
DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA

UNIVERSIDAD CARLOS III DE
MADRID

ESCUELA POLITÉCNICA SUPERIOR

PROYECTO FIN DE CARRERA

RGB-D SLAM

Author: Jorge García Bueno

Tutor: Dr. Luis Moreno Lorente

LEGANÉS, MADRID

OCTOBER 2011

”Stay hungry, stay foolish”

”Se ambicioso, se inquieto”

Steve Jobs, 1955-2011.

Dedicated to Rosalía, Jorge, Luis and Raquel,

who understand my craziness ...

... and also to Alex,

boosting it everyday

ii

Contents

Abstract v

1 Introduction 1

1.1 Story of robotics . 1

1.2 Classification of robots . 2

1.3 The aim of this project . 3

2 SLAM Principles 4

2.1 Definition . 4

2.2 Facing SLAM problem: Taxonomy . 6

2.3 Three ways to solve the same problem . 8

2.4 Graph-Based SLAM Optimization Technique 9

2.4.1 Mathematical statements . 9

2.4.2 GraphSLAM . 12

2.4.2.1 Mathematical relation . 12

2.4.2.2 Linearizing the cost function 14

2.4.2.3 Soft Constraints . 15

2.4.2.4 Comparing GraphSLAM with EKF 15

3 GraphSLAM Architecture 17

3.1 Architecture of the proposed system . 17

iii

CONTENTS CONTENTS

3.2 Environment acquisition. ToF technology 19

3.2.1 Previous alternatives . 19

3.2.1.1 Stereo Vision System . 19

3.2.2 Time-Of-Flight technology . 21

3.2.3 General Image processing chain 23

3.2.3.1 Common arising problems 23

3.2.4 Field of View problem . 24

3.2.5 Correspondence problem . 25

3.2.6 Intensity Modulation Principle . 26

3.2.7 Time-Of-Flight Applications . 28

3.3 Texture feature extracion: SIFT . 28

3.3.1 Maximums and minimums detection in the space-scale 30

3.3.2 Keypoints’s localization . 32

3.3.3 Orientation assignment . 35

3.3.4 Keypoints’s descriptors . 36

3.3.5 Keypoints’s matching between different subsets 36

3.4 Estimating 6 DOF pose though 3D cloud points 37

3.4.1 Definition of outliers . 38

3.4.2 RANSAC Algorithm . 39

3.5 Local refinement and matching with ICP 39

3.5.1 ICP method . 40

3.5.2 Optimization function . 42

3.6 Global pose graph optimization . 42

3.6.1 Data association: χ2 test . 42

3.6.2 Relaxation on a mesh to localize the robot and build the map . . 43

3.6.3 Hierarchical optimization solution to the GraphSLAM 45

3.6.3.1 Front-end problem . 45

3.6.3.2 Back-end problem . 46

iv

CONTENTS CONTENTS

4 Development 49

4.1 Software . 49

4.1.1 Introduction to ROS platform . 49

4.1.1.1 Advantages and disadvantages 51

4.1.1.2 Internal structure . 52

4.1.2 Application components . 54

4.1.3 Application GUI . 54

4.2 Hardware . 58

4.2.1 Manfred manipulator . 58

4.2.1.1 Manipulation skills . 60

4.2.1.2 Planning based on sensors 61

4.2.1.3 Evolutionary-based methods applied to optimization and

learning . 62

5 Results 63

5.1 Experiment 1: Speed tests . 63

5.1.1 Description of the experiment . 63

5.1.2 Results . 64

5.2 Experiment 2: Feature detector tests . 65

5.2.1 Description of the experiment . 65

5.2.2 Results . 66

5.2.3 Description of the experiment . 66

5.2.4 Results . 67

5.3 Experiment 2: Pose estimation tests . 67

5.3.1 Description of the experiment . 67

5.3.2 Results . 69

5.4 Experiment 3: Loop Closure . 69

5.4.1 Description of the experiment . 69

5.4.2 Results . 71

5.5 Some examples . 73

v

CONTENTS CONTENTS

6 Conclusions 78

7 Future Works 79

vi

List of Figures

1.1 Example of robots From left to right: Toyota Partner Robot (Toyota Inc.),

ABB Robot IRB 2400 (ABB Robots Inc.), Asimo (Honda Motor Co., Ltd.),

Maggie (Robotics Lab, UC3M), Da Vinci Surgical System(Intuitive Surgical

Inc.), Roomba (iRobot Co.), Robotic Fish (Essex University), quadcopter,

Nasa Mars Rover (Jet Propulsion Lab. NASA) 2

2.1 SLAM basics. Kalman Filter, odometry and GPS signals represented for

the same path . 6

2.2 SLAM basics. Involved variables represented graphically. The location of

the robot on each instant xt is estimated using the odometry ut, creating

measurements contrasted with the map zt 10

2.3 GraphSLAM representation and constraints matrix. Representation of nodes

1, 2 and 3 with the relations between them (left) and the generated sparse

constraint matrix with those relations (right) 13

3.1 System flow The proposed GraphSLAM architecture constructs a full 3D

color map from a set of individual RGB-D images 18

3.2 Stereo Vision. Perfect model of a stereo-pair for depth acquisition. (Brad-

ski and Kaehler, 2008) . 20

3.3 ToF Cameras. PMDTec CamCube, MESA SR4000 and Canesta sensors

from left to right . 21

vii

LIST OF FIGURES LIST OF FIGURES

3.4 ToF concept. Schema of how ToF camera works. 22

3.5 ToF outputs. Depth map, intensity image, amplitude map of the PMD

camera and original scenario. 23

3.6 Functional block Image processing chain comparison between SV systems

and ToF (Hussmann and Ringbeck, 2008) 24

3.7 Correspondence problem Real example comparing SV and ToF technolo-

gies . 26

3.8 ToF application Hand gesture recognition inside a car using an embedded

