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Abstract

This letter is devoted to results on intermediate asymptotics for the heat equation. We study the convergence towards
a stationary solution in self-similar variables. By assuming the equality of some moments of the initial data and of the
stationary solution, we get improved convergence rates using entropy / entropy-production methods. We establish the
equivalence of the exponential decay of the entropies with new, improved functional inequalities in restricted classes
of functions. This letter is the counterpart in a linear framework of a recent work on fast diffusion equations, see [8].
Results extend to the case of a Fokker-Planck equation with a general confining potential.
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Consider the heat equation in the euclidean space,

∂u
∂t

= ∆u t > 0 , x ∈ Rd (1)

with an initial condition u0 ∈ L1(Rd). By writing u = u+ − u− where u+ and u− are respectively the positive and
negative parts of u and solving (1) with initial data (u0)+ and (u0)−, we may reduce the problem to the case of a
nonnegative function, corresponding to a nonnegative initial condition u0, without restriction. The heat equation
being linear, we can assume without loss of generality that u0 is a probability measure so that in the sequel of this note∫
Rd u0 dx = 1 =

∫
Rd u(t, x) dx for any t ≥ 0. Getting decay rates and even an asymptotic expansion for large values

of t is completely standard, see for instance [13]. However, a few details and some notations will be useful for later
purpose.

First of all, as a straightforward consequence of the expression of the Green function, G(t, x, y) := (4πt)−d/2 e−
|x−y|2

4t ,
any solution u of (1) can be written as u(t, x) =

∫
Rd u0(y) G(t, x, y) dy and therefore uniformly decays like O(t−d/2)

since, as t → ∞, u(t, x) ∼ G(t, x, 0). It is also classical to estimate the decay of u(t, ·) − G(t, ·, 0) in various Lp(Rd)
norms. Such estimates are called intermediate asymptotics estimates. The point is to determine the first term of
an asymptotic expansion of the solution as t → ∞. For instance, as we shall see below, it can be proved that
‖u(t, ·) −G(t, ·, 0)‖L1(Rd) = O(t−1/2) as t → ∞.

The entropy method can be used among various other approaches to obtain such an estimate. It relies on the
logarithmic Sobolev inequality and goes as follows. First consider the time-dependent rescaling

u(t, x) = R−d v
(
log R, x/R

)
with R = R(t) :=

√
1 + 2 t , t > 0 , x ∈ Rd . (2)
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If u is a solution of (1), then v solves the Fokker-Planck equation

∂v
∂t

= ∆v + ∇ · (x v) (3)

with same initial condition v(t = 0, ·) = u0. Let v∞(x) := (2π)−d/2 e−|x|
2/2 be the unique stationary solution of (3)

with mass 1, and define dµ := v∞ dx as the Gaussian measure. We denote by Lp(Rd) and Lp(Rd, dµ) the Lebesgue
spaces corresponding respectively to Lebesgue’s measure and to the Gaussian measure. Understanding the interme-
diate asymptotics for u amounts to study the convergence of v to v∞, as t → ∞. Define the entropy by E1[w] :=∫
Rd w log w dµ. Let v be a solution of (3) and define w(t, ·) := v(t, ·)/v∞, w0 := w(t = 0, ·). Then d

dt E1[w(t, ·)] =

−I1[w(t, ·)] where I1 is the Fisher information defined by I1[w] :=
∫
Rd w |∇ log w|2 dµ. Gross’ logarithmic Sobolev

inequality exactly amounts to E1[v/v∞] ≤ 1
2 I1[v/v∞] and so, it follows that

E1[w(t, ·)] ≤ E1[w0] e−2 t ∀ t ≥ 0 .

By the Csiszár-Kullback inequality, see for instance [17], we get ‖v(t, ·) − v∞‖2L1(Rd) ≤
1
4 E1[w(t, ·)] and deduce that

‖v(t, ·) − v∞‖L1(Rd) ≤
1
2

√
E1[w0] e−t ∀ t ≥ 0 .

