibrium beliefs. In particular, with heterogeneity in sophistication, it is impossible to

solve for the equilibrium given that the joint distribution of preference and sophistication

is unknown and not estimated. All the following measures can be calculated by replacing

equilibrium beliefs B� with B̂, and � with estimates �̂.

2.5.1 Probability of Observing A Given Action

Under the assumption that everyone with (X i;Zi) plays a best response, the model can pre-

dict the choice probability for each list, PBRi;k � Pr
�
Ci = C

kjX i;Zi; B
�;�
�
, k = 1; :::; 41,

for S = 4. Given i chooses Ci, de�ne di;k, such that di;k = 1 if Ci = Ck, and 0 otherwise.

If i always plays a best response,

E [di;kjX i;Zi; B
�;�]� PBRi;k = 0, 8k:

One may test the hypothesis that i plays a best response by running the 41 regressions:

di;k � PBRi;k = �0 +X i�X + Zi�Z +Wi;k�W + �i;k;8k; (3)

whereWi;k is a vector of variables other than X i and Zi. Under the null, all coef�cients

(�0; �X ; �Z ; �W ) should be zero.

If Ck is a one-school list or is (0; 0; 0; 0), all the coef�cients should always be zero,

because the model assumes parents do not make mistakes when playing these strategies. I

therefore use these �ve regressions as placebo tests.

Under the assumption that i is always truth-telling, Ck's choice probability is:

P TTi;k � Pr
�
Ck is chosen under truth-telling jX i;Zi; B

�;�
�
:
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Similarly, I regress
�
di;k � P TTi;k

�
on (X i;Zi;Wi;k) and test the truth-telling hypothesis.

2.5.2 Incentives to Be Strategic

In real life, it is not implausible that it is costly to �nd a best response. The incentive to be

strategic, or to play a best response, would thus affect parents' behavior.

The �rst incentive measure is the probability that truth-telling is a best response:

P TT=BRi � Pr (truth-telling is a best responsejX i;Zi; B
�;�) .

I assume that the cost of �nding a best response is lower if truth-telling itself is a best

response. Therefore, a high P TT=BRi means a greater incentive for i to play a best response.

The second measure is the expected utility gain if i changes from truth-telling to best

responding:

Gaini �
�
V BRi � V TTi

�
=V BRi ;

where V BRi is the expected utility if i always plays a best response, and V TTi is the one

when she is always truth-telling.19 If Gaini is higher, i has a greater incentive to �nd her

best response.

I later include P TT=BRi andGaini in the 41 regressions in (3) to test if parents' behavior

is affected by these incentives.

3 Reduced-Form Results

Before reporting the model estimates, I present evidence from the data which is consistent

with the assumptions and model predictions.
19More precisely, V BRi is de�ned as follows: Given any realization of "i, i plays a best response. I

calculate the expected utility given "i and then integrate it over all possible "i. Namely,

V BRi =

Z
"i

max
�2�(C)

SX
s=1

As
�
�; ���i

�
max (ui;s; 0) dF� ("i) :

V TTi is similarly de�ned.
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3.1 Understanding the Rules of the Game

One of the important assumptions is that parents understand the rules of the game, and

therefore their beliefs follow the structure speci�ed in Lemma 2. I examine parents' re-

sponses to two questions in the 2002 survey: "On a scale of 0-10, what is the probability

that your child is admitted into your 1st (2nd) choice?" Table 5 shows the summary statis-

tics.20 The empirical beliefs are calculated from the submitted lists. The empirical beliefs

and self-reported beliefs share the same pattern, although they do not exactly match.

Table 5: Empirical Beliefs and Parents' Self-Reported Beliefs
Ranked as 1st Choice Ranked as 2nd Choice

Empirical Survey Responsesb Empirical Survey Responsesb
School Beliefsa Mean Std. Dev # Obsc Beliefsa Mean Std. Dev # Obs.c
1 26.7% 4.35 2.93 249 0% 3.00 2.24 112
2 50.7% 6.72 2.39 290 0% 5.13 2.52 189
3 100% 8.11 2.05 82 100% 6.53 2.23 206
4 100% 8.32 2.06 22 100% 7.63 2.52 40

a. Calculated from the actual submitted lists. Each entry shows the probability being accepted by
the school when that school is ranked 1st or 2nd, given all other students' submitted lists.
b. Responses to the survey question: "On a scale of 0-10, what is the probability that your child
is admitted into your 1st (2nd) choice?"
c. The 1st and 2nd choices are self-reported and thus are not necessarily the submitted ones.

Consistent with Lemma 2, parents on average expect that moving a school up in the list

increases the probability of being accepted by that school.

3.2 Undominated Strategies, Truth-Telling, and Zero Probabilities

Lemma 2 leads to the dominated strategies in Proposition 2, and parents should not play

these strategies in equilibrium. Table 6 shows the distribution of parents' �rst choice:

24.9% rank School 1 �rst, while 47.0% rank School 2 �rst.

Another survey question asks, "Among the schools to which you could apply, which

school was the best?"21 Among 699 valid responses, 82.8% claim School 1 as the best.
20Since these questions are asked after the assignment is realized, the results may just show the ex post

probability, namely, whether or not the student has been accepted by that school. For this reason, I use their
self-reported top two choices, which are not necessarily the ones they submitted.
21This question is not necessarily asking the parent's favorite or her most preferred school.
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Table 6: Parents' First Choices and Claimed Best Schools
# Parents # Parents Claim Rank the Claimed Bestb

School Quota Rank It #1 It as the Besta #1 #2 #3 #4 Omitted
1 63 228 (24.8%) 579 (82.8%) 186 107 163 36 25
2 227 431 (47.0%) 58 (8.3%) 49 5 0 0 0
3 310 66 ( 7.2%) 26 (4.3%) 11 9 4 1 0
4 360 8 ( 0.9%) 3 (0.4%) 0 1 0 1 0

Non-Particip. 181 (19.8%)
Otherc 33 (4.7%)
Total 960 914 (100%) 699 (100%)
a. Responses to a survey question: "Among those to which you could apply, which school was the best?"
b. Among all the parents who claim a given school as the best school, these �ve columns show how they
rank it in the application, conditional on participating.
c. "Other" means schools other than the four schools. This may be due to misreporting/misunderstanding.

Comparing the �rst-choice school in submitted lists with the most recognized school, the

difference is signi�cant. This is evidence against the truth-telling hypothesis.

If everyone understands the rules, the �rst-choice school should never be the worst

school (Proposition 2). This is consistent with the data in Table 6: only 8 parents top rank

School 4, while even fewer people claim it as the best school.

Proposition 2 also predicts that the last-choice school (or the omitted school, condi-

tional on participating) should either be an unacceptable/the worst, or a school which is

impossible to get in if it is ranked low. The last �ve columns in Table 6 show how parents

rank the claimed best school. For Schools 2, 3 and 4, only two parents rank their claimed

best school fourth or omit it. Following the discussion in Section 2.3.3, this implies that

zero probability is less of a concern for these schools.

However, there are 36 (6.2%) parents ranking School 1 fourth, while another 25 (4.3%)

participants exclude School 1 altogether. Since School 1 has the smallest quota, only those

who top rank it have a chance of getting in; and even then the probability of success is

merely 26.7%. It is highly plausible that a parent might expect that there is no chance of

getting into School 1 when ranking it third or fourth. This is consistent with the discussion

in Section 2.3.3.
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3.3 Attention on Uncertainty

Several survey questions consider parents' perceptions of the importance of 12 different

factors in the choice process. Parents rate them on a scale of 1-5, with 5 being very im-

portant. Three factors are related to the game's uncertainty: (i) admission quota and the

possibility of being accepted; (ii) the probability of being assigned to bad schools; and (iii)

consideration of other parents' applications. Since (iii) may also be correlated with school

quality because other parents' applications reveal their preferences over schools, I create

Attn_Ui (attention on uncertainty) as the average of responses to the �rst two factors and

use the third for Attn_Othersi (attention on others' application).

The nine other factors are about school quality: teachers' quality, peer quality, etc. I

de�ne Attn_Qi (attention on quality) as the average of responses to these questions.

A sophisticated parent understands the uncertainty of other parents' behavior. This

implies a positive correlation between sophistication and Attn_Ui. Before I investigate of

the correlation between Attn_Ui and parents' performance in Section 4.2, I �rst explore

how family background is correlated with Attn_Ui.

Table 7 presents regression results of Attn_Ui on family background and student char-

acteristics, while controlling for Attn_Qi and Attn_Othersi. Column 1 shows family

background has no signi�cant correlation with Attn_Ui in the full sample. I exclude non-

participants (column 2) and then those who submitted partial lists (columns 3 and 4). The

negative coef�cient on parents' income becomes signi�cant at the 10% level and larger in

magnitude, particularly in the subsample of parents who submitted full lists. As a com-

parison, this coef�cient is signi�cantly positive (at the 5% level) for the sample of non-

participants (column 5).

The pattern of the coef�cients of parents' income across subsamples is consistent with

the model prediction that parents submitting partial lists are insensitive to the uncertainty

in the game because of their better outside option.

The above negative correlation betweenAttn_Ui and parents income is robust ifAttn_Ui

is broken into attention on admission quota and attention on probability of getting into bad
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Table 7: Attention on Factors Related to Uncertainty: Regression Analyses
Dependent Variable: Attention on Uncertainty

Full Samplea Participanta �2 Schoolsa Full Lista Non-Participanta
(1) (2) (3) (4) (5)

Mean(Dep V) 4.339 4.357 4.361 4.350 4.190
Std Dev(Dep V) 0.743 0.721 0.708 .698 0.900
Parent_Edui 0.005 0.007 0.006 0.012 -0.015

(0.013) (0.014) (0.014) (0.015) (0.054)
Parent_Inci -0.037 -0.053 -0.056* -0.069* 0.550**

(0.035) (0.034) (0.034) (0.035) (0.228)
Own_Scorei 0.231 0.288 0.312 0.944* 1.739

(0.414) (0.403) (0.402) (0.512) (3.567)
Awardsi 0.020 0.038 0.038 0.061* 0.048

(0.026) (0.029) (0.029) (0.032) (0.080)
Girli -0.047 -0.036 -0.026 -0.023 -0.248

(0.050) (0.051) (0.051) (0.057) (0.205)
Attn_Othersi -0.003 -0.011 -0.013 -0.016 0.073

(0.021) (0.021) (0.021) (0.024) (0.093)
Attn_Qi 0.823*** 0.822*** 0.798*** 0.750*** 0.755***

(0.056) (0.056) (0.056) (0.063) (0.237)
Constant -0.011 -0.169 -0.143 -3.230 -12.600

(2.138) (2.085) (2.078) (2.649) (18.430)
Observations 676 605 597 457 71
R-squared 0.270 0.294 0.281 0.279 0.364

a. The full sample includes every parent whose relevant variables are not missing. Participants are those
who submits a list which is not (0,0,0,0). The subsample (>= 2 schools) includes participants whose
submitted lists have at least 2 schools. And the subsample with full list are those who submit a full list.
Elementary school �xed effects included. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

schools, as shown in Table A-1 in the appendix. The coef�cient on income is negative

in both regressions, although in one of them it is not signi�cant. The same regression is

run for Attn_Othersi: there the coef�cient on parents' education is signi�cantly nega-

tive, although the one on parents' income is insigni�cant. I also regress Attn_Qi on the

same set of variables. Results in Table A-1 show that, contrary to those from the Attn_Ui

regressions, parents' income is signi�cantly positively correlated with Attn_Qi.

In short, there is a negative correlation between Attn_Ui and parents' income; how

Attn_Ui affects parents' performance in the game is investigated in Section 4.2.
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4 Model Estimation and Test Results

This section presents the estimates from four cases: (i) BNE: symmetric Bayesian Nash

equilibrium with homogeneous sophistication; (ii) Positive_Belief : heterogeneous so-

phistication with all belief elements being positive; (iii) Zero_Belief : heterogeneous so-

phistication with some belief elements being possibly zero; and (iv) TT : truth-telling. The

utility function is speci�ed as:

ui;s = �s + �X;1Own_Scorei + �X;2Parent_Inci + �X;3Parent_Edui + �X;4Girli

+�X;5Awardsi + �Z;1Distancei;s + �Z;2Own_Scorei�School_Scores

+�Z;3Parent_Inci�School_Scores + �Z;4Parent_Edui�School_Scores

+�Z;5Awardsi�School_Scores + �Z;6Girli�School_Scores + "is;

where �s is the middle school �xed effect; School_Scores is the (log) average test score

of school s; and other variables are de�ned in Table 3. The part �X;1Own_Scorei +

�X;2Parent_Inci + �X;3Parent_Edui + �X;4Awardsi + �X;5Girli, which is constant

for any inside school, captures the quality of outside option. ("i1; :::; "i4) � N (0;�) are

i.i.d. across students and the variance of "i;1 is 1.

