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Abstract: The paper presents a monitoring system for carrier grade mesh 

networks. First, the system architecture, components and interfaces are

described. Then the measured and discovered network parameters are

discussed. A link prediction and trigger algorithm based on a modified mean-

reverting diffusion process is proposed. The results from analysis show that this

function can significantly enhance link reliability.
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1. Introduction

Monitoring and performance management are critical for network operators as they have a 

direct impact on competitiveness and profitability. Network-wide visibility is vital to ensure

that service delivery and quality of experience are complying with Service Level

Agreement (SLA). A carrier-grade network monitoring not only enables real-time system 

performance, fault tracking and resolution, but also provides operator the knowledge on 

when to upgrade the network. In addition, the system requires dynamic self-monitoring and 

configuration capabilities in order to support CaRrier grade Mesh Network (CARMEN)’s

vision in reducing deployment and operational costs.

For a heterogeneous system, the main role of monitoring system is to supply other 

modules accurate and timely information regarding the status of network, in both 

technology-dependent and technology independent manner. Depending on the monitored

parameters, different sampling techniques, as well as statistical analysis and data-storing 

methods are to be considered to optimise the monitoring performance in terms of data 

accuracy and reduction of monitoring overhead. Aggregation, correlation and statistical 

analysis of the gathered data on different timescales is essential for tracking and keeping

up-to-date the states or information of the mesh network. Reports from the monitoring

system are not only crucial for self-configuration and planning functions, but also important

for the dynamic resource management, such as routing updates or quality of service (QoS) 

including admission control decisions. 
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2. CARMEN Architecture

The overall architecture of the CARMEN Mesh Network with respect to main functional

block of monitoring system is presented in Figure 1. It consists of several Carmen Mesh 

Points connected to the core network via a number of Carmen Gateways (CGW) [1]. 

CGWs, which act as gateways are typically connected to the core network via a wired

connection. Other nodes  CARMEN Mesh Nodes (CMNs)  are interconnected via radio 

links operating on different or shared frequency channels. In case of different channels 

operating mode, more than one physical interface is required or virtualization mechanism of 

the interface should be implemented. In order to achieve the carrier grade mesh

intercommunication, each wireless mesh network node performs continuous measurements

and monitoring of several radio parameters. Gathering, processing and monitoring of 

measured data allows us to create an additional decision plane. It introduces enhancements

to the existing functionality of Routing and Self-Configuration Functions and supports their 

decision criteria. The main benefit of monitoring-based decision making process should be 

reflected in better accuracy of routing tables, and efficient spectrum allocation, which

allows interference avoidance [1]. The Monitoring system allows us to create a map of 

mesh links topology, track links’ parameters changes and provides prediction mechanism of 

link behaviour, which allows to re-configure network in advance and to improve mesh

network reliability. Such an additional decision plane allows introducing cross-layer

optimization mechanisms of existing mesh network in the context of cognitive network 

architecture [2], due to the fact that monitoring system aims to be an aggregator for

abstracted, different background wireless technologies. Especially long term monitoring of 

wide variety of radio related parameters with addition of L2/L3 characteristic provides an

additional feedback loop [3] for all decisions taken in response of short-term radio 

environment behaviour (i.e. link reconfiguration upon triggered alert), which can result with 

avoidance of traffic redirection via unstable links and their further reconfiguration.
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Figure 1. Carmen Mesh Network Architecture.
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3. Methodology

The Carmen Mesh Network Monitoring System assumes two main areas of operation. On 

one hand it should precisely monitor the behaviour of logical links (described by source and 

destination EUI_64 addresses) originating or ending on current physical interface used for 

regular transmission. This is directly related to monitoring of L2 frames and their 

parameters within a radio channel, the physical interface is configured to work on. On the 

other hand, a more generic view of neighbourhood is also required to satisfy Self 

Configuration optimisation of radio coverage and resources assignments functionalities.

Thus a frequency scanning procedure has been introduced in order to support network 

bootstrap phase and to detect any new CMN. The scanning procedure is based on discovery 

of potential radio links which can be created within a mesh network. Fast variations of radio 

channel characteristics entail the need of smoothing mechanism introduction to deal with 

raw data measurements, as well as to avoid incorrect decisions based on temporary

measured values of parameters. To overcome this problem, a double level averaging 

process has been implemented within a measurement modules and monitoring aggregation 

module as well. Additional long-term statistics repository has been created to provide 

feedback mechanism for routing with link stability description. Also link related events are

predicted and reported by link triggering and prediction module.

