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A Watson–Crick (WK) context-free grammar, a context-free grammar with productions whose
right-hand sides contain nonterminals and double-stranded terminal strings, generates complete
double-stranded strings under Watson–Crick complementarity. In this paper, we investigate the
simplification processes of Watson–Crick context-free grammars, which lead to defining Chomsky-
like normal form for Watson–Crick context-free grammars. The main result of the paper is a
modified CYK (Cocke–Younger–Kasami) algorithm for Watson–Crick context-free grammars in

WK-Chomsky normal form, allowing to parse double-stranded strings in O n6( ) time.
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1. INTRODUCTION

DNA computing appears as a challenge to design new types
of computing paradigms, which differ from classical counterparts
in fundamental way, to solve wide spectrum of computationally
intractable problems. DNA molecules are double-stranded struc-
tures composed of four nucleotides A (adenine), C (cytosine),
G (guanine) and T (thymine), paired to A–T and C–G accord-
ing to the so-called Watson–Crick complementary. DNA com-
puting contains various formal language theoretical approaches
of the recombinant behavior of DNA sequences under the
effect of enzymatic activities. Different DNA operations
motivate to introduce different formal language tools, such
as recognition devices (automata) and generative devices
(grammars), and to investigate structures and properties of bio-
molecular sequences.
Watson–Crick (WK) automata, one of the early DNA com-

puting models, are introduced as an extension of finite automata
with the addition of two reading heads on double-stranded
sequences [1]. The symbols on corresponding positions from
the two strands of the input are related by a complementarity
relation, similar with the WK complementarity of DNA nucleo-
tides. The two strands of the input are separately scanned from

left to right by read-only heads controlled by a common state.
Various restrictions and extensions can be made onto the basic
model of WK automata to achieve more computational power,
such as changing the way the reading head works, and provid-
ing the automata with special system like output and weight.
There are a number of variants of WK automata such as initial

stateless WK finite automata, WK automata with a WK memory,
WK transducers [2] and weighted WK automata [3] introduced.
Paper [4] proposes parallel communicating WK automata
systems, which exploit the massive parallelism trait of DNA
molecules. The survey [5] covers a detailed information on
WK automata.
The computational relations among WK automata and context-

free grammars are studied in [6, 7]. A pioneering work [8],
which uses this fundamental feature, proposes an analytic
counterpart of WK finite automata called (static) WK regular
grammars, which are regular grammars with double-stranded
terminal substrings on the right-hand side of productions, and
generate the languages of complete double-stranded strings.
Papers [9–11] introduce dynamic variants of WK (regular, lin-
ear and context-free) grammars, study their generative capaci-
ties and closure properties.
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1.1. Our contribution

In this work, we investigate the structural properties and sim-
plification issues of WK context-free grammars. First, we dis-
cuss the derivation processes by WK context-free grammars,
where derivations are not the same as those by Chomsky
context-free grammars: two adjacent nonterminals may gener-
ate different complete double-stranded substrings ‘together’
depending on the positions from where each nonterminal
starts building up the complete substring. As a result, various
possible shapes of initial double-stranded substrings between
nonterminals are discovered. Surprisingly, this dependency in
derivations does not affect the application order of produc-
tions: we show that leftmost and rightmost derivations result
in the same complete double-stranded string.
In order to facilitate the analysis of WK context-free gram-

mars and languages, we define a ‘Chomsky-like’ normal
form, called WK-Chomsky normal form, for a WK grammar
by imposing some restrictions on the forms of productions of
the grammar. Similar to usual context-free case, we consider
three main transformations—removal of erasing productions,
removal of chain productions and removal of useless non-
terminals and productions—that convert an arbitrary WK
context-free grammar into the grammar in WK-Chomsky nor-
mal form. Further, we develop a modified CYK algorithm for
WK context-free grammars using WK-Chomsky normal form
and show that the time complexity of this algorithm is O n6( ).
The paper is organized as follows: in Section 2, we recall the

basic notions and notations from the theory of formal languages
that are used throughout the paper. In Section 3, we define WK
context-free grammars. In Section 4, we show that an arbitrary
WK context-free grammar can be converted into the grammar
in WK-Chomsky normal form through transformation stages.
In Section 5, we develop WK-CYK algorithm for WK context-
free grammars and discuss its complexity issues. We conclude
our paper with a summary and open problems in Section 6.

2. PRELIMINARIES

We assume that a reader is familiar with basic notions and
notations of formal languages, grammars and DNA comput-
ing. For more details, the reader is referred to [2, 5, 12, 13].
In the paper, we use the following general notations: the

inclusion is denoted by Í and the strict (proper) inclusion is
denoted by Ì. The symbol Æ denotes the empty set. The
power set of a set X is denoted by 2X , while the cardinality of
a set X is denoted by X∣ ∣. The notation x y,[ ] denotes a closed
integer interval.

2.1. Grammars

Let S be an alphabet which is a finite non-empty set of sym-
bols. A string over the alphabet S is a finite sequence of

symbols from S. The empty string is denoted by l. The set of
all strings over the alphabet S is denoted by *S . The set of
non-empty strings over S is denoted by S+, i.e.

* lS = S - { }+ . A subset of *S is called a language. The
length of a string w Î S, denoted by w∣ ∣. The shuffle of two
strings u v, *Î S , denoted by u vD , is the set of all strings
w of the form w u v u v u vk k1 1 2 2= ¼ with u v,i i *Î S for all
i k1,Î [ ], and u u u uk1 2¼ = and v v v vk1 2¼ = .

A context-free grammar is a quadruple G N T S P, , ,= ( ),
where N is an alphabet of nonterminals, T is an alphabet of
terminals, with N TÇ = Æ, S NÎ is the start symbol, and
P N N T *Í ´ ( È ) is a finite set of productions. We write
A b indicating the rewriting process of the strings based on
the production A P, b( ) Î . For a production A b , A is
called its left-hand side and b its right-hand side. A production
whose right-hand side is the empty string is called an l-pro-
duction (erasing production). To abbreviate productions
A A A P k, , , , 2k1 2b b b  ¼  Î ³ , with the same left-
hand side, we use the shorthand A n1 2b b b ∣ ∣ ∣ where the
vertical bar stands for ‘or’.

x N T *Î ( È ) directly derives y N T *Î ( È ) , written as
x y , if and only if x x Ax1 2= and y x x1 2b= for some pro-
ductions A Pb Î and x x N T,1 2 *Î ( È ) . This is also
called a derivation step.
A string u N T *Î ( È ) derives a string v N T *Î ( È ) , writ-

ten as u v* , if either

• u v= or
• there are strings u u u, , , n0 1 ¼ in N T *( È ) , called sen-

tential forms, such that u u0 = , u vn = , and ui 1- dir-
ectly derives ui for all i n1,Î [ ], i.e.,

u u u u v. 1n0 1=    = ( )

The sequence (1) is called the derivation of v from u. If
v T*Î , v is called a terminal string. A derivation is called
leftmost (rightmost) if at every derivation step, the leftmost
(rightmost) nonterminal of the sentential form is rewritten.
The language generated by the grammar G, denoted by

L G( ), is defined as L G w T S w:* *( ) = { Î  }.
A derivation tree or a parse tree is an ordered tree where

the interior nodes of the tree are the left-hand sides of produc-
tions of a grammar, and all children of the nodes are their cor-
responding right-hand sides. The start symbol in the grammar
is the root of the tree, while the terminals are the leaves.
Formally, a derivation tree can be defined as follows. Let

G N T S P, , ,= ( ) be a context-free grammar and S w* be
a derivation in G. A derivation tree of S w* is a directed,
ordered tree whose nodes are labeled with symbols of
N T lÈ È { } in such a way that

(1) the interior nodes are labeled with nonterminals of N ,
(2) the root is labeled with the start symbol S,
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(3) if , , , n1 2b b b¼ are labels of all children of a node
labeled with nonterminal A, ordered from left to
right, then A n1 2b b b ¼ is a production of P.