In Case Zero_Belief , the cutoff �ui � 0 as in Lemma 3 is speci�ed as:

�ui = exp

0@ �i;e + �X;1Own_Scorei + �X;2Parent_Inci + �X;3Parent_Edui

+�X;4Awardsi + �X;5Girli +
P4

s=2 �Z;sDistancei;s

1A ; (4)
where, �i;e is the elementary school e's �xed effect. Elementary schools may matter as

teachers usually help them with �lling out applications. I also estimate the model with

Attn_U i and Attn_Qi in �ui, as these variables are possibly correlated with beliefs.

In all four cases, the choice probabilities are simulated as in a multinomial probit model

by the logit-smoothed accept-reject simulator with 300 draws (details in Appendix A.6).
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4.1 Estimation Results and Model Selection

Table 8 presents the coef�cients of the main variables in the utility function for all four

cases. Standard errors are calculated by the robust asymptotic approximation, as in McFad-

den and Train (2000). In Zero_Belief , results from excluding and including Attn_U i and

Attn_Qi in �ui are reported in columns (1) and (2) respectively.

As discussed previously, to distinguish between Zero_Belief and Positive_Belief ,

the mixing probabilities which are unique to Zero_Belief provide a test. Precisely, based

on Assumption ZERO-PROB-MIXING, (c1; c2; c4; 1) and (c1; c2; 0; 0) are also best re-

sponses whenever (c1; c2; 1; c4) is a best response, while this is not true in Positive_Belief .

As column (1) shows, when the worst school is acceptable (uc4 > 0), parents submit

(c1; c2; 0; 0)with probability 40.3% and submit (c1; c2; c4; 1)with probability 59.7%.22 The

95% con�dence intervals for these two probabilities are quite far away from zero. Column

(2) shows similar results. Therefore, the assumptions in Positive_Belief are rejected.

Moreover, since BNE � Positive_Belief and TT � Positive_Belief , both BNE and

TT are thus rejected in favor of Zero_Belief . More test results will be presented shortly.

Table 9 presents marginal effects of variables in the interaction terms, as calculated with

the two sets of estimates from Zero_Belief . For the �ve variables except Girli, all have a

negative effect on the utility of any school, since wealthier and more educated parents, and

students with better achievements, have better outside options.

In the following, I use estimates from Zero_Belief without attention measures be-

cause (i) the estimates are not very different, as shown in Tables 8 and 9; and (ii) the

original attention measures are missing for 26% observations, and results may be sensitive

to imputation.
22Interestingly, when the worst school is unacceptable, uc4 < 0, parents do not mix; rather they play�
c1; c2; 1; c4

�
wth a probability close to one, or play

�
c1; c2; 0; 0

�
with almost zero probability, as columns

(1) and (2) show. Therefore, Zero_Belief is not an issue when uc4 < 0. From the estimates in Column (1)
of Table 8, on average, the probability that School 1 is optimally ranked out of top two and uc4 < 0 < u1
is 21.27%. The probability that School 1 is optimally ranked below top two and 0 < uc4 < u1 is 6.92%.
This means that ignoring Zero_Belief and using Positive_Belief would misinterpret 63 parents' revealed
preferences.
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Table 8: Preferences over Schools: Model Estimation Results from Different Cases
Zero_Belief Posit_Belief BNE TT

(1) (2) (3) (4) (5)
Distancei;s -0.254*** -0.246*** -0.242*** -0.026 -0.096***

(0.017) (0.007) (0.018) (0.016) (0.005)
Own_Scorei�School_Scores 11.516*** 19.600*** 65.545*** 21.008*** 21.073***

(0.182) (0.021) (0.152) (0.023) (0.034)
Parent_Inci�School_Scores -0.047*** 0.329*** 0.663*** 0.195*** 0.013

(0.001) (0.023) (0.015) (0.002) (0.014)
Parent_Edui�School_Scores -0.256*** -0.263*** -0.450*** 0.159*** -0.179***

(0.006) (0.004) (0.005) (0.002) (0.003)
Girli�School_Scores 0.266 0.271*** -0.359*** -0.492*** -0.765***

(0.164) (0.012) (0.063) (0.009) (0.038)
Awardsi�School_Scores 0.631*** 0.545*** 0.688*** 0.855*** 0.991***

(0.018) (0.002) (0.017) (0.003) (0.065)
Own_Scorei -74.678*** -126.712*** -409.774*** -131.443*** -131.892***

(0.682) (0.176) (0.811) (0.159) (0.338)
Parent_Inci -0.019 -2.402*** -4.537*** -1.288*** -0.378***

(0.044) (0.142) (0.107) (0.011) (0.080)
Parent_Edui 1.538*** 1.626*** 2.728*** -1.005*** 1.065***

(0.038) (0.024) (0.028) (0.009) (0.011)
Awardsi -4.198*** -3.550*** -4.512*** -5.406*** -6.403***

(0.104) (0.020) (0.091) (0.025) (0.406)
Girli -1.647 -1.572*** 2.260*** 3.112*** 4.979***

(1.025) (0.074) (0.362) (0.040) (0.224)
Mixing Probabilities:

m1;4 0.766 0.794 0.752 0.766 0.563
[0.689, 0.833] [0.725, 0.852] [0.696, 0.803] [0.677, 0.835] [0.368, 0.734]

m1;2 0.179 0.156 0.212 0.190 0.369
[0.119, 0.254] [0.102, 0.223] [0.165, 0.267] [0.122, 0.272] [0.205, 0.576]

m2;4 1.000 1.000 1.000 0.965 0.980
[0.005, 1.000] [0.111, 1.000] [1.000, 1.000] [0.912, 0.987] [0.030, 1.000]

Given uc4� us 8s, Prob. submitting:a
(c
1
; c2; 0; 0) if uc4> 0 0.403 0.308

[0.277, 0.536] [0.130, 0.556]

(c1; c2; c4; 1) if uc4> 0 0.597 0.499
[0.464, 0.723] [0.222, 0.719]

(c1; c2; 0; 0) if uc4< 0 0.000 0.077
[0.000, 0.005] [0.035, 0.173]

LR Test: �2(11) 213.560 217.999 127.698 681.616 244.072
p-value (0.000) (0.000) (0.000) (0.000) (0.000)

In Case Zero_Belief; column (1) are estimates without attention measures, while column (2) are those which
include attention measures in the cutoff function, �ui. Middle school �xed effects are included in all cases.
mk;l, l � k, denotes the probability that a l-school is submitted when only k schools are acceptable.
a. These are the probabilities of submitting each list when (c1; c2; 1; c4) is a best response in Zero_Belief .
The likelihood test is for the hypothesis that coef�cients of the 11 individual characteristics equal zero.
95% con�dence intervals in brackets for mixing probabilities, as logistic functions are used in the estimation
to ensure all values in [0,1]. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Marginal Effects of Individual Characteristics: Estimates from Case Zero_Belief
Parent_Inci Own_Scorei Parent_Edui Awardsi Girli

School (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
1 -0.318 -0.321 -1.822 -2.713 -0.079 -0.040 -0.203 -0.105 0.034 0.146

(0.042) (0.009) (0.535) (0.217) (0.007) (0.006) (0.020) (0.013) (0.026) (0.019)
2 -0.315 -0.343 -2.597 -4.030 -0.062 -0.023 -0.263 -0.141 0.009 0.127

(0.042) (0.008) (0.523) (0.216) (0.007) (0.006) (0.020) (0.013) (0.022) (0.019)
3 -0.313 -0.352 -2.919 -4.579 -0.055 -0.015 -0.263 -0.157 0.009 0.120

(0.042) (0.007) (0.519) (0.215) (0.007) (0.006) (0.019) (0.013) (0.022) (0.019)
4 -0.310 -0.378 -3.822 -6.116 -0.035 0.005 -0.312 -0.199 -0.012 0.098

(0.042) (0.007) (0.506) (0.214) (0.007) (0.006) (0.019) (0.013) (0.027) (0.019)
For each variable, columns (1) are calculated using estimates from the Zero_Belief case without
attention measures, while columns (2) are calculated using those from the Zero_Belief case including
attention measures as independent variables. For Parent_Inci and Own_Scorei, the table reports the
change in each school's utility, in percentage points, if there is a 1% increase in the variable. For
the other 3 variables, it reports the change in utility when the variable is increased by 1 unit.
Standard errors in parentheses.

4.2 Sophistication and Incentives to Be Strategic

This section investigates who strategizes better and how parents response to incentives.

Measures of sophistication and incentives are constructed using estimated preferences and

empirical equilibrium beliefs.

4.2.1 Deviations from Best Responding and Truth-Telling: Overcautiousness

As Section 2.5.1 shows, deviations from best responding are on average zero if everyone

plays best responses, as are deviations from truth-telling if everyone is truth-telling. For

the 24 full lists, Table 10 presents summary statistics on how observed behaviors deviate

from best responding and truth-telling. I run a t-test for the null hypothesis that each mean

independently equals zero, and in only 4 cases I fail to reject the null. This is true for

deviations both from best responding and truth-telling.

Table 10 highlights the importance of distinguishing between best responding and truth

telling, as they lead to different predictions. For example, (1; 2; 3; 4) is the most common

true preference order, and it is played by 13.89% of the parents. The truth-telling hypoth-

esis predicts that 25.19% should choose that list, but the best-responding hypothesis only

predicts 10.65%. A similar discrepancy is found for the most under-used list, (1; 3; 2; 4).
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Table 10: Deviation from Best-Responding and Truth-Telling Predictions: Full Lists
Observed Deviation from the Prediction of

Rank-Ordered Data Best Responding Truth-Telling
Lists Percenta Meanb (10�2) Std. Dev. Meanb (10�2) Std. Dev.

(1; 2; 3; 4) 13.89% 3.24*** 0.346 -11.30*** 0.356
(1; 2; 4; 3) 2.41% -2.31** 0.153 -2.72*** 0.153
(1; 3; 4; 2) 0.77% -0.15 0.087 -0.15 0.087
(1; 3; 2; 4) 5.14% -30.20*** 0.235 -17.70*** 0.223
(1; 4; 3; 2) 0.00% -0.21*** 0.003 -0.21*** 0.003
(1; 4; 2; 3) 0.22% -0.30** 0.047 -0.30* 0.047

(2; 1; 3; 4) 12.58% 10.76*** 0.331 10.91*** 0.331
(2; 1; 4; 3) 2.74% 2.24*** 0.163 2.42*** 0.163
(2; 3; 1; 4) 21.33% 18.50*** 0.406 19.92*** 0.408
(2; 3; 4; 1) 4.70% 4.01*** 0.211 4.29*** 0.211
(2; 4; 3; 1) 1.09% 0.93*** 0.103 1.01*** 0.104
(2; 4; 1; 3) 0.77% 0.60** 0.087 0.70** 0.087

(3; 1; 4; 2) 0.22% -0.03 0.047 -0.18 0.047
(3; 1; 2; 4) 0.88% -2.55*** 0.094 -6.18*** 0.096
(3; 2; 4; 1) 0.88% -2.12*** 0.093 -1.56*** 0.093
(3; 2; 1; 4) 4.16% -3.96*** 0.199 -1.26* 0.199
(3; 4; 1; 2) 0.22% 0.09 0.047 0.12 0.047
(3; 4; 2; 1) 0.22% -0.23 0.047 -0.16 0.047

(4; 1; 3; 2) 0.00% 0.00*** 0.000 -0.01*** 0.000
(4; 1; 2; 3) 0.00% -0.01*** 0.000 -0.02*** 0.001
(4; 2; 3; 1) 0.00% -0.03*** 0.001 -0.03*** 0.001
(4; 2; 1; 3) 0.00% -0.02*** 0.001 -0.02*** 0.001
(4; 3; 1; 2) 0.00% -0.01*** 0.000 -0.01*** 0.000
(4; 3; 2; 1) 0.55% 0.51** 0.074 0.52** 0.074

A t-test is run for the null hypothesis that each mean equals zero. *** p<0.01, ** p<0.05, * p<0.1.
a. It is the percentage out of the total of 914 students.
b. The means should be interpreted as percentages points, i.e., 3.24 means 3.24 percentage points.

I repeat this exercise for the partial lists, including (0; :::; 0). Among the 12 two-school

lists, the null is not rejected in 5 cases. More importantly, as the model predicts, deviations

for the 4 one-school lists and (0; :::; 0) have means which are not signi�cantly different

from zero, since by assumption parents do not make mistakes when playing these strategies.

Details are collected in the appendix Table A-2.

These results provide additional evidence that parents are neither all-best-responding

nor all-truth-telling in the game. Instead, parents are overcautious because they low rank

School 1 and top rank School 2 too often. In the data, 24.51% of the parents top rank
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School 1, while the model predicts that 54.88% should optimally do so given other parents'

behavior. For School 2, 47.16% rank it �rst, while the model predicts only 6.69% should

do so. To top rank School 2 while avoiding School 1 is ex ante rational, because School

1 is the best and only has 63 slots, while School 2 is still a very good school and has 227

slots. However, as many parents choose a "safe" strategy, the overcautiousness leads to a

coordination failure.

