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Abstract

In this dissertation, the high-Reynolds-number flow near the corner of a vertical flat plate
partially submerged across an uniform stream has been studied using a combination of
experimental, numerical and analytical tools. In this configuration, a three dimensional
wave forms at the corner of the plate which evolves downstream in a similar way as a
time-evolving two dimensional plunging or spilling breaker, depending the occurrence of

one or the other type of breaker on the flow conditions.

Experiments have been performed submerging a flat plate perpendicular to the free
stream in the test section of a recirculating water channel. Experimental results show
that the formation and the initial development of the wave is nearly unaffected by the
presence of the channel walls and bottom even when their distance to the corner, where
the wave originates, is of the order of the size of the wave itself. This is a remarkable
observation, that suggests that the formation of the corner wave is a local process in a
sense that it is only influenced by the characteristics of the velocity field very near the
corner. Moreover, it has been observed that the jet formed when the corner wave adopts
the plunging breaker configuration follows a nearly ballistic trajectory, has is the case in

two-dimensional unsteady plunging breakers.

Theoretical analysis shows that, taking advantage of the slender nature of the flow,
the 3D steady problem can be transformed into a two dimensional unsteady one using the
so called 2D+T approximation. Together with the high Reynolds number of the flow, the
2D+T approximation makes the problem amenable to be simulated numerically using a
Boundary Element Method (BEM).

Moreover, a pressure-impulse asymptotic analysis of the flow near the origin of the
corner wave has been performed in order to describe the initial evolution of the wave and
to clarify the physical mechanisms that lead to its formation. The analysis shows that the

flow near the corner exhibits a self similar behavior at short times.

The problem considered in this dissertation is of interest in naval hydrodynamics as
well as oceanography. Indeed, the flow resembles to the one found at the dry stern of
high-speed surface vessels. The similarities between the waves formed in the wake of such
ships and our laboratory breakers will be investigated. This experiment also shares many
features with deep water waves in the ocean, and thus it will be applied to the study

of their breaking process. A criterion for the transition between overturning laboratory

vii
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waves and spilling ones is proposed.
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Resumen

En esta tesis se ha estudiado el flujo a altos niimeros de Reynolds aguas abajo de la esquina
de una placa vertical parcialmente sumergida en una corriente uniforme, usando para tal
fin una combinacion de herramientas experimentales, numéricas y analiticas. Este flujo se
caracteriza por la apariciéon de una ola estacionaria, que permanece unida a la esquina de
la placa. Tanto la amplitud como la pendiente del frente de la ola crecen a medida que la
ola evoluciona aguas abajo de la placa, dando lugar ya sea, a una rotura de la ola en la

cual la cresta se derrama sobre la propia ola, o a una rotura en forma de tubo.

Para estudiar este flujo experimentalmente, se sumergié una placa perpendicularmente
a una corriente uniforme en un canal de recirculacién. Los resultados experimentales de-
muestran que la presencia de las paredes y el suelo del canal no afectan a la formacién
y el desarrollo inicial de la ola, incluso cuando dichas paredes se encuentran a distancias
del orden de magnitud de la propia ola. Esta es una observacién importante dado que
sugiere que la formacién de la ola es un proceso local, en el sentido de que solamente se
ve afectado por el campo de velocidades cerca de la esquina. Complementariamente se
ha observado que, cuando la ola rompe en forma de tubo, la cresta de la ola sigue una

trayectoria balistica, al igual que en las olas en aguas profundas.

El analisis tedrico muestra que, haciendo uso de la naturaleza esbelta del flujo, el
problema tridimensional estacionario se puede transformar en un problema bidimensional
no estacionario mediante el uso de la, asi llamada, aproximacién 2D+T. Combinando los
altos numeros de Reynolds encontrados en el flujo con el uso de dicha aproximacion, el

problema puede ser tratado numéricamente mediante un método de elementos de contorno.

Para investigar el mecanismo fisico que conduce a la formacién de la ola y su posterior
desarrollo, un anélisis asintético de la presién impulsiva en el flujo se ha llevado a cabo,
capturandose con fiabilidad la evolucién, a tiempos cortos, de la cresta de la ola, la cual

se demuestra que exibe un comportamiento auto semejante en las etapas iniciales.

El problema considerado en esta tesis es de gran interés tanto en oceanografia como
en el campo de la investigacién naval. De echo, este flujo recuerda al que se encuentra
aguas abajo de las popas de espejo en barcos de superficie de alta velocidad. En esta
tesis se investiga la semejanza entre las olas que se forman en la estela de dichos barcos
y las generadas en el laboratorio. Adicionalmente, se observa que las olas obtenidas en el

laboratorio también comparten muchas caracteristicas de las olas en aguas profundas, por

ix



Resumen

lo que se propone un criterio para separar ambos regimenes de rotura.

Este trabajo ha sido parcialmente patrocinado por la O.N.R. mediante el proyecto

N00014-05-1-0121.




CHAPTER
ONE

Introduction

1.1 Introduction and Motivation

The structure of the wake generated by high-speed vessels has been studied over the last
seventy years, contributing to the understanding of several important phenomena associ-
ated to current endeavors in naval hydrodynamics. Examples are the quantification of the
drag force experienced by the ship, Newman (1977), the mass and energy transfer between
the ocean and the atmosphere, the development of accurate tools for ship-maneuvering
modeling, Molland (2008), and the design of reliable marine structures, Sumer & Fredsoe
(1997).

Nonetheless, there still remain various challenges that are of paramount importance
for the propulsive efficiency of high-speed vessels, and, in particular, for the prediction
of the acoustic signature of the ships and, for unveiling the dynamics of some, non well

known, aspects of the wake and the rooster tail.

In this thesis, the formation, development and breaking processes of a particular wave
that emerges downstream from the side of the stern of high-speed vessels have been studied
using numerical, experimental and analytical tools. In addition, this work explores the

possibility of connecting the above mentioned wave with its deep-water counterpart.

1.1.1 Flow around High Speed Vessels

Any ship moving at a certain velocity through water creates a disturbance in the water
surface which is manifested by a wave pattern. This wave pattern moves seemingly locked
to the ship and it is a very significant, and at high speed even the dominant, portion of
the ship’s resistance. Through many years of analytical and experimental research, this
wave pattern has been found to be directly related to the ratio of the inertia of the body

to the gravitational forces and thus, to the Froude number, F'r.

The Froude number was originally introduced in open channel flow problems as the

fraction of the flow velocity to the square root of the gravity acceleration times the flow

1



1. Introduction

depth. Early in the XIX century it was found out that, if this quantity exceeded a critical
value, F'r = 1, the information carried by the flow travels faster than the wave velocity and
any disturbance to the flow does not propagate upstream. Resembling the “supersonic*

nomenclature used in aerodynamics, these flows were called supercritical flows.

In naval hydrodynamics the value of the Froude number has been found to be de-
terminant to quantify the resistance of ships, which was related, by the early Froude’s
experiments, with the shape of the waves caused by moving a hull through the water,
Wright (1983). These waves, originated by the interaction of the hull with the sea, can
be decomposed into three different types: bow waves, which arise at the bow of a ship.
Kelvin waves, that produce a well-known free surface pattern downstream from the ship,
at a fixed angle of 19.5°; and stern waves, which emerge downstream from the stern of the
ship, Sorensen (1966). All of these contribute, with a certain weight, to the shape of the
overall wake downstream the hull. A preliminary work which formulates the asymptotic

behavior of the wake generated by a ship was done by Peregrine (1971).

To investigate the influence of the Froude number on the shape of the wake, the former
is usually defined as the ratio of the ship’s velocity U, to a characteristic length scale of
the problem, being able to choose either the draught H or the ship’s beam L. In works

on wakes generated by high-speed vessels, the first of these is commonly accepted, i.e.

Fr:\/[gjiH. (1.1)

When the Froude number is less than unity, the flow downstream from the stern
is subcritical, and the wake could exhibit some features of a hydraulic jump, which is
characterized by large unsteady eddies that produce considerable atmosphere-ocean air
and momentum exchange, Rodriguez-Rodriguez et al. (2011). However, when the ship
increases its velocity, while keeping constant its draught, and the flow becomes supercritical
(Fr > 1), the wake acquires a very characteristic shape producing lower air entrainment.
Figure 1.1 shows the dependence of the shape of the wake on an increasing Froude number

using a ship model, in a towing tank at the Carderook Division.

Among other features, during high speed cruise, separation of the flow occurs at the
intersection of the boards with the stern plane. The difference in height between the
separated stream and the free surface level immediately downstream the stern induces
a transversal velocity component to the separated water mass that deflects its otherwise
stream-wise velocity towards the centerline of the hull. As a result, two symmetrical waves

are formed that collide near the center plane of the wake.




1.1. Introduction and Motivation

Figure 1.1: Different wake structures downstream from the stern of a ship for different
ship velocities, keeping a constant draught. (a)= 5kn, (b)= 7kn, (c)= 8 kn, (d) 9 kn.
Courtesy of Thomas Fu. Carderook Division, MD, USA.
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Figure 1.2: A typical shape of a wake found in high-speed vessels. Notice that the
structure known as rooster tail is born, in part, by the collision of the pair of waves, which

raise from the corner and evolve towards the centerline of the hull.

The collision of these waves leads to a structure, known as rooster tail, which is re-
sponsible for an important fraction of the total amount of air entrainment and energy

dissipation in the wake, as can be seen in figure 1.2.

This work focuses on the formation, growth and development of the above mentioned

pair of waves, which, from this point on, will be called corner waves.

1.1.2 High Froude-Reynolds free surface flows

High Froude-Reynolds free surface flows flows around bodies often exhibit a strong nonlin-
ear character, implying jet generation, breaking waves and air entrainment. This particular
feature converts the possibility of obtaining exact solutions for these flows in an herculean
task, mainly due to the non-linear boundary conditions at the free surface. Therefore,
in an effort to facilitate accurate and simplified solutions, many authors made use of the
slender-body theory. Tulin (1957) implemented this theory to a planing ship, obtaining
reduced equations with errorless results, while Ogilvie (1967) evaluated the feasibility of

formulating analytical and appropriate expressions for these problems.

The application of slender-body theory to steady-motion problems of ship hydrody-
namics retains some features of the classical theory of aerodynamics, taking into account

that free-surface flow problems involve extra difficulties.
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In particular, depending on the the slenderness ratio of the ship and on the order of
magnitude of the Froude number, different approaches must be taken. In naval hydrody-
namics, it is common to express this slenderness ratio, €, by the beam/length ratio, W/L,

or the draught/length ratio, H/L, where L is usually assumed to be of order unity, L ~ 1.

Unlike in aerodynamics, when slender-body theory is applied to free surface flows,
the gravitational terms should be evaluated, being commonly accepted g = O(1). How-
ever, depending on the order of magnitude of gravity, four different types of problems, as

explained in Ogilvie (1967), are found:

e g = O(e1). Gravity rules the free-surface conditions.

e g = 0(1). Gravity is the leading parameter near the body and, at large distances
from the body, there exists the possibility of finding gravity waves.

e g = O(e) Gravity waves appear near the body, but gravity effects disappear far away.

e g = O(€?). The effects of gravity are neglected. This is the usual planing case.

It will be shown that the waves under study in this work can be described using the

slender-body theory, taking g = 0(1).

1.1.3 The 2D +T idea

Characterizing the free surface evolution and the velocity field in a steady three-dimensional
high-Reynolds number flow, involves the resolution of a system of elliptic non-linear partial
differential equations. However, when the Froude number is large enough, there exists an
approximation that reduces the complexity of the problem. Such approximation takes ad-
vantage of the duality between steady slender three-dimensional flows and two-dimensional
unsteady flows and is commonly known as 2D+1/2 or 2D+T theory. Tulin (1957) used this
method for the analysis of high speed/low ratio vessels, while Tulin & Wu (1997), calcu-
lating bow waves, showed that this method can be used with very good results for ships at
sufficiently high speed or, in other words, in flows with large Froude numbers. Since then,
the applications of the 2D+T approximation in naval hydrodynamics have been numer-

ous and fruitful (see the review article by Fontaine & Tulin (1998) and references therein).

The 2D+T approximation was first proposed by Max Munk (1924) to study the aero-
dynamics of slender bodies and Wagner (1932), made use of the approximation to formally
associate the problem of a slender body planing on water with that of a plate impacting

on a free surface.
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Since that pioneering work, the method has been applied in free surface hydrodynam-
ics mainly to simplify theoretical and numerical computations of the wave pattern around

slender ship hulls, as well as for the loads they produce.

More recently, the 2D+T approximation has been used to study experimentally the
dynamics of bow waves induced by slender hulls in a laboratory water channel as i.e. by
Shakeri et al. (2009a,b). In these studies, it was found that the 2D+T approximation
grants good results compared with fully 3D cases, see i.e. lafrati & Broglia (2010).

The 2D+T approximation, reduces the 3D problem to a continuous sequence of un-
steady 2-D problems in the cross-stream section, each one of which, assuming potential
flow theory, can be solved using, i.e., a boundary element method (BEM). This method

has demonstrated providing accurate results including in case of overturning jets.

It must be pointed out that, apart from its application to naval hydrodynamics, the
2D+T approximation is commonly applied to study flows where the free surface of a liquid,
moving with a uniform speed, U, is steadily perturbed, originating height differences of
size, h, provided U > (gh)*/?
laterally (i.e. perpendicularly to the free stream) with speeds of the order v ~ (gh)

. Under these conditions, the perturbation would propagate
2 < U.
Therefore, by the time the perturbation has moved laterally a distance, y, it has been ad-
vected by the free stream a distance L ~ y Fry, > y, where Fr, = U/ (gh)l/2 is the Froude
number. Thus, the flow can be considered slender, with an aspect ratio of the order of
the inverse of the Froude number. More importantly, since variations in the streamwise
velocity component are also of order v, the advection of the perturbation wave nearly
occurs at the uniform velocity, U, which justifies the validity of the 2D+T formulation of

slender flows.

1.1.4 Corner Waves downstream a partially submerged vertical plate

Figures 1.1 (d) and 1.2 show that the rooster tail is partially formed, a priori, as a result
of the collision between the two twin corner waves that originate in each side of the stern.
However, when trying to understand the dynamics that forms the rooster tail, it becomes
clear that there exists many sources of information that must be previously detached. For

this reason, a logical first step must be to study these waves separately.

Each one of these waves can be qualitatively reproduced, and isolated, in a recirculat-
ing water channel by using a simple experimental set-up, thus allowing an initial approach

to fully understand the whole flow pattern.
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Figure 1.3: Sketch of the flow set-up. (a) General view. (b) Side (x-z) view.

The experiment consists in the positioning of a vertical plate, with smaller width, Wy,
than the channel one, W', partially submerged and perpendicular to an uniform stream, as
sketched in figure 1.3. As mentioned above, the main feature of this flow is the formation
of a three dimensional steady wave, qualitatively identical to the corner wave one and
which retains its slender nature. The wave originates at corner of the plate and develops
in the downstream direction in a similar way as a two dimensional wave evolves in time.
Similarly to the two-dimensional case, the crest advances along the spanwise direction
while the wave amplitude grows, which eventually leads, depending on the flow parame-
ters, to the formation of either a plunging or a spilling breaker. As will be shown later,
a remarkable characteristic of this wave is that its evolution and breaking are relatively
unaffected by the presence of the channel side and bottom walls, even when their distances
to the wave are comparable to the wave amplitude. These observations raise the following
question: to what extent this simple laboratory flow can be considered to reproduce the
physical processes that are involved in the corner waves observed in real transom flows
and, in addition, can this experimental steady wave be used to study the time evolution

and breaking of two-dimensional waves in deep waters?.

It ought to be underlined that, besides the applications in naval hydrodynamics, the
experiment considered here is connected with a classical problem in civil engineering,
namely the flow under a sluice gate. The first problem has been widely studied in the case
of a two-dimensional gate, see for instance Benjamin (1956), Naghdi & Vongsrnpigoon
(1986) or Vanden-Broeck (1986). However, very little has been published about the waves
originated at the corner of the gate when it has a finite span. To the best of our knowledge,
only Hager & Mazumder (1992) and Hager & Yasuda (1997) have considered this flow. In

7
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(b)

Figure 1.4: Two images of different breaking conditions of the experimental corner wave.
(a)Spilling breaker. (b)Plunging breaker. Notice that, in the spilling breaker configuration,
the capillary ripples and the toe observed by Duncan et al. (1999) in unsteady deep-water

waves are reproduced.

these papers, the authors integrate numerically the shallow water equations applying the
2D+T analogy to describe the flow in a sudden expansion of a channel. Although this
flow has some similarities with the one described above, the fact that the waves formed
there propagate on a dry basin changes completely their behavior with respect to ours. In
fact, when treated with the 2D+T approximation, the problem of the sudden expansion

is analogous to the classical dam-break problem, which differ considerably from ours.

1.1.5 Breaking waves in deep water

It is well known that breaking waves in deep waters play a very important role in the
atmosphere-sea interaction and in energy exchange in the ocean. Furthermore, the study
of the dynamics of the deep-water breaking process is important in the estimation of
the mechanical loads that ships encounter in extreme sea conditions. The breaking
process of these waves has been widely studied in the past (see i.e, Rapp & Melville
(1990), Schultz et al. (1994), Banner & Peregrine (1993) or Bonmarin & Ramamonjiarisoa
(1985)) and, attending to the way they break, they are usually divided into two different
types: plunging breakers, in which the crest separates from the wave, as early described
by Galvin (1968), and spilling ones, in which the crest tumbles down the front or face of
the wave, (see the review Duncan (2001)). However, despite the large amount of studies
on this subject, the unsteadiness associated to the breaking process entails a lack of detail
in the experimental results, which can be over-passed using a steady wave, as the one

presented in this work.

For example, using this laboratory set up, the transition between the different breaker

configurations can be parametrically studied. Figure 1.4 shows examples of both kind of

8
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breakers observed in the laboratory corner wave and its similarities with deep water ones.

1.1.6 Summary

With the above ideas in mind, this thesis is structured as follows: in chapter 2, the flow
is presented and formulated, and some dimensionless parameters are defined based in the
2D+T approximation theory. In chapter 3, the experimental facility, the measurement

techniques and the experimental results are described.

In chapter 4, some numerical receipts which describe the corner wave flow are tested
and validated with the experimental evidences of chapter 3. Interestingly, it will be shown
that, although strictly speaking the 2D+T is applicable only for large Froude numbers,
the approximation, in the considered flow, remains valid also for moderate values. This
observation, together with the small effect that the presence of the channel walls and the
finite depth, will be demonstrated to have on the corner wave trajectories, allow the ex-
trapolation of some of the results obtained in this simple laboratory flow to more complex

flows found in nature as well as in ocean engineering applications.