Undoing the change of variables (2) and observing that u∞(t, x) := R(t)−d v∞ (x/R(t)) = G(t + 1/2, ·, 0), we finally get

‖u(t, ·) − u∞(t, ·)‖L1(Rd) ≤
1
2

√
E1[w0]
1 + 2 t

∀ t ≥ 0 ,

which establishes the claimed estimate, namely: ‖u(t, ·) −G(t, x, 0)‖L1(Rd) ≤ O
(
t−1/2

)
as t → ∞. Such an estimate

is quite classical. The above method is known as the Bakry-Emery method or entropy / entropy-production method
and also provides a proof of the logarithmic Sobolev inequality. See [16, 3] for some references on this topic, in the
context of partial differential equations.

By combining L1(Rd) and L∞(Rd) estimates using Hölder’s inequality, we get that

‖u(t, ·) −G(t, ·, 0)‖Lp(Rd) ≤ O
(
t−

1
2 p (1+(p−1) d)

)
as t → ∞ .

In a L2(Rd) framework, a much more detailed description can be achieved using a spectral decomposition. If v is a
solution of (3), then w = v/v∞ is a solution of the Ornstein-Uhlenbeck equation

∂w
∂t

= ∆w − x · ∇w (4)

with initial data w0 = u0/v∞. Notice that
∫
Rd w0 dµ = 1 and, as a consequence,

∫
Rd w(t, ·) dµ = 1 for all t ≥ 0. Define

by (Hk)k∈Nd the sequence of Hermite type polynomials (see for instance [19]) acting on x = (x1, x2 . . . xd) ∈ Rd,
such that Hk(x) :=

∏d
j=1 hk j (x j) where hn(y) := (−1)n (n!)−1/2 ey2/2 dn

dyn

(
e−y2/2), y ∈ R and k = (k1, ..., kd) ∈ Nd.

These functions provide an orthonormal family of eigenfunctions in L2(Rd, dµ) which spans the eigenspaces of the
Ornstein-Uhlenbeck operator, that is − (∆Hk − x · ∇Hk) = |k|Hk, where |k| :=

∑d
j=1 k j. Up to a scaling, (hn)n∈N is the

usual family of Hermite polynomials on R.
If w0 satisfies the orthogonality condition∫

Rd
w0 Hk dµ = 0 ∀ k ∈ Nd such that 0 < |k| < n , (5)

then an improved rate of convergence follows, in the sense that

‖w(t, ·) − 1‖L2(Rd , dµ) ≤ e−n t ‖w0 − 1‖L2(Rd , dµ) ∀ t ≥ 0 .

If (5) initially holds, we indeed have
∫
Rd w(t, ·) Hk dµ = 0 for any t ≥ 0 and any k ∈ Ndsuch that 0 < |k| < n. Then,

since d
dt ‖w(t, ·) − 1‖2L2(Rd , dµ) = −2

∫
Rd |∇w(t, ·)|2 dµ, the conclusion holds using the following result.
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Proposition 1 (Improved Poincaré inequality). Assume that w ∈ L2(Rd) is such that
∫
Rd w dµ = 1 and the condition∫

Rd w Hk dµ = 0 holds for any k ∈ Nd such that 0 < |k| < n. Then the following inequality holds, with optimal constant:

‖w − 1‖2L2(Rd , dµ) ≤
1
n
‖∇w‖2L2(Rd , dµ) .

The proof is no more than a straightforward rewriting of the Rayleigh quotient ‖∇w‖2L2(Rd , dµ)/‖w − 1‖2L2(Rd , dµ) under
the appropriate orthogonality condition. Notice that polynomials Hk are of degree |k| so that the Condition (5) can be
rephrased in terms of moment conditions. See [13, 14] for further results in this direction.

It is natural to search for improved estimates of convergence also in Lp(Rd) with p ∈ [1, 2) by looking for improved
functional inequalities whenever condition (5) is fulfilled. We may for instance quote [2] in which improvements on
the constant, but not on the rates, have been achieved for p = 1.

For any p ∈ (1, 2], consider the generalized entropy

Ep[w] :=
∫

Rd

wp − 1
p − 1

dµ .