4.2.2 Incentives to Be Strategic

Table 11 shows summary statistics of the incentive measures and how they are correlated

with individual characteristics. The main result is that wealthier and more educated parents,

and students with better achievements, have a lower cost of �nding best responses (higher

P TT=BRi ) and a lower incentive to move away from always truth-telling (lower Gaini).

The probability that truth-telling is a best response, P TT=BRi , is relatively high at 77.4%.

However, the variation is not low: min = 42.9%, max = 99.4%, and standard deviation

9.4%. In both regressions, Parent_Inci, Parent_Edui, Own_Scorei, and Awardsi are

positively correlated with P TT=BRi , weather controlling for Gaini or not.

Gaini is the utility gain when changing from always truth-telling to always best re-

sponding. The mean gain is 0.029, equivalent to reducing the distance to a school by

10.8%, and its variation is also high: min = 0.000, max = 0.167 (reducing the distance by

48.2%), and standard deviation 0.019. When not controlling P TT=BRi , Gaini is negatively

correlated with Parent_Inci, Parent_Edui, Own_Scorei, and Awardsi. Conditional

on P TT=BRi , however, all the correlations become positive and those of Parent_Edui,

Own_Scorei, and Awards are signi�cant as well.

Below, regressions are used to investigate how the incentives affect parents' behavior.

It is tempting to include both P TT=BRi and Gaini in the same regression; however, this

might cause multicollinearity, as the correlation between P TT=BRi and Gaini is -0.945.
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Table 11: Determinants of Incentive to Be Strategic: Regression Analysis
PTT=BRi Gaini

Mean(Dep V) 0.774 0.029
Std Dev(Dep V) 0.094 0.019

Gaini -3.469***
(0.138)

PTT=BRi -0.230***
(0.005)

Parent_Inci 0.046*** 0.013*** -0.009*** 0.001
(0.004) (0.004) (0.002) (0.002)

Parent_Edui 0.013*** 0.005*** -0.002*** 0.001***
(0.001) (0.001) (0.000) (0.000)

Own_Scorei 0.334*** 0.193*** -0.041*** 0.036***
(0.024) (0.016) (0.008) (0.004)

Awardsi 0.039*** 0.019*** -0.006*** 0.003***
(0.002) (0.001) (0.000) (0.000)

Girli -0.000 0.001 0.000 0.000
(0.003) (0.001) (0.001) (0.000)

Constant 0.792*** 0.872*** 0.023*** 0.206***
(0.004) (0.003) (0.001) (0.004)

Obs. 914 914 914 914
R-Squared 0.797 0.959 0.654 0.930

PTT=BRi : probability that truth-telling is a best response.
Gaini: utility gain if changing from always truth-telling to best responding.
Elementary school �xed effects are included in all regressions.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

4.2.3 Who Strategizes Better?

Table 12 reports how family background affects deviations from best responding. I focus

on two lists, the most under-used list (1; 3; 2; 4) and the most over-used (2; 3; 1; 4). Neither

of them is bad ex ante since they both rank a popular school �rst and a safe one second.

Parents are overcautious, however; they choose (2; 3; 1; 4) too often � 18.50 percentage

points more often than what best responding parents would do, and the list, (1; 3; 2; 4), is

under-used by 30.20 percentage points.

I regress the deviations on 5 sets of regressors, with or without controlling incentive

measures and/or attention measures (columns 1-5 in Table 12). For the most under-used

list, not controlling for incentive and attention measures, wealthier and more educated par-

ents and students with better achievements play (1; 3; 2; 4) more often. However, family
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background cannot eliminate the underutilization of the strategy � increasing Parent_Inci

and Parent_Edui at the same time by two standard deviations would only reduce the

deviation by 11.88 percentage point.

When including incentive measures, other variables become insigni�cant, although

Own_Scorei remains signi�cantly positive. P TT=BRi reduces the deviation, Gaini in-

creases the deviation, and P TTi;k (the probability that (1; 3; 2; 4) is the true preference order)

increases the deviation marginally. When including attention measures, the coef�cients on

these three variables are insigni�cant, while the other coef�cients do not change.

This implies that family background offsets some underutilization of the strategy be-

cause wealthier and more educated parents' true preference order is more likely to be a best

response (higher P TT=BRi ). This is not because they are more sophisticated: they respond

to incentives in the same way as others.23 Indeed, when deviations from truth-telling are

regressed on family background, wealthier and more educated parents' report true prefer-

ences at a similar or marginally higher rate (Table A-3 in the appendix).

The last 5 columns in Table 12 show the results for the most over-used list (2; 3; 1; 4).

Without controlling incentive and attention measures, only Awardsi has a signi�cant ef-

fect. The two incentive measures still have a signi�cant effect. Similar to the previous

results, P TT=BRi reduces the deviation, Gaini extends the deviation, and P TTi;k has negative

but insigni�cant coef�cients. Surprisingly, attention on uncertainty, Attn_Ui, increases the

deviation (signi�cant at 5%).

The same regressions are run for all other lists as well. The coef�cients on family

background and incentive and attention measures are mostly insigni�cant. For the most

likely true preference order, (1; 2; 3; 4), results are presented in Table A-4 in the appendix.

As a placebo test, the same regressions are run for the one-school lists and (0; 0; 0; 0).

By assumption, nobody makes mistakes when playing these strategies, and thus all the

coef�cients should be zero. Indeed, very few of them are signi�cant.24

23If Gaini is interacted with Parent_Inci and Parent_Edui, the two terms have insigni�cant coef-
�cients � negative and positive respectively. Separately, if PTT=BRi is interacted with Parent_Inci and
Parent_Edui, the two terms are insigni�cant as well � positive and negative respectively.
24Among the 25 regressions, Parent_Inci and Parent_Edui never have a signi�cant coef�cient;
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To summarize, these results show that, on average, parents are overcautious as they rank

School 1 low more often than they should. Paying more attention to uncertainty does not

help, and sometimes exacerbate the overcautiousness. Wealthier and more educated parents

are not more sophisticated, but they do slightly better because they their true preferences

happen to be best responses more often.

5 Counterfactual Analyses

To analyze the welfare effects of replacing the Boston mechanism by the DA, I consider

two experiments: (i) I take the empirical beliefs as the equilibrium beliefs, or equivalently,

assume that other parents behave as in the data; and (ii) assume that parents are either naive

or sophisticated.

5.1 Simulating Outcomes under the Two Mechanisms

Every parent reports her true preferences in the DA. The probabilities of being assigned to

each school when submitting a list are obtained by drawing 20,000 pro�les of preferences

rankings, simulating the outcomes, and weighting them by the probability of obtaining each

pro�le.

Under the Boston mechanism in the second experiment, the equilibrium needs to be

solved as a �xed point. Eleven cases, each with 0, 10%, ..., or 100% naive parents, are

considered. The naive parents in each case are randomly chosen, and the remaining parents

are sophisticated. A naive parent always reports her true preferences, while a sophisticated

parent plays a best response as if she knows the joint distribution of others' preferences and

beliefs. In the �rst ten cases, the equilibrium beliefs are solved as described in Appendix

A.6. When all parents are naive, the probabilities of being assigned to each school are

calculated similar to that in the DA. During these calculations, the mixing probabilities are

Attn_Ui, PTT=BRi , and Gaini are signi�cant only in 2 regressions; and PTTi;k has 6 signi�cant coef�cients
out of 25.
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held constant, as estimated from the data.

After solving the equilibrium, I simulate parents' behavior and use the equilibrium

beliefs to calculate their welfare. For each parent, 1,000 pro�les of preferences are con-

structed using random draws of errors. Each of them plays two types of games � the DA

and the Boston; in the latter, parents play each case as sophisticated and as naive.

5.2 Other Parents Behave as in the Data

The �rst experiment considers the equilibrium in the data, so the empirical beliefs, B̂, are

taken as the equilibrium beliefs. The following results measure the effect of changing from

the Boston mechanism to the DA in Beijing, while parents behave as they do in the data

under the Boston mechanism. Table 13 reports the results.

Switching to the DA hurts both naive and sophisticated parents on average (columns

(1) and (2)), and the utility loss is sizable � for naive parents, the average utility loss is

equivalent to increasing the distance to a school by 183.9%; and similarly by 218.2% for

sophisticated parents. Regression results show that this loss is smaller for wealthier and

more educated parents.

Inter-personal welfare comparison is implicitly assumed when calculating utility losses,

so in columns (3)-(8) I consider the probabilities of being better off, indifferent, or worse

off. On average, 20.5% of naive or sophisticated parents achieve the same level of welfare

in either case, as they do not participate in either mechanism. This probability is positively

correlated with family background, because the outside option increases with it.

Among naive parents, only 8.0% are better off under the DA, while, surprisingly, 71.5%

are worse off. Among sophisticated parents, 6.2% are better off and 73.3% are worse off

under the DA. For any parent, family background reduces the probabilities of both being

better off and being worse off, but it reduces the latter more quickly. This is again due to

the outside option.
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Table 13: Welfare Effects of Replacing the Boston Mechanism with the DA: Regression
Analyses Given the Observed Equilibrium

Mean Utility Diffa Prob(Better off) Prob(Indiff.)b Prob(Worse off)
Naive Sophist. Naive Sophist. Naive/Sophist. Naive Sophist.

mean(Dep V) -0.265 -0.294 0.080 0.062 0.205 0.715 0.733
S.D(Dep V) (0.059) (0.071) (0.049) (0.035) (0.104) (0.074) (0.082)
Parent_Inci 0.029*** 0.038*** -0.013*** -0.007*** 0.046*** -0.033*** -0.040***

(0.003) (0.003) (0.003) (0.002) (0.006) (0.005) (0.004)
Parent_Edui 0.008*** 0.011*** -0.006*** -0.004*** 0.016*** -0.011*** -0.012***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Own_Scorei 0.236*** 0.277*** -0.128*** -0.078*** 0.374*** -0.246*** -0.296***

(0.018) (0.018) (0.020) (0.014) (0.025) (0.021) (0.020)
Awardsi 0.023*** 0.029*** -0.016*** -0.012*** 0.049*** -0.033*** -0.037***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Girli -0.001 -0.002 0.001 0.001 0.001 -0.002 -0.002

(0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)
Constant -0.275*** -0.298*** 0.063*** 0.049*** 0.209*** 0.728*** 0.742***

(0.003) (0.003) (0.004) (0.003) (0.004) (0.004) (0.004)
Obs 914 914 914 914 914 914 914

R-squared 0.786 0.850 0.510 0.472 0.858 0.776 0.842
Under the DA, everyone is truth-telling. Under the Boston mechanism, naive parents are truth-telling,
and sophisticated ones play a best response given the empirical beliefs, B̂.
a. The mean utility difference is de�ned as the average expected utility obtained under the DA
minus the one obtained under the Boston mechanism.
b. The probability of being indifferent under the Boston mechanism and under the DA is the same
for both naive and sophisticated parents, because these are parents who do not participate at all
under either mechanism.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

5.3 Equilibrium with only Naive and Sophisticated Parents

The second experiment considers that there are only two types of parents � naive and so-

phisticated, with the percentage of naive parents ranging from 0%, 10%, to 100%. Given

the equilibrium in the Boston mechanism in each case, every parent plays the Boston school

choice game two times: truth-telling and best-responding.

In Figure 1, I report the average expected utility under both mechanisms and probabil-

ities of different welfare changes when switching to the DA. Overall, the results are not

sensitive to the fraction of naive parents, although the Boston mechanism delivers better

outcomes when there are fewer naive parents.

The �rst sub�gure shows average expected utilities under both mechanisms. If the
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Figure 1: Welfare Effects of Replacing the Boston with the DA: Naive and Sophisticated Parents
In all simulations, parents play the DA and then the Boston mechanism. Everyone is truth-telling under the
DA. Under the Boston mechanism, naive parents are always truth-telling, and sophisticated parents are
always best-responding. The equilibrium is solved with fractions of naive parents from 0% to 100%. Given
each equilibrium, all parents behave naively and then sophisticatedly under the Boston mechanism. Welfare
effects in each case are calculated for everyone.

Boston mechanism is replaced by the DA, for sophisticated parents, their utility loss is on

average 0.164, equivalent to increasing the distance to a school by 90.6%. Unlike in the

�rst experiment, naive parents on average enjoy a utility increase in the DA, although the

gain only amounts to decreasing the distance to a school by 7.1%.

The probability of being better off in the DA is about 44.2% for naive parents, but more

importantly, about 35.3% of them are hurt by the DA (sub�gure 2). For sophisticated ones,

on average 11.5% are better off, while about 68.0% are worse off (sub�gure 3).

The different results from the two experiments highlight the signi�cance of parents'
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overcautiousness. Given the presence of severe overcautiousness, being naive actually

helps, as it offsets some of the deviation from best responses.

6 Concluding Remarks

This paper uses data from Beijing on school choice under the Boston mechanism to answer

two questions: (i) whether poor and/or less educated parents are more likely to be naive,

and (ii) whether the Boston mechanism harms naive parents relative to the DA.