In chapter 5, the formation, the initial evolution and the development of the corner
wave are studied and a discussion about the self-similar structure of the flow at short times

is presented. Finally, chapter 6 is committed to conclusions.
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CHAPTER
TWO

Problem Formulation

2.1 Corner Wave flow description

This chapter is devoted to formulate the Corner Wave flow, which is the flow around a
vertical plate partially submerged into a recirculating water channel, wider than the plate
width. The highlighting aspect of this flow resides in the formation and development of
a wave, which arises from the corner of the plate and whose front is bent towards the

centerline of the resulting wake.

As sketched in figure 2.1, the flow around a vertical plate that is partially submerged
into a recirculating water channel of width W', wider than the plate width Wy, is con-
sidered. The streamwise, spanwise and vertical coordinates are denoted as z’, ¥’ and 2’
respectively, and the origin of coordinates is placed at the corner of the plate. The lower
edge of the plate is at a distance hy above the bottom of the channel, whereas the water

level upstream from the plate has a depth hg.

Except for a region near the corner of the plate, where three-dimensional effects are
important, the flow downstream from the plate behaves exactly as a two-dimensional sluice
gate: after a short distance where the depth decreases due to the vena contracta effect,
a uniform height h; < hy is attained. This depth, hi, the lowest water level found in
this configuration, plays a central role in the flow. Indeed, all the relevant lengths that
will be used to determine the dimensionless parameters, will be defined below as height
differences with respect to hi. The velocity distribution in the region of depth h; has an
almost uniform value, Uy, as has been reported in similar flows, i.e Roth & Hager (1999) or
Kim (2007). This velocity can be estimated applying the continuity equation and energy

conservation to a streamline connecting the free surface upstream and downstream the

plate:
Ui-hiy = Uy hg (2.1)
U? U?
ho+ -2 = hi+ -~ 2.2
o+ 29 1+ 29 ( )




2. Problem Formulation

hy . U hg

IV

Figure 2.1: (a)and (b). Sketch of the flow set-up. (a) General view. (b) Side (z—=z) view.
(c) and (d), Two views of the flow configuration under typical experimental conditions.

(c) Top view. (d) Side view.

Combining both equations, U; results,

2gh
U= |2 (2.3)
1+ 1

which can be taken as the characteristic velocity of the problem in absence of an experi-
mental one. Except for this velocity, the rest of the flow parameters used hereafter will be
defined solely as a function of height differences with respect to the minimum depth, h;.
As will be explained later, this procedure will allow the connection of the results obtained

in this experiment with deep water waves.

In particular, two lengths that may be defined are § = (hy — h1) and Ah = (hg — h1).
The former is the reduction of the depth in the vena contracta region, which coincides
with the height between the point where the corner waves originates and the downstream

depth. The later is the maximum height difference of the free surface. The ratio between

both magnitudes, Ah* = % = 20:21, can be interpreted as a measure of the potential
g

energy which is at disposal in the flow in order to rise up the wave.

12



2.2. Problem formulation

2.2 Problem formulation

The system of equations that describes the formation and development of the corner wave
is based in two realistic hypotheses that will be confirmed by the experiments of chapter 3.
On one hand, the Reynolds number is assumed to be large, Re ~ 10°, taking in account the
characteristics scales found in the problem, Ah ~ 10~'m and U; ~ 1 m/s. Consequently,
the viscous terms will be neglected. On the other hand, the Webber number is considered
large enough, We ~ 104, neglecting therefore, the surface tension terms.

These two hypotheses merge in the Euler equations, which describe the velocity field,
= (v ) and the evolution of the free surface h/(z’,y’) downstream from the plate,

where A’ can be multi-valued:

Ot + Oyt + B yw’ =0 (2.4)
WO + v Oy’ + w0 = —p' 0 p
U 0t + 00yt + w0, = —p 10y
U O + V' Oy’ + W' 0" = —p' 1 0p — ¢

This system must be completed with the boundary conditions at the channel walls, as well
as at the free surface, F'(2/,y’) = 2/ — h'(2/,y') = 0. The former are the usual zero normal
velocity conditions, 8,71;’ = 0, whereas the latter, taking into account that the free surface

is a fluid surface, might be written as:
W Oph + vay/h, —w' =0 (2.5)
p, = Pa
where 2/ = h/(2/,y) in (' > 0,—(W' = W) <y < Wp).

The formulation of the problem is supplemented by the consideration of the supercritical

character of the flow, and therefore, an appropriate defined Froude number,
Ui
gAh’

is assumed to be much larger than unity, Frap > 1. For simplicity, in the rest of this

Frap = (2.6)

chapter F'rap will be written as F'r.

For an irrotational flow, as the one described by the equations (2.4-2.5), the curl of
the velocity is zero V x u' = 0. It then follows, that the condition of irrotationality can be
identically satisfied by choosing a scalar function ¢’ = ¢/(2’,3'2’), such that the velocity
is defined as its gradient u = V¢'. This scalar function, has been traditionally referred to

as the velocity potential, and the flow as a potential flow. Applying the velocity potential

13



2. Problem Formulation

definition to the continuity equation, it becomes possible to represent the flow by the

Laplace’s equation, instead of the coupled system of nonlinear Euler equations:

V20 = Gy + By + Dy =0 (2.7)

Equation (2.7) remains valid in the domain Q, where Q = (z/ > 0,—(W' — Wy) < ¢/ <
Wy, —hg < 2/ < B/(2',y)), unknown in advance. Complementing the Laplace’s equation

and using the potential flow formulation, the boundary conditions become:

Oy¢ =0 in (y = —(W' = Wy),—hy < 2" < h'(2/,—(W — Wp)))

and, (v =Wy, —hy, <2’ < h'(a',Wy)) (2.8)

0.4 =0 in 2= —hy
(2.9)
yd = 0ph'0p¢ + 0yh'0y¢’, and, p'=0 in 2 =n(2,y)), (2.10)

where equation (2.10) is usually called the kinematic condition. The hydrodynamic pres-
sure, maintaining the potential formulation, is described by the non-linear Bernoulli equa-

tion:
1 / 1 /\2 / 1 2
;p + 5(qu) +g2 = 5U0 + gAh (2.11)

Applying equation (2.11) to the free surface we obtain the, so called, dynamic boundary

condition, which assumes that the free surface is a stream line and reads,
1 /\2 oo 1 2
§(V¢) +gh'(e'y') = 5o + gAh. (2.12)

In equation 2.12 we have considered that, far upstream, as 2’ — —oco, K’ — Ah, ¢y,
¢, — 0 and ¢!, — Uy, where Up is assumed to be the constant component of the uniform

velocity profile, at that location, where F’(2',y") = hyg.
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2.2. Problem formulation

Figure 2.2: Cross View of the dimension-less flow domain (¢) of a corner wave for
x> 0.

2.2.1 Dimensionless form of the equations
The system of equations (2.7)-(2.12) can be written in non-dimensional form by introduc-
ing the following variables:

r=12'/Ah,y =19y /Ah, 2 =2'/Ah, h=N/Ah, ¢ = ¢'/(U1Ah) and p = p'/pUE,

and therefore, the limits of the flow domain Q(¢) turn into: A = (W' — Wy)/Ah,
B =Wy/Ah and H = hy/Ah, as sketched in figure 2.2.

In consequence, the system (2.7)-(2.12) assumes the following form:

V2 = Gun+ dyy+ ¢ =0 in  (2>0,—-A<y<B,—H < z< h(z,y)) (2.13)

with the boundary conditions at the walls:
Oy»=0 in (y=-A—-H<z<h(z,y)U(y=DB,—-H <z<h(x,y)) (2.14)
0.0=0 in z=-H (2.15)

At the free surface, the kinematic boundary condition becomes,

0.¢ = 0:h0,¢ + 0yhdy e, (2.16)

whereas the dynamic boundary condition,
(V¢)? —1=2Fr=2(1 — h(z,y)). (2.17)

Notice that, using non-dimensional variables the flow assesses, far upstream, h — 1,

¢r — /U —2gAh and ¢, = ¢, = 0.
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2. Problem Formulation

2.3 2D+T approach

It can be observed that when we approach the limit Fr > 1, equation (2.17) can be

approximated as:
(Vo)2 =1, (2.18)

which has a trivial solution, ¢ = x. The aforementioned solution can be expanded in

terms of a higher approximation,
¢p=x+ ®(z,y,2,Fr) with ®—0 as Fr — oo (2.19)

Substituting the expression (2.19) into equation (2.17), and using |V (z + ®)|? = |(e; +
V)2 = (6, +V®).(6;+VP) = 1+20, P+ |VP|?, the dynamic condition and, proceeding
likewise in equation (2.16), the kinematic boundary condition, can be written as:

1
0, ® + 5|Ve1>\2 =Fr=2.(1—-h) (2.20)
0.® = 0 h + 0,90,h + 0y POy h

Expressions (2.20) indicate that, at distances z ~ O(Ah) and approaching the limit Fr —

00, the dominant term in the dynamic condition is Fr20,®, and therefore,
®=0(Fr?) and  9,h=O(Fr?), (2.21)
Consequently, at the leading order, the boundary conditions, (2.20), assume the form of:
8,0 = Fr~2(1—h) and  9,h" = 09,00, (2.22)

This pair of boundary conditions, (2.22), should be imposed on the the free surface z —
h(z,y) = 0. It is worth noticing that, as z — oo, the dynamic boundary condition of
equation (2.22) results in ®© ~ Fr—2z. And assuming that the kinematic one, 9,¢(®)

behaves similarly, it can be written that, at the leading order:
hO) ~ 2 Fr? (2.23)

All the above suggest, that small-distance solution grows as  — oo and the assumption
® = O(Fr~2) is not valid at distances z ~ Fr.

The hypothesis F'r > 1, will be tested in following chapters and it will be demonstrated
that all the conclusions remain valid not only for large values of the Froude number but

also, for moderate ones, provided the supercritical character of the flow Fr > 1.
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2.3. 2D+T approach

2.3.1 2D+4T approximation

In section 1.1.3, the benefits of applying the 2D+T approximation to convert an steady 3D
case to an unsteady 2D one were highlighted. Now, once the non-dimensional variables are
defined and the new scales for z and ¢ proposed, the transformation can be accomplished

through a simple rescaling of the streamwise coordinate and the velocity potential,

x=Fr-t d=Frt. ¢y, 2t Fr). (2.24)

Subsequently, introducing the rescaling variables into (2.20), the boundary conditions

become:
i + %\(6@,@2 +(9:0)%| = (1 —h) - %Fr‘2 - (0r9)” (2:25)
Oh + OypOyh = 0,6 — Fr20,¢0,h

Assuming now, as mentioned above, that the Froude number is large enough, Fr > 1, the
flow field can be described rewriting the system (2.13)-(2.17), without the the streamwise

coordinate, becoming an unsteady bi-dimensional problem, ¢ = ¢(y, z,t),

V=0 (t>0,(y,2) >Qt))  (2.26)

1
06+ 51(0,0)° + (86 = (1 h) (2:27)
Oth + OypOyh = 0.¢

in which, the boundary conditions (2.27) must be imposed in the free surface (t > 0, —H <
z < h(y,t)). The boundary conditions at the channel walls and the bottom of the channel
read now dy¢ =01in (y = —A,y = B) and 0.¢ =0 in (2 = —H).

The system of equations (2.26)-(2.27), can be considered, at sufficient large distances
from the plate, as 2D and non-linear. Note that, in the leading order, the far field flow
corresponds to a 2D gravity-driven flow and the referred equations can be solved by using
a Boundary Element Method.

In order to facilitate the calculations, the potential will be redefined as ¢ = ¢ + t,

becoming,

Vi =0 (t>0,(y,2) 2Q(t)) (2.28)
o + %W({SF +h=0
Oh + 0ypOyh — 9.6 = 0
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2. Problem Formulation

System (2.28) will be used along the rest of this work to describe the corner wave flow

and, for simplicity, the notation for the potential ¢ will be replaced by .

2.4 Concluding Remarks

In this chapter, a mathematically formulation for the corner wave flow has been presented.
The non dimensional parameters involved in the formulation have been proposed and all
the variables rescaled assuming large Froude numbers. Finally, the transformation from
the original 3D steady Euler equations to a 2D+T system has been carried out. This
formulation will be numerically validated, and compared with experimental results in
Chapter 4.
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CHAPTER
THREE

Experimental Work

3.1 Introduction

An experimental study of the flow downstream from the corner of a partially submerged
vertical plate, placed in a recirculating water channel wider than the plate, is presented in
this chapter. The particularity of this flow, compared with the classic flow configurations
around objects, consists in the formation of a three dimensional steady wave, hereafter
named corner wave. This wave originates at the corner of the plate and develops in the
downstream direction in a similar way as a two dimensional wave evolves in time. Likewise
the two-dimensional case, the crest advances along the spanwise direction while the wave
amplitude grows, eventually leading to the formation of either a plunging or a spilling
breaker, depending on the flow parameters. A remarkable characteristic of this wave is
that its evolution and breaking is largely unaffected by the presence of the channel side and
bottom walls, even when their distance to the wave is comparable to the wave amplitude.
These observations, together with the formulation presented in Chapter 2, complement
the possibility of broadening the applicability of this simple laboratory flow to the study

of the evolution and breaking of two-dimensional deep-water waves.

3.2 Experimental set-up

The experiments were carried out in two recirculating water channels, one at the De-
partment of Mechanical and Aerospace Engineering of University of California San Diego
(UCSD) and the other at the Fluid Mechanics Group at Universidad Carlos I1I, Madrid
(UC3M). Both channels are similar in design, although they differ in the dimensions of
the test section. The UC3M channel, built one third scale of the UCSD one, was used
only for flow visualizations. In particular, the experiments shown below refer only to the
UCSD one.

The UCSD channel had a capacity of about five cubic meters. The test section was
2 m long with a [0.6 m x 0.6 m] square cross section. The plenum was connected to the
test section by a series of grids and honeycombs, followed by a contraction, to ensure that
the fluctuations originated at the pump were damped out before the flow reached the test

section. A sketch of the facility can be found in Rodriguez-Rodriguez et al. (2011).
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3. Experimental Work

w hg hl ho Ah ) U1 F?“hg F’I”Ah

(mm) (mm) (mm) (mm) (mm) (m/s)
0.5 155 105 310 205 50 2.09 2.87 2.17
0.5 155 105 252 147 50 1.84 2.23 2.35
0.5 95 58 374 316 37 2.48 6.60 1.99
0.5 95 58 352 294 37 2.41 6.23 2.01
0.5 95 58 239 181 37 1.94 4.04 2.11
0.5 95 58 127 69 37 1.31 1.84 2.53
0.5 162 108 306 198 54 1.95 2.40 1.96
0.7 140 93 257 164 47 1.71 2.13 1.81
0.3 118 77 230 153 41 1.75 2.64 2.04

N o ok o = e

Table 3.1: Summary of some representative experimental conditions, where W is the
non-dimensional width of the plate, hg the water level upstream the plate, h; the water
level downstream the plate and h, the height of the lower edge of the plate with respect
to the basin. The experimental error in the determination of all the heights involved in

this work was estimated to be 2 mm.

Three Plexiglas plates of different widths (0.3, 0.5 and 0.7 times the channel width
(0.6 m) x 0.0127 m x 1 m) were manufactured, placed vertically across the test section,
and fixed to one of the walls of the water channel to produce the corner wave. To place
the plate inside the test section, and fix the value of hg, a vertical traverse was used.

The dependence of the breaker configuration (spilling or plunging) on the flow speed,
Uy, and on the characteristic length scales, Ah = (hg —h1) and § = (hg — h1), was investi-
gated through a parametric study. To that end, several velocity profiles were measured, in
the region of constant height h1, using a Pitot tube for every flow configuration reported
in this work. It was found that the experimental value of the velocity does not separate
more than a 15% from the theoretical one, stated in equation (2.3). In addition, all the
heights involved in this study, as well as other geometrical features of the corner wave dis-
cussed below, were obtained using digital image processing. Moreover, the velocity profile
upstream the plate was also measured, in some canonical cases, to ensure its uniformity,
as stated by Roth & Hager (1999).

Table 3.1 contains a summary of the experimental conditions obtained in this work.
In each run, one among three different plates of width 30%, 50% and 70% of the chan-
nel width, W', were used. Correspondingly, the value of the plate width is expressed as
W =03, W =0.5 and W = 0.7, with W = Wy/W’. Table 3.1 also shows the relevant
parameters of the flow hg, hy and hq, sketched in Fig. 2.1, the Froude number, based on
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3.2. Experimental set-up
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Figure 3.1: Sketch of the Laser Induced Fluorescence (LIF) set-up. The laser sheet,
parallel to the plate, passes through the free surface of the flow which is captured by a

CCD camera attached to the traverse.

Ah defined as Fra, = U?/gAh, and the Froude number based on the height from the
bottom of the channel to the lower edge of the plate, hy defined as F'ry, = U%/ghy.

3.2.1 Laser Induced Fluorescence (LIF)

A series of Laser Induced Fluorescence (LIF) measurements were performed in the UCSD
channel to characterize the elevation of the free surface. To that end, as sketched in fig-
ure 3.1, a 7TW Ion-Argon laser beam (Coherent Innova 90) operating in all lines mode,
was mounted on an optical table near the channel. The beam was aligned parallel to the
lateral walls of the test section using a set of mirrors. One additional mirror, mounted
in a traverse parallel to the wall, was used to direct the beam perpendicular to the test
section and lined up with the plate. A combination of cylindrical and spherical lens were
used to produce a laser sheet in the plate’s plane (' — 2’). In addition, the water (~ 6m?)
was seeded with around 50 grams of fluorescein (~ 10 ppm), in order to facilitate the
visualization of the flow.

The intersection of the flow with the laser sheet was captured using a digital (CCD) cam-
era (Kodak Megaplus 1.0 ES) with a resolution of 1008 x 1010 pixels, together with a
NIKON lens of 30 mm of focal distance and 1.4f. A band-pass filter was placed in front of
the lens to avoid any reflections that could have damaged the camera sensor. The viewing
direction of the camera was set at an angle of 45 degrees to the normal of the laser sheet

to ensure optimal spatial resolution.
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Figure 3.2: Image processing routine used to extract the free surface location in the
LIF experiments. (a) Raw cross-view image of a plunging breaker in which the lateral
bar represents the gray intensity in each pixel. (b) Results of applying a binary threshold
to figure (a). (c) Free surface location after using an edge-detection algorithm. (d) Free
surface location in the original axis. Notice that, by illuminating the flow from the side
of the channel, the parts of the free surface with negatives or horizontal slopes can not be

precisely determined and should be removed from the results.

Calibration images were acquired using a grid attached to the downstream face of the
plate, as shown in figure 3.3(d). The laser sheet and the camera, placed on the same
traverse, were moved together in the streamwise direction, thus ensuring that the camera

was always focused on the light sheet in a region that covered the corner wave.