The yield of a derivation tree is the string over N TÈ con-
structed from the labels of the leaves by reading from left to
right.

2.2. Watson–Crick (WK) grammars

Let V Vr Í ´ be a symmetric relation on an alphabet V .
We denote by V V* *´ the set of all pairs of strings over V .
We write the elements x y V V, * *( ) Î ´ in the form x yá / ñ.
The length of x yá / ñ is defined by x y+∣ ∣ ∣ ∣. We also use nota-
tions V V[ / ] and V V* *á / ñ instead of V V´ and V V* *´ ,
respectively. Strings of the form u lá / ñ and vlá / ñ are called
semi-empty strings. For two strings u v1 1á / ñ and u v2 2á / ñ in
V V* *á / ñ, their concatenation u v u v1 1 2 2á / ñ á / ñ· is defined as
u u v v1 2 1 2á / ñ.
Let V V a b a b V a b: , and , r[ / ] = {[ / ] Î ( ) Î }r . The set

WK V V V *( ) = [ / ]r r , the set of all (complete) double-stranded
strings (molecules), is called the WK domain associated to the
alphabet V and the complementary relation r. The subscript r
can be omitted if there is no danger of confusion.
A string a b a b a b WKn n1 1 2 2[ / ][ / ]¼[ / ] Î r V( ) is, for short,

written as u v[ / ] where u a a an1 2= ¼ and v b b bn1 2= ¼ . Then
u, v are called upper and lower strands, respectively.

One can notice that u v u v[ / ] = á / ñ iff the strings u and v
have the same length and the corresponding symbols in u and
v are complementary in the sense of the relation r.

On the other hand, for a string u v V V* *á / ñ Î á / ñ, the posi-
tions of the symbols of strings u and v are not fixed with
respect to each other (there is no relation between the symbols
of u and v), u vá / ñ can represent different incomplete strings. For
instance, string aa aá / ñ may represent a a a l[ / ]á / ñ, a a alá / ñ[ / ]
or even a a al l lá / ñá / ñá / ñ, a a al l lá / ñá / ñá / ñ, etc.
For strings u v1 1á / ñ and u v2 2á / ñ in V V* *á / ñ, we define their

shuffle as the set u v u v1 1 2 2á / ñ á / ñш of all strings

u v u v u v u v 2k k k k1 1 1 1 2 1 2 1 1 1 2 2á / ñá / ñ á / ñá / ñ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

where u v V,i j i j *Î( ) ( ) for all i 1, 2Î [ ], j k1,Î [ ], k 1³ and
u u ui i i k1= ¼( ) ( ) and v v vi i i k1= ¼( ) ( ) for i 1, 2Î [ ].

We also define the symbolic-shuffle of strings u v1 1á / ñ and
u v2 2á / ñ, denoted by u v u v1 1 2 2á / ñ á / ñSш , as the subset of
u v u v1 1 2 2á / ñ á / ñш such that for each shuffled string (2) belong-
ing to this set, u v 1i j i j =( ) ( )∣ ∣ for all i 1, 2Î [ ] and j k1,Î [ ].
For any strings u1 lá / ñ and v2lá / ñ or v1lá / ñ and u2 lá / ñ,

their shuffle consists of only one string, i.e. u v1 2á / ñ or u v2 1á / ñ,
respectively. Thus, any string u vá / ñ can be represented as a
symbolically shuffled string from u vl lá / ñ á / ñSш .
Further, we recall some definitions related to WK gram-

mars defined by [14, 8].

DEFINITION 2.1. A Watson–Crick (WK for short) context-free
grammar is a 5-tuple G N T S P, , , ,r= ( ), where N T S, ,
are defined as for a context-free grammar, r is a symmetric
relation on T , and P N N T T* * *Í ´ ( È á / ñ) is non-empty
finite set of productions. If

P N T T N T T ,* * * *Í ´ (á / ñ È á / ñ)

then the grammar G is called regular, and if

P N T T N T T T T ,* * * * * *Í ´ (á / ñ á / ñ È á / ñ)

then it is called linear.

We write T T* *á / ñ, not T Tá / ñ, because in a double-
stranded string, there could be a case where a production gen-
erates a double-stranded string with the empty string in either
upper or lower strand.

DEFINITION 2.2. Let G N T S P, , , ,r= ( ) be a WK context-
free grammar. We say that x N T T* * *Î ( È á / ñ) directly
derives y N T T* * *Î ( È á / ñ) , denoted by x y , if and only if

x u v A u v

y u v u v

and1 1 2 2

1 1 2 2b
=á / ñ á / ñ
= á / ñ á / ñ

where A NÎ , u v N T T,i i * * *Î ( È á / ñ) , i 1, 2Î [ ] and
A Pb Î .
If x y x y1 1 2 2b g= á / ñ á / ñ, where x y T,i i *Î , i 1, 2Î [ ] and

N T T* * *g Î ( È á / ñ) , then y u x v y x u y v1 1 1 1 2 2 2 2g= á / ñ á / ñ.

The transitive and reflexive closure of the relation  is
denoted by * .
Similar to context-free grammar, the definitions follow:

DEFINITION 2.3. A derivation in a WK context-free grammar
is called leftmost (rightmost) derivation, denoted as l ( r ),
if at each step of the derivation, the leftmost (rightmost) non-
terminal symbol is rewritten.

DEFINITION 2.4. The language generated by a WK context-
free grammar G is called as WK context-free language and
defined as

L G u u v WK T S u v: and .*( ) = { [ / ] Î ( )  [ / ]}r

REMARK 1. For simplicity, in this paper, we use the lan-
guages in the examples in the form of L G u u u:( ) = { [ / ]
instead of L G u u v:( ) = { [ / ], and the relation a a, r( ) Î
instead of a b, r( ) Î .
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3. DERIVATION TREES

In context-free grammars, a derivation, a transformation of non-
terminals into terminal strings, can be represented graphically by
derivation (parse) tree. In a similar manner, we can define the
concept of derivation tree for WK context-free grammars. WK
context-free grammars use nonterminals but double-stranded
terminals, we need to clarify which double-stranded symbols are
used as labels of tree nodes. We show that any WK context-free
grammar can be transformed into an equivalent WK context-free
grammar in which every terminal substring on the right-hand
side of its productions can be decomposed into double-stranded
symbols of the total length one.