Assuming that students' preferences are private information, I model school choice

under the Boston mechanism as a simultaneous game of incomplete information. Due to

the lack of strategy-proofness, submitted choice lists are not necessarily true preferences.

While allowing parents to make mistakes in the game, I derive a set of dominated strategies

and assume they are not played in equilibrium. I group some lists together and characterize

choice probabilities. A simulated maximum likelihood method is used for the estimation.

Results reject two hypotheses that everyone is naive and that everyone is sophisticated.

Parents are revealed to be overcautious, in the sense that they avoid top ranking the most

popular school more often than what they should do if they played best responses. Income

and education offset the overcautiousness slightly; however, this is because wealthier/more

educated parents' true preference order is more likely to be a best response. There is no

evidence of them being more sophisticated. These �ndings are driven by the fact that such

parents have a better outside option. Poorer parents pay more attention to uncertainty in

the game, and this indicates that they try to �nd a best response. However, paying more

attention to uncertainty does not help and sometimes even worsens their overcautiousness.

Given parents' behavior, especially their overcautiousness, when replacing the Boston

mechanism by the DA, both naive and sophisticated parents suffer an average utility loss

roughly equivalent to tripling the distance to a school. For naive parents, only 8% of them

are better off under the DA, while 71.5% are worse off. The negative effects are larger for

sophisticated parents, and the effects decrease with parents' income and education because
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of the outside option.

If every parent is either sophisticated or naive and no one is overcautious, switching

from the Boston to the DA has mixed effects. For sophisticated parents, on average, their

utility loss is equivalent to increasing the distance to a school by 90.6%. Among them, only

11.5% are better off, while about 68.0% are worse off. Naive parents on average have a

utility gain under the DA, although the gain is only equivalent to decreasing the distance to

a school by 7.1%. The probability of being better off is on average 44.2% for naive parents,

but about 35.3% of them are hurt by the DA.

These results suggest that instead of replacing the Boston mechanism by the DA, to

improve welfare, it may be more effective to help parents �nd best responses. This is

especially important for poorer/less educated parents who have no good outside option.

How to help parents �nd best responses is therefore a worthwhile avenue of future research.

47



References
ABDULKADIROGLU, A., P. A. PATHAK, A. E. ROTH, AND T. SONMEZ (2005): �The Boston
Public School Match,� The American Economic Review, Papers and Procedings, 95(2), 368�
371.

(2006): �Changing the Boston School Choice Mechanism: Strategy-proofness as Equal
Access,� Mimeo.

ABDULKADIROGLU, A., AND T. SONMEZ (1998): �Random Serial Dictatorship and the Core from
Random Endowments in House Allocation Problems,� Econometrica, 66(3), 689�702.

(2003): �School Choice: A Mechanism Design Approach,� American Economic Review,
93(3), 729�747.

ARADILLAS-LOPEZ, A. (2007a): �Pairwise Difference Estimation of Incomplete Information
Games,� Mimeo.

(2007b): �Semiparametric Estimation of a Simultaneous Game with Incomplete Informa-
tion,� Mimeo.

BAJARI, P., H. HONG, J. KRAINER, AND D. NEKIPELOV (2010): �Estimating Static Models of
Strategic Interactions,� Journal of Business and Economic Statistics, 28(4), 469�482.

BHATTACHARYA, R. N. (1977): �Re�nements of the Multidimensional Central Limit Theorem and
Applications,� The Annals of Probability, 5(1), 1�27.

BRAUN, S., N. DWENGER, AND D. KUBLER (2010): �Telling the Truth May Not Pay Off: An Em-
pirical Study of Centralized University Admissions in Germany,� The B.E. Journal of Economic
Analysis and Policy, 10(1).

CALSAMIGLIA, C., G. HAERINGER, AND F. KLIJN (2010): �Constrained School Choice: An
Experimental Study,� American Economic Review, 100(4), 1860�74.

CARVALHO, J. R., AND T. MAGNAC (2009): �College Choice and Entry Exams,�Mimeo.

CHEN, Y., AND T. SONMEZ (2006): �School Choice: An Experimental Study,� Journal of Eco-
nomic Theory, 127(1), 202�231.

CHIAPPORI, P.-A., S. LEVITT, AND T. GROSECLOSE (2002): �Testing Mixed-Strategy Equilibria
When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer,� American Economic
Review, 92(4), 1138�1151.

CRAWFORD, V. P., AND N. IRIBERRI (2007): �Level-k Auctions: Can a Nonequilibrium Model
of Strategic Thinking Explain the Winner's Curse and Overbidding in Private-Value Auctions?,�
Econometrica, 75(6), 1721�1770.

DUBINS, L. E., AND D. A. FREEDMAN (1981): �Machiavelli and the Gale-Shapley Algorithm,�
American Mathematical Monthly, 88(7), 485�494.

48



ERGIN, H., AND T. SONMEZ (2006): �Games of School Choice under the Boston Mechanism,�
Journal of Public Economics, 90(1-2), 215�237.

FEATHERSTONE, C., AND M. NIEDERLE (2008): �Ex Ante Ef�ciency in School Choice Mecha-
nisms: An Experimental Investigation,� NBER Working Paper Series, No. 14618.

GALE, D. E., AND L. S. SHAPLEY (1962): �College Admissions and the Stability of Marriage,�
American Mathematical Monthly, 69(1), 9�15.

GREENE, W. H. (1999): Econometric Analysis. Prentice-Hall, 4th edition edn.

HASTINGS, J., T. KANE, AND D. STAIGER (2008): �Heterogeneous Preferences and the Ef�cacy
of Public School Choice,� Mimeo, Yale University.

HORTACSU, A., AND S. L. PULLER (2008): �Understanding strategic bidding in multi-unit auc-
tions: a case study of the Texas electricity spot market,� RAND Journal of Economics, 39(1),
86�114.

KOJIMA, F. (2008): �Games of School Choice under the Boston Mechanism with General Priority
Structures,� Social Choice and Welfare, 31(3), 357�365.

KOVASH, K., AND S. D. LEVITT (2009): �Professionals Do Not Play Minimax: Evidence from
Major League Baseball and the National Football League,� NBER Working Papers, No. 15347.

LAI, F. (2010): �Are Boys Left Behind? The Evolution of the Gender Achievement Gap in Beijing's
Middle Schools,� Economics of Education Review, 29(3), 383�399.

LAI, F., E. SADOULET, AND A. DE JANVRY (2009): �The Adverse Effects of Parents' School
Selection Errors on Academic Achievement: Evidence from the Beijing Open Enrollment Pro-
gram,� Economics of Education Review, 28(4), 485�496.

(2011): �The Contributions of School Quality and Teacher Quali�cations to Student Per-
formance: Evidence from a Natural Experiment in Beijing Middle Schools,� Journal of Human
Resources, 46(1), 123�153.

MCFADDEN, D., AND K. TRAIN (2000): �Mixed MNL models for discrete response,� Journal of
Applied Econometrics, 15(5), 447�470.

MIRALLES, A. (2008): �School Choice: The Case for the Boston Mechanism,� Mimeo.

PAIS, J., AND A. PINTER (2008): �School Choice and Information: An Experimental Study on
Matching Mechanisms,� Games and Economic Behavior, 64(1), 303�328.

PATHAK, P. A., AND T. SONMEZ (2008): �Leveling the Playing Field: Sincere and Sophisticated
Players in the Boston Mechanism,� American Economic Review, 98(4), 1636�52.

PAYZANT, T. W. (2005): �Student Assignment Mechanics: Algorithm Update and Discussion,�
Memorandum to Chairperson and Members of the Boston School Committee.

ROTH, A. E. (1982): �The Economics of Matching: Stability and Incentives,� Mathematics of
Operations Research, 7(4), 617�628.

49



SCHMEIDLER, D. (1973): �Equilibrium Points of Nonatomic Games,� Journal of Statistical
Physics, 7(4), 295�300.

SEIM, K. (2006): �An Empirical Model of Firm Entry with Endogenous Product-type Choices,�
Rand Journal of Economics, 37(3), 619�640.

TRAIN, K. (2009): Discrete Choice Methods with Simulation. Cambridge University Press, Cam-
bridge, second edition edn.

ZHOU, L. (1990): �On A Conjecture by Gale about One-Sided Matching Problems,� Journal of
Economic Theory, 52(1), 123�135.

50



A Appendices

A.1 Proofs

Proof of Lemma 1.
(i) Suppose a participating student submits a full list, and she is rejected by all her

choices but the last choice (s�). Then in Round S, school s� must have more available seats
than students unassigned. If the total seats left at s� is qs� , then the number of students
unassigned is I�

P
s qs + qs� . Since I �

P
s qs, I�

P
s qs + qs� < qs� . Thus, the student

must be assigned to her last choice.
Suppose a participating student submits a partial list and is rejected by all the schools

in her list. After at most S rounds, she is still unassigned. Since I �
P

s qs, at that point,
the number of available seats is at least the number of remaining students, and thus she will
be assigned to some school.
(ii) SupposeC andC 0 have the same �rstK choices. In any realization of the game (any

lottery number), if the student is assigned to one of the �rstK choices when submitting C,
she will be assigned to that school when submitting C 0. If she is not assigned to a school in
the �rstK schools when submitting C, she will not be assigned to that school if submitting
C 0 instead. This means she has the same probability to be assigned to any of the �rst K
choices when she submits C or C 0.
(iii) Suppose C and C 0 have the same �rst K 0 � 1 choices. School s is listed as Kth

choice in C, but as K 0th choice in C 0 and K 0 < K. In any realization of the game (any
lottery number), if the student is rejected by s when submitting C 0, she will not be accepted
by s if submitting C. If she is accepted by s when submitting C, in the same realization of
the game, school s has more available seats than applying students in RoundK 0. Thus, she
will be assigned to s for sure if submitting C 0. Moreover, there are cases that s is available
in Round K 0 but not in Round K. This implies the probability of being assigned to s
weakly increases when moving it toward the top of the list. In the same manner, including
an otherwise omitted school in the list has the same effect.
(iv) The number of students listing s as �rst choice is at most I . Since a lottery number

is used to determine who will be accepted, among those who have the same �rst choice,
everyone have the same probability being accepted by that school. The probability of being
accepted by s is at least qs=I if a student list s as �rst choice.

Proof of Proposition 1. To show the existence of a symmetric equilibrium, I make use
of the results in Schmeidler (1973) by reconstructing the Bayesian game into a game of
complete information with a nonatomic continuum of players. Theorem 1 in Schmeidler
(1973) establishes the existence.
Within the current incomplete information setting, each player i is facing (I � 1) play-

ers without knowing their types. Given the distribution of fu�i;sgSs=1 being common knowl-
edge, it is equivalent to say that i is playing against a continuum of players each of whom
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is of type fuj;sgSs=1, j 6= i.
More formally, the game of school choice can be re-written into a game of complete

information where the set of players T is RS endowed with a measure � such that for any
measurable set T̂ � T ,

�
�
T̂
�
� (I � 1)

Z
1
�
fusgSs=1 2 T̂

�
dG (X;Z) dF� (") ;

where each player is indexed by fusgSs=1 2 RS .
With some abuse of notation, now de�ne a strategy � as a measurable function from T

to �(C). The payoff to player fusgSs=1 is

V
h
�
�
fusgSs=1

�
; �
i
=

SX
s=1

As

h
�
�
fusgSs=1

�
; �
i
max (us; 0) ,

where, with Cn =
�
Cn1 ; :::; C

n
m; :::; C

n
(I�1)

�
,

As

h
�
�
fusgSs=1

�
; �
i

=
L(I�1)X
n=1

(Z
fûsgSs=12T

Pr
h
Cnm is played under �

�
fûsgSs=1

�i
d�

)
as

�
�
�
fusgSs=1

�
; Cn

�
.

It can be veri�ed that the above notations are equivalent to the original ones given the
independent types across parents, and V

h
�
�
fusgSs=1

�
; �
i
is continuous in �.

To apply Schmeidler's theorem, one need to show that 8C;C 0 2 C the following set is
measurable, n

fusgSs=1 2 RSjV [C; �] > V [C 0; �]
o
;

where V [C; �] > V [C 0; �] is equivalent to

SX
s=1

fAs [C; �]� As [C 0; �]gmax (us; 0)

=

L(I�1)X
n=1

( R
fûsgSs=12T

Pr
h
Cnm is played under �

�
fûsgSs=1

�i
d�

� [as (C;Cn)� as (C 0; Cn)]max (us; 0)

)
> 0;

which is linear in fusgSs=1. The above set is therefore measurable. By Schmeidler's Theo-
rem 1, an equilibrium always exist.
(i) From i's perspective, for any j 6= i, Pr (uj;s > 0 > uj;s0 ; given s & 8s0 6= s) > 0

given the continuous distribution assumption on "j . In this case, since j only has one
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acceptable school (s), given any equilibrium beliefs, the best response for j is rank s at top.
Therefore, Pr (s is top ranked by all j 6= i) > 0 which implies that As (C; ��i) < 1 for all
C such that s is top ranked.
Now suppose that As

�
C; ���i

�
= 1 for some C such that s is not top ranked, there

must be As
�
C 0; ���i

�
= 1 such that s is top ranked in C 0 (from Lemma 1). Therefore,

As
�
C; ���i

�
< 1 for all s and for all C 6= (0; :::; 0).