The field of view of the camera was about 0.4 m, corresponding to a resolution of
approximately 2.5 px/mm. In the proximity of the plate, where the wave is starting to
develop and the free surface shape is smooth, its location could be determined with an

accuracy of +3 mm, taking into account all possible experimental errors. However, in
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3.2. Experimental set-up

regions where the free surface shape was more complex, as the region near the splash of

plunging breakers, the accuracy of the method was estimated to be 6 mm.

Once the images were acquired, the location of the free surface was determined by an
image image processing routine written in MATLAB.
Figure 3.2 shows the different steps of such process. In figure 3.2(a), a raw acquired image
is shown together with the gray intensity levels of each pixel. Notice that, when illuminat-
ing the flow, the addition of fluorescein allows the visualization only of the section bisected
by the laser beam and its downstream development. Hence, as shown in figure 3.2(b), a
threshold can be applied to the image to convert the regions with less gray intensities
to a single one with an assigned value of gray intensity and the process can be similarly
applied to the other areas of the image. Therefore, the gray intensity gradient can be
used as a marker to determine the position of the free surface, as shown in figure 3.2(c).
It is important to notice that, by illuminating from one side of the channel, there exists
regions of the free surface which, depending on its curvature, can create shadows in the
image. The existence of shadows in the image leads to errors in the determination of the
interface. In this study all the regions of the free surface in which negative or zero vertical
slopes were observed, are declared invalid and removed from the final result to minimize

the above mentioned effect.

The previously exposed LIF technique was applied to the two typical breaker config-
urations, namely plunging and spilling, denoted in table 3.1 as cases A and B. Figure
3.3 shows the free surface reconstruction of both breakers, together with an image of the

calibration grid.

Specifically, figure 3.3 (a), shows the free surface evolution of the case A of table 3.1.
This case corresponds to a typical plunging breaker. Notice that, as mentioned above,
the curl of the crest produces shadow regions that limits the ability of the technique to
characterize the totality of the free surface location in this configuration. To illustrate this
effect, a red line representing the shape of a plunging breaker is added to the mentioned
figure. Figure 3.3 (b), shows the free surface evolution of the case B of table 3.1. In this
figure, it can be appreciated that the wave becomes steeper as it evolves, until the crest
becomes unstable, resulting in whitewater spilling down the face of the wave, as described
by Duncan et al. (1999). Figure 3.3 (c), shows the numerical evolution of the free surface,
of case A of table 3.1, by using the 2D+T approximation described in Chapter 2. To
facilitate the comparison with (c), in (a) and (b), all magnitudes are plotted in the 2D+T
dimensionless form by using x = 2'/Ah - Frap, y = y'/Ah and z = 2//Ah (see again
Chapter 2).
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Figure 3.3: LIF Results of the different breaking conditions: (a) plunging breaker. (b)
spilling breaker. The plunging breaker corresponds to case A in table 3.1 and the spilling
one to case B. A line marking the corner of the plate is plotted together as a reference in
both figures. To clarify the plunging configuration a sketch of the real free surface, plotted
in red color, is added in (a), showing the limitations of the method. (c¢) Numerical result
of the plunging breaker (a), using a 2D+T approximation code, as described in Chapter
2. (d) LIF calibration grid.
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Figure 3.4: Image processing method used to obtain the trajectories of a corner wave.
(a) Top view of a typical plunging breaker. Notice that the shaded region of the wave
coincides with the overturning of the crest. (b) Edge detection algorithm with the crest
(leading edge) and valley (trailing edge) identification. (c) Sketch of the cross-section view
identified in (b) as the dash-dotted line.

3.3 Results and discussion

3.3.1 Influence of the channel walls

In this section the influence of both, the finite depth of the water stream, and the presence
of the channel walls, is explored. It will be shown that, under the experimental conditions
considered, the development of the corner wave is only slightly affected by these bound-
aries. This is a remarkable conclusion, as the distance of the corner of the plate to one of

the walls and to the bottom, is of the order of the amplitude of the wave.

To quantify the possible effects of the finite depth and the walls, high-resolution images
of corner waves, corresponding to cases 1-7 of table 3.1, were acquired from above with
the aim of detecting the trajectory of the leading and trailing edges. The leading edge is
identified by the line in which the maximum curl in the free surface is attained, whereas
the trailing edge is determined by the depression, or valley, which is left backwards the
wave in its development. An example of these images is shown in figure 3.4(a), whereas
figure 3.4(b) illustrates the detection of both edges using image processing tools. The error
in the identification of the location of the crest was estimated to be of the order of the
height of the capillary ripples as =5 mm. However, for the valley, the error increases up
to £10 mm, due to the the absence of a steep free surface shape in that location, which
produces large light reflections and therefore, large light intensity gradients in the acquired

image, facilitating the post-processing.
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Figure 3.5: Wave crest and valley trajectories. (a) Wave trajectories of cases 1-4 of
table 3.1. (b) Wave trajectories of cases 5-7 of table 3.1, obtained using three different
plates of W = 0.3, 0.5 and 0.7 for the same Fray. In both figures, the dash-dotted line

represents the leading edge trajectory.

The dimensional parameter that controls the depth of penetration of the plate is the
height of its lower edge, hy. In dimensionless terms, this parameter yields a Froude num-
ber, Fry, = U/ ghg. The influence of this parameter in the wave trajectories, compared
to the previously defined Froude number, based in the maximum difference of heights of
the free surface, Frap, = UZ/gAh, can be seen in figure 3.5(a), where the trajectories of
four different waves, identified as cases 1-4 in table 3.1, are plotted. The first three tra-
jectories were obtained keeping the Froude number Fraj, almost constant, while varying
hg and thus Fry,. Figure 3.5(a) reveals that moderate variations of the Froude number
based on the distance h, do not produce significant changes in the trajectory of the wave.
However, variations of similar magnitude in the Froude number Fraj, (as can be seen in
the fourth trajectory of the figure) significantly changes the trajectory. In particular, this
result reveals that the corner wave is not affected by the presence of the bottom in the

range of parameters we consider.

Regarding the influence of the lateral channel walls, similar experiments were per-
formed keeping Fraj, constant, but changing the plate width. Figure 3.5(b) shows the
wave trajectories, close to the plate, for three experiments with different plate widths
(W =0.3, 0.5 and 0.7) and similar Frap. It can be seen that the influence of the width

of the plate on the emergence angles of the crest of the wave is negligible.

With the above results in mind, it can be concluded that, for all the experiments re-

ported herein, the wave trajectories are solely a function of the Froude number, Fray,.
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Type of breaker. hyg h1 ho Ah Uy Fray, Fr,
(mm)  (mm)  (mm) (mm) (m/s)

Plunging 95-191 32-134 203-363 130-270 1.6-2.1 1.5-2.3 5.4-12.4

Spilling 95-191 67-142  120-265 47-135 1.3-1.7 1.8-2.5 4.2-7.1

Table 3.2: Ranges of the relevant parameters of the flow used to investigate the ballistic

path of the crest of the corner wave and its breaking process.

However, it is important to point out that this analysis is expected to remain valid
only as long as the corner wave trajectories do not interact with the boundary layers at

the walls, whose effects are not explored in this work.

These results confirm that the corner wave is a local phenomenon which is mainly
driven by the conditions near the corner of the plate, being not overly affected by the solid

boundaries of the channel.

3.3.2 Ballistic Trajectories and Plunging-Spilling transition

It is well known that, in the dimensional deep water plunging breakers, the sheet ejected
after the separation of the crest, hereafter referred to as jet, follows a ballistic trajectory
in its evolution. Previous works, and in particular Longuet-Higgins (1995), describe the-
oretically that “when the tangent of the free surface of the wave near the crest makes a
sharp right-angle turn, there is a large pressure gradient in the fluid that accelerates the
fluid near the crest horizontally and propels a jet forward from the crest. From about,
the jet narrows rapidly, and the pressure within the jet diminishes drastically; the fluid
is then almost in a state of a free-fall in a parabolic trajectory”. This assertion has been
verified experimentally, among others, by Shakeri et al. (2009b) or Drazen et al. (2008).
The goal of this section is to check that this 3D steady flow configuration can be used to

study such phenomenon.

Assuming, for the sake of the argument, that the crest of the corner wave behaves sim-
ilarly to that of a deep water wave, it would be natural to define the range of its ballistic
path, x,, as the distance between the separation point, that occurs in the vicinity of the
corner of the plate, and the point where the jet impacts on the free surface downstream
from the plate, in the downstream direction. This assumption is motivated by the obser-

vation of figures 2.1(c), 2.1(d) and 3.4(a), where, in the top view, the crest of the corner
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Figure 3.6: Square dimensionless range as a function of the modified Froude number,
Fr,. The blue squares represent W = 0.5 and the red circles W = 0.7. The linear relation

between X, and F'ry, for each plate, validates the ballistic trajectory assumption.

wave is seen to follow a straight line starting almost at the plate. It should be emphasized
that, contrarily to the wave trajectory, the range of the ballistic trajectory in the (y’-z’)

plane will be shown to be more sensitive to § than to Ah.

Following the ballistic flight theory, the range x, should scale with the time of flight of
a particle falling a distance equal to the height of the plate edge with respect to the free
surface, § = (hy — h1), i.e. ty = (5/g9)"/2. Thus,

z, ~ Urty = Uy (5/g)"? (3.1)

Equation (3.1) suggests that the square of the dimensionless range of the ballistic path,
X2 = (x,/9)%, must follow a linear relation with a modified Froude number defined as,
Fry = Fra,Ah* = U} /g(hy—h1), where AR* = % = % is the initial potential energy
of the jet, made dimensionless with the height of the plate hgy, relative to the free surface
depth h;. Therefore, X2 ~ Fry.

In figure 3.6, the experimental values of the squared dimensionless range are plotted
against the Froude number, F'ry, for a wide range of variation of the characteristic length
scales, shown in table 3.2, including also, variations in the plate/channel width ratio, W.
The detection of the range z, is done by experimentally determining, from the acquired

images, the location of the splash point. The error bars in figure 3.6 take into account the
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10
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Figure 3.7: Ratio of the potential energy of the corner wave as a function of the modified
Froude number, F'ry. The squares represent W = 0.5, the circles W = 0.7 and the
diamonds W = 0.3. In addition, the blue color denoted plunging waves cases whereas the
red one represents spilling ones. The green color was used when it cannot be determined

if the wave was either plunging or spilling.

oscillations observed in the splash point as well as the error in the velocity determination.
For the cases that correspond to spilling waves a null value was assigned to the range
(z, = 0), since there is not jet. Notice that, for each plate, the data are well fitted by a
straight line for each width of the plate W, which validates the ballistic flight hypothesis.

A remarkable conclusion that can be drawn from this experimental study is that,
whereas the trajectory of the wave does not seem to be significantly affected by the height
of the plate with respect to the bottom, the range of the ballistic flight of the jet is strongly
dependent on this parameter. The explanation for the former conclusion is that the for-
mation of the wave is determined by the local structure of the flow near the corner, that
is fairly similar to that of a plate immersed into a uniform stream of velocity U. In that
ideal case, the available water height above the corner, Ah, emerges as the only parame-
ter, together with U, affecting the flow. In other words, the velocity field near the corner
would vary along distances of the order of the flow depth, that are much larger than the
size of the wave at the location where the jet detaches. From that point on, changes in
the flow field due to the presence of the bottom will not affect the jet trajectory, that is

solely determined by the ”launch” conditions.
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Differently, the range of the ballistic flight of the jet must depend on the height that
the jet will fall from its origin. Obviously, this free-fall height is determined by the vena
contracta effect, that leads to the lowering of the free surface far downstream with respect
to the height of the corner, where the jet nearly originates. It is well known (Montes
(1997), Chow (1959)), that the water depth far downstream, h, is proportional to the
height of the plate with respect to the bottom, hgy, thus the free-fall height, hy — hi, can

be considered to be also proportional to h.

Figure 3.7 shows that the transition between the different breaking regimes nearly
occurs when the ratio between the available water height above the corner, Ah, and the
contraction of the free surface due to the vena contracta effect, §, adopts a value of about
Ah/§ ~ 3. Although the exact value has been seen to depend slightly on the Froude
number based on d, F'ry, this criterion is independently of the plate width, W. More
specifically, when the height ratio Ah/d exceeds the critical value, a plunging breaker is

observed.

The difference between the slopes observed in figure 3.6, is likely due to the absence of
experiments with similar Froude numbers, F'raj, in the experiments with different plate
width W, as shown in figure 3.8. In the mentioned figure, it can be seen that due to the
experimental limitations of our facility, we can not achieve waves with similar Fra; and
different W. To clarify this point further experiments should be performed, recommending
for such purpose, the use of a calm water towing tank, in which the effect of the boundaries

can always be neglected, instead of a recirculation channel.

3.4 Concluding Remarks

In this chapter we have presented an experimental study of several aspects associated to
the corner wave. In particular, it has been demonstrated that the corner wave trajectories
do not depend on the location of the walls and bottom, being a local phenomenon affected
only by the Froude number Frap. A criterion for the transition between overturning
corner waves and spilling ones has been proposed, based on the geometrical parameter
Ah/d ~ 3. Moreover, it has been proven that the crest of the corner wave follows a bal-
listic path when separating from the body of the wave, as occurs in deep water waves.
Further experiments, in a calm water towing tank, must be carried out in order to clarify
the existence of a, Froude dependent, breaking criterion.

The fact that the bounding walls of the channel, in the reported experiments, do not affect
the corner wave trajectory, allow us to establish a relationship between the corner wave

flow with deep water waves, and with the corner waves that appear in the wake of high
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CHAPTER
FOUR

Numerical Strategy

4.1 Introduction

The interface between a gas and a liquid, the free surface, takes its name from the large
difference in densities between the gas and liquid phases. This large density ratio, gen-
erally leads to negligible inertia associated with the gas, which allows the liquid to move
independently , “freely”, of the gas. Therefore, the presence of a free surface involves the
existence of moving boundaries that difficult the solution and treatment of the problems,

becoming necessary to resort to numerical solutions.

Independently of the method employed to solve problems with free surface, there are

three basic steps that should be taken into account:
e Define a proper numerical scheme that returns the free surface shape and location.
e Determine how the free surface will evolve in time.

e Apply and update the kinematic and dynamic conditions to the free surface in each

time step.

Following the above mentioned steps, the computation of flows with free surface has
experienced a complete renovation over the last twenty years. In the lately years of com-
putational fluid dynamics (CFD), the treatment of free surface problems has led to two
different approaches, Lagrangian and Eulerian. An overall inspection of the treatment of
this kind of problems can be found in the reviews written by Yeung (1982) and Tsai & Yue
(1996).

In the Lagrangian approaches, also called interface-tracking methods, only the liquid
phase is computed. These methods use a grid that varies over time and space, adapting its
boundary to the shape and position of the free surface. In the interface-tracking methods,
the free surface is part of the boundaries of the computational domain and is subject to

the usual kinematic and dynamic boundary conditions.
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The main advantage of the Lagrangian method is that the interface is delineated accu-
rately and its shape is precisely captured. This fact makes the Lagrangian methods very

adequate for viscous or laminar flows.

On the other hand, the continuous tracking of the free surface entails problems of
mesh distortion, that commonly result in instabilities and lack of internal physics. Sudden
variations in the interface shape, as those encountered in overturning or breaking waves,
also generate problems in the accuracy of Lagrangian methods. An early approximation
to the Lagrangian approach to free surface problems can be found in Hirt et al. (1970)
and Nichols & Hirt (1974).

The Eulerian approach based methods, also called interface-capturing methods, con-
sider both phases as an effective fluid, with variable properties. Subsequently, the free
surface is determined by sudden changes, or peaks in the gradient of those properties.
This approximation avoids the inconvenient determination of the exact free surface loca-
tion in each time step, but requires the resolution of an additional transport equation to

follow the variations of an specific property, i.e. the volume fraction.

The Eulerian approach forces the fluid to travel between the cells of a fixed mesh,
avoiding the problem of mesh distortion found in the Lagrangian approach. In the last
twenty years, the advances in the adaptive mesh techniques have increased up to the limit,

the resolution of the Eulerian methods.

The main advantage of this approach is that it can be applied to flows with an arbitrary
deformation of the interface, and also works accurately in the case of drops or bubbles
taking into account buoyancy and surface-tension effects. The possibility of capturing
complicated free surface shapes makes this approach ideal to use in the corner wave prob-
lem. In fact, when looking at the literature, it can be seen that the interface-capturing

methods are widely used in breaking waves simulations, see i.e. Helluy & Golay (2005).

The Eulerian approach is the basis of several methods. In particular, the more used

are the following:

Surface Height Method

The surface height method is commonly applied when the free surface does not have sig-
nificant deviations from its initial shape. This method is based on the assumption that the
free surface location can be always determined using its distance to the basin, H, which

is not multi-valued. Obviously, this definition becomes a problem in case of overturning
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waves, limiting the capabilities of this method. However, such approximation allows the
simplification of the Navier-Stoke equations, as i.e. by using the shallow-water equations,
which provide fast calculations, with good resolution, in some problems as i.e in low am-

plitude sloshing tanks or in certain problems associated with shallow water waves.

This method uses the conservative form of the equations, which can be solved us-
ing finite difference schemes. The basis of the surface height methods were stated by
Godunov (1959) and since then, the technique has been improved over the years, re-
sulting in high-resolution schemes as the ones written by Kurganov & Tadmor (2000) or
Alcrudo & Garcia-Navarro (1993). In Nichols & Hirt (1971) and Nichols & Hirt (1975)

there are also good examples of this method.

Marker-and-Cell (MAC) Method

The Marker-and-Cell (MAC) method, originally introduced by Harlow & Welch (1965),
was the first method able to solve time-dependent free surface flows. The MAC method
is based on a fixed Eulerian grid, in which the fluid transports a set of imaginary marker
points that move along with it. The markers are present only in one of the phases and
the cells that do not contain markers are empty. In this method, the free surface is deter-

mined by isolating the cells with a marker that are surrounded by, at least, one empty cell.

This method has demonstrated to provide accurate solutions for a wide range of com-
plicated free-surface problems. However, the MAC method has fallen into disuse due to

the considerable computational time and the large amounts of memory that requires.

Boundary Element Method (BEM)

As mentioned above, one of the main problems associated to the MAC method, is the
large amount of memory and CPU time that it requires. On the contrary, the Boundary
Element Method solves this inconvenience working with marker points placed only in the
interface, instead in all the cells of one of the phases. Therefore, only the boundaries are
traced with markers and the general equations that rule the problem are solved only in

those boundaries.

Since only elements on interfaces are involved in the solution, the set-up of the problem,
or later modifications, can be done easily and quickly. In addition, the amount of CPU time
and memory consumed by this approach are ridiculous compared with the ones employed
by the MAC method with similar levels of resolution. The books Pozrikidis (1997) and
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Ang (2007) are a good approach to the ideas proposed by this method.