This definition is consistent with the definition of E1 because, under the condition
∫
Rd w dµ = 1, Ep[w] =

∫
Rd

wp−w
p−1 dµ→

E1[w] as p → 1. The functional Ep controls the convergence in Lp(Rd, dµ) using a generalized Csiszár-Kullback
inequality. In [9, 4], it has been proved that ‖w − 1‖2Lp(Rd , dµ) ≤

1
p 22/p max

{
‖w‖2−p

Lp(Rd , dµ), 1
}
Ep[w], for any p ∈ [1, 2].

Since ‖w‖L1(Rd , dµ) = 1, we have 1 ≤ ‖w‖pLp(Rd , dµ) = 1 + (p − 1)Ep[w], and so

‖w − 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w]

)
with Ap(s) :=

21/p

√
p

[
1 + (p − 1) s

]1−p/2 √
s . (6)

Next, assume that
∫
Rd w Hk dµ = 0 for any k ∈ Nd such that 0 < |k| < n and consider the generalized Poincaré

inequalities, with p ∈ [1, 2], namely

Ep[w] ≤ Bn,p

∫
Rd

∣∣∣∇wp/2
∣∣∣2 dµ ∀ w ∈ H1(Rd, dµ) . (7)

Such inequalities have been established for n = 1 by W. Beckner in [5] with optimal constant B1,p = 2/p for the
Gaussian measure. By the same method, it has been shown in [1] that for a larger class of measures dµ, if (7) holds
for p = 1 and p = 2, for some positive constants Bn,1 and Bn,2 respectively, then it also holds for any p ∈ (1, 2) with

Bn,p = 1
p−1

[
1 − ((2 − p)/p)Bn,1/(2Bn,2)

]
Bn,2 . (8)

By the logarithmic Sobolev inequality and the improved Poincaré inequality, see Proposition 1, we know that Bn,1 ≤ 2
and Bn,2 = 1/n. Hence it follows that Bn,p ≤

1
p−1

[
1 − ((2 − p)/p)n ] 1

n . On the other hand, as in [3], if w is a solution
of (4), then

d
dt
Ep[w(t, ·)] = −

4
p

∫
Rd

∣∣∣∇w p/2
∣∣∣2 dµ . (9)

If (5) is satisfied, we conclude using (7) and (6) that any solution of (4) with initial data w0 satisfies

Ep[w(t, ·)] ≤ Ep[w0] e−2 λ(n,p) t and ‖w(t, ·) − 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w0]

)
e−λ(n,p) t ∀ t ≥ 0 ,

with λ(n, p) := 2
p n (p − 1)

[
1 − ((2 − p)/p)n]−1. The last estimate holds because, for any t ≥ 0,

‖w(t, ·) − 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w(t, ·)]

)
≤ Ap

(
Ep[w0] e−2 λ(n,p) t

)
≤ Ap

(
Ep[w0]

)
e−λ(n,p) t

Notice that λ(1, p) = 1 and λ(n, 2) = n. Nothing is gained as p→ 1, since limp→1 λ(n, p) = 1 is independent of n.
On the other hand, by Hölder’s inequality, we have for free that ‖w − 1‖Lp(Rd , dµ) ≤ ‖w − 1‖L2(Rd , dµ). Hence, if w

is a solution of (4) with initial data w0, we know that ‖w(t, ·) − 1‖Lp(Rd , dµ) ≤ e−n t ‖w0 − 1‖L2(Rd , dµ) as t → ∞, for any
3



p ∈ [1, 2], if (5) is satisfied. By interpolation, we recover the rates of [13, 14]. However, this is not satisfactory since
neither ‖w0−1‖Lp(Rd , dµ) nor Ep[w0] are involved in the right hand side of the above estimate.