Similarly, conditional on being rejected by previous choices, the probability of being
accepted by s is less than one, unless s is the Sth (the last) choice. Suppose that C =�
c1; :::; cK ; s; cK+2; :::; cS

�
, where 1 � K � (S � 2) and ck 6= 0, 8k = 1; :::; K. Then

there is a strictly positive probability that (i) (qc1 + 1) students' preferences are such that c1
is the only acceptable school and (ii) qck students' preferences are such that ck is the only
acceptable school, for k 2 f2; :::; K; sg. This is true because

PK
k=1 qck + qs+1 � I which

is implied by
PS

s=1 qs � I and
PS

s=1 qs � qs0 < I , for any s0.
For those students, their best response is to rank their only acceptable school �rst, and

therefore, there is a positive probability that a student who submits C is rejected by s
conditional on she is rejected by c1; :::; cK as well.
Since

PS
s=1As

�
C; ���i

�
= 1, the above two results implies that As

�
C; ���i

�
> 0 for

all s and C 6= (0; 0; 0; 0).
(ii) Note that in equilibrium i's value function is Vi

�
��i ; �

�
�i
�
=
PS

s=1As
�
��i ; �

�
�i
�
max (ui;s; 0).

From above, As
�
C; ���i

�
2 (0; 1) for all s and for all C 6= (0; :::; 0). If C�i 6= C��i 6=

(0; :::; 0) are played with positive probability in ��i given fui;sg
S
s=1 or (X i;Zi; "i), then

Vi
�
C�i ; �

�
�i
�
= Vi

�
C��i ; �

�
�i
�
, or,

SX
s=1

�
As
�
C�i ; �

�
�i
�
� As

�
C��i ; �

�
�i
��
max (ui;s; 0) = 0. (5)

Since C�i 6= C��i , there is at least 2 schools such that As
�
C�i ; �

�
�i
�
6= As

�
C��i ; �

�
�i
�
, as a

result of part (iv) in Proposition 2.
Since i has at most one unacceptable school and ui;s 6= ui;s0 for all s 6= s0 with proba-

bility one, equation (5) holds ex ante with probability zero. This proves that i plays mixed
strategies with probability zero.
(iii) The argument in (ii) implies that if i plays a mixed strategy, i has at least two

unacceptable schools with probability one.
Suppose that C�i =

�
c1i ; :::; c

S
i

�
is played with positive probability in ��i , and that 9k 2

f1; :::; (S � 2)g, ui;cki < 0 and ui;ck+1i
> 0. By applying results in Lemma 1 and (i), one

may show that C�i must be strictly dominated by excluding the unacceptable school from
the list. Therefore, any C�i must exclude or include the unacceptable schools at the bottom.

Proof of Proposition 2.
(i) Suppose the �rst choice in list C is unacceptable, or worse than the outside option.

Construct a new list, C 0, such that the �rst school is the most preferred school and all
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other choices in C 0 are the same as C. Then given any realization of the game (any lottery
number and any pro�le of other players lists), if the student is accepted by an acceptable
school when submitting C, she will be either accepted by the most preferred school or that
school. She is weakly better off in any realization. And there must exist cases such that she
is matched with the �rst choice in C when submitting C, while she will be matched with
the most preferred school when submitted C 0 instead. Thus, C is strictly dominated by C 0.
In the same manner, if the �rst choice in C is the worst school, C is dominated by

C 0 which is the same as C except the �rst choice in C 0 is replaced by the most preferred
school.
(ii) Since including an otherwise omitted school always weakly increases the probabil-

ity of being accepted by that school (Lemma 2), adding the acceptable school after the last
choice of a partial list, always weakly improves the expected utility. If there are multiple
acceptable schools are omitted, adding them to the list from the best to the worse will also
weakly improves the expected utility.
(iii) Suppose the submitted list of i is C =

�
c1; :::; cS

	
such that cK = bs which is

worst school, 1 � K < S, such that ui;bs = mint=1;:::;S fui;tg and 9t 2 fK + 1; :::; Sg
s.t., ui;ct > 0. Consider an alternative list, C 0 =

�
c1; :::cK�1; �s; cK+1; :::; cS

	
, where ui;�s =

maxt=1;:::;S fui;tg > 0, i.e., replace the worst school with the best one.
Given any realization of the game, if the student is accepted by any school of c1; :::cK�1

when submittingC, she will be still accepted by that school when submittingC 0 instead. By
Lemma 2, Ai;bs �C; ���i� � Ai;bs �C 0; ���i�, and the decrease in the probability is distributed
to �s; cK+1; :::; cS and bs as well. Since ui;bs = mint=1;:::;S fui;tg and ui;cti > 0, C 0 weakly
improves i's expected utility. Similar arguments can be made if ui;bs < 0.
(iv) The strict increase can be seen easily in terms of conditional probabilities. Ai;s

�
C; ���i

�
equals:

Pr(i is rejected by schools ranked above s in Cj���i)
�Pr(i is accepted by s given Cj���i; i is rejected by schools ranked above s)

IfAi;s
�
C; ���i

�
2 (0; 1), 8s and 8C 6= (0; :::; 0), then the above two terms are both in (0; 1)

unless s is ranked as Sth after all other schools.
Suppose that s is ranked as kth choice in C and ranked as k0th in C 0, where 1 � k0 <

k � S and the 1st to (k0 � 1)th choices are the same in both lists. We want to show that
Ai;s

�
C 0; ���i

�
> Ai;s

�
C; ���i

�
.

From Lemma 2, Ai;s
�
C 0; ���i

�
� Ai;s

�
C; ���i

�
, if Ai;s

�
C 0; ���i

�
= Ai;s

�
C; ���i

�
, then

Pr(i is rejected by schools ranked above s in Cj���i)
�Pr(i is accepted by s given Cj���i; i is rejected by schools ranked above s)

= Pr(i is rejected by schools ranked above s in C 0j���i)
�Pr(i is accepted by s given C 0j���i; i is rejected by schools ranked above s).
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We would also have

Pr(i is rejected by schools ranked above s in Cj���i)
< Pr(i is rejected by schools ranked above s in C 0j���i),

because the probability of being rejected by schools ranked between (k0+1)th to (k� 1)th
in C is positive. Otherwise, it would imply Ai;ŝ

�
Ĉ; ��i

�
= 0 for some Ĉ and ŝ.

Together, the above equality and inequality imply that

Pr(i is accepted by s given Cj���i; i is rejected by schools ranked above s)
> Pr(i is accepted by s given C 0j���i; i is rejected by schools ranked above s)

which is impossible because s ranked higher in C 0 than it is in C.
This proves that Ai;s

�
C 0; ���i

�
> Ai;s

�
C; ���i

�
. Similarly, the same is true if s is

otherwise omitted from the list.
Since now the increase is always strict, it is straightforward to construct the strict dom-

inance for (ii) and (iii).

Proof of Lemma 3.
For parent i, with equilibrium beliefs,Bi

�
C; ���i

�
�
�
Ai;1

�
C; ���i

�
; :::; Ai;S

�
C; ���i

��
2

[0; 1)S , whereAi;1
�
C; ���i

�
2 [0; 1) ifC has School 1 as 3rd or 4th choice andAi;s

�
C; ���i

�
2

(0; 1) otherwise.
If School 1 is the worst or an unacceptable school for i, the lemma satis�es trivially

given the results in Proposition 2.
Suppose School 1 is not the worst, and, without loss of generality, assume that ui;2 >

ui;3 > ui;4. Since there are at least three acceptable schools, one may transform i's utilities
into ûi;s � max (ui;s; 0) � ui;3. Therefore, ûi;2 > 0, ûi;3 = 0, ûi;4 < 0, and ûi;4 < ûi;1 =
ui;1 � ui;3. Therefore, parent i's problem is equivalent to:

max
C

SX
s=1

Ai;s
�
C; ���i

�
ûi;s:

Denote further that Ai;1
�
Ck; ���i

�
ûi;1 + V

k
�
Ck
�
as the value function when School 1 is

�xed as kth choice and Ck is optimally chosen to maximize the expected utility.
The necessary and suf�cient conditions for School 1 not being ranked as top 2 choices

are, for k = 1; 2;

Ai;1
�
C3; ���i

�
ûi;1 + V

3
�
C3
�
> Ai;1

�
Ck; ���i

�
ûi;1 + V

k
�
Ck
�
;

Ai;1
�
C4; ���i

�
ûi;1 + V

4
�
C3
�
> Ai;1

�
Ck; ���i

�
ûi;1 + V

k
�
Ck
�
;
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or equivalently,

ûi;1 < min

8><>:
V 3(C3)�V 1(C1)

Ai;1(C1;���i)�Ai;1(C3;���i)
;

V 3(C3)�V 2(C2)
Ai;1(C2;���i)�Ai;1(C3;���i)

;

V 4(C4)�V 1(C1)
Ai;1(C1;���i)�Ai;1(C4;���i)

;
V 4(C4)�V 2(C2)

Ai;1(C2;���i)�Ai;1(C4;���i)

9>=>; � �ui:

where all the denominators are positive by Lemma 2 and Proposition 1.
It needs to be shown that the minimum operation always returns a non-negative value,

or V k
�
Ck
�
� V k0

�
Ck

0� � 0 for k = 3; 4 and k0 = 1; 2. Recall that Ai;1 �Ck; ���i� ûi;1 +
V k
�
Ck
�
is de�ned as the value function when kth choice is School 1. Therefore, V k

�
Ck
�

is the part of the expected utility which is from schools other than School 1 while the kth
choice is taken. Under Assumption ZERO-PROB, by Part (iv) of Proposition 2, moving
s 6= 1 towards the top strictly increases the probability of being accepted by s. Therefore,
the arguments similar to those in the proof of Proposition 2's Part (iii) can be used to verify
that V k

�
Ck
�
� V k0

�
Ck

0� � 0 for k = 3; 4 and k0 = 1; 2.
This proves that when (ui;1 � ui;s0) < �ui, i does not rank School 1 as top 2, and �ui is

non-negative and is a function of i's beliefs and preferences but not of ui;1.
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A.2 Data Cleaning and Likelihood Estimation
A.2.1 Data Cleaning and Imputation

The data set that I use in this paper is a subsample of the data set that has been used in Lai,
Sadoulet, and de Janvry (2009), Lai (2010), and Lai, Sadoulet, and de Janvry (2011).
Students' submitted lists are the most important variable. There are two types of "tech-

nical errors" among the lists as de�ned in Lai, Sadoulet, and de Janvry (2009): (i) repeated
choice of a school and (ii) applying to schools not accessible to the neighborhood with the
assignment system. Among the 914 students, there are 6 cases of type (i) error and 3 of
type (ii) error.
The �rst 6 students submitted lists as follows: (2; 3; 3; 3), (2; 3; 1; 2), (2; 1; 3; 2), (1; 1; 0; 0)�

two cases, and (1; 2; 2; 3). I replace these lists by (2; 3; 0; 0), (2; 3; 1; 4), (2; 1; 3; 4), (1; 0; 0; 0),
and (1; 2; 3; 4) respectively. The replacement for the �rst 4 lists is straightforward, as they
are payoff-equivalent in any realization of the game. Replacing (1; 2; 2; 3) by (1; 2; 3; 4)
is because this student shows a preference of School 3 over School 4. The results do not
change in a few cases that I have experimented when (1; 2; 2; 3) is replaced by (1; 2; 0; 0).
The second 3 cases are those who have submitted (2; 3; 1; s0)�2 cases and (2; 1; s00; 4),

where s0 6= s00 =2 f0; 1; 2; 3; 4g. I replace the �rst list by (2; 3; 1; 4), as they are always
payoff equivalent. (2; 1; s00; 4) is either replaced by (2; 1; 0; 0) or (2; 1; 3; 4). (2; 1; 0; 0)
is payoff equivalent in the observed play of the game. I also consider (2; 1; 3; 4) as an
alternative because the code for School 3 in the application is 15, while the code for s00 is
25. Therefore, it is likely that (2; 1; s00; 4) is submitted or recorded as a typo. I present the
results when (2; 1; s00; 4) is replaced by (2; 1; 3; 4).
The main explanatory variables areDistancei;s,Own_Scorei, Parent_Incomei, Parent_Edui,

and Awardi.
Distancei;s measures the walking distance between i's home address and school s, and

both addresses are from 1999. I use the Chinese version of GoogleMaps, http://ditu.google.cn/,
to get the walking distance. Students' home addresses are from the administrative data, and
there are 4 students missing home address. Their distances are assigned at the medians.
Own_Scorei is the sum of student i's scores of Chinese and math in grade 6 which is

the �nal year of elementary school. They scores are from administrative data, but there are
125 missing values. To impute, I follow the 3 steps: (i) I regress these test scores on their
test scores from the two semesters of grade 7 controlling middle school and elementary
school �xed effects, then I do the out-of-sample prediction. (ii) I run similar regressions
but with Parent_Edui as main regressor and then do out-of sample predictions. (iii) The
remaining missing values are replaced by the median.
Parent_Incomei is the sum of father's and mother's income. There are 108 missing

values in father's income and 100 in mother's. Some of the missing values in Parent_Incomei
are replaced by the households disposable income plus the average difference between
Parent_Incomei and the disposable income. I regress their own income on different com-
binations of their own and their spouse's education, political af�liations, and ages, the
disability status (of either of them), and their spouse's income, and then do out-of-sample

57



Supplementary Material for Online Publication

prediction to further impute Parent_Incomei.
Parent_Edui is the average years of schools of parents. There are 49 missing values. I

regress Parent_Edui on different subsets of the variables, Parent_Incomei, father's and
mother's political af�liations, father's and mother's job stabilities, and the disability status
(of either of them). Then I do out-of-sample predictions to impute Parent_Edui.
Awardi are calculated from 6 questions in the 2002 survey. These questions ask stu-

dents if they have received any awards at district level or above in 6 different categories
during the six years of elementary study � all-round excellence, excellence in speci�c sub-
jects, in science and technology contests, in arts and sports, in student leadership, and
others. For the responses to each question, it takes one of the values of 0, 1, or missing
(which is treated as 0).