Despite all of the advantages of this method, the Boundary Element Method presents
certain difficulties in the implementation of unsteady 3D cases, mainly associated with the
placement and tracking of the markers on a 3D interface. One common situation is the
loss of information in the regions where the markers disappear or remain at large distances
from each other. In Nichols & Hirt (1975) the advantages and limitations of this method

are revised.

In the section 4.3, the BEM method is widely explained and applied to the corner wave

flow.

Volume-of-Fluid (VOF) Method

The Volume of fluid method (VOF) is part of the family of the Eulerian models. The
main characteristic of this method is that it solves a single set of momentum equations
and, later, calculates the volume fraction of each phase associated to each cell of the com-
putational grid. Then, the free surface is determined in the nodes of the grid in which the

maximum gradient of the volume fraction is found. This method was originally formulated
by Nichols & Hirt (1980) and Hirt & Nichols (1981),

As mentioned above, the basis of this method lay down on the precise determination
of the volume fraction of each single phase in all the cells of the domain. Hence, if the
¢ fluid’s volume fraction in the cell is denoted as ay, the following three conditions are
possible:

* ag = 0: The cell is empty (of the ¢ fluid).

* ag = 1: The cell is full (of the ¢*" fluid).

*0 < ag < 1: The cell contains the interface between the ¢ fluid and one or more
other fluids.

Based on the local value of oy, the appropriate properties and variables are assigned
inside of the control volume of every cell within the domain. In consequence, in each cell
of the grid, the volume fractions of all phases sum to unity. Once the distribution over
the cells of the volume fraction of a single phase is known, a geometry-reconstruction-

algorithm is used to build up the location of the free surface.

The VOF method has demonstrated to be as powerful as the MAC method, while
avoiding the computational cost of the second. Applications of the VOF model include
stratified flows, free-surface flows, filling, sloshing, the motion of large bubbles in a liquid,
the motion of liquid after a dam break, the prediction of jet breakup (with surface ten-
sion), and the steady or transient tracking of any liquid-gas interface. With these ideas

in mind, in the next section 4.2, the VOF method is widely explained and applied to the
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corner wave flow.

4.2 Corner Wave modeling using Volume-of-Fluid (VOF)
Method

The VOF model has demonstrated to be very useful when the shape of the interface
presents abrupt transitions. In particular, the application of the VOF model in the
simulation of breaking waves, as the corner wave, has provided accurate and fast re-
sults. An example of the usability of such method in breaking waves can be found in
Andrillon & Alessandri (2004), Jeong & Yang (1998) or Storr & Behnia (2000).

The VOF method tracks the interface between the phases involved in the problem by
solving a continuity equation for the volume fraction of a single phase, a;. For the ¢'!

phase, this equation has the following form:

1|0 =
,(Tq a(aql)q)+v (argpqty) = Zmpq TMgp) (4.1)

where p, and v, are the density and the velocity of the phase g, 1, is the mass trans-
fer rate from the phase ¢ to the phase p while 7,4 is the opposite and n is the number
of phases. This method also provides the possibility of adding a source term, S,, to the
right-hand side of the equation. In case of working with only two phases (i.e. water-air),
the equation (4.1) is solved only once (in general n — 1 times), since the volume fraction

of the other phase is directly returned by the conservation of volume fraction in each cell,

d ag=1. (4.2)

The continuity volume fraction equation, (4.1), may be solved either through an im-
plicit or explicit time scheme. The use of an implicit scheme is appropriate to compute
steady-state solutions when the intermediate-steps results are not relevant. These schemes
have proved to be more accurate for similar orders than the explicit ones. An example of

a discretization implicit scheme is:

k—l—l k+1

n
P /0 . .
th g qV+Z k+1Uk+1 l;:;l) _ Sozq+2(mpq_mqp) v, (43)
p=1
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Figure 4.1: (a) Grid used to implement the VOF model in the corner wave problem. In
order to obtain an accurate free surface shape and location, the grid was refined several

times around uyqater € [0.4—0.6]. (b) A detail of the grid refinement near the corner wave.

where £+1 is the index for the new time step, & is the index for previous time step, oy, ¢
is the face value of ay, V' is the cell’s volume and Uy is the norm volume flux through the
face f of the cell. Due to the implicit character of this formulation, equation (4.3) requires
an estimation of the a?‘*‘l volume fraction values at the n + 1 time step. To approximate
this value, equation (4.3) is solved iteratively for n — 1 of the phase volume fraction at
each time step. Once the volume fraction is computed over the grid domain, the free
surface is determined by reconstruction schemes that interpolate the fluxes between cells

with different volume fraction.

To apply the VOF method to the corner wave studied in this work the commercial
software FLUENT was used. To set up the problem, a grid with 2.5 million of cells, 7.5
million of faces and 2.7 million of nodes was used. This grid, was built as similar as possi-
ble to the San Diego water channel (see Chapter 3) and refined several times around the
free surface location. A general view of the grid is shown in figure 4.1 whereas a detailed

view of the cross-section of the grid near the free surface location is shown in figure 4.2.

To solve the problem, an inviscid formulation was applied to the flow while the time
was used as the convergence parameter, resulting the final free surface location when its
shape and location remained steady. The Pressure-Velocity coupling was managed with a
PISO solver. To reconstruct the free surface, a geometric reconstruction scheme, namely
GEO-reconstruct, implemented in FLUENT, was used. This scheme reconstructs the free

surface in three steps:

e Firstly, the scheme calculates the position of the linear interface relative to the center
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Figure 4.2: A cross section of the grid showing the different levels of refinement around

the free surface.

of each partially-filled cell.

e Secondly, the scheme calculates the advecting amount of fluid through each face

using the computed linear interface representation.

e Finally, the scheme calculates the volume fraction in each cell using the balance of

fluxes calculated during the previous step .

In order to initialize the flow, a canonical case of the corner waves was settled in the
laboratory. Then, all the geometric parameters involved were measured and implemented
into the initial conditions of the numerical set-up. Finally, to provide an accurate initial
condition for the velocity field, PIV measurements were performed upstream of the plate.

A detailed explanation of the PIV measurements is exposed in the appendix B.

The convergence time was around 7-10 days. To obtain an accurate free surface location
from the simulation, an isosurface of auqrer = 0.5 was computed. A general result of the
simulation for a volume fraction range ayqater € [0.5 — 1] can be seen in figure 4.3.

The results of the simulation of the corner wave using the VOF model were com-
pared with the LIF experiments reported in Chapter 3. In figures 4.4 and 4.5, the free
surface location calculated with the VOF method is plotted with the results of the LIF

experiments showing the ability of the code to capture the emplacement of the free surface.

4.2.1 Volume-of-Fluid (VOF) Method Limitations

Although the ability of the VOF method to capture the free surface location is clear, the
method has a series of disadvantages. One of the main problems associated with the VOF

method, is the possibility of finding discontinuities, or numerically smoothed velocity and
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Figure 4.3: Result of the volume fraction range auyqter >~ [0.5 — 1] for the corner wave
flow. Notice that the superior level of refinement near the corner wave allows a fine
determination of the free surface in that region whereas the flow near the walls can not

be determined precisely due to lowers levels of refinement.

2/ = 30 mm 2’ =50 mm
R LT _'_',.iﬂ— I I
100}-- } [ SR v —]
10 : : : + 3 I : E 0
| |
—N 5 "N 50- - E" —
I
; ; . : ; . R . of-- P T | I -
i i i i — - i i -
-150 -100 -50 0 50 100 150 200 250 -150 -100 -50 O 50 100 150 200 250
y y

' =110 mm

100|

50+

-50

Figure 4.4: Comparison between cross section slides of the free surface location com-
puted with the VOF model and the one obtained with the LIF experiments. The red
line represents the VOF’s free surface location for auqter = 0.5. The black line represents
the free surface location obtained with the LIF experiments. The sections are placed at

2’ =30 mm, 2/ = 50 mm, 2’ = 90 mm and z’ = 110 mm.
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Figure 4.5: Comparison between cross section slides of the free surface location com-
puted with the VOF model and the one obtained with the LIF experiments. The red
line represents the VOF’s free surface location for auqter = 0.5. The black line represents
the free surface location obtained with the LIF experiments. The sections are placed at
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pressure profiles, at the free surface location.

This problem is found to be associated not only to the thickness of the interface, in
which the free surface reconstruction scheme dissipates the velocity along the cells with
a < 1 but also, to the difficulty achieving the zero divergence condition to a high de-
gree of precision at every time step. Carlson et al. (2008) relate unexpected free surface
profiles while using FLUENT and Abdolmaleki et al. (2004), applying the same software
to the case of a breaking dam problem, found disagreements in the velocity profile at the
free surface when comparing them with the predicted ones. Wood et al. (2003) also report

numerical problems associated with the VOF method in the analysis of steep gravity waves.

For this reason, even when the free surface location is captured precisely, the informa-
tion of the velocities and pressure in the free surface can not be entirely trusted and an

alternative numerical approach should be used to model the corner wave.
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4.3 Corner Wave modeling using Boundary Element Method
(BEM)

It has been demonstrated that the VOF model, presented in section 4.2, describes precisely
the free surface location. However, as explained in 4.2.1, even thought the free surface
is properly located, the method is dissipative near the free surface leading to unphysical
velocities near the air-water interface.

In order to capture not only the shape of the free surface but also its precise velocity
field, this section applies a Boundary Element Method (BEM) to the corner wave flow by
using the 2D+T approximation explained in Chapter 2.

As demonstrated in chapter 2, the velocity field in the 2D+T approximation can be
written in terms of the harmonic velocity potential ¢ that satisfies the Laplace’s equation
v2¢ = 0. Complementing this formulation, the no-penetration conditions 93¢ = 0 are
applied to the walls and the bottom of the channel and finally, the Bernoulli equation can

be used to predict the evolution of the velocity potential along the free surface,

D Vo2 P, T
Dt 2 p

where D%, is the substantial derivative, ¢ is the acceleration of the gravity vector, p is
the water density and & is the position vector. Finally, the kinematic condition declaring

the free surface as a fluid surface, completes the formulation.

In Pozrikidis (1997) it can be found that, using the appropriate boundary conditions,
the harmonic potential, ¢, and its normal derivative along the free surface, 0z¢, can be

expressed in terms of the standard boundary-integral representation,

PV

¢>(fo)=2/CG(f,x6)[ﬁ(f)-V¢(f)] di(Z) +2 : P(D)[A(Z) - VG(Z, 20)] dI(Z), (4.5)

in which, g is a point that lies on the free surface C, [ is the arc length along C' and
PV

71 is the normal vector pointing to the fluid side. In this formulation, the integral / is
C
an improper but convergent integral called a principle-value integral.

Notice that, when applying equation (4.5) to the corner wave flow, the Green’s function
G(Z, %)) is the Neumann function of the Laplace’s equation for a semi-infinite strip confined
by the three walls (left, right and bottom), G(#,23) = —5 Inr. Keep in mind that to
impose the no-penetration condition at the walls, the Green’s function has to include

also the potential of the symmetry image points with respect to the rigid boundaries.
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Therefore, equation (4.5) takes the following form;

. I R 1 o

P(x0) = —— 5 (@) e(@D)]dI(T) + — [ Inrd(Z) - i(Z)di(T),  (4.6)
s w,C r ™ Jc

which returns the value of the potential in a certain point of the free surface, 2p, in

our problem. In equation (4.6), W denotes the channel walls and bottom of the channel,

whereas 4 is the velocity vector and r = |¥ — 2p|.

Nakayama (1990) proposes an efficient computational procedure to solve the coupled

equations (4.4)-(4.6) based in the following steps :
e Compute the velocity potential, ¢, using (4.4).

e Solve the integral equation (4.6) for (%) - V¢(Z) and obtain the normal component

of the velocity vector.

e Compute the tangential derivative of the potential ¢, and obtain the tangential

velocity.

e Using the velocity field, evolve the free surface with a time marching scheme to its

new location and return to first step.

Following these four steps, the evolution of the free surface can be traced and the values

of the potential and the velocities at that location obtained, at each time step.

Numerical Procedure

In order of applying the numerical procedure exposed in the previous section to the con-
sidered problem, the initial free surface should be traced with marker points that evolve
with the free surface velocity in each time step. Observe that, if the marker points move
only with the normal component of the velocity of the free surface, they can be consid-
ered as material point particles. However, if the markers are allowed to move with both

components of the velocity, they should be treated as computational markers.

The free surface shape can be approximated by a function that passes through the
instantaneous position of the marker points. This function can be obtained by the use of
polygonal functions or by interpolated splines. It is obvious that, as the number of marker
points increases, the precision in the determination of the free surface is also improved.
However, the election of the number of marker points should also take in account the

Courant condition to prevent numerical instabilities.
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4. Numerical Strategy

The segments that connect a pair of markers are considered moving boundary elements.
Each one of them, i, of a total of N, has its own constant velocity potential ¢; and its
derivative, denoted by ( ) Under this nomenclature, the integral equation (4.5), can be

discretized as,

N N PV
Gor [ @@ = - jot)+ >0 [ ald) V@ aa@, @)

where 7 is identified as the central point of the j** boundary element, ;UM With this
in mind, it becomes possible, to derive a System for the N unknown values of the normal

derivative of the potential ( 8n),, calling ¢(x; My = ¢,

N
G [ ot ) i) - —f¢]+2¢z [ ) ved

where,

(@) i , v i L1
»WZ@ [ s vadaaw - o[ [ aw - velmae - g,
(4.9)

for j = 1,...,N. The integrals contained in expression (4.9) can be computed using
a Gauss Legendre quadrature and the system solved by Gauss elimination. Once the
solution is attained, the location of the markers must be updated. If the marker is moved
with both components of the free surface velocity, the new position can be obtained using

fli—f = i, whose scalar components are:

dxi
dt

dy;
= ux(wi, yi)§ At = Uy(iﬁi, yi) (4-10)

where the free surface velocity comes from @ = (8¢)n+( )t being [ the arc length along

the free surface with normal vector 7 and tangential vector t.

On the other hand, if the marker points displacement depends only on the normal free

surface velocity, equations (4.10) become:

dv; _ 0py .\
dt (an)znm(l‘wyl)»

dy; 0

and after relocating the markers, the potential should be updated using a slightly varied

form of equation (4.4):

0 1 P
¢:\ﬁ-ﬁ|2—2ym2—j)””+g*-f (4.12)
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4.3. Corner Wave modeling using Boundary Element Method (BEM)

To implement the above discretization a Fortran code was developed. The core of the
code was the BEMLIB software written by Pozrikidis (see Pozrikidis (2002)), in which

some modifications were made in order to refine the results and improve the convergence.

With the aim to achieve these purposes, part of the original code was rewritten using
FORTRAN 95 in order to take advantage of the dynamic memory managing function.
The use of dynamic memory functions allowed us to increase the number of points without
impacting heavily on the memory consumption. Summarizing, the following modifications

have been introduced:

e The nodes are redistributed at each time step, increasing the nodes density in the ar-
eas in which the curvature of the free surface is maximum, enlarging, in consequence,

the spatial resolution of such zones. More precisely:

|k7/nax‘ — |k;|
dsi = dsmin + Qs |]€/ | _ |k', ] |7 (413)

where ds,;, is the minimum element length, &’ is the curvature, smoothed with a

median filter,
/ 1 / / /

and ag is a constant chosen in order to maintain the total length of the free surface,

Stotal, after the redistribution,

N N

N|k! =S|k
Z dsi = Stotal = Stotal =N- dsmin + s ||]{}77ax|‘ _Z]:f;_l | ,L|. (415)
i=1 mazx min

Finally, the nodes are redistributed using linear interpolation.

e The original time marching scheme, an explicit Euler scheme, is substituted by a
modification of a third order Runge-Kutta scheme. This modification consists in a
low-storage, hybrid implicit/explicit, three-sub-step scheme of third order. However,
instead of fixing the time step, At, it is computed maintaining constant the CFL

condition, such ,

dsmin

AtFt! = CFL- (4.16)

Un, maxk’

where Un, max¥ is the maximum of the normal velocity in the previous time step.
The details of this scheme can be found in the Appendix of Spalart et al. (1991).

e The memory is allocated dynamically, which has eliminated the limitation of nodes.

e The linear system is solved using the routine DGESV from LAPACK.
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4. Numerical Strategy

2D+t BEM Free Surface evolution

Figure 4.6: Free surface evolution computed with the BEM represented in three dimen-

sions using x = U;t

To test the accuracy of the code, an experimental free surface profile of a canonical
plunging breaker, identified as case A of table 3.1, was reconstructed and used as the
initial condition. Such profile was obtained using the LIF experiments (see figure 3.3(a))
immediately downstream from the plate at x = 0.12, (2’ = 25 mm). Finally, the initial

velocity potential was set to zero, ¢ = 0.

Figure 4.6 shows the results of the simulation when undoing the 2D+T approximation
by z = Uit. As can be seen, the couple BEM-2D+T approximation qualitatively repro-

duces the development of the corner wave.

Figure 4.7 shows the comparison between the experimental free surface location, ob-
tained using the LIF experiments reported in Chapter 3, and the computed free surface
obtained with the 2D+T approximation. To avoid the ”vena contracta” effect of the 3D
case, the numerical free surface location is shown with its origin of coordinates relocated

to the crest of the wave, at each cross section z’.

As shown, this method is not able to capture some three dimensional effects of the
sluice gate case due to the assumption that the potential ¢ is originally null. On the other
hand, the uses of a BEM provides exact information of the velocities at the free surface,

which are critical to understand the formation mechanism of the corner wave.
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4.3. Corner Wave modeling using Boundary Element Method (BEM)
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Figure 4.7: Results of the numerical 2D+T free surface location versus the experimental
one. The sections y — z are located at (a) ' = 30mm, (b) 2/ = 50mm, (¢) 2’ = 70mm,
(d) 2’ = 80mm, (e) ' = 90mm, (f) ' = 100mm, from the plate. The blue line represents
the LIF experiments and the red one the results of the Boundary element method for the
2D+T equations. Both lines are plotted using the crest location as the coordinate origin
in order to represent the good agreement between both methods when approaching to the

corner wave.
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4. Numerical Strategy

4.4 Concluding Remarks

In this chapter, a numerical receipt to reproduce the corner wave flow has been inves-
tigated. The Volume of Fluid (VOF) method has demonstrated to be a very suitable
method to capture the free surface shape and location, but presents difficulties in obtain-

ing accurate results of the velocity field near the free surface.

The Boundary Element method (BEM) reproduces the corner wave flow, validating the
2D+T approximation for the flow, which is shown to remains adequate not only for large
Froude numbers but also for the moderate ones found in the experiments. However, the
assumption of a initial null potential velocity , ¢ = 0, limits the possibility of reproducing

the vena contracta effect, which appears in the three-dimensional case.