Consider first the case p = 1. An alternative approach is suggested by the method of [7, 6], which applies to
the fast diffusion equation ∂u

∂t = ∆um for m < 1. By assuming some uniform bound on the initial data, which is
preserved along the evolution, it is possible to relate the asymptotic rate for intermediate asymptotics with the spec-
trum of the linearized operator. We can indeed observe that ‖w0 − 1‖2L2(Rd , dµ) ≤ ‖w0 − 1‖L1(Rd , dµ) ‖w0 − 1‖L∞(Rd , dµ) ≤

1
2

√
E1[w0] ‖w0 − 1‖L∞(Rd , dµ) using Hölder’s inequality and the Csiszár-Kullback inequality. This proves that

‖w(t, ·) − 1‖2L1(Rd , dµ) ≤
1
2 ‖w0 − 1‖L∞(Rd , dµ)

√
E1[w0] e−n t as t → ∞

if (5) is satisfied initially. Still, this provides neither an estimate of
∫
Rd w(t, ·) log w(t, ·) dµ nor a functional inequality

which improves upon the logarithmic Sobolev inequality. To prove such an inequality, we keep following the strategy
of [6]. A simple but key idea is to observe that the functions defined for any p ∈ [1, 2] by hp(0) = 1, hp(1) = p/2 and,
for any s ∈ (0, 1)∪(1,∞) by hp(s) := [sp − 1 − p (s − 1)]/[(p−1) |s−1|2] if p > 1, h1(s) := [s log s − (s − 1)]/|s − 1|2,
are continuous, nonnegative, decreasing on R+ and achieve their maximum at 0. Define on L∞(Rd) the functional

Hp[w] := ‖w‖2−p
L∞(Rd) sup

x∈Rd
hp(w(x)) = ‖w‖2−p

L∞(Rd) hp

(
inf
x∈Rd

w(x)
)
.

Theorem 2 (Improved logarithmic Sobolev inequality). Assume that w ∈ L∞+ (Rd) is such that
∫
Rd w dµ = 1 and

satisfies the condition
∫
Rd w Hk dµ = 0 for any k ∈ Nd such that 0 < |k| < n. Then the following inequality holds, with

optimal constant: ∫
Rd

w log w dµ ≤
H1[w]

n

∫
Rd

|∇w|2

w
dµ .

Proof. We may indeed observe that by the Poincaré inequality and using the definition ofH1, we get∫
Rd

|∇w|2

w
dµ ≥

1
‖w‖L∞(Rd)

∫
Rd
|∇w|2 dµ ≥

n
‖w‖L∞(Rd)

∫
Rd
|w − 1|2 dµ ≥

n
H1[w]

∫
Rd

w log w dµ .

The optimality of the constant can be checked by a lengthy but elementary computation using the functions wk
ε :=

Hk(x) χ
(
x ε1/(2n)) + Ck

ε for some smooth truncation function χ such that 0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1) and χ ≡ 0 in
Rd \ B(0, 2). Here for k ∈ Nd is such that |k| = n and the constant Ck

ε is chosen so that
∫
Rd wk

ε dµ = 1. �

As a consequence of the Maximum Principle applied to the heat equation (1) and the fact that to u0 = v∞ corre-
sponds a self-similar solution of (1), namely u(t, x) = G(t + 1

2 , x, 0), we have the estimate

H1[w(t, ·)] ≤ H1[w0] ∀ t ≥ 0 .

By applying Theorem 2, we obtain a new result of decay for E1[w(t, ·)] with a constant which is exactly E1[w0], to the
price of a rate which is less than 2 n.

Corollary 3 (Improved decay rate of the entropy). Let w be a solution of (4) with a nonnegative bounded initial
data w0 ∈ L1(Rd, dµ) such that

∫
Rd w0 dµ = 1 and (5) is satisfied. Then

E1[w(t, ·)] ≤ E1[w0] e−n t/H1[w0] ∀ t ≥ 0 .

This result is actually equivalent to Theorem 2, as follows by differentiating the above inequality at t = 0 (for which
equality is trivially satisfied) and using the fact that −

∫
Rd |∇w0|

2/w0 dµ = d
dt E1[w(t, ·)]|t=0 ≤ E1[w0] d

dt e−n t/H1[w0]
|t=0.