A.2.2 Optimization in the Maximum Likelihood Estimation

The objective function, the negative of likelihood function in each case, is minimized
mainly using Chris Sims Matlab "csminwel" algorithm which is a quasi-Newton method
with BFGS update of the estimated inverse Hessian.25 Based on my experiments, it is much
faster than other Matlab packages.
As discussed in details in Appendix A.3, I use a logit-smoothed accept-reject simulator

to get the choice probabilities. Different values of scale factor, �, which determines the
degree of smoothing are experimented: � = 0:05; 0:025; 0:01; 0:005. For a given case, i.e.,
a given likelihood function, the following procedure is followed to get the estimates.

(i) For any given value of �, to avoid local optimum problem, I use Sims' algorithm to
minimize the objective function four times each of which has randomly chosen start-
ing values. Among the four sets, I �nd the set of parameters which minimizes the
objective function.

(ii) For a given �, I �nd the set of estimates minimizing the objective function among the
3 sets which are estimated given a different value of �. Using this set of parameter
estimates as starting values, I minimize the objective function one more time for each
given �. The algorithm used for � = 0:01 is the "simulannealbnd" algorithm which
is a simulated annealing algorithm canned in Matlab. For other values of �, Sims'
algorithm is used again.

(iii) For each �, I now have 5 sets of estimates from which I choose the one minimizing
the objective function as the �nal estimates.

In the paper, I only report results from � = 0:01, and results are similar for different
values of �. All results are available upon request.
25The package is available at: http://sims.princeton.edu/yftp/optimize/
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A.2.3 Simulated Maximum Likelihood with Equilibrium Constraints

For the estimation in the case of Bayesian Nash equilibrium, the realized play of the game
is used to calculate the equilibrium beliefs. It is also tempting to consider an alternative
approach, a (simulated) maximum likelihood with equilibrium constraints as follows:

max
�;B

IX
i=1

ln [Pr (CijX i;Zi; B;�)] , s:t:; B (�; ��ijB;�) = B; (6)

where the constraint restricts the beliefs to be a �xed point in equilibrium. B is de�ned as
the "beliefs" implied byB, i.e.,B (C; ��ijB;�) = [A1 (C; ��ijB;�) ; :::; AS (C; ��ijB;�)],
and As (C; ��ijB;�) =

PL(I�1)

n=1 Pr
�
Cn�i played under ��i given B and �

�
as
�
C;Cn�i

�
. B

is also formulated by simulation which is described in Appendix A.6.
The problem with this approach is that given �, there might be multiple equilibria. In

other words, the �xed point, B (�; ��ijB;�) = B, may not be unique for given �, although
in many numerical computation procedures there might be a unique solution. I therefore do
not consider this approach in the paper. Instead, the method is used to solve the Bayesian
Nash equilibrium in counterfactual analyses.
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A.3 Heterogeneous information on Students' Characteristics
This appendix considers that the case when some parents know more than others about
other students/parents' characteristics. Therefore, (X i;Zi) is no longer private informa-
tion.

Proposition 3 Consider the following scenario:
(i) Every parent has the same ability to process information;
(ii) Parent i also knows the realization ofX i �

�
�X i1 ; :::; �X iF

	
, where �X i � (X i;Zi),

F is �xed and X i may be different across parents.
Given the number of schools, as the number of parents becomes larger and the quotas

grow at the same rate, the beliefs converge to a common belief, Bi (C) ! B (C), 8i,
8C 2 C:

Proof of Proposition 3.
A student's decision is to choose one of the L possible lists. Fix the order of all the lists,

and let di = (di;1; :::; di;L)
0, and di;l = 1 if the lth list is chosen by student i and di;l = 0

otherwise. Thus,
PL

l=1 di;l = 1.
Without loss of generality, consider student 1's decision and supposeX 1 =

�
�X2; :::; �XF+1

	
.

Her perceived probability of other students' choices is a function of her information set �
X1, X 1 and the distributions ofX i and "i, i > 1.
Let (�i;1; :::; �i;L) be student 1's belief about the probability that each list is being cho-

sen by student i. Given the continuous distribution of ", E (di;l) = �i;l 2 (0; 1) andPL
l=1 �i;l = 1 for all l and i.
For i = 2; :::; F + 1, the beliefs are a function of the realization of X 1,

(�i;1; :::; �i;L) = (�i;1 (X1) ; :::; �i;L (X1)) :

Given that
�
X i

	I
i=1
are i.i.d. across students, then 8i = F + 2; :::; I;

(�i;1; :::; �i;L) � (�1; :::; �L) ;

which is not a function of X 1.
Consider a vector of random variables, N I �

PI
i=2 di =

�
N I
1 ; N

I
2 ; :::; N

I
L

�0 2 NL,
which are the numbers of students submitting each list, i.e.,

N I
l =

IX
i=2

di;l;

LX
l=1

N I
l = I � 1, N I

l � 0 and N I
l � I � 1:

In any realization of the game, N I is a suf�cient statistics to calculate the probability
of being accepted by each school for Student 1, given the anonymity of the mechanism.
Therefore, in the following I focus on the distribution of N I . Two de�nitions are also
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introduced:

�I � 1

I � 1

 
F+1X
i=2

�i;1 + (I � F � 1)�1; :::;
F+1X
i=2

�i;L + (I � F � 1)�L

!
;

QI � 1

I � 1

2666666664

PF+1
i=2 �i;1 (1� �i;1)

+ (I � F � 1)�1 (1� �1)
:::

PF+1
i=2 �i;1�i;L

+(I � F � 1)�1�LPF+1
i=2 �i;1�i;2

+(I � F � 1)�1�2
::

PF+1
i=2 �i;2�i;L

+(I � F � 1)�2�L
::: ::: :::PF+1

i=2 �i;1�i;L
+(I � F � 1)�1�L

:::

PF+1
i=2 �i;L (1� �i;L)

+ (I � F � 1)�L (1� �L)

3777777775
;

Consider the number of parents grows, i.e., I !1,

lim
I!1

�I = (�1; :::; �L) � �;

lim
I!1

QI =

2664
�1 (1� �1) ::: �1�L
�1�2 :: �2�L
::: ::: :::
�1�L ::: �L (1� �L)

3775 � Q;
where Q is a �nite, positive de�nite matrix, since it is the covariance matrix for di, for
i > (F + 1).
To use the Multivariate Lindeberg�Feller Central Limit Theorem (see for example,

Greene (1999), page 117), the following conditions are checked and are satis�ed:

lim
I!1

�
(I � 1)QI

��1
V ar (di) = lim

I!1

 
IX
j=2

V ar (dj)

!�1
V ar (di) = 0;8i = 2; :::; I:

Therefore,
p
I � 1

�
N I

I � 1 � �
I

�
d! N (0; Q) ; as I !1:

Moreover, limI!1
p
I � 1

�
�I � �

�
= 0, and thus,

p
I � 1

�
N I

I � 1 � �
�

d! N (0; Q) ; as I !1: (7)

61



Supplementary Material for Online Publication

Similarly, when �X i is private information, with fN I
as the counterpart of N I , by the

Multivariate Lindberg�Levy Central Limit Theorem, one can show that

p
I � 1

 fN I

I � 1 � �
!

d! N (0; Q) ; as I !1: (8)

One need to prove that the sequences of random variables,
p
I � 1

�
NI

I�1 � �
�
and

p
I � 1

�fNI

I�1 � �
�
, would lead to Student 1 having the same beliefs when I grows. Namely,

given nI as an any realization ofN I andfN I
,

lim
I!1

h
Pr
�
N I = nI

�
� Pr

�fN I
= nI

�i
= 0; (9)

which is true because of the convergence in (7) and (8), and because

lim
I!1

Pr
�
N I = nI

�
= lim

I!1
Pr

�p
I � 1

�
N I

I � 1 � �
�
=
p
I � 1

�
nI

I � 1 � �
��

= lim
I!1

Pr

�p
I � 1

�
N I

I � 1 � �
�
2 Ball

�p
I � 1

�
nI

I � 1 � �
�
;

1

2
p
I � 1

��
= �Q

�p
I � 1

�
N I

I � 1 � �
�
2 Ball

�p
I � 1

�
nI

I � 1 � �
�
;

1

2
p
I � 1

��
= lim

I!1
Pr
�fN I

= nI
�
;

where Ball
�p
I � 1

�
nI

I�1 � �
�
; 1
2
p
I�1

�
is an open ball centered at

p
I � 1

�
nI

I�1 � �
�

with a radius of 1
2
p
I�1 , and �Q is the distribution function for N (0; Q). The second-to-

last equation comes from the de�nition of convergence in distribution (see for example
Bhattacharya (1977) in a multidimensional setting).
By de�nition, given the information X 1, the beliefs of Student 1 are, 8s,

A1;s
�
C; ��i;X 1

�
=

L(I�1)X
n=1

Pr
�
Cn�i played under ��ijX 1

�
as
�
C;Cn�i

�
;

which can be re-written as:

A1;s
�
C; ��i;X 1

�
=
X
8nI
Pr
�
N I = nI under ��ijX 1

�
�as
�
C;nI

�
,
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where �as
�
C;nI

�
is the probability that Student 1 is accepted by s while others' submitted

lists are such that nI is realized. By the result in (9), as I !1,�
A1;s

�
C; ��i;X 1

�
� A1;s (C; ��i)

�
! 0,

where A1;s (C; ��i) is the one when �X i is private information.
Since this can be proved this for any other student, the beliefs converge: Bi (C) !

B (C), 8i, 8C 2 C:

Corollary Under the same conditions at in Proposition 3, and that �Xi is now common
knowledge, the beliefs converge to a common belief, Bi (C)! B (C), 8i, 8C 2 C:

In this corollary, the difference between any two students, i and j, is their information
about their opponents, the realizations of �X�i and �X�j . However, the difference between
�X�i and �X�j is very limited, since �X�i =

�
�X�i;j; �Xj

�
and �X�j =

�
�X�i;j; �X i

�
where

(�i; j) denotes the students other than i and j. By the same argument in Proposition 3, the
beliefs converge.
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A.4 Assumption on Non-Participants
One of the maintained assumptions is as follows:
AM.4. A parent does not participate, or submits (0; :::; 0), if and only if no school is

acceptable.
It should be less of a concern that if a parent �nds no school acceptable, she does not

participate. I discuss why the reverse might not be true in reality and consider alternative
ways to model the decision of non-participation.
In the data, as Table 2 shows, there are 181 non-participants. Among them, only 71

are enrolled in a school other than the four inside schools, and the other 110 (60.77%) are
enrolled in one of the four schools. This implies that 60.77% of the non-participants may
�nd at least one school acceptable. One possible explanation is that they take the outside
option without making extra payments, as they might have succeeded in the entrance exam
or have earned city-level awards. Indeed, the non-participants have higher test scores and
hold more awards, as Table 4 shows. If these parents are asked to make a payment, the
amount might be low since they are more likely to be well connected, given their higher
income and educational attainment, or the marginal disutility of making such a payment is
low for these parents. This implies that they choose the outside option even when there is
a school s such that ui;s = 0 or ui;s is close to zero. Therefore, the bias due to assumption
AM.4 might be small.
Besides, a parent may still choose not to participate in the assignment mechanism even

when she �nds some schools acceptable, for the following reasons:
First, parents may be uncertainty averse or ambiguity averse. In the game, they under-

stand that the outcome of the mechanism is uncertain, and they do not know the probabil-
ities of each event. Uncertainty aversion thus makes parents to choose a certain outcome,
the outside option in this case, even when there is an acceptable school.
Second, although they have subjective probabilities of each event, they might not use

expected utility theory to make decisions, but use the prospect theory or other alternatives.
Third, in particular, the value of outside option might increase over time. For example,

the lump-sum payment to the accepting school may decrease (increase) after the mecha-
nism if there are fewer (more) people who would like to pay. Besides, after everyone gets
the assignment from the mechanism, parents may have a better assessment on the peer
quality at each school, and thus they may change their preferences.
Given the considerations above, it might be more realistic to consider the following

assumption:
AM.4'. A parent does not participate or submits (0; :::; 0) if and only if the expected

utility from participating is lower than a threshold, u.
Unfortunately, to calculate the expected utility, one has to specify the beliefs. Therefore,

this is not feasible in the case where beliefs are allowed to be heterogeneous.
Another alternative is as follows:
AM.4�. A parent does not participate or submits (0; :::; 0) if and only if ui;s < u for all

s.
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This assumption would be suf�cient to identify the model. However, u has no reason-
able interpretation, as it does not correspond to the cost of participation or the potential
decrease in the value of outside option. I thus do not consider this either in the paper.
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A.5 Characterization of Choice Probabilities
A.5.1 General Case with All-Positive Beliefs

Given S = 4, I group the lists into 15 groups, gn, n = 1; :::; 15: There are one group with
(0; 0; 0; 0), four groups with only one school being ranked, six groups with two schools
being ranked, and four groups with all schools are ranked. The main criteria of grouping
are the number of schools included in the list and also the identities of them. The choice
probabilities now should be interpreted as the probabilities of choosing a group, gn, or
choosing any list within that group, Ci 2 gn.
Also recall thatmK;l, l � K , is the probability that a l-school list is submitted while onlyK

schools are acceptable.