DEFINITION 3.1. A WK context-free grammar G N T, , ,r= (
S P, ) is said to be in terminal normal form if and only if each
production in P has one of the following forms:

A x B x B x x B x n, 1,n n n1 1 2 2 3 1 ¼ ³+

or

A x

where A B N, i Î , i n1 £ £ , and x x T T, i * *l lÎ á / ñ á / ñ ,
i n1 1£ £ + .

LEMMA 3.1. For every WK context-free grammar G with
L Gl Ï ( ), there exists an equivalent WK context-free gram-

mar G¢ in terminal normal form.

Proof. Let G N T S P, , , ,r= ( ) be a WK context-free
grammar. For each production A Pb Î , since Nb Î ( È
T T* * *á / ñ) , it has one of the following forms:

x y B x y B x y

x y B x y ,n n n n n

1 1 1 2 2 2 3 3

1 1

b =á / ñ á / ñ á / ñ
á / ñ á / ñ+ +



or

x yb = á / ñ

where B Ni Î , i n1 £ £ and x x y y T, , ,i i *Î , i1 £ £
n 1+ .

By the definition of symbolic-shuffle mentioned in Section
2.2, in general, if we have a string x y T T* *á / ñ Î á / ñ such that
x u u u... k1 2= and y y y y... l1 2= , then for k l 1+ > ,
u u u v v vk l1 2 1 2á ¼ / ¼ ñ can be replaced with any symbolically
shuffled string from

u u u v v v .k T l1 2 1 2l lá ¼ / ñ á / ¼ ñш

Thus, we can choose

u u u v v v ,k l1 2 1 2l l l l l lá / ñá / ñ á / ñá / ñá / ñ á / ñ 

for u v T,s r Î , s k1 £ £ and r l1 £ £ . □

DEFINITION 3.2. Let G N T S P, , , ,r= ( ) be a WK context-
free grammar and S u v* á / ñ be a derivation in G. A deriv-
ation tree of S u v* á / ñ is a directed, ordered tree whose
nodes are labeled with symbols of N T Tl lÈ á / ñ È á / ñ È
l lá / ñ in such a way that

(1) the root is labeled with the start symbol S,
(2) the interior nodes are labeled with nonterminals of

N ,
(3) if x x x, , , n1 2 ¼ are labels of the children of a node

labeled with nonterminal A, ordered from left to
right, then A x x xn1 2 ¼ is a production of P.

EXAMPLE 1. Let G S A B C a b c S P, , , , , , , , ,r= ({ } { } ) be
a WK context-free grammar in terminal normal form, where

a a b b c c, , , , ,r = {( ) ( ) ( )} and P contains the following
productions:

S ABC
A a A a A

B b B b B

C c C c C

,
,

,

.

l l l l
l l l l
l l l l


á / ñ á / ñ á / ñ
 á / ñ á / ñ á / ñ
 á / ñ á / ñ á / ñ

∣ ∣
∣ ∣
∣ ∣

Then for instance, the leftmost derivation for abc abc[ / ]:

S ABC a ABC a a ABC a a BC

ab a BC ab ab BC ab ab C

abc ab C abc abc C abc abc ,

l  á / ñ  á / ñ  á / ñ
 á / ñ  á / ñ  á / ñ
 á / ñ  á / ñ  [ / ]

and the rightmost derivation for abc abc[ / ]:

S ABC AB c C AB c c C AB c c

A b B c c A b b B c c A bc bc

a A bc bc a a A bc bc abc abc .

l
l

l

  á / ñ  á / ñ  á / ñ
 á / ñ á / ñ  á / ñ á / ñ  á / ñ
 á / ñ á / ñ  á / ñ á / ñ  [ / ]

Figure 1 shows the derivation tree for abc abc[ / ] regardless
of its leftmost and rightmost derivations.

It is known that in a context-free grammar G, there exist
the leftmost and rightmost derivation for a string w L GÎ ( ).
The end result derived by the leftmost derivation is the same
as the end result derived by the rightmost derivation.

REMARK 2. The ‘end result’ means the final string (or the
target sub-sentential form at some point) from the derivation.

The next lemma shows that this property also holds for
WK context-free grammars.

LEMMA 3.2. Let G N T S P, , , ,r= ( ) be a WK context-free
grammar. For every string w w T T *[ / ] Î [ / ] generated by G,
there exist a leftmost derivation S w wl* [ / ] and a rightmost
derivation S w wr* [ / ].
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Proof. Let G N T S P, , , ,r= ( ) be a WK context-free gram-
mar. If G is a WK linear grammar, the argument is trivial.
Suppose that a string w w T T *[ / ] Î [ / ] is obtained by the

following derivation:

S xABy xA u v u v B y 31 1 2 2* *  ¢á / ñá / ñ ¢ ( )

xA u u v v B y w w 41 2 1 2 *= ¢á / ñ ¢  [ / ] ( )

where u v u v T T,1 1 2 2 * *á / ñ á / ñ Î á / ñ, A B A B N, , ,¢ ¢ Î and
x y N T T, * * *Î ( È á / ñ) . Then, we distinguish the following
two cases:
Case 1. In the substring of w w[ / ] generated from

A u u v v B1 2 1 2¢ á / ñ ¢, the symbols of u1 are not related to the
symbols of v2 or to the symbols of the substring generated by
B, and the symbols of u2 are not related to the symbols of v1

or to the symbols of the substring generated by A, i.e. the
derivations from A and B are completely independent (see
Figure 2(a)), which is similar to a usual context-free deriv-
ation. Thus, derivation (3) can be continued from A.
Case 2. In the substring of w w[ / ] generated from

A u u v v B1 2 1 2¢ á / ñ ¢, either some symbols of u1 are related by r
to symbols of v2 or to symbols of the substring generated by
B, or some symbols of u2 are related by r to symbols of v1 or
to symbols of the substring generated by A, i.e. the deriva-
tions from A and B are dependent (Figure 2(b)).
Let us consider productions A u v B u v,1 3 3 4 4¢ ¢b á / ñ  á / ñ

P2b Î where x x y y N T T, , , , ,i i 1 2 * * *b b Î ( È á / ñ) (i 1, 4= [ ]),
u u v v T, , ,3 4 3 4 *Î that are used to generate w w[ / ].