The main problem related to data plane monitoring and frequency sweeping procedure 

is their strong physical interface dependency. The neighbourhood scanning should be done 

constantly and looped over a set of radio channels and thus requires a dedicated interface. 

However it is possible to merge both measurement schemes over a single interface but that 

would require extra coordination for example to perform a full neighbourhood scanning 

during the node/network bootstrap phase in order to get an initial view of the 

neighbourhood or to scan during transmission gap intervals.

4. Technology Description

The architecture of the Monitoring System with its main components and interfaces is 

depicted in Figure 2 and we will describe each of the modules in the following subsections. 

Monitoring Module Aggregator

+MoMa-MeM NSc Scan Result.Request()

+MoMa-MeM NSc Scan Stop()
+MoMa-MeM NSc Scan Interval.Request()

+MeM NSc-MoMa Scan Update()
+MeM NSc-MoMa Scan Result.Response()

«interface»

MoMa-MeM_NSc
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+MeM Drv-MoMa Configuration.Response()

«interface»
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+AI Link Up.Indication()
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+AI Measurement Update.Indication()
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+AI LogLink Info.Request()
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«interface»

AI-MoMa +Raw Measurements.Indication()
+Configure Parameters.Request()

+Configure Parameters.Response()

+Link Status Detection.Indication()
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Driver Measurement Module Neighbourhood Scanner
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Figure 2. Monitoring system components and interfaces. 

4.1 Driver Measurement Module 

Driver Measurement Module (MeM_Drv) is a module which exists within the modified 

MadWiFi driver of the wireless interface devoted to regular data transmission [4]. This

module is implemented directly in the driver because it is responsible for measurements of 

number of L1, L2, and L3 parameters based on the transmission and reception of IEEE 
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802.11 frames and their preambles/headers. These measurements and calculations are 

performed along with the activity of the wireless card and reported periodically according 

to configuration from Monitoring Module Aggregator (MoMa). MeM_Drv deals with 

strongly technology specific data within the time-scale of microseconds. The overall 

statistics are available for the entire traffic of each wireless interface. Idle intervals, when

there is no transmission in wireless medium, are also counted into reports. This module has 

one direct interface to MoMa module used for both: MeM_Drv configuration and 

transmission of reports. Single interface is reasonable and it allows for an improved 

stability during the implementation process. MeM_Drv supports IEEE 802.11 a/b/g/e 

standards. The list of parameters recognized and measured by MeM_Drv for every wireless 

interface is presented in Table 1. 

Table 1. The list of parameters recognized and measured by MeM Drv

Recognized parameters Measured parameters

1. Preamble type 1. Number of active nodes in the neighbourhood

2. Service Set Identifier (SSID) 2. Number of received frames

3. Channel 3. Number of transmitted frames

4. Supported rates 4. Frame Error Rate (FER) 

5. Frame type 5. Bit Error Rate (BER)

6. Sender/Receiver MAC address 6. Per class and overall uplink delay 

7. Priority of received frame 7. Physical layer (L1) throughput

8. Frame length 8. Data link layer (L2) throughput

9. Timestamp of Rx/Tx frame 9. Network layer (L3) throughput

10. Correctness of received frame 10. Link occupancy defined in %

11. Signal to Noise Ratio (SNR) – tech 

independent or RSSI – tech dependent

11. The remaining L1/L2/L3 link capacity

4.2 Measurement Module for Neighbourhood Scanning 

Measurement Module for Neighbourhood Scanning (MeM-NSc) is a module used to detect

active neighbour nodes’ interfaces and to send the information about detected nodes’ 

interfaces to the MoMa module. A scanning procedure is initiated on MoMa request using

MoMa-MeM_NSc interface messages. The detection procedure of neighbour nodes is 

based on scanning 802.11 channels for packets sent from neighbour nodes’ interfaces.

Channel swapping algorithm is controlled by a Scanning scheduler module. To capture 

802.11 MAC frames in real time MeM_NSc a PCAP library is used. A Packet analyser 

module of MeM_NSc has access to all fields of captured MAC frames and parameters.