ToF camera (Hussmann and Ringbeck, 2008) 29

3.9 Difference of Gaussians How SIFT works. Each octave generates several

DoG images. On each iteration, image is reduced and blurred again . . . 32

3.10 Difference of Gaussians Three Gaussians of the same octave get deformed

as fast as process iterates . 33

3.11 Difference of Gaussians Finding maximums and minimums not only in

the same scale but also in upper and bottom scales 33

3.12 Keypoints orientation Divisions performed to create a gradient orientation

histogram . 36

3.13 Keypoints matching Matching between keypoints is done using K-NN

search over the 128 descriptor . 37

3.14 RANSAC over SIFT points RANSAC removes the outliers of the initial

distribution improving the resulting matching 38

3.15 ICP matching example. Matching of three 3D scans of a human face. Left:

three scans. Right: Results after ICP minimization refinement (Matt Chi-

ang, NTU) . 41

3.16 Constraint network. Example of an constraint network corresponding to

a raw dataset (before optimization) and the corresponding corrected one

(after optimization) . 43

viii

LIST OF FIGURES LIST OF FIGURES

3.17 Hierarchical levels in a graph. Representation of different levels of abstrac-

tion of a hierarchical graph. Left sphere represents the graph at level

k = 0 while the right sphere contains the nodes of the last layer k = 2 . . 46

3.18 Hierarchical Graph. Definition and relation between sub-graphs in differ-

ent levels of abstraction and edges linking them 47

4.1 ROS task Vs OS task. ROS is designed to work at low level in harmony

with the OS. Low level operations are handled by ROS to let users think

only in high-level applications . 50

4.2 Examples of PR2 robot using ROS From left to right: PR2 moving a trol-

ley, PR2 opening a door and PR2 recognizing and grasping a bottle in a

kitchen. 51

4.3 Explanation of how nodes work in ROS. From left to right: first node is in

charge of 3D Point cloud extraction from the camera. Afterwards second

node extracts the supporting plane (table). Then third node segments

the objects laying on the table. Finally, last node recognize the object

successfully as a mug. 53

4.4 Flowchart of the application. Connection between the modules and repre-

sentation of how information is tranfered along the application 55

4.5 Graphical User Interface The main window is divided on two parts. The

openGL view with the 3D processed cloud on the top and the three

views (grayscale frames, depht frames, feature matching frames) for

processing tasks. 57

4.6 Hardware specifications. Mobile manipulator Manfred has been used for

the presented research. Some of its connected devices are a RGB-D cam-

era for perception, lasers for navigation and a gripper for manipulation. 60

4.7 Global localization VFM method for dynamic calculation of trajectories in

2D environments . 61

4.8 Global localization VFM algorithm used for trajectories calculation in 3D

outdoor maps. 62

ix

LIST OF FIGURES LIST OF FIGURES

4.9 Autonomous exploration Autonomous exploration and environment learn-

ing for indoor applications. 62

5.1 Time consuming vs graph size Time for each part of the process for a set of

114 nodes. Also, this graph shows the relation between the number of

nodes of the graph and the total consuming time 64

5.2 Time consuming by task Time required in average for each task. Camera

callback requires the most time (55%), followed by HOG-man (23%) and

then features extraction (20%) and finally pose estimation (2%) 65

5.3 Evolution of χ2 Representation of the evolution of χ2 with the increase of

the graph nodes. SIFT gives the best performance followed by SURF . . 67

5.4 Refinement error vs size of the graph The error in the pose refinement re-

mains constant with the size of the graph. The error value moves be-

tween 0.7 and 1.7 cm, that is, the euclidean distance error. 68

5.5 Top view of some scenarios The top view of the scenes represent the quality

of the matching and graph optimization. 70

5.6 Errors in matching Red marks point out some of the problems found dur-

ing mapping. The lack of features or the movement of the objects during

the mapping create wrong matches. 71

5.7 Errors in matching Top view of a scenario with similar walls and roof.

The loop closure fails mostly because of the lack of new information in

the graph. 72

5.8 Errors in matching Top view of a scenario with a failure loop closure. Flat

textures in the walls reduce the number of keypoints and therefore the

(R, t) initial estimation . 73

5.9 Experiment: room Real image of the room scenario and snapshots from

different points of view of the mapped room. 74

5.10 Experiment: office Real image of the office 1 scenario and snapshots from

different points of view of the mapped office. 75

x

LIST OF FIGURES LIST OF FIGURES