Then, there are two possible derivations from A¢ and B¢:

S xA u u v v B y

x u v u u v v B y

x u v u u v v u v y 5
l

l

1 2 1 2

1 3 3 1 2 1 2

1 3 3 1 2 1 2 4 4 2

*

*

*

b

b b

 ¢á / ñ ¢

 á / ñá / ñ ¢

 á / ñá / ñá / ñ ( )

and

S xA u u v v B y

xA u u v v u v y

x u v u u v v u v y 6
r

r

1 2 1 2

1 2 1 2 4 4 2

1 3 3 1 2 1 2 4 4 2

*

*

*

b

b b

 ¢á / ñ ¢

 ¢á / ñá / ñ

 á / ñá / ñá / ñ ( )

From (5) and (6), the same sub-sentential form
u u u u v v v v1 3 1 2 4 3 1 2 4 2b bá / ñ is generated. That is, the order of

production applications does not affect the end result of the
derivation, i.e. the last line in derivation (5) and the last line
in (5) are the same. Again, derivation (3) can be continued
from A. □

4. GRAMMAR SIMPLIFICATIONS

Since the right-hand sides of productions in WK context-free
grammars are unrestricted, it is difficult to study the properties
and relations of grammars and languages. In this section, we
consider the context-free grammar transformations (see [12, 15])
for their WK variants that transform an arbitrary WK context-
free grammar into a grammar in Chomsky-like normal form,
called WK-Chomsky normal form, which is useful to develop
parsing algorithms for WK context-free grammars. In the fol-
lowing lemmas, we mostly adapt the proof arguments of the
lemmas and theorems on grammar transformations and simpli-
fications given in [12, 15] for WK variants.

LEMMA 4.1. (Substitution Rule). Let G N T S P, , , ,r= ( ) be
a WK context-free grammar. Let A uBv P Î where
u v N T T, * * *Î ( È á / ñ) , and for B A¹ ,

FIGURE 1. A derivation tree for the double-stranded string
abc abc[ / ] based on the WK context-free grammar in Example 1.
The derivation tree is the same regardless of the leftmost and right-
most derivation.

FIGURE 2. Different types of derivations in WK context-free gram-
mars: (a) a tree with completely independent derivations from non-
terminal symbols A and B; (b) the black triangle indicates the
dependent part derived both from A and B.
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B Pn1 2b b b Î∣ ∣ ∣

where N T Ti * * *b Î ( È á / ñ) , i n1 £ £ and n 0> . Then,
the WK context-free grammar G N T S P, , , ,r¢ = ( ¢) with

P P A uBv

A u v u v u vn1 2b b b

¢ = - {  }
È {  }∣ ∣ ∣

is an equivalent grammar to G, i.e. L G L G( ¢) = ( ).

Proof. The inclusion L G L G( ¢) Í ( ) is obvious since the
application of each production A u vib , i n1 £ £ , in a
derivation in G¢ can be replaced with the consecutive deriv-
ation steps A uBv u vib  in G.
Suppose that a terminal string w w[ / ] is derived in G using

a production A uBv :

S x Ax x uBvx x u v x w w . 7i1 2 1 2 1 2* * *b   ¢ ¢  [ / ] ( )

By Lemma 3.2, the order of applications of productions in a
derivation in a WK context-free grammar are independent,
the derivation (7) can be rewritten as

S x Ax x uBvx x u vx w w . 8i1 2 1 2 1 2* *b    [ / ] ( )

Thus, the derivation (8) can be replaced with

S x Ax x u vx w wi1 2 1 2* *b   [ / ]

in G¢. □

DEFINITION 4.1. Any production of WK context-free gram-
mar of the form A l l á / ñ is called l-production, and any
nonterminal symbol A with derivation A * l l [ / ] is called
nullable.

REMARK 3. Note that A u l á / ñ, u l¹∣ ∣ and A vl á / ñ,
v l¹∣ ∣ , are not l-productions.

LEMMA 4.2. (Removing l-productions). Let G N T, , ,r= (
S P, ) be a WK context-free grammar with L Gl Ï ( ). Then
there exists an equivalent WK context-free grammar G¢ =
N T S P, , , ,r( ¢) without l-productions.

Proof. First, we construct set NNULL of all nullable nonterm-
inals of G:

(1) For all A l l á / ñ in P, add A to NNULL.
(2) Repeat the following step until no nonterminal is

added to NNULL:
For all B A A A Pk1 2 ¼ Î where all A Ni NULLÎ ,

i k1 £ £ , add B to NNULL

(3) Construct P¢ as follows:
Add each production

A w w wn1 2 ¼

where w N T T T T , 1i l lÎ È á / ñ È á / ñ È á / ñ £+ + + + i n£ ,
and all productions generated by replacing nullable nonterm-
inals with l in all possible combinations to P¢ unless all
wi are nullable.

Then, G¢ also generates L G( ). □

DEFINITION 4.2. Any production of a WK context-free gram-
mar of the form A B , where A and B are nonterminals, is
called a unit-production.

Since unit-productions involve only nonterminals, using
the same arguments of the proofs of Lemma 4.3.2 and
Theorem 4.3.3 from [15] or Theorem 6.4 from [12], one can
show that the following lemma also holds.

LEMMA 4.3. (Removing unit-productions). Let G N T, ,= (
S P, ,r ) be a WK context-free grammar without l-produc-

tions. Then, there exists an equivalent WK context-free gram-
mar G N T S P, , , ,r¢ = ( ¢ ¢) without unit-productions, where
N N¢ Í .

DEFINITION 4.3. Let G N T S P, , , ,r= ( ) be a WK context-
free grammar. A nonterminal A NÎ is called useful if there
exists at least one derivation

S xAy w w* *  [ / ]

where x y N T T, * * *Î ( È á / ñ) and w L GÎ ( ). A nonterminal
which is not useful is called useless, and any production
involving a useless nonterminal in it is called a useless
production.

LEMMA 4.4. (Removing useless productions). Let G N ,= (
T S P, , ,r ) be a WK context-free grammar. Then there exists
an equivalent WK context-free grammar G N T, , ,r¢ = ( ¢
S P, ¢) without useless nonterminals and productions.

Proof. In order to construct G¢, first, we should identify use-
less nonterminals of G unreachable from the start symbol, and
second, find the useless nonterminals that do not generate any
complete or incomplete terminal string u v T Tá / ñ Î á / ñ È+ +

T Tl lá / ñ È á / ñ+ + . Since, the first part involves only nonterm-
inals, we can use the same proof arguments of Lemma 4.4.5
from [15].
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The difference of the form of a double-stranded strings in
both complete and incomplete cases from single-stranded
strings makes us consider the second case in some detail.
Suppose that G N T S P, , , ,1 1 1r= ( ) be a WK context-free

grammar without nonterminals unreachable from S. We con-
struct the grammar G N T S P, , , ,r¢ = ( ¢ ¢) from G1 by remov-
ing the nonterminals that cannot derive any complete or
incomplete terminal string in the following steps:

(1) Let N ¢ be the empty set.
(2) Repeat until no more nonterminals are put into N ¢:

For each A NÎ , if A P1a Î where Na Î ( ¢ È
T T* * *á / ñ) , put A into N ¢.

(3) Define
P A P N T T1 * * *a a¢ = {  Î Î ( ¢ È á / ñ) }∣ . □

However, different from the conntext-free grammars, the
processes in removing useless productions cannot guarantee
that the string produced by a WK context-free grammar is a
complete double-stranded string.
Summarizing the results above, we get the following

theorem.