Characterization of Choice Probabilities When S = 4, the conditional probability of i
choosing a group gi, Pr (Ci 2 gnjX i;Zi;�), is
(i) if Ci 2 g1 = f(0; 0; 0; 0)g, Pr (ui;s < 0, for all sjX i;Zi;�);
(ii) if Ci 2 gn = f(c1; 0; 0; 0)g (n = 2; :::; 5 given the identity of c1),
m1;1 � Pr (ui;c1 > 0 > ui;s, for s 6= c1jX i;Zi;�)

(iii) if Ci 2 gn = f(c1; c2; 0; 0) ; (c2; c1; 0; 0)g (n = 6; :::; 11 given the identities of c1
and c2),
m2;2 � Pr (ui;c1 ; ui;c2 > 0 > ui;s, for s 6= c1; c2jX i;Zi;�)

+m1;2 �
�
Pr (ui;c1 > 0 > ui;c2 > ui;s, for s 6= c1; c2jX i;Zi;�)
+Pr (ui;c2 > 0 > ui;c1 > ui;s, for s 6= c1; c2jX i;Zi;�)

�
(iv) if Ci 2 gn = ffull lists s.t. the 4th is always c4g, (n = 12; :::; 15 given the iden-
tity of c4),
Pr
�
ui;c1 ; ui;c2 ; ui;c3 > 0;ui;c4 = min fui;sg4s=1 jX i;Zi;�

�
+m1;4 �

24 Pr (ui;c1 > 0 > max (ui;c2 ; ui;c3) > min (ui;c2 ; ui;c3) > ui;c4jX i;Zi;�)
+Pr (ui;c2 > 0 > max (ui;c1 ; ui;c3) > min (ui;c1 ; ui;c3) > ui;c4jX i;Zi;�)
+Pr (ui;c3 > 0 > max (ui;c1 ; ui;c2) > min (ui;c1 ; ui;c2)ui;c4jX i;Zi;�)

35
+m2;4 �

24 Pr (ui;c1 ; ui;c2 > 0 > ui;c3 > ui;c4jX i;Zi;�)
+Pr (ui;c1 ; ui;c3 > 0 > ui;c2 > ui;c4 jX i;Zi;�)
+Pr (ui;c2 ; ui;c3 > 0 > ui;c1 > ui;c4 jX i;Zi;�)

35
A.5.2 General Case with Some Possibly Zero Elements in Beliefs

Putting together Proposition 2, Assumptions UNACCEPTABLES, MIXING, A-ZERO-
PROB, and A-ZERO-PROB-MIXING, I re-group the lists and characterize the choice prob-
abilities as follows:

Characterization of Choice Probabilities When S = 4, the conditional probability of i
choosing a group �gn, n = 1; :::; 18, Pr

�
Ci 2 �gnjX i;Zi; ��

�
, is

66



Supplementary Material for Online Publication

(i) if Ci 2 �g1 = f(0; 0; 0; 0)g, Pr
�
ui;s < 0, for all sjX i;Zi; ��

�
;

(ii) if Ci 2 �gn = f(c1; 0; 0; 0)g (n = 2; :::; 5 given the identity of c1),
m1;1 � Pr (ui;c1 > 0 > ui;s, for s 6= c1jX i;Zi;�)

(iii) if Ci 2 �gn = f(c1; c2; 0; 0) ; (c2; c1; 0; 0)g, s.t., c1 or c2 = 1, (n = 6; 7; 8 given
the identities of c1, c2),
m2;2 � Pr

�
ui;c1 ; ui;c2 > 0 > ui;s, for s 6= c1; c2jX i;Zi; ��

�
+m1;2 �

�
Pr (ui;c1 > 0 > ui;c2 > ui;s, for s 6= c1; c2jX i;Zi;�)
+Pr (ui;c2 > 0 > ui;c1 > ui;s, for s 6= c1; c2jX i;Zi;�)

�
(iv) if Ci 2 �gn = f(c1; c2; 0; 0) ; (c2; c1; 0; 0)g s.t., c1; c2 6= 1, (n = 9; 10; 11 given the
identities of c1, c2),
m2;2 � Pr

�
ui;c1 ; ui;c2 > 0 > ui;s, for s 6= c1; c2jX i;Zi; ��

�
+m1;2 �

�
Pr (ui;c1 > 0 > ui;c2 > ui;s, for s 6= c1; c2jX i;Zi;�)
+Pr (ui;c2 > 0 > ui;c1 > ui;s, for s 6= c1; c2jX i;Zi;�)

�
+
�
Pr
�
ui;1; ui;c1 ; ui;c2 > 0;ui;1 �min (ui;c1 ; ui;c2) < �ui;ui;4 < 0; jX i;Zi; ��

��
�Pr

�
Omitting School 1 and the worst when only the worst is unacceptable
and School 1 is acceptable and is optimally ranked outside top 2.

�
+
�
Pr
�
min fui;sg4s=1 > 0;ui;1 �min (ui;c1 ; ui;c2) < �ui; jX i;Zi; ��

��
�Pr

�
Omitting School 1 and the worst when even the worst is acceptable
and School 1 is not the worst and is optimally ranked outside top 2.

�
(v) ifCi 2 �gn = ffull list s.t. School 1 (denoted as c1) is 1st or 2nd and the 4th is always c4g,
(n = 12; 13; 14 given the identities of c4),
Pr
�
ui;c1 ; ui;c2 ; ui;c3 > 0;ui;c1 �min (ui;c2 ; ui;c3) > �ui;ui;c4 = min fui;sg4s=1 jX i;Zi; ��

�
+m1;4 �

24 Pr �ui;c1 > 0;ui;c4 < min (ui;c2 ; ui;c3) < max (ui;c2 ; ui;c3) < 0jX i;Zi; ��
�

+Pr
�
ui;c2 > 0;ui;c4 < ui;c3 < ui;c1 < 0jX i;Zi; ��

�
+Pr

�
ui;c3 > 0;ui;c4 < ui;c2 < ui;c1 < 0jX i;Zi; ��

�
35

+m2;4 �
�
Pr
�
ui;c1 ; ui;c2 > 0;ui;c4 < ui;c3 < 0jX i;Zi; ��

�
+Pr

�
ui;c1 ; ui;c3 > 0;ui;c4 < ui;c2 < 0jX i;Zi; ��

� �
(vi) ifCi 2 �gn = ffull list C s.t. School 1 (denoted as c3) is 3rd and the 4th is always c4g,
(n = 15; 16; 17 given the identities of c1 and c2),
Pr
�
ui;c1 ; ui;c2 ; ui;c3 > 0;ui;c3 �min (ui;c1 ; ui;c2) < �ui;ui;c4 < 0jX i;Zi; ��

�
�Pr

�
Including School 1 and the worst when only the worst is unacceptable
and School 1 is acceptable and is optimally ranked outside top 2.

�
+Pr

�
ui;c4 = min fui;sg4s=1 > 0;ui;c3 �min (ui;c1 ; ui;c2) < �ui; jX i;Zi; ��

�
�Pr

�
Ranking School 1 third when the worst is acceptable and
School 1 is not the worst and optimally ranked outside top 2.

�
+m1;4 �

�
Pr
�
ui;c1 > 0 > ui;c2 > ui;c3 > ui;c4jX i;Zi; ��

�
+Pr

�
ui;c2 > 0 > ui;c1 > ui;c3 > ui;c4jX i;Zi; ��

� �
+m2;4 �

�
Pr
�
ui;c1 ; ui;c2 > 0 > ui;c3 > ui;c4jX i;Zi; ��

��
(vii) if Ci 2 �g18 = ffull list s.t. School 1 (denoted as c4) is ranked 4thg,
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Pr
�
ui;c1 ; ui;c2 ; ui;c3 > 0;ui;c4 = min fui;sg4s=1 jX i;Zi; ��

�
+

24 Pr
�
ui;c3 = min fui;sg4s=1 > 0;ui;c4 �min (ui;c1 ; ui;c2) < �ui; jX i;Zi; ��

�
+Pr

�
ui;c2 = min fui;sg4s=1 > 0;ui;c4 �min (ui;c1 ; ui;c3) < �ui; jX i;Zi; ��

�
+Pr

�
ui;c1 = min fui;sg4s=1 > 0;ui;c4 �min (ui;c2 ; ui;c3) < �ui; jX i;Zi; ��

�
35

�Pr
�

Ranking School 1 fourth when the worst is acceptable and
School 1 is not the worst and is optimally ranked outside top 2.

�
+m1;4 �

24 Pr
�
ui;c1 > 0;ui;c4 < min (ui;c2 ; ui;c3) < max (ui;c2 ; ui;c3) < 0jX i;Zi; ��

�
+Pr

�
ui;c2 > 0;ui;c4 < min (ui;c1 ; ui;c3) < max (ui;c1 ; ui;c3) < 0jX i;Zi; ��

�
+Pr

�
ui;c3 > 0;ui;c4 < min (ui;c1 ; ui;c2) < max (ui;c1 ; ui;c2) < 0jX i;Zi; ��

�
35

+m2;4 �

24 Pr
�
ui;c1 ; ui;c2 > 0 > ui;c3 > ui;c4 jX i;Zi; ��

�
+Pr

�
ui;c1 ; ui;c3 > 0 > ui;c2 > ui;c4jX i;Zi; ��

�
Pr
�
ui;c2 ; ui;c3 > 0 > ui;c1 > ui;c4jX i;Zi; ��

�
35

A.5.3 Everyone Is Truth-Telling

Now suppose everyone reports their true preference ranking. To characterize the choice
probability, one also need to use Assumptions UNACCEPTABLES and MIXING because
of the unacceptable schools. In the following, grouping is not needed.

Characterization of Choice Probabilities Given that researchers observe (X i;Zi), the
equilibrium beliefs B�, and with � denoting the unknown parameters, in equilibrium, the
conditional probability of i choosing Ci in equilibrium, Pr (CijX i;Zi; B

�;�), is:
(i) if Ci = (0; 0; 0; 0), Pr (ui;s < 0, for all sjX i;Zi; B

�;�);
(ii) if Ci = (c1; 0; 0; 0),
m1;1 � Pr (ui;c1 > 0 > ui;s, for s 6= c1jX i;Zi; B

�;�)
(iii) if Ci = (c1; c2; 0; 0),
m2;2 � Pr (ui;c1 > ui;c2 > 0 > ui;s, for s 6= c1 6= c2jX i;Zi; B

�;�)
+m1;2 � Pr (ui;c1 > 0 > ui;c2 > ui;s, for s 6= c1 6= c2 jX i;Zi; B

�;�)
(iv) if Ci = (c1; c2; c3; c4),
Pr (ui;c1 > ui;c2 > ui;c3 > 0 > ui;c4jX i;Zi; B

�;�)
+m1;4 � Pr (ui;c1 > 0 > ui;c2 > ui;c3 > ui;c4jX i;Zi; B

�;�)
+m2;4 � Pr (ui;c1 > ui;c2 > 0 > ui;c3 > ui;c4jX i;Zi; B

�;�)
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A.6 The Logit-Smoothed Reject-Accept Simulator and Solving the Equi-
librium

This appendix describes the logit-smoothed reject-accept simulator, how to simulate the
choice probabilities, and how to �nd equilibrium beliefs when the parameters in the utility
function and parents' strategies are given.
The simulator is implemented in the following steps, as described in Chapter 5 of Train

(2009).