5.11 Experiment: office2 Real image of the office 2 scenario and snapshots from

different points of view of the mapped office. 76

5.12 Experiment: office3 Real image of the office 3 scenario and snapshots from

different points of view of the mapped office. 77

xi

List of Tables

4.1 Modules of the application Description of the different parts of the Graph-

SLAM algorithm. All of them are implemented for ROS platform. 56

5.1 Feature extractor speed. Study of the different feature extractors and their

values . 66

5.2 Iterative Closest Point variables. Analysis of the number of iterations,

amount of inliers and error committed by the pose refinement in the

room experiment. 69

xii

Abstract

UNIVERSIDAD CARLOS III DE MADRID

Department of Systems and Automation

by Jorge García Bueno

This project has been developed as an implementation of a SLAM technique called

GraphSLAM. This technique applies the theory of graphs to create an on-line opti-

mization system that allows robots to map the scenario and locate themselves using

a Time of Flight camera as the input source. To do that, a RGB-D system has been

calibrated and used to create color 3D point clouds. With this information, the feature

detector module estimates, as a first approximation, the pose of the camera. Therefore,

a ICP pose refinement completes the graph structure. Finally, a HogMAN graph opti-

mizer close the loop on each iteration using a hierarchical manifold optimization. As a

result, 3D color maps are created containing, at the same time, the exact position of the

robot over the map.

xiii

Resumen

UNIVERSIDAD CARLOS III DE MADRID

Departamento de Sistemas y Automática

por Jorge García Bueno

Este proyecto ha sido desarrollado como una propuesta para implementación de

una de las técnicas de SLAM denominada GraphSLAM. Esta técnica aplica la teoría de

grafos para crear un sistema de optimización en tiempo real que permite a los robots

mapear un escenario y localizarse utilizando una cámara de tiempo de vuelo como

fuente de información. Para llevarlo a cabo, ha sido desarrollado y calibrado un sis-

tema RGB-D que tiene como finalidad crear una nube de puntos 3D. Con esta infor-

mación, el detector de características estima, como primera aproximación, la posición

de la cámara. A continuación, mediante ICP se realiza una corrección más fina de la

estructura del grafo. Finalmente, mediante un optimizador global de grafos denomi-

nado HogMAN se cierra el bucle en cada iteración basándose en manifolds jerárquicos.

Como resultado, se generan mapas 3D a color que contien, al mismo tiempo, la posi-

ción exacta del robot dentro del mapa.

xiv

Abbreviations

RGB-D Red Green Blue Depth

SLAM Simultaneous Location And Mapping

DOF Degrees Of Freedom

CPU Control Process Unit

GPS Global Positioning System

EKF Extended Kalman Filter

ROS Robot Operative System

TOF Time Of Flight

FOV Field Of Vision

CUDA Compute Unified Device Architecture

CMOS Complementary Metal Oxide Semiconductor

CCD Charge Coupled Device

SV Stereo Vision

PM Pulse Modulation

CWM Contiuous Wave Modulation

NAR Non Ambiguity Range

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

NIR Near Infra Red

DoG Difference of Gaussians

xv

Abbreviations

ICP Iterative Closest Point

VFM Voronoi Fast Marching

ROS Robot Operative System

RANSAC Random Sample Consensus

K-NN K Nearest Neighbours

pdf probability density function

LCS Local Coordinate System

HOG-Man Hierarchical Optimization Graphs on Manifolds

RSF Robotic Software Framework

PCL Point Cloud Library

xvi

Chapter 1
Introduction

Robotics is considered nowadays as one of the most challenging and demanded

fields of research for engineers, mathematicians and physicists. It covers a large num-

ber of branches: mechanics design, control, perception, human-robot interaction, ma-

chine learning, actuators, sensing, manipulation, training or even medicine among oth-

ers, creating not only a complete line of research but also a way for living. Robotics is

expected to take part of our lives gradually and fulfill the human needs by doing their

main task: make human beings’s live easier

1.1 Story of robotics

Robotics is the art of perceiving and take actions though devices controlled by a

computer or machine. That is, to make actuators interact with real life by means of

sensors that react to external stimulus. The term robot was originally assigned by

Karel Capck in a book named Rossum’s Universal published in 1921. In this work, the

word appears as a successor of the Czech expression robota which means servitude:

those machines with limited intelligence designed to perform the hard jobs. Nowa-

days this term has progressed into a wide description of any autonomous system able

to perform a work by itself reacting to external incitations.