In the next chapter the velocity results of the Boundary Element Method and its

implications are explored and analyzed.
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CHAPTER
FIVE

Formation and Initial Development of a Corner

Wave

5.1 Introduction

This chapter is dedicated to discuss and unveil the formation and development mecha-
nisms of a corner wave. To that purpose, a combination of analytical and numerical tools,
of which some were previously described in chapters 2, 3 and 4, are used. To face this
challenge, and considering that the potential boundary element method reproduces quali-
tatively the flow, as shown in section 4.3, the 2D+T approximation will be maintained all
along this chapter. To study separately the different aspects involved in both processes

this chapter is divided into five sections;

1. Section 5.2 undertakes the way to understand the physics involved in the formation of
the corner wave, using the results of the velocity profiles obtained with the Boundary
Element Method. Subsection 5.2.2 presents a Pressure-Impulse Asymptotic analysis
which, by expanding the problem in integer powers of time, reproduces such velocity

profiles.

2. Section 5.3 contains an analysis of the selfsimilar structure of the flow near the corner

at short times.

3. In section 5.4 an analysis of the initial development of the free surface near the corner

at short times is carried out.

4. Section 5.5 contains an analysis of the different parameters of the flow which can

affect the formation or the initial development of the wave.
5. Section 5.6 presents an analytical solution for the far field of the wave corner flow.

Finally, section 5.7 is committed to conclusions.
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5. Formation and Initial Development of a Corner Wave

5.2 Formation mechanism of a corner wave

5.2.1 Glimpsing the physics ...

In Chapter 4, the potential flow theory was applied to study the corner wave flow, under
the 2D+T approximation, providing accurate results of the free surface evolution, except
for the region driven by the vena contracta effects, due to the initial assumption of null
potential at the free surface immediately downstream the plate. It will be shown that, the
careful analysis of the velocity field at the free surface reveals the underlying mechanism

responsible for the formation of the corner wave.

Figures 5.1 and 5.2 show the time evolution of the tangential and normal velocities, u;
and u,, at a typical free surface found in the experiments reported in Chapter 3. Looking
at the time development of the tangential velocity, it can be seen that, at short times, the
fluid particles at the free surface experience a fast acceleration and a later deceleration
near the point of maximum curvature. Moreover, when time advances and the wave rises

up, the tangential velocity changes in sign.

It is essential to examine in detail the meaning of the form of the tangential velocity
distribution at the free surface, because it unveils the initial formation mechanism that
rises up the corner wave. Observing the initial time steps, it can be reasonably asserted
that, due to these changes in the mentioned velocity distribution, the fluid particles are
directed towards the point of maximum curvature where, by conservation of mass, they
cannot concur simultaneously and therefore, require a vertical outlet in the form of a jet.
This jet is the ultimate responsible for the emergence of a bump that, over time, will result

in the formation of the corner wave.

Assaying carefully the normal velocity profile at the free surface a maximum can be
appreciated, which coincides with the point of maximum curvature at short times. This
maximum in the normal velocity profile changes in position in subsequent stages, evolving

fixed to the head of the jet, which later becomes the crest of the wave.

This coincidence of the maximum of the normal velocity distribution with the crest
of the wave along time, allows the optimal monitoring of its location, which grants an

appropriate tracking of the trajectory of the crest of the wave.
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5.2. Formation mechanism of a corner wave

Time 0.01 Time 0.06
0.8 . 0.8 T
0.6
0.4} menseemmen el eneaemanes | 0. 4kmeomsmesmerseeilines s o
N 0.2f N 0.2
o OF——————— i’?‘ esegee =
—0.2p -0.2
-0.5 0 0.5 -0.5 0 0.5
\ '
(a) (b)

Time 0.11

-0.5 0 0.5 -0.5 0 0.5
Y Y
(c) (d)
Time 0.21 Time 0.26
0.8 T 0.8 T
0.6 0.6
0.4 A
N
1
1
N 02 Lt
\\
g \
& S
0 e S
'
_,__\“\ /
-0.2 SR
-0.5 0 0.5 -0.5 0 0.5
Y Y

Figure 5.1: Results of the BEM numerical free surface evolution together with the
tangential velocity and the normal velocity for the dimensionless time (a) t = 0.001, (b)
t =0.006 ,(c) t =0.011 ,(d) t = 0.016, (e) t = 0.21, (f) t = 0.26. The thick line represents
the free surface evolution. The blue solid line is the instantaneous value of the tangential
velocity, us, whereas the red dashed line is the instantaneous value of the normal velocity,
un. A hyperbolic tangent function was used to describe the initial free surface shape and
used to initialize the BEM code. In this figure, the free surface is scaled and the origin of
coordinates displaced in order to clarify the velocity profiles. In (d), the arrows schematize

the normal and tangential velocities near the point of maximum curvature.
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5. Formation and Initial Development of a Corner Wave
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Figure 5.2: Results of the BEM numerical free surface evolution together with the
tangential velocity and the normal velocity for the dimensionless time (a) ¢t = 0.311, (b)
t =0.36 ,(c) t =0.41 (d) t =046, (e) t = 0.51, (f) t = 0.56. The thick line represents
the free surface evolution. The blue solid line is the instantaneous value of the tangential
velocity, us,whereas the red dashed line is the instantaneous value of the normal velocity,

Upy.
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5.2. Formation mechanism of a corner wave

5.2.2 Pressure-Impulse (P-I) Asymptotic analysis at short times ¢ < 1

At the time that the flow starts its motion, at ¢ = 0 or in the 3D case, immediately down-
stream from the plate, there exists a sudden change in the boundary conditions. This
alteration of the boundary conditions causes a pressure impulse in the fluid, as explained
by Batchelor (1967) (p.471). Once this impulse is created, the free surface deformation
starts, given t = 07. This instantaneous impulsive motion can be captured, for short times,
t < 1, using a Pressure-Impulse (P-I) asymptotic analysis combined with the 2D+T ap-
proximation. This kind of analysis has demonstrated to provide accurate results in similar
problems, as i.e. in the ones studied by Iafrati & Korobkin. (2004) or Needham et al.
(2007).

As explained in chapter 2, the 2D+T approximation leads to the system of equations
(2.28):

Vi =0 (t>0,(y,2) in Qt)) (5.1)
g + %|v¢|2 +h=0 (5.2)
O¢h 4 0ypdyh — 8,6 = 0, (5.3)

where equations (5.2) and (5.3), are the dynamic and kinematic conditions that must be

applied on the free surface, F(y,t) = z — h(y,t) = 0.

The P-I asymptotic analysis consists in expanding the potential, ¢, and the free surface
function, h, in powers of a small parameter, in this case the time, t, with the aim of
predicting the initial deformation at the free surface. Applying this idea to the system
(5.1), both functions read, up to terms of order O(¢3),

¢ = p1(y, 2)t + p2(y, 2)t° + @a(y, 2)t° + O(t?), (5.4)
for the potential and,
h = ho+ & (y)t + &(y)t + O(t?) (5.5)

for the free surface function.

This “initial” asymptotic expansion corresponds to the region between the “initial”

solution, where t ~ 1/F'r;, where Fr; is the local, time depending, Froude number based
O(Ve)

o)’ and the “intermedi-

on the characteristic length of the flow near the corner, F'r; ~

ate” solution where ¢ becomes of order t ~ O(1)
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5. Formation and Initial Development of a Corner Wave

Introducing expressions (5.4) and (5.5) into system (5.1), the first order, O(1), of the
perturbed problem, with the initial condition h(y,t = 0) = hg, becomes:

V1 = 0; h = ho +&1(y) (5.6)
w1+ ho=0

The condition ;1 + ho = 0 in system (5.6), brings to light that the leading order of the
potential ¢, at the free surface, is directly described by the form of the initial free surface
profile. Hence, the tangential velocity, at first order, can be exactly formulated as:
o 8901 o _ayh()

Up ="t = ,
T 0s /14 (—0yho)?

where s is the arc length of the free surface profile at each time step and hg, the initial

(5.7)

free surface profile.

Increasing the order of the solution to the order O(t?), we obtain,
V29 =0 (5.8)
O1)=¢1+ho=0
O(t) =2p2+ & =0

v 2
O(t%) =35 + | 9;1 T & =0
h =hg + &1t + §2t2

0(1) =& =0
O(t) =h&a + ¢1yhoy — ¢1,: =0
At order O(t?) the tangential and normal components of the velocity come out of the

expressions u, = Op@1t + Onpst® and u; = Oyp1t + Oypst3, where ¢ should be obtained
by solving V2p; = 0.

The second order of the potential, @3, is then obtained using,

V1|2
2

33 + + & = 0. (5.9)

Pressure-Impulse Asymptotic validation

With the aim of checking the validity of the Pressure-Impulse formulation to describe the
inception point and the initial development of the corner wave, the Laplace’s equation, for
the leading order of the potential, VZ¢; = 0, must be solved. In the mentioned order, the

boundary condition at the free surface depends on the form of its initial profile, o1 = —hg,
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5.2. Formation mechanism of a corner wave

whereas the no-penetration condition, 9,1 = 0, applies at the walls.

The initial free surface profile was approximated by a hyperbolic tangent of the form
ho = a+ b - tanh (y/d), where 0 was used to smooth the curvature at the corner points
(0,1) and (0,0). The parameter ¢ can be associated with the dimensionless “vena con-

tracta effect” that appears in the steady 3D case, 6* = & = th_: L which for simplicity

will be written in this section as §. The use of such expression is justified for its similarity

with the initial free surface profiles obtained in the LIF experiments reported in Chapter 3.

Using the mentioned initial free surface profiles, the Laplace’s equation for ¢; was
solved using the BEM solver but adding the new boundary conditions. Figures 5.3 and
5.4 show the resulting tangential velocity distribution compared with the one obtained
using the BEM for the original problem (5.1).

As shown in the mentioned figures, the leading order of the impulsive solution agrees
fairly well with the original problem but only at short times, detaching from the original
solution as time progresses. However, when including the O(#?) order terms, the solution
is extended to longer times, which makes possible the application of the Pressure-Impulse
analysis to capture the initial velocity profiles at the free surface and, therefore, the for-

mation of the wave.

It must be pointed out that the usage of an hyperbolic tangent to set up the initial
profile of the free surface schematically represents several types of hulls of real transom
sterns. Thus, looking to the applicability of the above analysis in naval hydrodynam-
ics, the possibility of tracking the crest of the wave, using the maximum in the normal

velocity, can help to determine some non-well known aspects of the high speed vessel wake.

The knowledge of the different trajectories of the corner wave, can shed light on the
potential location of the rooster tail. It is well known that the rooster tail appears in the
symmetry plane of the hull, where the port side corner wave collides with the starboard
one. Therefore, the time taken for the crest of one of the both corners waves to reach
the midpoint of the stern, undoing the 2D+T transformation, determines the point of

emergence of the rooster tail in three dimensions.
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Figure 5.3: Results of the BEM numerical free surface evolution and tangential velocity
compared with the pressure-impulse asymptotic solutions for time (a) ¢ = 0.024, (b)
t = 0.049 ,(c) t = 0.074 ,(d) t = 0.099, (e) t = 0.124, (f) ¢ = 0.149. The thick line
represents the free surface evolution. The solid line is the numerical instantaneous value
of the tangential velocity u;. The dashed line is the O(¢?) order solution of the asymptotic
and the dash-dot line is the O(1) order one. As in figures 5.1 and 5.2, the initial free
surface shape was approximated using an hyperbolic tangent. In this figure, the origin
of coordinates is displaced in order to clarify the velocity profiles. In (f), the arrows

schematize the normal and tangential velocities near the point of maximum curvature.
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Figure 5.4: Results of the BEM numerical free surface evolution and tangential velocity
compared with the pressure-impulse asymptotic solutions for time (a) t = 0.174, (b)
t =0.199 (c) t = 0.224, (d) t = 0.249 ,(e) t = 0.274 ,(f) ¢ = 0.299. The thick line
represents the free surface evolution. The solid line is the numerical instantaneous value
of the tangential velocity u;. The dashed line is the O(¢?) order solution of the asymptotic
and the dash-dot line is the O(1) order one. At large times, when the wave starts to
displace, the view field is expanded to show that the asymptotic results are not able to

reproduce the tangential velocity profile, remaining only the numerical one plotted.
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5. Formation and Initial Development of a Corner Wave

Figure 5.5: Sketch of the flow near the corner of the plate.

5.3 Flow structure near the corner at short times

In order to investigate the structure of the flow near the corner of the plate it is convenient
to work with polar coordinates, (r,#). Consider therefore, an inner region in the vicinity
of the corner of the plate, r = \/m — 0, for short times, ¢t < 1, with the free surface
function identified as F' = r — r4(0,t) = 0, as sketched in figure 5.5. In consequence, the
original 2D+4T system (5.1), reads

Vi =0 (5.10)

s+ 0 2 — 0,6 = 0

2
O+ %((a@)u@i? )+ 7ssind = 0

S

Assuming that the corner wave is a local phenomenon near the corner point (0,0), the
possibility of achieving a self-similar solution must be investigated. Notice that the self
similar behavior of the flow near the corner must be of the second kind since, near the
corner, the velocities depend on the hydrostatic pressure gradient, provided by Ah. This
condition, as will be shown later, does not impose the exponents of the scaling, which will

have to be adjusted by matching the outer region. Thus, we will look for solutions in the

form
gf)(?",g,t) = a(t)cp(p, 0) (5'11)
r=>b(t)p
rs(0,t) = b(t)ps(0)
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5.3. Flow structure near the corner at short times

Introducing the expressions (5.11) into the system (5.10), the boundary conditions now

read:

bb

;ps + OgpsOpp — Opp = 0 (5.12)
. ba Loay 2 (9pp)? .
o= pdo+ 5 (07 (000 + 225 ) o ppsino o

The dynamic boundary condition of system (5.12), when is multiplied by z—i, turns into

ab®>  bb 1 Bpp)*\ | b°
A EpsapQO + 3 <(8p90)2 + ( ;f) > + 2Ps sinf =0, (5.13)

in which the term %’ will be denoted as A\, whereas %2 will be denoted as pu.

Using now A and p, it is possible to sought solutions in the form
a(t) =t® b(t) =17, (5.14)
and consequently, A and p are rewritten as:

A = pt2ha-l (5.15)
= at—1-at2p

Notice that solutions in form of power laws, are the only solutions that can fit the initial
condition ¢ = 0 when ¢t — 0. Introducing now the system (5.15) into (5.12), the boundary

conditions then read:

Bps + %%s@ — 9y =0 (5.16)
1 Dpp)?
ap — BpsOpp + 5 (((%@2 + (HP?) + tF=H 1y sinh = 0.

where pgs = Ogps.
It should be pointed out that, for the unsteady and convective terms to be of the same

order in (5.16), the exponents « and 5 must satisfy,
28 —a—1=0, (5.17)

coming out with the first condition needed to determine the exponents o and 8. The second
condition needed to determine the exponents, and thus the structure of the similarity
solution, can be found imposing that, in the limit p — oo, the rescaled potential ¢ matches
the double limit 7 — 0 and ¢ — 0 of the original potential ¢. In other words, when ¢t — 0,

1‘ = 1' s 1‘ @ . .1
lm Gout = lim din = lim t%¢(p,0) (5.18)
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5. Formation and Initial Development of a Corner Wave

Figure 5.6: Sketch of the inner region of the corner flow.

Observe that the potential ¢, can be obtained in the limit » — 0 of the solution of

the first order of the Pressure Impulse Asymptotic analysis, ¢t = tw1, which reads,
2
lir% Gour = to1 + O(t%) ~ t(Jr?3sin 59 — rsind) + O(tr'/3), (5.19)
r—

where J is obtained as a part of the solution. An extensive analysis of the analytical form

of ¢ can be found in Appendix C.

Thus imposing the aforementioned matching solution between the leading order of ¢

and ¢, when p > 1 and ¢t < 1,
t%p = t(Jt2P/3p2/3 sin%&—tﬁpsinﬂ), (5.20)
and, considering t¥ < t28/3 the second condition to obtain the values of 8 and « becomes,
1 = 11263 — 30— 28 -3 =0. (5.21)
Connecting now the expressions 5.17 and 5.21, the values of a and 3 are,

a=2

53 (5.22)

Remarkably, the last term of the dynamic condition of system (5.16), the hydrostatic term
in the Bernoulli equation near the corner, turns out to be negligible in the limit ¢ < 1,
since it scales with the time raised to the exponent 5 — « + 1 = 1/2. This results means
that, in the inner region, the gravity effects, which are the leading mechanism of the entire
flow, disappear taking part in the solution, only as a condition in the matching with the

outer potential.
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5.3. Flow structure near the corner at short times
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Figure 5.7: Sketch of the initial free surface used to check the self similar behavior of

the corner wave.

To summarize, the self-similar solution valid near the corner at short times can be
obtained solving the Laplace’s equation for the rescaled self-similar potential, VZ¢ = 0,
subject to the following boundary conditions at the free surface,

s
Zps+ Bogp — 0,0 =0 (5.23)
2 Ps

3 1 Dpp)?
2 — 5,038,;904- B <(8p90)2 + ( i)f) ) =0,

in the domain sketched in figure 5.6 and assuming that, the potential ¢, when p — oo,
tends to,

2
@ — Jp?/3sin §9 (5.24)

Rewriting system (5.11), with the out-coming values of o and /3, the selfsimilar problem

is expressed as,

o(r,0,t) ~ t2(Jp*? sin %9) (5.25)
T~ t3/2p
7"3(97 t) ~ t3/2,03(0)-

To check the validity of the selfsimilar scaling (5.25), a series of cases, with the initial
free surface, modeled as the sketched in figure 5.7, were solved for the complete problem.
In these cases, a tempered radius of curvature R, was added to the corner points (0,0)

and (0, 1) in order to prevent numerical instabilities.

If we recall what was shown in section 5.2.2, where we used a BEM to validate the

Pressure Impulse analysis, the evolution of the trajectory of the crest can be monitored
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Figure 5.8: Self-Similarity of the crest trajectories of the wave.(a) Vertical z,, trajec-
tory of the crest as a function of its horizontal coordinate, y,,. (b) Dependence of both
components of the trajectories, r,, = \/y2, + 22,, with time.

using the maximum of the normal velocity profile at each time. Therefore we can use such
feature to check that the wave crest trajectory, r,, = \/y2, + 22,, follows the proposed

time scaling, rgs ~ 7, ~ 3/2,

Figure 5.8(a) shows the vertical, z,,, trajectory of the crest as a function of its horizon-
tal coordinate, ¥,,, showing that, z,, is a linear function of ¥, z;m ~ ym. This implies that
both components of the trajectory follow the same power law. Notice that, there must
exist a region for large values of time, where the trajectories begin to separate from the
linear behavior. In that region, the crest of the wave starts to separate from the body of
the free surface and begins the ballistic path explained in Chapter 3, in which the gravity

terms are becoming more important.