THEOREM 4.1. Let L be a WK context-free language where
Ll Ï . Then, there exists a WK context-free grammar G with-

out l-productions, unit-productions, and useless productions
such that L G L( ) = .

We show an example:

EXAMPLE 2. Let G N T S P, , , ,r= ( ) be a WK context-free
grammar where P contains the following productions:

S SS S a a S b b

S a S S a A

A b a A A b a B

B b B B

B S C CD

, ,

, ,

, ,

, ,
, .

l l

l l l

  á / ñ á / ñ
 á / ñ  á / ñ
 á / ñ  á / ñ
 á / ñ  á / ñ
 

Then, the equivalent WK context-free grammar G¢ with the
following productions can be constructed after removing
l-productions, unit-productions, and useless productions:

S SS S a a S b b

S a S S a A

A b a A A b a B

A b a

B b B B b

B SS B a a S b b

B a S B a A

, ,

, ,

, ,

,

, ,

, ,

, .

l l

l l

l l

  á / ñ á / ñ
 á / ñ  á / ñ
 á / ñ  á / ñ
 á / ñ
 á / ñ  á / ñ
  á / ñ á / ñ
 á / ñ  á / ñ

5. WK-CHOMSKY NORMAL FORM

In this section, we show that Chomsky normal form can also
be constructed for WK context-free grammars.

DEFINITION 5.1. A WK context-free grammar G N T, ,= (
S P, ,r ) is said to be in WK-Chomsky normal form if all pro-

ductions are of the form

• A BC
• A u v á / ñ, or
• S l l á / ñ

where A NÎ , B C N S, Î - { } and u v T Tl lá / ñ Î á / ñ È á / ñ.

LEMMA 5.1. For every WK context-free grammar G, there
exists an equivalent WK context-free grammar G¢ in WK-
Chomsky normal form.

Proof. Let G N T S P, , , ,r= ( ) be a WK context-free
grammar. Without loss of generality, we assume that G is in
terminal normal form without l-productions (except
S l l á / ñ), unit-productions and useless productions. From
G, we construct an equivalent WK context-free grammar
G N T S P, , , ,r¢ = ( ¢ ¢) in WK-Chomsky normal form. We set
N T T a T,T a

u
a
d= { Î }∣ and

P T a a T T a a T .a
u

a
d

1 l l= {  á / ñ Î } È {  á / ñ Î }∣ ∣

We construct the set P2 of productions from P as follows. Let
A Pb Î .

(1) If 0b =∣ ∣ , then this is only production S l l á / ñ,
and we add this production to P2.

(2) If 1b =∣ ∣ , then T Tb l lÎ á / ñ È á / ñ, and we also
add this production to P2.

(3) Let 2b ³∣ ∣ and x x xk1 2b = ¼ where x N Ti lÎ È á / ñÈ
Tlá / ñ. For each i k1 £ £ , we set

X

x x N
T x a T

T x a T

if ,
if ,

if ,
i

i i

a
u

i

a
d

i

l l

l l
=

ì

í

ïïïï

î
ïïïï

Î
= á / ñ Î á / ñ

= á / ñ Î á / ñ

and add the following new productions to P2:

A X Y Y X Y Y X X, , , k k k1 1 1 2 2 2 1  ¼ - -

where Y Y Y, , , k1 2 2¼ - are new nonterminals.

We define N ¢ as the set of all nonterminals of N and all new
nonterminals introduced above, and P P P1 2¢ = È . Then, it is
not difficult to see that L G L G( ) = ( ¢). □
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Example 3 illustrates the transformation of a WK context-
free grammar into WK-Chomsky normal form.

EXAMPLE 3. Let G N T S P, , , ,r= ( ) be a WK context-free
grammar in terminal normal form where P consists of the fol-
lowing productions:

S SS S a a S b b

S a S S a A

A b a A A b a B b a

B b B B b

B BB B a a S b b

B a S B a A

, ,

, ,

, ,

, ,

, ,

, .

l l l l
l l
l l l l l l

l l
l l l l

l l

  á / ñá / ñ á / ñá / ñ
 á / ñ  á / ñ
 á / ñá / ñ  á / ñá / ñ á / ñá / ñ
 á / ñ  á / ñ
  á / ñá / ñ á / ñá / ñ
 á / ñ  á / ñ

∣

To transform G into a WK context-free grammar in WK-
Chomsky normal form, first, we introduce nonterminals
T T T T, , ,a

u
b
u

a
d

b
d , and obtain the following productions:

S SS S T T ST T

S T S S T A

A T T A A T T B

A T T

B T B B b

B BB B T T ST T

B T S B T A

T a T b

T a T b

, ,

, ,

,

,

, ,

, ,

, ,

, ,

, .

a
u

a
d

b
u

b
d

a
u

a
u

b
u

a
d

b
u

a
d

b
u

a
d

b
d

a
u

a
d

b
u

b
d

a
u

a
u

a
u

b
u

a
d

b
d

l

l l

l l

 
 

 



  á / ñ

 
 
 á / ñ  á / ñ

 á / ñ  á / ñ

Next, we introduce additional nonterminals Yi, i1 8£ £ ,
to construct productions of WK-Chomsky normal form:

S SS S T Y Y T Y Y SY

Y T T S T S S T A

A T Y Y T A A T Y Y T B

A T T B T B B b

B BB B T Y Y T Y Y SY

Y T T B T S B T A

T a T b T a T b

, , , ,

, , ,

, , , ,

, , ,

, , , ,

, , ,

, , , .

a
u

a
d

b
u

b
d

a
u

a
u

b
u

a
d

b
u

a
d

b
u

a
d

b
d

a
u

a
d

b
u

b
d

a
u

a
u

a
u

b
u

a
d

b
d

1 1 2 2 3

3

4 4 5 5

6 6 7 7 8

8

l

l l l l

   

  

   

   á / ñ

   

  

 á / ñ  á / ñ  á / ñ  á / ñ

6. A MODIFIED CYK ALGORITHM

Since the structure of productions of a WK context-free grammar
is similar to the structure of those of a context-free grammar, we
can attempt to adjust parsing (membership) algorithms for context-
free grammars for their WK variants. In this section, we consider
CYK (J. Cocke, D. Younger, T. Kasami) algorithm [16–18] for
WK context-free grammars in WK-Chomsky normal form.