Following parameters are chosen to characterise detected interfaces: MAC address, SSID, 

antenna signal, antenna noise, Signal to Noise Ratio (SNR) or Received Signal Strength 

Indication (RSSI), transmit power, operating channel number, capability field from 802.11 

MAC header, supported rates, out frames count, in frames count, average frames rate, 

average data frames rate. Based on captured frames analysis MeM_NSc generates

following statistics parameters of each scanned channels: channel utilization, frames error 

rate, frames Bit Error Rate (BER), detected frames count. For bootstrap and control of

overall behaviour of MeM_NSc a Controller module is responsible.

4.3 Monitoring Module Aggregator 

Monitoring Module Aggregator (MoMa) is a module designed for gathering measurement

related data and to process and convert this data into different time scale domain.

Measurement Modules are capable of taking measurements of both physical and logical 

links behaviour and to report their current states, but accordingly to the character of fast 

variable radio statistics  in the range of milliseconds  their outcome needs to be aggregate

and smoothed out. The Monitoring Module Aggregator receives raw measurement data 
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from both Driver Measurement Module (MeM_Drv) and Neighbour Scanner (MeM_NSc), 

as well, in both: on a request and on a change manner using MoMa-MeM_NSc and MoMa-

MeM_Drv interfaces (see Figure 2). Statistically processed data is simultaneously updated

and stored to be passed on request to the upper modules such as: Routing Function (RtF) 

and Self-Configuration Function (SCF) via AI-MoMa interface. Some data is periodically

recorded in a Monitoring Module Storage (MoMs), which is a long-term links characteristic

repository. As an addition the trigger-based operational mode is also possible for any 

module which will register for a trigger-based service, which is devoted for constant 

monitoring of a desired parameter until the pre-set threshold is being crossed. In such a case

the Monitoring Module Aggregator generates a proper indication to notify the service 

registered entity. Based on pre-processed measurement data the Monitoring Module 

Aggregator creates the information for neighbourhood topology discovery functionality.

The Link Prediction and Trigger (LPT) submodule which reside inside MoMa 

determines state change and predictive events such as Link up (LU), Link Coming Up 

(LCU), Link Going Down (LGD), Link Down (LD) as defined in IEEE 802.21 [5]. The

LGD event in particular help wireless nodes to prepare for link switching prior to link down 

so that switching delays and service interruptions can be minimized. In mesh environment,

the reliability of wireless backhaul links is extremely critical as any link disruption may

affect more than one node. For that reason, such predictive triggers are particularly 

important to ensure carrier-grade performance. An analysis of our proposed link prediction 

algorithm is presented in section 5. 

4.4 Monitoring Module Storage 

After data pre-processing, selected measurements are transferred to Monitoring Module 

Storage (MoMs), where link descriptions and their average characteristics are available for 

Self Configuration module in a longer timescale (e.g. hours or days). Further analysis of the 

frequency of appearance of links in a longer time-scale can eliminate unstable links. The 

long-time data repository could enhance Routing Function with link reliability to be 

included as a parameter for composite metric.

5. Link Prediction and Trigger Analysis

To make reliable forecast of RSSI values of local and neighbouring mesh links, here we 

would build diffusion process models for a selected window size of a series of RSSI values.

The prediction can be applied to any channel info received from the neighbouring radios.

Using a time step of 100ms, the following Figure 3 shows both the time series of raw and 

smoothed RSSI values of a typical link down event. The latter is smoothen via moving

average method with an average of 10 values in order to reduce short term fluctuations. 

Here the RSSI link down (LD) threshold value is set at -80 dBm and link going down 

(LGD) threshold is set as -76 dBm following the criteria set by Intel [6].