Figure 5.8(b) shows the dependence of both components of the trajectories, r,, = \/m
with time. After a short time, in which the tempered radius of curvature at the corner,
R, affects the trajectories, the crest of the wave is seen to follows precisely the proposed
scaling of equation (5.25), 7, ~ 2. This result confirms the self similar behavior of
this flow for short times. On the other hand, in figure 5.9(a), one can observe that, when
scaling the free surface profiles with t*/2, the shape of the free surface profile remains

invariant, thus backsliding in the self-similarity of the problem.

It must be pointed out that, due to the higher accelerations at that point, the crest evolves
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Figure 5.9: (a) Self similar rescaled free surface profiles with ¢3/2. The time range used
in this figure is the same as in figure 5.8(b). (b) Free surface profile evolution translating
the origin of coordinates at the crest of the wave. Notice that the free surface profiles are

not equiespaced as the time step is not fixed (see section 4.3).

over time faster than the rest of the free surface, and therefore, faster than the initial self-
similar solution. This is not a surprising fact since, as previously mentioned, the crest of
the wave, when detaches from the rest of the free surface, follows a ballistics path, which

implies that its time scale should range, over time, from 7y, ~ t3/2 to 7, ~ t2.

Figure 5.9(b) shows the time evolution of the free surface translating the origin of
coordinates at the crest of the wave at each time. As can be seen in this figure, the crest

of the wave maintains its form as it evolves, and detaches, from the rest of the free surface.

It must be pointed out that, the selfsimilar solution does not predict any wave. This
solution evolves smoothly the free surface from the corner until a certain curvature is at-
tained. At that point, the corner wave rises up by the effect of such curvature, meaning,
in our simulations, the tempered radius of curvature R or the vena contracta effect in the
3D case. The curvature near the origin, as was mentioned in section 5.2.1, behaves as a
“hydrodynamic lens“, concentrating the fluid particles towards a single point where, by
conservation of mass, they cannot concur simultaneously and therefore, require an outlet

in the form of a jet.

Other examples of such behavior are known to occur in axisymmetric standing waves
when a jet arises out of a wave trough and in collapsing axisymmetric bubbles and cav-

ities, Longuet-Higgins & Oguz (1997). In both examples studied by Longet-Higgins, the
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Figure 5.10: Effect of the finite curvature near the origin in the wave formation. The
blue solid line represents the free surface evolution for R = 2.107%, whereas the red dash

line corresponds to the case R = 1072.

acceleration of the formed jets shows to also follow a power-law dependence on the time.
However, in absence of any complete analytical solution, the mentioned author, resorted

to numerical solutions.

In Longuet-Higgins (2001), the author asserts that “high vertical accelerations and
velocities can arise in the troughs of standing waves in deep water, particularly if the wave
trough has a circular form. By conservation of mass, the particles directed towards the
center cannot reach their destination simultaneously, and so require a vertical outlet in
the form of a jet. Dynamically, the destruction of the horizontal momentum requires large
horizontal pressure gradients, hence a high-pressure maximum at a point on the vertical
plane of symmetry below the free surface. But the pressure at the surface itself remains
a constant, by hypothesis. Hence there is a strong vertical pressure gradient, accelerating

the particles near the surface vertically upwards.”

Figure 5.10 shows the effect of the finite curvature near the origin, meaning, the tem-
pered radius of curvature R in our simulations. In the mentioned figure, it can be appre-
ciated that, at the same time, the steeper curvature produces higher accelerations in the
particles that surround the vicinity of its maximum value, generating the jet faster that

in the cases with smoother curvatures.
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5.4 Initial free surface evolution

Once the self similar solution is attained, we can apply the knowledge of the outer potential,
¢, to obtain the theoretical evolution of the free surface at short times. Recalling, the outer

potential reads,
2
¢ = o1t = t(Jr*3sin 59 —rsinf). (5.26)

As mentioned before, an extensive description of the analytical expression for the outer

potential can be found in Appendix C.

Since the corner presents a singular solution, we will proceed to examine the evolution

of the free surface on each one of the branches near the origin, (y = 0,z — 0) and

(z = 0,y — 0). Beginning with the vertical branch, and using that § = —3/2m, its
kinematic condition reads,
2. 13
8tys — 02Ys — thZ =0, (527)
where y; is the free surface function of the mentioned branch in which y < z, uy = —ug

and u, = u,. Deriving equation (5.26), the velocities at that location read:

Uy = —Ug = %Jtr_l/?’ and,as z=0, wuy= %Jtz_1/3 (5.28)

u, = —1
The p.d.e. (5.27) can be rewritten using the variables &’ =t 4 z and 7' = ¢ yielding,

2 _
Byyys — gjn’(g’ —)VB =0, (5.29)

which general solution is given by,

2 n'dn 1 9
dys ==J | —12L 5y = ZJ(5t B4 Ot +2). .
/S y 3J/n/ T Y (5t +32)2" + Ot +2). (5.30)

Notice that since at t = 0, y; = 0, the constant C'(z) = gJ5/3 and,
6 53 1 2/3
Ys = 5'] + 5J(5t +3z)2%°. (5.31)
On the other hand, in the horizontal branch ¢ = 0, thus

uy = Uy = 0
(5.32)
Uy = U = %Jtr—l/?ﬁ —t and, as y = 0’ Uy = %Jty—l/ii _ t,
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Figure 5.11: Free surface evolution of each branch of the free surface obtained using
the velocity potential given by equation 5.26, in black and red, together with the results
of the evolution of a numerical free surface obtained using a tempered free surface with
R=5-107", in blue.

and the kinematic condition for the horizontal branch of the free surface reads,
Opzs + uyOyzs —u, =0 where 0yz, = 0, yielding, 0yzs —u, = 0. (5.33)

Therefore, the equation that gives the time evolution of the horizontal branch becomes,

1

1
o= [usty )it = 20y ), (5:34)
t

which satisfies the initial condition at ¢t = 0.

Figure 5.11 shows the comparison between the predicted evolution of the free surface
obtained using the velocity potential given by equation 5.26 together with the results
of the evolution of a numerical free surface obtained using a tempered free surface with
R =5-10"%. Notice that there exists a region in which both branches cross at each time

step. In this region, the free surface evolution can not be predicted.

Figure 5.12(a)-(b) shows a detailed view of the comparison between the predicted evo-
lution of both branches of the free surface with the numerical one. As it can be observed,

the agreement in the vertical branch lasts longer than in the horizontal one.
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Figure 5.12: Detailed view of the comparison between the predicted evolution of both
branches of the free surface with the numerical one. The predicted evolution of the free
surface is plotted in black for the horizontal branch (a), whereas for the vertical branch is

plotted in red (b). The numerical evolution of the free surface is plotted in blue.

5.5 Important Parameters in the corner wave formation

In this section we will assess which parameters can affect the corner wave formation and
its initial development. In particular, we will focus in the parameters that may affect the

results of the asymptotic outer solution given by equation (5.26), namely,
1. The distance H to the bottom.
2. The tempered radius of curvature R, used in the simulations.
3. The dimensionless width of the channel, W, = W’'/Ah.

To quantify the influence of H in the corner wave formation and its repercussion in the
future trajectories of the crest, a set of different cases varying the distance to the floor

were processed.

As can be seen in Appendix C, the factor J, which multiplies the leading order of the
asymptotic outer solution is directly related to H. Thus, it is quite revealing to see how
J is affected by the different distances to the basin. Figure 5.13(a) shows the influence of
H in the factor J. As expected, the depth has little effect on the solution near the corner.
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Figure 5.13: Influence of the bottom depth and the initial curvature radius in the wave
profiles. (a) Variations of J as a function of H. (b) Time evolution of crest trajectory as

a function of the initial fillet R, at the corner.

In fact, J reaches an asymptote Jo, >~ 1.125 for H ~ 2.

Figure 5.13(b) shows that the influence of R in the wave trajectory disappears as the
time evolves and the wave develops. This later result can not be surprising when remem-
bering that, as shown in Chapter 3, the wave trajectories are solely a function of the
Froude number based in the maximum height difference, F'ray. For this reason, consider-
ing R < Ah, the trajectories must remain invariant, after the necessary time has elapsed,

when using the non dimensional variables proposed in Chapter 2.

Notice that, supporting the theory proposed for the formation mechanism of the wave
in section 5.3, for short times, the fluid particles concur to the point of maximum cur-
vature and form the wave faster in the cases with steeper curvature. In the cases with
smooth curvature, the particles in that area experience less pronounced accelerations and,

therefore, the jet forms later.

The effects of the dimensionless width of the channel, W7 = W’'/Ah, were character-
ized varying its value, while keeping H = 2, no producing any consequence in the initial

velocity distribution when W; > 5.
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Figure 5.14: Sketch of the different regions of the flow. Notice that, if we assume the
self-similar approach of section 5.3, the inner region must contain an inner-inner region of

order O(0), in which the potential goes as ¢ ~ p/3.

5.6 Analysis of the far field of the free surface

In section 5.4, a novel expression for the outer potential near the corner was used. As can
be seen in Appendix C, the achievement of this solution through the use of a conformal
mapping involves a tremendous effort and can be hard to update in case of changes in the
boundary conditions. However, there is an alternative method of treating the problem,
instead of solving the boundary integral equation, which consists in separating the flow
in three regions, as sketched in Figure 5.14. The first one, the nearest to the origin, is
the inner region, in which the full problem (5.1) should be applied. Nevertheless, there
exists another region far enough from the origin, the far field, in which the nonlinear terms
diminish in importance and the problem can be simplified. Obviously, there must be an

intermediate transition region to serve as a link between them.

In the far field, if we neglect the non-linear terms, the theory of gravity waves can be ap-
plied. The gravity wave theory asserts that, as separating from the origin, ¢ = y/t> — oo,
the nonlinear terms decays much faster than the gravitational ones. In this instance, it

can be assumed that the local problem is equivalent to its gravity one counterpart,

V24 =0 (5.35)
O+ h =0
Oth — 0,0 =0,

where the free surface function is defined as F'(y,z) = z — h = 0, with ¢(t = 0) = 0.
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Figure 5.15: Sketch of the initial free surface with a translation of the origin of coordi-

nates in order to take advantage of the symmetry of the problem

In order to take advantage of the symmetry of the problem, the free surface h can be
defined as h = % — H(y), by translating the coordinate origin. In fact, the scroll of the
origin of coordinates identifies the initial free surface profile with a heavystep function,

H(y), as shown in figure 5.15.

System (5.35) can be solved using Fourier’s functions, applied in the y direction:

—k20+ o =0 = ¢ = Fk,t)e"* + G(k, t)e (5.36)

where G(k) = 0,k > 0 and F(k) = 0,k < 0, since ¢ — 0 when z — —oco. Observe that,
due to the symmetry of the problem |G| = |F|. Introducing equation (5.36), into the

boundary conditions of system (5.35), and forcing k > 0, we obtain:

HF+h=0 (5.37)
Oh —kF =0,
that can be reduced into:
duh + kh =0, (5.38)
returning
h(t=0)=F"'[5 - H(y)l= (5.39)
1 -
F(t=0)= %&th =0

and therefore, a free surface function of the form,

h ~ cos(Vkt). (5.40)

Obviously, looking at (5.40), i must be real to have a physical meaning. Consequently

we must impose that fz(k, t) must be odd in all times. Therefore, the kinematic condition
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reads
Db+ kG =0 G = —%&Jz(k,t) _ —%&t(:h(—k,t)) _ (5.41)
1 -

Undoing the transformation, the free surface function h is determined by,

o / COS(\/Et)eikydk—ZZ/ cos(\/Et)sm(k:t)dk:
0

oo k T

2 ' k
s A cos(Vkt) sin(kt)

= dk 42
= 2 , (5.42)

which, when setting, kt> — k and yt~2 — ¢, turns into:

_1 [ i
[ —— / cos(vk)sin(ks) (5.43)
s 0 k
Notice that integral (5.43) has an exact solution,
1 1 1
h= -+ C% ) + S*( ) (5.44)

2 \V2TS \/21g

where the terms C' and S are Fresnel’s integrals, (Abramowitz & Stegun (1964), pg 301)

and, from the same source:

¢ o001 C ~ (=) + o(s /2 (5.45)

h~ — + —. (5.46)

Figure 5.16 shows the agreement between the original free surface obtained using the
initial 2D+T system of equations (5.1), rescaled using t?, and the tendency proposed
by equation (5.46), h ~ 2—;( In the far field, it can be appreciated that the rescaled
free surface follows the above mentioned tendency but is separated from the asymptotic

behavior as we approach to y < 0.1.

Figure 5.17 shows that the divergent tendency between both solutions appears when
h ~ %(6,@)2, caused mainly for the incoming importance of the non-linear terms, which
for these values of y cannot be neglected any more. This result reinforces the theory of
the existence of an intermediate region which separates the far field from the full non-

linear region near the corner point (0,0). A properly defined system of equations for the

71



5. Formation and Initial Development of a Corner Wave

Figure 5.16: Scaling of h obtained using the equation (5.46) for (0.01 < y < 1). The

1

blue line, plotted together, represents the function 5 -, whereas the red one is the rescaled

original solution.
intermediate region must include, therefore, the non-linear terms, as i.e.
Vi =0 (5.47)
1
O + 5\<9Z<;s|2 +h=0
Oth — 0,9 = 0.

The proposed far field solution for the free surface function can also be used to predict
the far field tendency for the velocity potential. Applying now, the same Fourier analysis

to ¢ instead of h and, using ¢ = y/t2, the potential can be written as,

—t [ sin(y/a) sin(ag)
o= 7T/0 N c da (5.48)

which, using again the Fresnel integrals proposed in Abramowitz & Stegun (1964), pg 301,

becomes,
—t 2¢ . 1 1 26 1 1
qﬁ:W—|—t[—2\/:s1n(4§)0(\/ﬁ)+\/ZCOS(ZK)S(\/R)+W (5.49)

2, 1 YR DY
(\/ﬁ)jts (\/R)]_

2 e (= sin( ) O ) + cos(—)S () +

2 46" /2w 46" 2
2 1 2 1 ~
C(M)JFS( 27T§)]_
j+t[72r\/%(_§l\/217g)+\/217§+o(<3)]:(;§,

72



5.7. Concluding Remarks

s __.05 (VZ)

.- : : z

S

-2 -1 0

10 10 10

Figure 5.17: In red, the scaling of h obtained using the equation (5.46) for (0.01 <y < 1)
and compared, in blue, with the non-linear terms %Ug . In this figure, it can be seen that
the non-linear terms become important as approaching to the coordinate origin, suggesting

the existence of an intermediate region between the far field and inner region.

meaning consequently that the tendency for the potential is,

—43
¢ ~ 7 (5.50)

5.7 Concluding Remarks

In this chapter the hidden physics of the formation and initial development of a corner
wave have been investigated. With this purpose, a Pressure-Impulse asymptotic analysis
has been formulated and validated showing that, for short times, the first order of the
impulse solution agrees fairly well with the original problem, extending the applicability

of the analysis when including the O(¢?) order terms.

The self similar behavior of the initial free surface evolution was investigated in an
inner region of the flow in which the free surface was assumed to evolve as rg ~ ¢3/2.

Numerical results showed a good agreement with the proposed time scaling law.

The first order of the velocity potential, (1, in the vicinity of the corner of the plate,
for short times, was found to disagree with the one proposed in the potential flow theory
around a right solid angle, p; = r?/3 sin%@, revealing that, in the case of which the

boundaries are subject to changing conditions, as the dynamic and kinematic ones in a
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free surface, an extra term, —r sin 6, should be added, thus reading
2
o1 = Jr?/3 singﬁ—rsiDG—i—O(?A/?’). (5.51)

Using equation (5.51), the free surface was evolved finding a good agreement at short

times with the one obtained using a BEM.

The influence on the solution of the distance of the plate to the basin, H, the initial

curvature near the corner, R, and the width of the channel, Wi, was investigated.

Finally, the far field of the flow was analyzed finding that gravity waves theory can
be applied to this region, given that, as separating from the origin, the nonlinear terms

diminish in importance.
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CHAPTER
SIX

Conclusions

The wave originated at the corner of a partially submerged vertical flat plate has been
studied using a combination of experimental, numerical and theoretical tools. The con-

clusions can be classified attending to the techniques that have been used to obtain them:

Conclusions of the experimental study:

e The formation and initial development of the wave are nearly unaffected by the
presence of the walls and bottom of the channel, even when their distances to the
corner, where the wave originates, are of the order of the wave amplitude. This
suggests that the formation of the wave is a local phenomenon, in the sense that it

only depends on the structure of the flow field near the corner.

e Therefore, the main dimensionless parameter affecting the initial stages in the evo-
lution of the corner wave is the Froude number, based on the available water height

upstream the plate, Ah.

e The amplitude of the corner wave increases as the wave evolves downstream until it
eventually breaks giving birth to either a spilling or plunging breaker. A systematic
study has been performed to determine the transition criterion that separates both
flow configuration in the space of dimensionless parameters. It has been observed
that the transition nearly occurs when the ratio between the available water height
above the corner, Ah, and the contraction of the free surface due to the vena con-
tracta effect, §, adopts a value of about Ah/d = 3, although the exact value has
been seen to depend slightly on the Froude number based on §, F'r, . More specif-
ically, when the height ratio Ah/d exceeds the critical value, a plunging breaker is

observed.

e In those configurations where a plunging breaker is formed, the resulting plunging
jet has been seen to follow a ballistic trajectory, as is the case in time-evolving

two-dimensional plunging breakers.

75



6. Conclusions Appendix

Conclusions of the theoretical /numerical study:

The large values of both the Froude and Reynolds numbers allow the application of
the so-called 2D+T approximation. This simplification allows the transformation of

a three dimensional steady flow into a two dimensional time-evolving one.

The resulting two-dimensional unsteady problem has been solved numerically using a
boundary element method. The numerical results reproduce fairly well the formation
of the wave, except for the vena contracta mentioned above, that is a genuine three-

dimensional effect.

A pressure-impulse asymptotic analysis has been performed to obtain the evolution
of the wave at very short times. This technique accurately describes the initial stages

in the formation of the wave.

It has been shown that the flow near a sharp corner at short times has a self-similar
structure. More exactly, the flow exhibits a similarity solution of the second kind.
In other words, the scaling exponents of the velocity potential and the free surface
cannot be determined solely by examining the structure of the flow near the corner.
On the contrary, these exponents must be obtained imposing that the outer limit of
the self-similar solution matches the inner limit of the pressure-impulse asymptotic

solution near the corner.

From the physical point of view, the occurrence of a similarity solution of the second
kind rather than of the first kind can be explained taking into account that the
order of magnitude of the velocity near the corner must depend on the available

water height, which is a feature of the global flow configuration.