What we have achieved is a global, improved exponential decay of the entropy E1 in a restricted class of func-
tions. To simplify even further, for any ε ∈ (0, 1) and n ∈ N∗, consider the set Xn

ε := {w ∈ L1(Rd, dµ) :
1 − ε ≤ w ≤ 1 + ε a.e. and the condition

∫
Rd w Hk dµ = 0 holds for any k ∈ Nd such that 0 < |k| < n }, which is ap-

propriate to handle the optimality case corresponding to ε → 0+. The best constant in Theorem 2 is indeed asymp-
totically equivalent to the sharp rate of convergence in Corollary 3, in the sense that limε→0+

infw∈Xn
ε

n/H1[w] =

limε→0+
n/[(1 + ε) h(1 − ε)] = 2 n.
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For simplicity, we have considered only the case p = 1, but the method also applies to any p ∈ (1, 2). We
obtain an improved version of (7) under the restriction that w ∈ L1(Rd, dµ) is bounded nonnegative and the condition∫
Rd w Hk dµ = 0 holds for any k ∈ Nd such that 0 < |k| < n. With Bn,1 = 4H1[w]/n and Bn,2 = 1/n, we get
Bn,p ≤ K[n, p,w] := (n (p − 1))−1

[
1 − ((2 − p)/p)2H1[w]

]
by (8). Using the entropy / entropy-production identity (9),

the fact that K[n, p,w(t, ·)] ≤ K[n, p,w0] and the generalized Csiszár-Kullback inequality (6), we obtain

Ep[w(t, ·)] ≤ Ep[w0] e−
4 t

pK[n,p,w0] and ‖w − 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w0]

)
e−

2 t
pK[n,p,w0] ∀ t ≥ 0 . (10)

Alternatively, an elementary computation as in the proof of Theorem 2 gives a similar result:

4
p2

∫
Rd

∣∣∣∇wp/2
∣∣∣2 dµ =

∫
Rd

wp−2 |∇w|2 dµ ≥
1

‖w‖2−p
L∞(Rd)

∫
Rd
|∇w|2 dµ ≥

n

‖w‖2−p
L∞(Rd)

∫
Rd
|w − 1|2 dµ ≥

n
Hp[w]

Ep[w]

if
∫
Rd w dµ = 1 and the condition

∫
Rd w Hk dµ = 0 holds for any k ∈ Nd such that 0 < |k| < n. This proves that

Ep[w] ≤
4
p2

Hp[w]
n

∫
Rd

∣∣∣∇wp/2
∣∣∣2 dµ .

Using (9) and (6), this proves that any solution of (4) with initial data in w0 ∈ L1 ∩ L∞(Rd, dµ) satisfies

Ep[w(t, ·)] ≤ Ep[w0] e−n p t/Hp[w0] and ‖w − 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w0]

)
e−n p t/(2Hp[w0]) ∀ t ≥ 0 . (11)

Comparing the rates of (10) and (11) is a natural question. In the limit ε→ 0, infw∈Xn
ε
Hp[w] ∼ supw∈Xn

ε
Hp[w]→ p/2

and it follows that limε→0
4

pK[n,p,w0] = 4
p n (p − 1)/[1 − ((2 − p)/p)p] < 2 n = limε→0

n p t
Hp[w0] . Hence, at least in the

regime ε → 0, (11) is a better estimate in terms of rates than (10). Undoing the change of variables (2), we have
achieved a detailed result on improved u0.

Corollary 4 (Improved intermediate asymptotics for the heat equation). Let p ∈ [1, 2] and assume that u0 is a
probability measure such that w0 = u0/v∞ is bounded and satisfies the condition

∫
Rd u0 Hk dx = 0 for any k ∈ Nd such

that 0 < |k| < n. If u is the solution of (1) with initial condition u0, then

‖u(t, ·) − u∞(t, ·)‖Lp(Rd) ≤ (2π)−
d
2 (1− 1

p )
Ap

(
Ep[w0]

)
(1 + 2 t)−

n p
4Hp [w0]−

d
2 (1− 1

p )
∀ t ≥ 0 .

The proof relies on the remark that ‖u(t, ·) − u∞(t, ·)‖Lp(Rd) ≤ ‖u∞(t, ·)‖
1− 1

p

L∞(Rd) ‖w(t, ·) − 1‖Lp(Rd , dµ) where u∞(t, ·) :=

G(t + 1/2, ·, 0). The conclusion holds using ‖u∞(t, ·)‖L∞(Rd) = (2πR2)−d/2 with R =
√

1 + 2 t.