1. Draw a value of the 4-dimensional vector of errors, "ri = Lri�, as follows:

� Draw 4 values from a standard normal density using a random number gener-
ator. Stack these values into a vector, and label the vector �r. In the paper,
randomized Halton sequences are used to reduced variance of the simulator, as
suggested in Chapter 9 of Train (2009)

� Calculate "ri = Lri�, where Li is the Cholesky factor of �.

2. Repeat Step 1 for r = 2; :::; 300, and calculate uri;s given (X i;Zi) and parameters.

3. To calculate logit formula for corresponding events and/or choice probabilities, for
example, ui;4 = min fui;sg4s=1, I de�ne:

Sr =
1

1 + exp
��
uri;4 � uri;1

�
=�
� 1

1 + exp
��
uri;4 � uri;2

�
=�
� 1

1 + exp
��
uri;4 � uri;3

�
=�
� ;

where � > 0 is a scale factor and I experiment it with � = 0:05; 0:025; 0:01; 0:005.
Those presented in the paper is from � = 0:01.

4. The simulated probability of the corresponding event is thenfPr = 1
300

P300
r=1 S

r.

It is easy to verify thatfPr is strictly positive and twice differentiable.
With the help of this simulator, the following procedure can be used to solve the

Bayesian Nash equilibrium in the Monte Carlo experiment. The basic idea is illustrated
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in the following mapping:

Given the common strategy �i (X i;Zi; "i;B) , start with beliefs B (C) ;8C 2 C
+

Possible Pro�les:
�
C;Cn�1

��
C;C1�1

��
C;C2�1

�
:::h

C;CL
(I�1)

�1

i
Prob(accepted by each school jCn�1)

as
�
C;C1�1

�
as
�
C;C2�1

�
:::

as

�
C;CL

(I�1)
�1

�
Prob(Cn�1 Chosen)

p
�
C1�1jB

�
p
�
C2�1jB

�
:::

p
�
CL

(I�1)
�1 jB

�
+

As (C;B) =
PL(I�1)

n=1 p
�
Cn�1jB

�
as
�
C;Cn�1

�
;8C 2 C;8s = 1; :::; S

Implied Probabilities: B (C;B) = (A1 (C;B) ; :::; AS (C;B))
Mapping from Beliefs to the Implied Probabilities for Student 1

Since everyone has the same beliefs, it is suf�ce to just look at Student 1's probabilities
of being admitted by the schools in her list. The simulation of the implied probabilities has
seven steps as following:

1. Draw NC (= 20,000) pro�les of choice lists,
�
Ci =

�
c1i ; :::; c

S
i

�	I
i=2
, Given each

pro�le, fCigIi=2, student 1 tries all (S!) full choice lists. Combine them together, I
create S!�NC pro�les of fCigIi=1. Among 20,000 pro�les,

� a quarter of them are drawn from the distribution of observed lists plus 9 "im-
puted" observation each of which is one of the 9 lists which are not observed in
the data;

� another quarter are random draws from the L (=41) possible lists;
� another quarter are such that a half of the students are randomly �xed at one of
the L (=41) possible lists, while the other half take a random draw from the L
lists;

� the last quarter are random draws from a distribution of true preference orders
which are predicted using the estimates from the Zero_Belief case.

2. Given each pro�le of lists,
n
C1; fCigIi=2

o
, create a set of random lottery numbers,

rs = 1, and then run the admission process to see which school admits student 1,
i.e., get the values for the following indicator functions:

1rs
�
Student 1 assigned to sjC1; fCigIi=2

�
; s = 1; :::; S;

3. Repeat Step 2 with different lottery number draws, rs = 2; :::; 1000, and calculate
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the probabilities of Student 1 being admitted by every s respectively.

fPr�Student 1 assigned to sjC1; fCigIi=2�
=

1

1000

1000X
rs=1

1rs
�
Student 1 assigned to sjC1; fCigIi=2

�
, s = 1; :::S.

4. Repeat Steps 2 and 3 for all S! pro�les lists with fCigIi=2 �xed and Student 1 selecting
each of all S! choice lists.

The above four steps are independent of the belief system and the error terms in the
utility functions. Thus they are only simulated once.

5. Simulate the probability of choosing each list by logit-smoothed accept-reject simu-
lator.
Given the utility functions, simulate r = 1; :::; 300 draws of f�rig

I
i=2. Given the

candidate belief, B, the simulated probability of student i a list Ck is

eP �CkjX i; fzsgSs=1 ;�
�
=

1

300

300X
r=1

1r (CijX i;Zi;�;B) ; k = 1; :::; L;

where 1r (CijX i;Zi;�;B) is an indicator function of Ci being choosing as a best
response given B. Note that 1r

�
CijX i; fzsgSs=1 ;�

�
may be weighted by the corre-

sponding mixing probabilities.

6. Calculate the average choice probability for the L choice lists:

ePk = 1

914

914X
i=1

eP �CijX i; fzsgSs=1 ;�
�
; k = 1; :::; L:

7. Calculate the probability of the pro�les
�n
C
(t)
i

oI
i=2

�NC
t=1

simulated in Step 1 being

realized, i.e., if
n
C
(t)
i

oI
i=2
=
�
C
(t)
2 ; C

(t)
3 ; :::; C

(t)
I

�
, then

fPr�nC(t)i oI
i=2

realized
�
=
1

K

IY
i=2

"
LY
k=1

� ePk�1�C(t)i =Ck

�#
;
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where K is a normalization term,

K =
NCX
t=1

fPr�nC(t)i oI
i=2

realized
�
:

8. Calculate the implied probability of Student 1 being admitted by school s as follows,
8s = 1; :::; S:

fPr (Student 1 assigned to s when submitting C)
=

1

NC

NCX
t=1

fPr�Student 1 assigned to sjC;nC(t)i oI
i=2

�
�fPr�nC(t)i oI

i=2
realized

�
:

This is calculated for all S! possible full lists. All the probabilities together are the
simulated implied probabilities, �B (�; B).

9. The equilibrium belief is a �xed point: �B (�; B) = B.

Note that the above Steps 6 and 7 can be replaced by the following one step:

6' Calculate the probability of the pro�les
�n
C
(t)
i

oI
i=2

�NC
t=1

simulated in Step 1 being

realized, i.e., if
n
C
(t)
i

oI
i=2
=
�
C
(t)
2 ; C

(t)
3 ; :::; C

(t)
I

�
, then

fPr�nC(t)i oI
i=2

realized
�
=
1

K

IY
i=2

eP �C(t)i jX i; fzsgSs=1 ;�
�
;

where K is a normalization term,

K =

NCX
t=1

fPr�nC(t)i oI
i=2

realized
�
:

The issue with this step in practice is that many fPr�nC(t)i oI
i=2

realized

�
are very

likely to be zero, since each individual might have a very low probability choosing a given
list. Replacing Step 6' with Steps 6 and 7 solves this problem while introducing some sim-
ulation error. To be more precise, This two procedures converge to random draws from two
multinomial normal distributions with the same mean but different variances (difference is
bounded), as can be shown using the same arguments in Appendix A.3.
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A.7 Additional Tables

Table A-1: Attention on Different Aspects of Uncertainties and School Quality
Quota Prob(Bad School) Others' App. School Quality
Full Lista Full Lista Full Lista Full Samplea Full Lista

(1) (2) (3) (4) (5)
Mean(Dep V) 4.232 4.468 2.814 4.151 4.136

Std Dev(Dep V) 0.863 0.740 1.213 0.460 0.467

Parent_Edui 0.016 -0.000 -0.056* -0.001 -0.004
(0.018) (0.016) (0.030) (0.008) (0.010)

Parent_Inci -0.084** -0.003 -0.052 0.043** 0.052**
(0.042) (0.036) (0.070) (0.021) (0.023)

Own_Scorei 0.053 1.037** -1.003 0.224 -0.261
(0.609) (0.518) (1.011) (0.252) (0.339)

Awardsi 0.025 0.048 0.022 0.008 0.002
(0.038) (0.033) (0.064) (0.016) (0.021)

Girli -0.020 -0.008 0.077 0.026 0.028
(0.068) (0.058) (0.112) (0.030) (0.038)

Attn_Othersi -0.029 0.009 0.063*** 0.069***
(0.029) (0.024) (0.013) (0.016)

Attn_Qi 0.529*** 0.379*** 0.610***
(0.082) (0.071) (0.139)

Attn on Quota 0.339*** -0.080 0.145*** 0.161***
(0.037) (0.079) (0.024) (0.030)

Prob(Bad School) 0.465*** 0.033 0.156*** 0.164***
(0.051) (0.093) (0.020) (0.025)

Constant 0.255 -3.95 6.824 1.198 3.544**
(3.15) (2.681) (5.220) (1.297) (1.745)

Observations 457 457 457 676 457
R-squared 0.339 0.344 0.075 0.301 0.299

Results are from OLS regressions, and other variables include �xed effects for elementary schools.
a. The full sample includes every parent whose relevant variables are not missing, and the subsample
with full lists are those who submit a full list.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A-2: Deviation from Best-Responding and Truth-Telling Prediction: Partial Lists
Observed Deviation from the Prediction of

Rank-Ordered Data Best Responding Truth-Telling
Lists Percenta Meanb (10�2) Std. Dev. Meanb (10�2) Std. Dev.

(1; 4; 0; 0) 0.00% -0.06*** 0.001 -0.06*** 0.001
(1; 3; 0; 0) 0.77% 0.07 0.087 0.07 0.087
(1; 2; 0; 0) 1.09% -0.28 0.104 -0.28 0.104
(2; 1; 0; 0) 0.66% 0.54** 0.081 0.54** 0.081
(2; 3; 0; 0) 2.95% 2.63*** 0.169 2.82*** 0.169
(2; 4; 0; 0) 0.22% 0.15 0.047 0.20 0.047
(3; 1; 0; 0) 0.11% -0.23** 0.033 -0.23** 0.033
(3; 4; 0; 0) 0.22% 0.10 0.047 0.15 0.047
(3; 3; 0; 0) 0.11% -1.13*** 0.034 -0.76*** 0.033
(4; 1; 0; 0) 0.00% 0.00*** 0.000 0.00*** 0.000
(4; 3; 0; 0) 0.22% 0.21 0.047 0.22 0.047
(4; 2; 0; 0) 0.00% -0.01*** 0.000 0.00*** 0.000

(2; 0; 0; 0) 0.11% 0.11 0.033 0.11 0.033
(3; 0; 0; 0) 0.66% 0.01 0.081 0.01 0.081
(1; 0; 0; 0) 0.22% -0.17 0.047 -0.17 0.047
(4; 0; 0; 0) 0.11% 0.03 0.033 0.03 0.033
(0; 0; 0; 0) 19.80% -0.71 0.381 -0.71 0.381
A t-test is run for the null hypothesis that each mean equals zero. *** p<0.01, ** p<0.05, * p<0.1.
a. It is the percentage out of the total of 914 students.
b. The means should be interpreted as percentages points, i.e., -0.06 means -0.06 percentage points.
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Table A-4: Who Strategizes Better: Regression Analysis of Sophistication Measures
Most Likely True Preference Order: (1,2,3,4)

Dependent V.: Deviation from Best-Responding Prediction
Mean: 0.0324; Std. Dev: 0.346

Parent_Inci 0.005 -0.000 0.006 -0.006 0.000
(0.017) (0.021) (0.020) (0.022) (0.021)

Parent_Edui -0.001 -0.007 -0.007 -0.012* -0.012*
(0.006) (0.007) (0.007) (0.007) (0.007)

Own_Scorei 0.266* 0.494** 0.537*** 0.632*** 0.678***
(0.136) (0.219) (0.172) (0.231) (0.182)

Awardsi -0.011 -0.008 -0.005 -0.020 -0.017
(0.013) (0.019) (0.015) (0.021) (0.016)

Girli -0.004 -0.004 -0.005 -0.009 -0.009
(0.023) (0.023) (0.023) (0.024) (0.024)

pTT=BRi -0.184 -0.106
(0.357) (0.388)

Gaini 1.822 1.421
(1.177) (1.302)

Attn_U i -0.012 -0.011
(0.019) (0.019)

Attn_Qi 0.053* 0.053*
(0.028) (0.028)

Attn_Othersi -0.018* -0.018*
(0.011) (0.011)

P TTi;k -1.062*** -1.260*** -1.136*** -1.310***
(0.376) (0.360) (0.403) (0.386)

Obs. 914 914 914 810 810
R-Squared 0.029 0.042 0.044 0.057 0.057

De�nitions of pTT=BRi andGaini can be found in Table 11. P TTi;k is the probability
that the list (in the dependent variable) is the true preference ranking All regressions
include a constant and elementary school �xed effects.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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