The CYK algorithm uses bottom-up dynamic programming
approach to determine whether a given string w can be gener-
ated by a given context-free grammar G in Chomsky normal
form. The strategy of the algorithm is to construct the sets of
nonterminals from which each substring of length from one
to w∣ ∣ can be generated. Thus, the algorithm in Step i con-
structs w i 1( - + )∣ ∣ sets for the substrings of length i, where

i w1 £ £ ∣ ∣, and in each step, the number of the sets decrease
by one.
Based on CYK algorithm, we introduce a modified CYK

algorithm, implemented to WK context-free grammar in WK-
Chomsky normal form, called WK-CYK algorithm. Before
delving into the algorithm in detail, we shall discuss the spe-
cifics of substrings of double-stranded strings.
The definition of substrings of a certain length for incom-

plete or complete double-stranded strings is considerably dif-
ferent from single-stranded strings. We have to consider the
usual substrings from each strand and any possible combina-
tions of substrings from both strands. For instance, if
w abc a= á / ñ, then we obtain the following substrings

Length 1: a b c a, , ,l l l lá / ñ á / ñ á / ñ á / ñ
Length 2: ab bc a a b a c a, , , ,l lá / ñ á / ñ á / ñ á / ñ á / ñ
Length 3: abc ab a bc a, ,lá / ñ á / ñ á / ñ
Length 4: abc aá / ñ

Moreover, we have to consider both orders of two non-
terminals generating substrings involving combinations of
upper and lower strands. For instance, if A ab* l á / ñ and
B a* l á / ñ, then for the substring ab aá / ñ, we need to find
nonterminals producing AB and BA, thus, the order of gener-
ating substrings ab lá / ñ and alá / ñ is irrelevant.
We can see another difference of double-stranded sub-

strings from single-stranded substrings in their indexing
according to the positions of the symbols. Let w x x xn1 2= ¼
be a single-stranded string. Then, the substring x xi j¼ can be
denoted by xi j, . In the CYK algorithm, the set of nonterminals
generating xi j, can be denoted accordingly by Xi j, , which con-
tains the nonterminals that can generate the pairs of nonterm-
inals one from each of Xi k, and Xk j1,+ in this order for all k’s
between i and j.
Let w x x x xn n11 1 21 2= [ ¼ / ¼ ] be a double-stranded string.

Consider a substring x x x xi j k l1 1 2 2á ¼ / ¼ ñ of w. We use the nota-
tions xi j k l: , : and Xi j k l: , : to denote the substring and the corre-
sponding set of nonterminals generating this substring, i.e.

X A N A x x x x .i j k l i j k l: , : 1 1 2 2*= { Î  á ¼ / ¼ ñ}∣

If x xi j1 1 l¼ = or x xk l2 2 l¼ = , then we use notations
x k l0:0, : (X k l0:0, : ) or xi j: ,0:0 (Xi j: ,0:0), respectively. Nonterminal
A is in Xi i: ,0:0 or in X i i0:0, : if and only if there is a production
A x i1 l á / ñ in P or A x i2l á / ñ in P, respectively.
On the other hand, nonterminal A is in Xi j k l: , : if and only if

there is a production A BC such that
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B x C xandi s k t s j t l: , : 1: , 1:* *  + +

for some i s j k t land£ < £ < , or

B x C xand ,i j k l: ,0:0 0:0, :* * 

or

B x C xand .k l i j0:0, : : ,0:0* * 

Thus, if i j0 < £ and k l0 < £ , we define the set Xi j k l: , :

as

X A A BC P

B X C X

A A BC P B X C X

A A BC P B X C X

,

,

, ,

, , .

i j k l
s i j t k l

i s k t s j t l

i j k l

k l i j

: , :
, 1 , , 1

: , : 1: , 1:

: ,0:0 0:0, :

0:0, : : ,0:0

= {  Î

Î Î }

È {  Î Î Î }

È {  Î Î Î }

Î[ - ] Î[ - ]

+ +

⋃ ∣

∣
∣

If i j 0= = or k l 0= = , we define the sets X k l0:0, : and
Xi j: ,0:0 as

X A A BC P

B X C X

X A A BC P

B X C X

,

, ,

,

, .

k l
t k l

k t t l

i j
s i j

i s s j

0:0, :
, 1

0:0, : 0:0, 1:

: ,0:0
, 1

: ,0:0 1: ,0:0

= {  Î

Î Î }
= {  Î

Î Î }

Î[ - ]

+

Î[ - ]

+

⋃ ∣

⋃ ∣

Clearly, string w w[ / ] is generated by a WK context-free
grammar G if and only if S X n n1: ,1:Î , where S is the starting
nonterminal in G.
The algorithm computes all the sets constructed above

according to the lengths of the double-stranded substrings, i.e.

j i l k n1 1 1 2 .£ ( - + ) + ( - + ) £

For instance, if n 2= (the total length is 4), we construct the
sets correspondingly to the sum of the lengths of upper and
lower strands, i.e.

(1) The length is 1: 1 0 0 1+ = +

X X X X, , , .1:1,0:0 2:2,0:0 0:0,1:1 0:0,2:2

(2) The length is 2: 2 0 1 1 0 2+ = + = +

X X X X X X, , , , , .1:2,0:0 1:1,1:1 1:1,2:2 2:2,1:1 2:2,2:2 0:0,1:2

(3) The length is 3: 2 1 1 2+ = +

X X X X, , , .1:2,1:1 1:2,2:2 1:1,1:2 2:2,1:2

(4) The length is 4: 2 2+

X .1:2,1:2

The next important question is what is the total number of
Xi j k l: , : , which determines the time complexity of the algorithm.

LEMMA 6.1. The number of the sets Xi j k l: , : for all
i j n0 ,£ £ , is O n4( ).

Proof. Let x x x x x x xn n11 12 1 21 22 2= [ ¼ / ¼ ] be a complete
double-stranded string. The number of the sets Xi j k l: , : for all

i j n0 ,£ £ can be computed by counting the combinations
of all possible substrings of the upper strand and all possible
substrings of the lower strand.
Since the upper and lower strands are of length n, there are

n n1 2 1 1+ + ( - ) + + ) substrings for each strand.
This is because, i and j start from 0 and we obtain the sub-
strings representing the upper strand of the set

X

x x x x

x x x x

, , , , ,

, , , , , .

i j k l

k l k l k l n k l

k l k l n k l n n k l

: , :

0:0, : 1:1, : 1:2, : 1: , :

2:2, : 2:3, : 2: , : : , :

= { ¼
¼ ¼ }

There is no substring like x x,k l k l2:1, : 3:2, : and so on, because
the position of the symbols represented by i and j must be
sequential. The equation can be simplified to

n n

n n n

1 2 1 1

1

2
1

2
.

2

+ + +( - ) + +

=
( + )

+ »



Thus, the number of all possible combinations of both upper

and lower substrings is O nn n

2 2
4

2 2

= ( ). □

LEMMA 6.2. The construction of each set Xi j k l: , : ,
i j n0 ,£ £ , i 1 1+ ³ , requires at most n 1 22( - ) +

decompositions.

Proof. Consider string

x x x x x x x .n n11 12 1 21 22 2= [ ¼ / ¼ ]

For i j n1 £ £ £ and k l n1 £ £ £ , we compute the num-
ber of the decompositions of a substring xi j k l: , : =
x x x xi j k l1 1 2 2á ¼ / ¼ ñ.