Although it is not directly related to the formation of the wave, the flow field far
away from the corner, and downstream the plate, has been analytically obtained

using the gravity waves theory.
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APPENDIX
A

Future Work

In this dissertation a classic fluid mechanics problem, the corner wave flow, has been
presented and the physics involved in its formation have been unveiled. However, this flow

is just the entrance door to many others problems as i.e:

e The estimation of the air entrainment in the ocean due to plunging breakers in the

wake of high speed vessels.

e More realistic modeling of the the structure of the wake generated by high-speed

vessels.

e The complete understanding of the rooster tail dynamics and the physics which form

and evolve the divergent waves.

To analyze the feasibility of the research lines proposed above, this chapter presents

some outcomes of the preliminary work done on these lines by the author.

A.1 Air Entrainment

The steadiness of the corner wave provides an excellent opportunity of obtaining detailed
measurements of the ingested air at the splash region in plunging breakers. The possibility
of consider a steady splash region, hard to achieve in other experiments, is a motivation
to contemplate the mentioned flow as a powerful tool to study such process. The special
configuration of the corner wave does not only provides the above mentioned steadiness
but also, allows the monitoring and the tracking of the generated bubble cloud. The deep
knowledge and understanding of the motion mechanics of the bubble cloud after a splash
process is a critical phenomenon that acquires huge importance not only in oceanography
but also in sonar applications. Additionally, as explained by Clanet & Lasheras (1997),
the size and deep of penetration of the bubble cloud provides good information of the jet

impingement process.

Figure A.1, shows a side view of a typical plunging corner corner wave together with an

instantaneous zoom of the splash region. As can be observed in the mentioned figure, this
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Figure A.1: (a) Side view of a typical plunging corner wave. (b) A detail of an instan-
taneous view of the bubble cloud ingested by the jet impingement of the plunging breaker.

The impingement region is marked in figure (a) as a circle.

flow configuration provides an excellent opportunity to experimentally track and measure

the evolution of the ingested air after a splash.

A.2 Realistic Models

The selection of a plate to generate the corner wave instead of using a more complex ob-
ject, reduces the number of parameters of the problem, i.e, we can neglect the boundary
layer at the hull’s bottom. However, in order to approach to reality, a set of experiments
using a dummy ship model must be done. The possibility of obtain a similar low than the
corner wave by using a dummy model was tested, as shown in figure A.2. To reconstruct
the free surface downstream the model, LIF experiments, identical of the ones described
in 3, were performed. Figure A.3 shows that, in this case, there can also be found a corner

wave structure.

An important benefit of working with a dummy ship model is that due to the absence
of a recirculating region, as the one found upstream from plate, the stream lines below
the model can be directed using the form of the underbody. In consequence, the vena

contracta effect disappears, facilitating both numerical and experimental advances.

The advantages of using dummy ship models are wide, as i.e. in terms of the possibil-
ities of the location of the experimental instrumentation. However, detailed calculations
of the slenderness ratio of the model should be accomplished to prevent undesirable sep-

arations of the flow in the sides. Future research in this topic include a parametric study
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Figure A.2: (a) Lateral and (b) top view of the flow field downstream a dummy ship
model. It can be appreciated in both figures that the flows resembles the one studied in

this PhD dissertation in absence of the vena contracta effect.
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Figure A.3: LIF results of the free surface location downstream from a dummy ship

model.

of the geometry of the model and the rest of the parameters reported in the corner wave

flow to allow furthers comparisons with real ship models.
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Figure A.4: Sketch of the flow set-up used to generate divergent waves. (a) General

view. (b) Top view.

A.3 Divergent Wave & Rooster Tail

It is well known that the rooster tail is responsible for a big amount of the air entrainment
in the wakes of high speed vessels. Nevertheless, at the same time, there exists another
important contribution to the atmosphere-sea air exchange by the, so-called, divergent

wave.

The divergent waves are formed due to the depression, or valley, originated by the
advance of the corner wave which, at the point of the raising of the rooster tail, produces
sudden jumps in the elevation of the free surface. This difference in height in the free
surface gives birth to a wave in the opposite direction to the corner wave one. Usually,

the above mentioned waves are denominated divergent waves.

Both, the rooster tail and the divergent wave, can be reproduced in a recirculating
water channel taking into account that the experimental set-up must allow the formation
of two corner waves, one on each side of the plate, needed to form the rooster tail. The
set up should also provide enough distance from the rooster tail to the walls with the
aim of granting the propagation of the divergent waves. This experiment can be done
using a plate similar to that used in the flow reported in this dissertation but, placing it
in the center of the test section. As mentioned above, the location of the plate has to
contemplate that a couple of corner waves, one for each wet corner, will appear, colliding
downstream from the plate in the middle of the wake. A sketch of this configuration is

shown in figure A .4.

The divergent wave and the rooster tail can be numerically simulated in a similar way
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(a) (b)

Ll L | vl DEL S D e e

Figure A.5: Numerical results of the flow by placing the plate in the center of the test
section of the channel. (a) and (b) shows calculations obtained using boundary element
method. (c) and (d) use volume of fluid method to capture the free surface. In (b), (c)

and (d) the rooster tail and the divergent wave can be clearly appreciated.

to the one used to model the corner wave and, attending to the desired information, a
BEM or a VOF method, can be selected. Figure A.5 shows the free surface location of the
divergent wave and the rooster tail, using both methods, implemented in the same way

that in the corner wave one (see chapter 4).

The free surface location used to initialize both calculations was directly measured
using a LIF experiment for a canonical case of the divergent wave by placing a plate of
width W = 0.3 in the middle of the test section. The initial upstream velocity profile,
necessary implement the VOF, was measured using a Pitot tube far upstream from the
plate, to ensure that the velocity profile remains uniform. Detailed measurements of the

velocity profile upstream the plates are reported in Appendix B.

Figure A.6 shows the ability of the VOF method capturing the free surface compared

with experimental results obtained using image processing tools. It can be appreciated
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Figure A.6: (a) Experimental determination of the divergent wave location. (b) Compar-

ison between the experimental free surface location of a divergent wave and the numerical

predicted one, using the VOF method.

that, even for such complex flows, the VOF method is able to capture the free surface
location with an adequate accuracy. However, more work is needed to be done in this

problem to understand the rooster tail and the divergent wave dynamics.
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APPENDIX
B

Velocity measurement in the corner wave flow

This appendix gathers the experimental measures of the velocity field in the corner wave

obtained with particle image velocimetry.

B.1 Particle Image Velocimetry (PIV)

Particle image velocimetry (PIV) is an optical method of flow visualization used in edu-
cation and research. PIV systems measure whole velocity fields by determining a particle
displacement over a precisely selected time using a double-pulsed laser technique. A laser
light sheet illuminates a plane in the flow, and the positions of particles, which are as-
sumed to faithfully follow the flow dynamics (naturally present or added to the flow to
have sufficient number of scatterers), in that plane, are recorded using a digital camera.
A short time (micro or milliseconds) later, a second pulse illuminates the same plane,
creating a second set of particle images. From these sets of images, unique PIV analysis
algorithms obtain the particle displacements for the imaged region, to give the velocity
information at thousands of locations-quickly, easily and reliably. Flow properties such
as vorticity and strain rates are obtained for the entire region. Mean velocity, turbulence

intensity, and higher order statistics are also obtained.

To set-up a typical PIV experiment, the following components are used; a digital CCD
camera, a double-pulsed Nd:YAG twin lasers, an articulated arm, the properly optical

arrangement and a synchronizer.

The synchronizer controls the timing between image exposures in the camera and also
permits image pairs to be acquired at various times along the flow. For accurate PIV
analysis, it is ideal that the region of the flow of interest displays an average particle dis-
placement of about 8 pixels. This is a compromise between a longer time spacing, which
would allow the particles to travel further between frames, making it harder to identify
which interrogation window corresponds to which point, and a shorter time spacing, which

could make it overly difficult to identify any displacement within the flow.
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Figure B.1: Sketch of Particle image velocimetry (PIV) set-up in the (2’ — 2’) plane.

Once the images are acquired, the frames are split into a large number of interrogation
areas, or windows. It is then possible to calculate a displacement vector for each window
with help of signal processing and autocorrelation or cross-correlation techniques. This
displacement is converted to a velocity using the time between laser shots and the physical
size of each pixel on the camera. The size of the interrogation window should be chosen

to have at least 6 particles per window on average.

This technique was used to obtain the velocity field at the corner wave. The goal
was to characterize completely the flow field upstream and near the plate and, if were
possible, obtain detailed measurements of the velocity field inside the corner wave. The
first objective was accomplished, however, the strong curvature of the free surface of the
wave generates light reflections, which made impossible to obtain good measurements of

the velocity within the wave without damaging the equipment.

B.1.1 PIV set up

The PIV measurements in the corner wave were performed in two planes, (z' — 2’) and
(' —y'). To that end, as sketched in figure B.1, for the (2’ — 2’) plane, the laser beam,
generated by the double-pulsed Nd:YAG twin laser, was conducted to the bottom of the
channel by an articulated arm and aligned in the vertical direction. To convert the laser
beam into a sheet, a combination of cylindrical and spherical lens were attached to the
head of the articulated arm, which was mounted in a traverse. To capture the motion
of the seeding particles, a CCD camera, mounted in the same traverse, was used. The
camera is a Kodak Megaplus 1.0 ES with a resolution of 1008 x 1010 pixels together with
a NIKON lens of 60mm of focal distance and 1.5 f.
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(a)

Figure B.2: Three images of the PIV process. (a) Typical acquisition image with the

tracer bubbles illuminated by the laser sheet. (b) Initial velocity vectors obtained by
the Insight software in first approximation. (¢) Complete velocity field interpolated with
Insight.

After taking a calibration image, using a grid attached to a plate submerged in the
channel, the laser sheet and the camera, placed in the same traverse, were moved together
in the 3/ direction to cover the widest range possible of the domain. Measurements in
the (¢’ — y') plane were obtained in the same way, but placing the camera in the posi-

tion where the head of the articulated arm was located in the previous case and vice versa.

The tracer particles used in this experiment were hydrogen bubbles with a typical
diameter of 20-30 ym. The use of these particles is always very attractive given the high
scatering that generate when are crossed by the laser sheet. The non-neutral buoyancy
of the hydrogen bubbles can be a disadvantage, but when working with large Froude and
Reynolds numbers, as those found in this flow, the bubbles precisely follow the stream lines,
being a reasonable suitable tracer particles. The hydrogen bubbles were generated using
water electrolysis, which was produced by placing a cathode far upstream the measurement
region and an anode at enough distance downstream. The quantity and size of the bubbles

was regulated by using a variable DC source with a potentiometer.

The Nd:YAG twin lasers, of 50 mJ/pulse, and the articulated arm, were part of a TSI
PIV all-in-one system. To synchronize the firing of the lasers and the camera trigger, a
LASERPULSE Synchronizer (Model 610034) was used, and the time delay between the
laser pulses fixed in 10 ns. This high temporal resolution, coupled with the short pulse

width in the laser (5 ns), makes the system ideal for measurements in this kind of flows.

At the moment of the firing of the lasers two consecutive images, recording the light
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Range (' = 2) ' —y)
plane plane
x, . (mm) -220 -165
T 0 (Mm) 75 15
Ypoin (Mm) -240 -100
Yras (M) 240 80
2l oo (mm) -150 -125
2} ae (M) -75 85

Table B.1: Range of the PIV measurement regions.

scattered by the tracer particles, were captured with the CCD camera. The images were

taken 0.4 milliseconds apart, corresponding to the firing of each laser.

Once the images were squired, the software Insight (TSI Inc., Saint Paul, MN) was
used to compute the velocity field using interrogation windows of 64 x 64 pixels size, and

interpolated over the rest of the image, as shown in figure B.2.

Two canonical cases, one for the case of a plunging breaker and one for the case of a
spilling breaker, reported in Chapter 3 as cases A and B, were studied. For each one of
the cases, the 3D flow field around the plate was reconstructed doing two different sets of

PIV measurements one in the (z/ — 2’) plane and other in the (' — /) plane.

In the (z/ — 2’) set, 49 planes were taken for each case, from y = —24 ¢cm to ' = 24 cm
in a 1 cm step size. To increase the range of the measurement, the traverse was also moved
along the streamwise direction. In the (2’ — ') set, 40 planes were taken, from 2/ = —125
cm to 2/ = 85 cm in a 1 cm step size. Table B.1 contains a resume of the complete range

of the measurements.

Figure B.3 shows two typical streamwise velocity profiles for each one of the (z' — /)
and (2’ — 2’) planes in the plunging breaker corresponding to case A. It must be pointed
out that, coinciding with Roth & Hager (1999), the velocity profile remains uniform up-

stream the plate.

The velocity field obtained using this technique, was implemented in the Volume of
Fluid method, as the initial condition for the velocity in the simulations reported in Chap-
ter 4.
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Figure B.3: Results of the streamwise velocity upstream and near the plate using PIV.
(a) Typical streamwise velocity field in the (2 — 2’) plane for a plunging breaker. (b)
(2’ — y') plane.
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APPENDIX
C

The Outer Solution

In this appendix, an analytical expression for the velocity potential of the corner wave is
presented. To obtain such expression, the potential will be analyzed in the entire domain

and not only near the corner of the plate.

C.1 Introduction

Consider, to begin, the vicinity of the corner of the plate at short times, as sketched in
figure 5.5 with the free surface function identified as F. For this flow configuration, as
proposed in Batchelor (1967) (sec 6.5), and considering that the liquid angle is 27, the

velocity potential can be written as,

2
¢ = r*/3sin 59, (C.1)
where r = \/y?2 + 22 and 0 = arctan%. The assumption of equation (C.1), imposes

3

that the potential goes as ¢ ~ r%/3 meaning consequently that the initial velocities near

the corner, are identical,

B 19, 2 g
0=0 sy =100 = 2, (€2
0=5 = tne= C5gle=y = 37

Following the velocities proposed in (C.2), it becomes clear that, approaching to the
origin, both branches of the free surface, (y =0,z — 0) and (z = 0,y — 0), should evolve
equally on time. Therefore, it should be expected that the corner wave appears at a fixed
angle of ~ 45°. However, when looking to the simulations presented in Chapters 4 and 5,

such tendency can only be confirmed for very short times.

The reason of such disagreement between the predicted evolution of the corner wave,
near the corner point (0,0), and the one proposed by the potential (C.1) is not easy to be

understood. Possible error sources are;
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10" —

Figure C.1: Normal velocities of each branch of the free surface (y = 0,z — 0) and

(z =0,y — 0) near the corner.

e The necessity of including smoothed initial free surfaces profiles in the BEM code,
in order to avoid numerical instabilities, with the subsequent loss of precision near

the corner point.

e The possible influence of the rest of the flow field in the form of the potential. Figure
C.1 shows that, for each branch of the free surface near the origin (y = 0,z — 0)
and (z = 0,y — 0), the normal velocities evolve with different power laws, which
would limit the application of equation (C.1) to a inner region, closer to the corner

point.

To investigate the possible influence of the rest of the flow in the inner region, the
leading order of the pressure impulse asymptotic analysis, exposed in Chapter 5, was
studied.

In order to obtain a solution for the potential, 1, the domain sketched in figure C.2 was

considered together with the following boundary conditions,

;

-1 if z=1and y <0,
-z ify =20,
p1 = (C.3)
0 if z=0and y > 0,
Opp1 =0 atz=—H.

At this point, a finite element method (FEM) was used to solve the Laplace’s equa-
tion, V21 = 0, with the boundary conditions (C.3). To implement the FEM method, the
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o1 =-—1
p1=—z
i p1=0
Y
Vi, =0
z=—H % —

Figure C.2: Boundary conditions for the leading order of the potential, ¢ = (1, using

the P-I asymptotic expansion.

MATLARB pde toolbox using an adaptive mesh, was used. The adaptive grid was obtained
by reducing the triangles of the original mesh at the locations where the largest values of

the potential, after solving the Laplace’s equation, V2, = 0, were found.

Figure C.3(a) shows the FEM solution for the potential near the corner. Once cal-
culated, the solution of the potential was interpolated over an structured grid, of 2000
and 5000 points, near ¥y, z = 0, for post-processing. The post-processing revealed that the
grid convergence was excellent, obtaining residuals in the value of the potential of order
O(107®). Finally, the gradient of the potential was calculated and extrapolated to the free

surface, obtaining the normal velocity in each one of the branches.

Figure C.3(b) shows that, even approaching, using the FEM, closer to the corner point
than with the BEM, both branches of the normal velocity still differ than the predicted
by equation C.1. The good agreement between the results of the BEM and the FEM for
the normal velocities of both branches of the free surface near the origin, suggest that the
analytical form of the potential must be reexamined for the corner wave flow.

To accomplish this challenge, the Laplace’s problem for the leading order of the potential
©1, with the boundary conditions (C.3), is solved through an analytically study of the

boundary integral equation,

PVig_ oy 1 .
/ 11 (Z)dl(Z) + = /lnr - Op1dl(Z). (C.4)

72 s
Equation (C.4), presents improper integrals when solved in the physical plane so, it is

analyzed by using a transformation to the complex plane; a conformal mapping.
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(a) (b)

Figure C.3: (a) Adaptive grid used in the FEM method. (b) Solution of the potential

(1, near the corner, using the FEM method with an adaptive mesh.

C.2 The conformal mapping transformations

Potential flow, by the use of transformations to the complex plane in two dimensions, can
be described using conformal mapping. The basic idea is to use an analytic function f,
which maps the physical domain (y, z) to the transformed domain (¢’,¢’). While y, z, ¢’

and 1/ are all real valued, it is convenient to define the complex quantities,

2 =y +iz,and w=¢ +iy. (C.5)
Then, writing the mapping f as

fly+iz)=¢ + iy, or f(z') = w. (C.6)

Assuming now that f is a holomorphic function, the Cauchy-Riemann equation should be
fulfilled,
g o o4 o’
o _ oyl 09 oW (C.7)
oy 0z 0z oy
and, based on this hypothesis it is clear that the velocity components (v, w), in the (y, 2)
directions respectively in the real plane read,
p ik iw (C.8)
Therefore, the velocity field ¥ = (v, w) is given by
_ o _ oY _o o

U=y T e YT e T Ty (C.9)
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Both ¢’ and 1)/ then satisfy Laplace’s equation:

. (92<p/ 82(,0/

82wl 62¢/
0y? + 022 -

57+ gz =0 (C.10)

Ay =0 and Ay =

in which, ¢’ can be identified as the velocity potential and v’ is the stream function.