Up to now, we have considered the simple case of the harmonic potential, V(x) = 1
2 |x|

2. As in [1], the previous
results can be extended to more general potentials as follows. Consider V ∈ W1,2

loc ∩W2,2
loc (Rd) such that

∫
Rd e−V(x)dx = 1,

and define the probability measure dµ(x) := e−V(x)dx in Rd, which generalizes the Gaussian measure. Under the above
conditions on V , the logarithmic Sobolev inequality holds (resp. (7) for p = 1) for some positive constant (resp. for
B1,1 > 0). The Ornstein-Uhlenbeck operator N := −∆ + ∇V · ∇ is essentially self-adjoint on L2(dµ), has a non-
degenerate eigenvalue λ0 = 0 and a spectral gap λ1 > 0. According to [18, Theorem 2.1], N has a pure point spectrum
without accumulation points. Since limk→∞ λk = ∞, then by [15, Theorem XIII.64], the eigenfunctions of N form a
complete basis of L2(Rd, dµ). We shall denote the eigenvalues by λk, k ∈ N, and by Ek the corresponding eigenspaces.

Theorem 2 adapts without changes. Assume that w ∈ L∞+ (Rd) is such that
∫
Rd w dµ = 1. Then∫

Rd
w log w dµ ≤

H1[w]
λn

∫
Rd

|∇w|2

w
dµ

under the orthogonality condition: w ∈
(⋃n−1

k=1 Ek

)⊥
, that is

∫
Rd w fk dµ = 0 for any fk ∈ Ek, k = 1, 2,. . . n − 1. Next,

consider the solution w of the Ornstein-Uhlenbeck equation

∂w
∂t

= −N w = ∆w − ∇V · ∇w , (12)
5



with initial condition w0 ∈
(⋃n−1

k=1 Ek

)⊥
∩ L∞(Rd) is such that

∫
Rd w0 dµ = 1. With the same definition as above for Ep,

for any solution of (12) with initial data w0, (11) is now replaced by

Ep[w(t, ·)] ≤ Ep[w0] e−λn p t/Hp[w0] and ‖w − 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w0]

)
e−λn p t/ (2Hp[w0]) ∀ t ≥ 0 .

Let us conclude this letter by some comments and open questions. It is standard in entropy / entropy-production
methods that determining sharp rates of convergence in an evolution equation is equivalent to finding sharp constants in
functional inequalities, as we have seen in the case of the heat equation: the rate of convergence in L2(Rd, dµ) is given
by the Poincaré inequality, while the rate of convergence in entropy, which controls the L1(Rd, dµ) norm, is related
with the logarithmic Sobolev inequality. This is also true for nonlinear diffusion equations, see for instance [12]. In
this case, a breakthrough came from the observation that uniform norms can also be used, see [10, 7, 6], to the price of
a restricted functional framework. This allows to relate nonlinear quantities of entropy type with spectral properties of
the linearized problem, in an appropriate functional space and, again, to relate sharp rates with best constants, see [8].
As long as nonlinear evolution problems are concerned, only a few invariant quantities are usually available: the mass
and the position of the center of mass of the solution, for instance. In linear evolution problems, we can impose an
arbitrary number of orthogonality conditions, which are preserved along the evolution. Improved rates of convergence
are then expected, even when measured with nonlinear quantities like the entropy. Various attempts have been done,
see for instance [2], but the question has been left open for many years. Such ideas have been partially explored by
R.J. McCann, including in the linear case (see [11]), based on considerations on an appropriate Hessian matrix. Our
approach provides a simpler and elementary answer under restrictions which are natural in view of [6]. It also raises a
number of questions concerning the optimality of the new functional inequalities from a variational point of view, the
convergence of minimizing sequences and the symmetry of the eventual minimizers.
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C. R. Math. Acad. Sci. Paris, 344(7):431–436, 2007.
[8] M. Bonforte, J. Dolbeault, G. Grillo, and J.-L. Vázquez. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional

inequalities. In Preparation, 2009.
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