(1) First, let us consider the special cases of the
decomposition:

x x x x

x x x x

x x x x

i j k l

i j k l

k l i j

1 1 2 2

1 1 2 2

2 2 1 1

l l
l l

á ¼ / ¼ ñ

= á ¼ / ñ á / ¼ ñ

= á / ¼ ñ á ¼ / ñ

·
·

where the decomposed substrings involve only one
of the strands, i.e. we have two decompositions.

(2) Each decomposed substring contains at least one
symbol from each strand:

x x x x

x x x x

x x x x

i j k l

i p k q

p j q l

1 1 2 2

1 1 2 2

1 1 1 2 1 2

á ¼ / ¼ ñ

= á ¼ / ¼ ñ

á ¼ / ¼ ñ+ +·

where i p j1 1£ £ £ - and k q l1 1£ £ £ - .
Then, we have j i l k( - )( - ) decompositions.
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Since i j n1 £ £ £ and k l n1 £ £ £ , there are at most
n 1 22( - ) + decompositions of the substring xi j k l: , : . □

The algorithm demands that we calculate until the final set
X n n1: ,1: , which can only be obtained after calculating all the
sets Xi j k l: , : . Lemma 6.1 shows the number of iteration needed,
i.e. the number of the sets Xi j k l: , : . Lemma 6.2 calculates the
substrings contained in each set Xi j k l: , : .
From the two lemmas above, we obtain

THEOREM 6.1. The time complexity of the WK-CYK algo-
rithm is O n6( ).

Proof. From Lemma 6.2, the calculation of the substrings
for each set Xi j k l: , : requires at most n 1 22( - ) + iterations,
which is O n2( ). Then, from Lemma 6.1, there are O n4( ) sets
of Xi j k l: , : to be calculated. Therefore, the total time complex-
ity is O n O n O n4 2 6( ) ( ) = ( ). □

6.1. The Algorithm: WK-CYK Algorithm

The algorithm, which is named as WK-CYK Algorithm, is
divided into two sub-algorithms. Algorithm 1 works as the
main procedure, where all necessary subsets are listed. The
subsets are then computed by the function Compute set
described by Algorithm 2.
In the algorithms, we write

X X

A A BC B X C X, , ,
i s k t g j h l

i s k t g j h l

: , : : , :

: , : : , := {  Î Î }∣

where i s g j n0 £ £ £ £ £ and k t h l n0 £ £ £ £ £ .
The inputs of Algorithm 1 are a double-stranded string

w w x x x x x xn n11 12 1 21 22 2[ / ] = [ ¼ / ¼ ] which can be transformed
to the terminal normal form x x x xn11 12 1 21l l l lá / ñá / ñ¼á / ñá / ñ

x x n22 2l lá / ñ¼á / ñ.
We explain briefly some of the steps in Algorithm 1 as follows:

• lines 8–10: calculate the base sets, Xi i: ,0:0 and X ,i i0:0, :

• line 12: y= total length of the substring,
• line 13: b= the length of the lower substring,
• line 14: a= the length of the upper substring,
• line 15: calculate only lower substring when there is

no upper substring, using Algorithm 2,
• line 20: calculate only upper substring when there is

no lower substring, using Algorithm 2,
• line 25: calculate both upper and lower substring,

using Algorithm 2,
• line 32: finally, if S X n n1: ,1:Î , then it means that the

string can be generated by G, and if S X n n1: ,1:Ï , then
the string cannot be generated by G.

Similarly, the inputs of Algorithm 2 are the same double-
stranded string w w[ / ] transformed to the terminal normal
form, and the parameters i j k l, , , from Algorithm 1.
Algorithm 2 acts as a function to compute the set

X j k l: , :i . We explain briefly some of the steps in Algorithm
2 as follows:

• line 10: calculate only lower substring when there is
no upper substring,

• line 15: calculate only upper substring when there is
no lower substring,

• line 20: calculate both upper and lower substring.

Algorithm 1 Sets construction

1: procedure SETS CONSTRUCTION

2: Input:
3: : string w w x x x x x xn n11 12 1 21 22 2[ / ] = [ ¼ / ¼ ]
4: x x x n11 12 1l l l= á / ñá / ñ¼á / ñ
5: x x x n21 22 2l l lá / ñá / ñ¼á / ñ· ,
6: : WK context-free grammar G.
7:
8: for i n1 £ £ do
9: X A A x:i i i: ,0:0 1 l= {  á / ñ}
10: X A A x:i i i0:0, : 2l= {  á / ñ}
11:
12: for y n2 2£ £ do
13: for n0 b£ £ do
14: ya b= -
15: if 0a = then
16: i j 0= =
17: for k n y1 1£ £ - + do
18: l k y 1= + -
19: Compute set Xi j k l: , :

20: else if 0b = then
21: k l 0= =
22: for i n y1 1£ £ - + do
23: j i y 1= + -
24: Compute set Xi j k l: , :

25: else
26: for i n1 1a£ £ ( - + ) do
27: for k n1 1b£ £ ( - + ) do
28: j i 1a= + -
29: l k 1b= + -
30: Compute set Xi j k l: , :

31:
32: if S X n n1: ,1:Î then
33: w L GÎ ( )
34: else
35: w L GÏ ( ).
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6.2. Example

This section illustrates an example using WK-CYK algorithm.

EXAMPLE 4. Let G be the WK context-free grammar in
Chomsky normal form, obtained in Example 3. Is ab{ } Î
L G( )?
Here, the target string w w[ / ] is ab ab[ / ]. Based on

w w x x x x

x x x

x x x ,
n

n

11 12 21 22

11 12 1

21 22 2

l l l
l l l

[ / ]= [ / ]
= á / ñá / ñ¼á / ñ

á / ñá / ñ¼á / ñ·

we get ab ab a b a bl l l l[ / ] = á / ñá / ñá / ñá / ñ.
From Algorithm 1, first, we list the base sets Xi i: ,0:0 and

X i i0:0, : for i n1 £ £ . Then, from Algorithms 1 and 2, we
list the sets Xi j k l: , : , i j n0 ,£ £ , k l n0 ,£ £ , which corre-
sponds to the relations of the symbols in w w[ / ].