It is clear that any differentiable function may be used for f, including multi-valued
functions such as the natural logarithm, must be confined to a single Riemann surface. In
case of using a function f in power law, conformal map is applied, from 2z’ = y + iz to
w=¢ + )"

w= A" (C.11)
which, when writing 2’ in polar coordinates as 2’ =y 4 iz = r¢0, returns
¢’ = Ar"sinnd, and Y = Ar" cosnd. (C.12)

In particular, as explained in Batchelor (1967) (p.409), the exponent n = 2/3 corresponds
to the flow around a right corner, as the one studied in this dissertation. However, as
shown before, the certainty that the two branches of the normal velocity near the origin
differ from the theory proposed by equation (C.1), ¢ ~ r2/3, advances that this theory
remains only valid when the right angle is formed by the boundaries of a solid, loosing its

validity if the fluid is surrounded by moving boundaries subject to changes.

For this reason the Schwartz-Christoffel mapping will be applied to the problem under
consideration. Such transfomarion uses the conformal mapping theory, explained above,
to transform a polygon in the physical plane, W, to a straight line in the complex plane,

£, being suitable for the considered flow.

C.3 Schwartz-Christoffel Mapping in the corner wave

To applied the Schwartz-Christoffel transformation to the domain of the corner wave, €2,
each one of the corners of the polygon formed by the boundaries of the problem should be
numerated sequentially in counterclockwise sense, and the exterior angles «; computed,
based in the previous and next face. These angles are bounded, —m < «; < m, considering
that, when a corner of the polygon is pointing to the exterior of the domain, a becomes
positive, while negative otherwise. For example, for the domain €2, the corner point (0, 1)
returns an angle ag = 7/2 whereas the point (0,0) yields ag = —7/2 = 37 /2. Obviously,

regardless of form of the polygon, the sum of all angles must be equal to 2.
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Figure C.4: Mapping the interior of the domain €2, in the physical plane W, to the

horizontal axis in the complex plane, &.

As explained i.e. by Pozrikidis (1997), the inverse mapping function of the domain €2,

in the physical plane W, can be obtained by integrating the following expression:

aw k(g —1/a?)1/?

A C.13
€~ ge—1 (1)
Returning:
. 1+ H a? +1—2a%¢ 2/6€ —a? -1
W =i+ [aarg COSh(l——oﬁ) —arg cosh(ﬁ)], (C.14)
as sketched in figure C.4. Notice that it is permissible to set {1 = —o0 or &y = o0, in

which cases, the corresponding factors in the integration are omitted. Observe also, that

the boundary condition ¢ = —z, in the vertical branch near (0,0), is now a function of &,
—z = —f(§), reading:

1+H . a® +1—2a%¢ 2/6 —a® -1
ilovarg cos,h(l—2 —_——
—

:1—
i 1—a?

) —arg cosh( ) = £(9). (C.15)

Once in the complex plane, and with the new boundary conditions, the potential at

any point can be solved by using the boundary integral equation in its conservative form,
J@vi© - 1(©90) - fids =o. (C10)

The expressions of the integrals which appear in (C.16), using the domain £ as shown in
figure C.4, are quite difficult to solve but this disadvantage can be over-passed by doing a
transformation of the complex domain defining ¢ = 72 which would return a new complex

plane, 7, sketched in Figure C.5.
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19 T

¢s’(£) f = 7‘2
P P P —— —o—o P P o
0 1 1/a? “1/a -1 0 1 1/a

Figure C.5: The conformal mapping domain doing the transformation & = 72.

It must be pointed out that the above transformation guarantees that the potential
mantains 9,¢|g—r = 0 in the [Re[¢] < 0, Im[¢] = 0] axis of the £ plane.

Applying equation (C.16), and using Sobolev (2005)’s book, the solution for the po-

tential in the 7 plane, where 7 = 7,9 + 7.9, becomes,

1/«
or0.70) = = [ b0, 0) 5 log(1))dmy = (€T

ﬂ- —1/0{ Tz ;
1 (Ve T, — T T, 1o 740, 0
/ - _Z 2Z0 5 &(Ty0,0)dry = ZO/ - ib( y02 ) 5 dry =
T ) 1/a (Ty—Tyo)* + 75 T Jo1ja (Ty —Tyo)* + T
1 -1
T20 —dTy Tzo/ —dTy
- + — ¢(T 070)+
) (=) 418 T Sy (y— )+
1/a d
70 Y 6(70,0).

™ J1 (Ty — Ty0)? + 720

As it is shown, the potential in expression (C.17), can be split into three integrals
¢ = ¢r + érr + ¢rrr in which ¢5 has an exact solution that yields a first contribution to
the potential,

-1 1-— 1
G1(Ty0, T20) = — [arctan 0 4 arctan Ty ) (C.18)
v

T20 T20

which represents the solution of the boundary integral equation at the free surface. Notice
that, the other two integrals, ¢7; and ¢7r7, appear as the contribution from the distribution
¢ = —z along the boundary segment [y = 0,0 > z > —1].

To calculate an expression for integrals ¢ and ¢y, it is useful to rewrite equation (C.15)

as,

1+H 1+H

z=1- i [aarg | cosh(cos 6;)| — arg | cosh(cos 62)|] = 1—

i[a91 — 02]i, (C.lg)

T
which results in

1+H

z=1+ [0691 — 92] (C.QO)
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Heed that, the circumstance that the arguments of the cosh vary between —1 an 1, when

1 < ¢ < 1/a?, have been used to simplify equation (C.19), in which arg | cosh(cos 6;)| = 6;i.

Applying now the potential value in the interval [—-1/a, —1], ¢(0,7.0) = —2(720), the
contributions to the potential ¢;; and ¢rr7, can be assembled into a simple expression
F(1y0,T20), whereby ¢o = ¢r1 + ¢prir = —=2 - F(1y0, T20), with,

™

_ Voo
(1) d7y+/ ) (co
1 (Ty B TyO) + 720

-1

F(1y0,T20) —/

“1/a (Ty — 90)? + 72
in which z(7) is the z-coordinate in the physical plane W. Using now that z(7) is an even

function, z(7) = 2(—7), as long as £ = 72, equation (C.21) can be cleaned up,

-1

_ Vo
) gt / AU (C.22)
1 (TZ/ - TyO) + T

F(1y0,720) = /

—1/a (Ty — Ty0)* + 7,220

_ /1 —z(1y) () /11/a ( —2z(1y) ar, =

1/ (my — 7'yO)Q + Tz20 Ty — 7'310)2 + 7220

_ /Ua [ —2(1y) + —2(7y) } dr
1 (ry =102+ 7% (ry+70)2 +75] 7

and, the potential ¢(7y) can be now rewritten as ¢(19) = ¢1(70) + P2(70), meaning;:

- - 1
o(19) = — [arctan by} + arctan -i-Tyo] (C.23)
™ T20 T20
1/a
T»0 1 1
+— z(1y) [ + } dry,
T ) Vil —m0)2+ 7% (y+m0)2+75] 7Y

with the above mentioned parameters:

1+H . _ 1
z:1++7[a91—92)] ; O=1¥m (C.24)
2 2 :
01 = arccos(“HEZE) ) = arceos( 2=

C.4 The potential near the origin

Now that it has been found an expression that describes the potential in the plane 7
(equation (C.23)), it can be assessed its value in the vicinity of the origin. Notice that,
the origin of the physical plane W corresponds to 7 = 41/« and thus, near the corner

point, the expression can be linearized in polar coordinates using,
0=1/a+Pe" | P<1 (C.25)
Tyo = 1/ac+ Pcosy , 7,0 = Psiny (C.26)

Inserting now expressions (C.26), into the piecewise-constant part of equation (C.23), it

becomes:
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-1 1-1/aa—P 1+1 P

¢; = — |arctan /o — - BT | arctan +1/a + CoSTN — (C.27)
s Psin~y Psinvy
-1 1-1/a 1+1/a
— t — cot t t
- [arc an( Psine cot 7y) + arctan( Psiny + co 'y)} ,

which assuming that 1/a < 1, turns into:

-1 1l/aa—1 141

br = — [— arctan( Ié(:inv + cot ) + arctan( P—{;in/j + cot 7)} . (C.28)

Equation (C.28), is described by Abramowitz & Stegun (1964)(eq. 4.4.28), and can be

rewritten as,

. . 1/a—1 . . 1/a+1
—-1 = 1+ coty + 5= 1+ coty + Bo—=
or=— |5 log( Do) + - log( )| = (C-29)

T |2 1 —coty — 2 i—cotv—gg:ﬂlf

Psin~y
1/a+ 1+ Psinvy(i + coty)
1/a+ 1+ Psiny(—i+ cot )

)

z[ o 1/a— 1+ Psin~y(i + cotvy) )~ Tog(

1/a— 1+ Psiny(—i+ cot~y)
This latter expression can be reduced, using MAPLE, into:

Psiny P2 siny cos vy

o= [1/a2 1 Zaije2 1| O (C.30)

On the other hand, when approaching to the origin, the factors in the integral part of
equation (C.23), turn into:

1 1

+ = C.31
(1 —1/a — Pcosy)2+ P2sin?y (7 +1/a+ Pcosv)? + P2sin?y (©31)
1 1
(T —1/a)2 —2P(r — 1/a)cosy + P2 (7 + 1/a)2 + 2P(r — 1/a)cosy + P?
el 1 ] 1 =
(1 —1/a)2'1 —2Pcosy(r — 1/a)™1" " (1 +1/a)2' 1 +2Pcosy(T + 1/a)~1"
1 1
———[1+2P —1/a) +—"[1 - 2P 1/a)7] =
= 1/0[)2[ + 2P cosy(T — 1/a) ]+(7_ n 1/a)2[ cosy(T+ 1/a)™"]
1 + 1 Lop [ 1 1 ]
co - =
=1/ap " G+ 1fap ™ N = 1/af ~ (r+1/o)?
2(72 +1/a?) 31202 + 1
AT T Y ) o 4p e N
(= 1ja22 T QA a2
and finally, the integral term in the potential turns into:
Psiny (Y% 22(1) (72 +1/a?)
= — d C.32
= /1 (2 — 1/a2> i (C-32)
_P2 sin vy cos 7y /1/0‘ 4(372a2 + 1) “(r)dr
T 1 ad(r? — 1/a2)
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Both integrals in equation (C.32) seem to diverge when 7 = 1/a, which means that the
potential ¢2 does not admit a Taylor expansion near the origin. Notice that this problem

is actually caused by the first integral, that might be rewritten, in its original form as,

—Psiny [V dr
e —— C.33
P25 ™ /1 2(7) (1 —1/a— Pcosv)? + PZsin?v’ (€-33)

in which the integral part will be named F7.

With the purpose to investigate the cause of the singularity of the integral F} near the
origin, 7 — 1/a, we can define a new parameter, ¢ = 1/a — 7. Notice that, using €, 6;

now reads,

241-20%(1/a— 4 207
01 = arccos (a + 1 _0[052 /o 6>) = arccos (—1 + 7 _0422 — li;2> = (C.34)

4 2 2.2
1 _a;2 1 i ;2. Therefore,

= —ilog(—14 9 +1iV29 — 9?); where J =

2
0 ~7— V29— \gﬁ?’ﬂ + 0(193/2), which, without using 9, becomes

2ae 3y @ ada? —5)  8V2, «a 3/2 5/2
1- a2 (2 A—ozp T3 (Gog2) ) 7O

912—

On the other hand, 65 can be written as

1—a?

92_7r_2“1—a2+”(1—a2)3 [204(7& —3)—3&]6 +O0(e77)

and, in consequence, z reads,

z=1+ - (b 92)—%6 - +0(e%) (C.36)

Notice that, since the first non-vanishing term in (C.36) is of O(e%/2), the integral F

converges for P = 0 and thus, the integrand behaves near the limit 7 = 1/« as

2 __ a2
0o = arccos ((1/a6)2 > ~ (C.35)

z(T) €3/? (C.37)
(1 —1/a— Pcosy)2+ P2sin?y (e + Pcosv)? + P2sin?y’ '

which, when is integrated between € = 0 and a finite value, behaves as ~ P'/2. This

suggest that the proper expansion of F; might be in powers of P'/2 rather than P.
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To capture the PY/2 term, the integral F} can be expanded as;

F=- /Ua 21ja=e) de = (C.38)
1 (e+ Pcosy)?+ P2sin?y

o z2(l/a—e€) — CLe3? e 3/2
. 2 + CZ . 2 b
o (e+ Pcosvy)?+ P%sin” vy o  (e+ Pcosvy)?+ P%sin”~y
where C, comes from z(e) = C,e/2 + O(€5/?).

Notice that, the first integral of equation (C.38) can be expended in Taylor series up

to terms of order P, as the numerator goes as ~ ¢7/2 and the coefficients of P contain the

3

factor €° in the denominator.

With the above idea in mind, the parameter C, expressed in terms of a becomes,

1

C = V) g @ -9 - ) (€39
! 702 -3 8
\/5(71 _ a2)3/204(T - §a2)] =

_ 4v/202 «
S 3n(l-a)\ 1-a2

Using now the recently obtained value of C, an exact solution for the second integral of

F1 can be calculated, resulting in,

e 32
C. = C.40
/0 (€ 4+ Pcosv)? + P2sin?y (C-40)

P1/2 . [q* . P /% .
2ar + —i |ei2? arctan(—ae*”yﬂ) — 127 arctan(—aewm)
sin -y P P
[

x _ 1—
where a* = 2.

Notice that the solution (C.40) can be written in its asymptotic form yielding:

15 o
C = C.41
2/0 (e + Pcosvy)? + P2sin?y ( )

1-— sin 2
2 @ 27\/P—|—4Pcos,%/ a +O(P3?)
« sin vy 1-a

C.5 Summary

As explained in the previous sections, the potential can be divided into the following

contributions:

¢ = o1+ P2p + P2m + Pas (C.42)
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with,

-1 1-1/a—P 1+1 P
¢r = —[arctan /o - cosy + arctan + /aﬁ_ cosy
T Psiny Psinvy
-2 ? . 4 o’
PS]H")/ + ;m

(C.43)

P?sinycosy 4+ O(P?) |,

¢2p:*

: 1/
Psiny / 2(T) dr (C.44)
1

T (T +1/a+ Pcosvy)? + PZsin?y

¢2p:_

Psin’y/l/o‘ z(T) p +2P2sin’ycosy/1/a 2(1)a?
m i @rijep” o (ol

Psiny [Y* 2(1) = C.(1 o — 7)3/?
I

$om = = T 7 —1/a — Pcosy)? + P2sin?y

(C.45)

dr—

bom = _ Psiny /l/a 2(1) — Cx(1/a — 1)3/2
2m — T 1 (7_ _ 1/0[)2
2P? siny cos y /1/0‘ z2(1) — C.(1/a — 7')3/2
1

o 1/a) dr + O(P?)

™

and

C 1— 3 4 1-—
P25 = —zzr — 2 Psiny + C.sin Sy PY2 — ~C.y [~ L P2siny cosy + O(P*?)
T « 2 T «

(C.46)

The coeflicients corresponding to integrals in equations (C.44) and (C.45), will be de-
noted as Cp1, Cp2, Cpm1 and Cjpa. Notice that they are exclusively functions of a. Figure
C.6 shows the numerical integration of these coefficients, and their variations with a. To
calculate the coefficients Cp; and C),; the numerical method tries to approximate the in-
tegral of the function from A to B to within an error of 1.e-6 using recursive adaptive

Simpson quadrature. This numerical method is implemented in MATLAB (quad.m).

Once the value of the coefficients Cp1, Cp2, Cr1 and Cp2 has been obtained, all the
contributions to the potential can be evaluated for a fixed value of H (and therefore of
a). In figure C.7, the equipotential lines are plotted using the exact and the asymptotic
solution. Notice that there is a very good agreement between both, specially when R <
5.1073. With this result, the next step is just to undo the mapping and come back, from
the complex plane 7, to the physical one W.
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——cp1]

Cmil, -Cm2
Cpl,2

(a) (b)

Figure C.6: Numerical integration of the coefficients Cp1, Cpa, Cin1 and Cpyo as a
function of a. For Cp,; and C,2, the integration was performed from 1 to % with

e = 107° to avoid the singularity and confirmed its validity until e = 1075, Notice that «

is always bounded at 1 as o = 7.

Isopotential lines, t-plane. H = 2.0

Exact Solution
& Asymptotic Solution

0.05

0.04

0.03

0.02

0.01

Figure C.7: Comparison of equipotential lines plotted using the exact (red) and the
asymptotic solution (blue).
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T

1/
Figure C.8: Undoing the conformal mapping from 7 to W.

C.6 Undoing the mapping
The previous section shows that the potential, in plane 7, can be expressed as,
¢ = APsiny + BP3/?sin ;’y + O(P?). (C.47)

This expression, undoing the mapping as sketched in figure C.8, will be transformed to the
physical plane W. To accomplish such transformation, the Schwartz-Christoffel mapping

is linearized near the corner point in both, complex and physical, planes,

i0 _ (piv 3/2 / 5/2)
re (Pe') - Vi a2 O(P (C.48)

—2/3
4 . 2
Pt = Kr23¢i% . with K = i a
m(l—a) 3 1—a?

which, in summary, returns:

ca0)

2
=29
3

Notice that K depends on the dimensionless depth H by a = HLH

Using all the above, the final expression for the potential in the physical plane, W, reads:
2
¢ = AKr?/3 sin S0+ BK3?rsin + O(r4/3). (C.50)

It must be pointed out that, although the form of the potential could be inferred
from the eigenfunctions of the problem near the corner point, knowing the constants is
indeed very important and that information can only be computed following the above
mentioned steps, which means to solve the global problem. In fact, when using the eigen-
function methods, BK3/2 = 1 and, using that, as sketched in figure C.8 ,in the corner
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wave formulation § = —6, the potential reads,
2
¢ = AKr?/3 singﬁ—rsiDH—i—O(?A/?’). (C.51)

With equation C.51, is now possible to obtain the normal velocities in each one of the

branches near the corner point r — 0; 6 = {0, 37”},

19¢ 2

9 = O — ’U/n7y = —;% =0 — —gAK’ril/:} —1 (052)

in which, A should be negative to have physical sense. Therefore, equation C.51, defining
J = —Ak, reads,

2
¢ = Jr¥/3sin §0 — rsind + O(r*/?), (C.53)

which should be recalled that is the analytical solution of the leading order ¢; of the

potential ¢ ~ tw1, as described in the Pressure-Impulse analysis.

Figure C.9, shows the good agreement between the normal velocities obtained with
the Finite Element Method and analytical ones described by system (C.52).
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H=20

|=——=FEM Un,y
FEM Un,z
10 "H—Analytical Un,y i
[| = Analytical Un,z

1 1

107 107 10°° 10"

r

Figure C.9: Comparison between the predicted normal velocities for each branch of the
corner point (0, 0) using the conformal mapping (red and blue) and the results of the finite

element method (black and green) for a dimensionless depth H = 2.
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