Since RSSI values do exhibit mean-reverting behaviour (converging towards a long term

mean), it is natural for us to look at models with this property. One such stochastic model 

which we are considering in this paper is the Ornstein-Uhlenbeck (OU) diffusion process 

which was first applied in physics [7] to describe Brownian motion of particles suspended 

in a fluid with friction. In this paper due to the inherent jump properties of RSSI values we 

propose modelling the values using a modified mean-reverting diffusion process called the 

Ornstein-Uhlenbeck jump diffusion process, JOU ,,, , defined by the stochastic 

differential equation (SDE) : 

ttttt dNJdWdtXdX log
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where  is a Wiener process, dtNdWt ,0~ 0  is the mean reversion rate,  is the mean

and 0  is the volatility.
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Figure 3. Time series of raw and smoothed RSSI values

The process  is a Poisson process with parametertdN  such that 
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The random variable  is the jump amplitude with 0tJ 2,~log JJt NJ , and 

and  are mutually independent. Using the analysis given by [8] for each forecast step
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where  and ,  are independent. Once the parameter values 1,0~, 21 NZZ 1Z 2Z ˆ , ,ˆ ˆ ,

,ˆ
J

ˆ  and J
ˆ  are estimated (see [6]),  we can then deduce the estimated forecast 

follows

tX̂

1,0~
ˆ

ˆˆ
N

XVar

XEX

tt

tttt .

Based on the forecasted RSSI values of the current mesh link and in order to minimize

the error of decision making, Intel [6] introduces a protection margin (or hysteresis factor) 

. The purpose of having this protection margin is to augment it to the RSSI threshold

value,

0

X  so that the link has an enhanced threshold value, X  to ensure a better QoS. 

Here we define the value X  as the link going down (LGD) threshold and if the 

forecasted RSSI value is greater than the LGD threshold value, then the system would not 

trigger a switchover process to another mesh radio. Otherwise the mesh node would trigger 

a switchover from its current link to a new alternative neighbouring mesh radio provided 
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the RSSI of that radio is good enough. With this protection margin , for a forecasted

RSSI value , the probability in making a trigger at time t  is defined by: ttX̂

tt

t
tt

XVar

XEX
ZPXXP

ˆ

ˆ
)ˆ( t

where 1,0  is a margin error. 
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Figure 4. Triggering times of smoothed RSSI values with respect to LGD and LD status

    In Figure 4, using , ,10N 5  4dB and 60.0 , we show the performance of 

our proposed algorithm between the time period 0s to 30s. From the figure we can see the 

prediction mechanism is able to issue a trigger at a very early stage in preparation before 

the smoothed RSSI values fall below the LGD threshold. Furthermore the presence of small

number of false trigger (or false alarm) and false non-trigger (or missed trigger) attest the 

suitability of modelling the RSSI values as a stochastic process.

Table 2. Trigger results of OU jump diffusion process and linear regression models.

OU Jump
Diffusion Model

Linear
Regression

Percentage of Triggers (%) 66.86 65.44

Percentage of False Triggers (%) 1.27 3.46

Percentage of Non-Triggers (%) 33.14 34.56

Percentage of False Non-Triggers (%) 7.69 13.11

Lead Time (seconds) 16.1 16.3

In Table 2 we show the comparison of trigger statistics between OU jump diffusion and 

linear regression methods. From the table we can see that using our proposed method there 

is a significant improvement in reducing the rate of committing false trigger and false non-

trigger as compared with the conventional linear regression method which is a brute 

strength method without taking into account of modelling fat-tails distribution. Although 

both methods have comparable lead time which is the time difference between the first

successful trigger until the signal strength goes below the LD threshold, by reducing the 

chances of making a false trigger or missed trigger, the proposed algorithm is by far a more

reliable method than linear regression. Hence from the success of this trigger analysis we 

feel that our proposed method would certainly provide future directions on how link 

prediction issues are solved in the future.
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5. Conclusions 

In the paper the architecture of monitoring system designed within the ICT CARMEN 

project has been presented. The monitoring system in carrier grade mesh networks is

critical for performance management which has a direct impact on network operator 

competitiveness and profitability. The main application areas of monitoring system are to 

discover network topology during network bootstrap and monitor link parameters in real-

time. Short term monitoring parameters are used to provide information about status of the 

network, and to predict links quality parameters. The results of prediction are used to 

reconfigure the network in advance to avoid service disruption. The first measurement

results of prediction algorithms give promising results which will be evaluated in real

testbed. Long term monitoring parameters are proposed to use as metrics in a routing 

protocol and the base knowledge when to upgrade the network. The next steps will cover 

integration and assessment of monitoring functionality into real testbed of CARMEN 

network.
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