(1) The length is 1: 1 0 0 1+ = + :

X X X X, , , .1:1,0:0 2:2,0:0 0:0,1:1 0:0,2:2

(2) The length is 2: 2 0 1 1 0 2+ = + = + :

X X X X X X, , , , , .1:2,0:0 1:1,1:1 1:1,2:2 2:2,1:1 2:2,2:2 0:0,1:2

(3) The length is 3: 2 1 1 2+ = + :

X X X X, , , .1:2,1:1 1:2,2:2 1:1,1:2 2:2,1:2

(4) The length is 4: 2 2+ :

X .1:2,1:2

The above sets are computed in Algorithm 2. The compu-
tation is as follows:

(1) Length 1:

X T X T, ,a
u

b
u

1:1,0:0 2:2,0:0= { } = { }

X T X T B, , .a
d

b
d

0:0,1:1 0:0,2:2= { } = { }

(2) Length 2:

X X X T T

X X X T T

X X T T

X X X T T B

X X T B T

X X X T T A

X X T T

X X X T T B Y Y

X X T B T

X X X T T B Y

,

,

,

, ,

,

, ,

, ,

, .

a
u

b
u

a
u

a
d

a
d

a
u

a
u

b
d

b
d

a
u

b
u

a
d

a
d

b
u

b
u

b
d

b
d

b
u

a
d

b
d

1:2,0:0 1:1,0:0 2:2,0:0

1:1,1:1 1:1,0:0 0:0,1:1

0:0,1:1 1:1,0:0

1:1,2:2 1:1,0:0 0:0,2:2

0:0,2:2 1:1,0:0

2:2,1:1 2:2,0:0 0:0,1:1

0:0,1:1 2:2,0:0

2:2,2:2 2:2,0:0 0:0,2:2 3 8

0:0,2:2 2:2,0:0

0:0,1:2 0:0,1:1 0:0,2:2 5

= = { }{ } = Æ

= = { }{ } = Æ

È = { }{ } = Æ

= = { }{ } = Æ

È = { }{ } = Æ

= = { }{ } = { }

È = { }{ } = Æ

= = { }{ } = { }

È = { }{ } = Æ

= = { }{ } = { }

(3) Length 3:

X X X T

X X T

X X T A S B

X X T

X X X T B

X X T B

X X T Y Y

X X T

X X X T Y

X X Y T

X X T B

X X T

X X X T Y A

X X Y T

X X A T B

X X T Y Y

, ,

,

,

,

,

,

,

,

,

, .

a
d

a
d

a
u

b
u

b
d

b
d

a
u

b
u

a
u

a
u

b
d

a
d

b
u

b
u

b
d

a
d

1:2,1:1 1:2,0:0 0:0,1:1

0:0,1:1 1:2,0:0

1:1,0:0 2:2,1:1

1:1,1:1 2:2,0:0

1:2,2:2 1:2,0:0 0:0,2:2

0:0,2:2 1:2,0:0

1:1,0:0 2:2,2:2 3 8

1:1,2:2 2:2,0:0

1:1,1:2 1:1,0:0 0:0,1:2 5

0:0,1:2 1:1,0:0 5

1:1,1:1 0:0,2:2

0:0,1:1 1:1,2:2

2:2,1:2 2:2,0:0 0:0,1:2 5

0:0,1:2 2:2,0:0 5

2:2,1:1 0:0,2:2

0:0,1:1 2:2,2:2 3 8

= = Æ{ } = Æ

È = { }Æ = Æ
È = { }{ } = { }
È = Æ{ } = Æ

= = Æ{ } = Æ

È = { }Æ = Æ
È = { }{ } = Æ
È = Æ{ } = Æ

= = { }{ } = Æ
È = { }{ } = Æ

È = Æ{ } = Æ

È = { }Æ = Æ
= = { }{ } = { }

È = { }{ } = Æ

È = { }{ } = Æ

È = { }{ } = Æ

Algorithm 2 Compute set

1: function COMPUTE SET

2: Input:
3: : string w w x x x x x xn n11 12 1 21 22 2[ / ] = [ ¼ / ¼ ]
4: x x x n11 12 1l l l= á / ñá / ñ¼á / ñ
5: x x x n21 22 2l l lá / ñá / ñ¼á / ñ· ,
6: : WK context-free grammar G.
7: : parameters i j k l, , , from Algorithm 1.
8: Output: set Xi j k l: , : .
9:
10: if i j 0= = then
11: X X Xk l t k l k t t l0:0, : , 1 0:0, : 0:0, 1:= }Î[ - ] +⋃
12: else if k l 0= = then
13: X X Xi j s i j i s s j: ,0:0 , 1 : ,0:0 1: ,0:0= }Î[ - ] +⋃
14: else
15:

X X X X X

X X

X X X X

X X X X

i j k l i j k l k l i j

s i j t k l
i s k t s j t l

s i j
i s k l s j i s s j k l

t k l
i j k t t l k t i j t l

: , : : ,0:0 0:0, : 0:0, : : ,0:0

, 1 , , 1
: , : 1: , 1:

, 1
: , : 1: ,0:0 : ,0:0 1: , :

, 1
: , : 0:0, 1: 0:0, : : , 1:

= { È } È

{ } È

{ È } È

{ È }

Î[ - ] Î[ - ]
+ +

Î[ - ]
+ +

Î[ - ]
+ +

⋃

⋃

⋃

11WATSON–CRICK CONTEXT-FREE GRAMMARS: GRAMMAR SIMPLIFICATIONS AND A PARSING ALGORITHM

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downloaded from https://academic.oup.com/comjnl/advance-article-abstract/doi/10.1093/comjnl/bxx128/4796924
by International Islamic University Malaysia (IIUM) user
on 12 January 2018



(4) Finally, length 4:

X X X Y

X X Y

X X Y Y

X X T A S B

X X T

X X S T B

X X T

,

,

,

.

a
u

b
u

b
d

a
d

1:2,1:2 1:2,0:0 0:0,1:2 5

0:0,1:2 1:2,0:0 5

1:1,1:1 2:2,2:2 3 8

1:1,0:0 2:2,1:2

1:1,1:2 2:2,0:0

1:2,1:1 0:0,2:2

0:0,1:1 1:2,2:2

= = Æ{ } = Æ
È = { }Æ = Æ
È = Æ{ } = Æ
È = { }{ } = { }
È = Æ{ } = Æ

È = { }{ } = Æ

È = { }Æ = Æ

As S X1:2,1:2Î , therefore, w L GÎ ( ).

With this algorithm, we are able to solve the membership
problem for WK context-free grammars. The derivation tree
is shown in Figure 3.

7. CONCLUSION

In this paper, we investigated the simplification processes of
WK context-free grammars and introduced a normal form
based on Chomsky normal form. We showed that

• similar to (Chomsky) context-free grammars, WK
context-free grammars also possess the leftmost and
rightmost derivation;

• the processes of substitution, removing l-production
and unit production in WK context-free grammars are
similar with (Chomsky) context-free grammars;

• as WK context-free grammars generates double-stranded
strings, the normal form differs from Chomsky nor-
mal form in the types of terminal symbols generated
(Chomsky normal form has one type A a , while WK
context-free’s has two types);

• in CYK algorithm for WK context-free grammars, the
relationship (the mutual position, neighborhood, and
r-relation) between two nonterminals i.e. length 2, not
only in the same strand but between the upper strand
and lower strand, plays an important role in finding

the relationship for the next length, thus solving the
membership problem.

The following problems related to the topic remain open:

• How to determine if a WK context-free grammar will
always generate complete double-stranded strings?

• Is the finiteness, emptiness and equivalence problems
of WK context-free grammars decidable?

• What are other normal forms for WK context-free
grammars?

• How the proposed algorithms can be improved? For
example, can we improve WK-CYK algorithm by
calculating the Cartesian products of the sets of
nonterminals?

The answers to these questions will lead to more discovery
on parsing using double-stranded strings, more possibilities in
natural language processing, and DNA-based computing the-
ories in general.
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