1

Chapter 1. Motivation

Figure 1.1: Example of robots From left to right: Toyota Partner Robot (Toyota Inc.), ABB

Robot IRB 2400 (ABB Robots Inc.), Asimo (Honda Motor Co., Ltd.), Maggie (Robotics Lab,

UC3M), Da Vinci Surgical System(Intuitive Surgical Inc.), Roomba (iRobot Co.), Robotic

Fish (Essex University), quadcopter, Nasa Mars Rover (Jet Propulsion Lab. NASA)

1.2 Classification of robots

Furthermore, robots can be classified following several patterns. Depending on the

target or the point of interest, the following list present a classic classification methods:

1. Arm configuration: Rectangular, cylindrical, polar coordinates. Jointed arm

2. Shape of workspace: Limited sequence, Point-to-Point, continuous path

3. Locomotion and kinematics: Stationary, wheeled, legged, swimming or flying mo-

tion, ...

4. Type of controller: Distributed or centralized

5. Type of power: Electrical, pneumatic, hydraulic

6. Size: nano, small, big or huge

7. Type and number of joints: rotary or linear

2

Chapter 1. Motivation

8. Type of technology: Low, medium or high technology level

9. Task being performed: Industrial, domestic, medical, service, military, entertain-

ment, exploration

10. Generation of design: 1st, 1.5, 2nd, 2.5 or 3rd generation

11. Type of motion: slew motion, joint-interpolation, straight-line or circular interpo-

lation

1.3 The aim of this project

In this project, a SLAM introduction is presented in Chapter 2. Therein, different

alternatives and ways to solve the problem are stated. Afterwards, a GraphSLAM so-

lution is presented in Chapter 3, where each section introduce the steps followed to

perform the complete system; from the input sensor, a Time of Flight camera, to the

final graph optimization strategy passing through the feature detection and the pose

estimation procedures. A mobile manipulator robot called Manfred has been selected

to accomplish this work (more information about the complete system is included in

chapter 4).

The complete GraphSLAM algorithm has been implemented for this robot using

ROS framework. As it will be explained lately, thanks to this algorithm the robot will

be able to navigate and recognize its own location and path in unknown maps.

To create the graph, each node will represent a scan point cloud, and each edge con-

necting two nodes will correspond to the camera pose transformation between those

scans. Those edges will be set with the pose estimation given by an ICP cloud match-

ing algorithm. The initial estimation of the pose transformation required by ICP will be

done by means of features extraction over the color map. This graph will be optimized

using HOGMan in order to decrease the accumulated error on each iteration.

3

Chapter 2
SLAM Principles

In this chapter the theoretical concepts of SLAM will be explained. Furthermore, a

list of the most used methods will be explained briefly to fully understand the problem

and the tackled solutions until now. SLAM stands for Simultaneous Location And Map-

ping and it is a technique commonly used on mobile robotics to determine the position

of the robot in an unknown place by means of a probabilistic map of the surroundings,

tracking the path generated by the robot.

2.1 Definition

One of the most important problems that arise when researching on mobile manip-

ulators field is to know on each moment the exact position of the robot in the space (6

DOF). As [1] defines, SLAM answers to two common questions in relation with this

problem:

1. Where am I?

2. How is the world around me?

A precise robot’s location is only valid if a robust reference is taken, and therefore, a

robust map of the obstacles and environment is generated. Any sensor which provides

4

Chapter 2. What is SLAM and what is it used for

confidence to the system is welcomed, with the objective of completing the informa-

tion of odometry sensors. As it’s known, odometry sensor measurements are usually

poor and imprecise, suggesting any different source of information to be provided in

order to improve the robot’s location.

SLAM problem is still not solved. A large number of research centers and labs are

working on it, trying to obtain a fast, on-line and robust method for SLAM [2] [3] [4]

[5]. The reason why it is still unsolved falls on the measurements noise in the sensors

and the limitations in resolution and accuracy (See figure 2.1). The most remarkable

factors which prevent the process to be easier are:

1. Observations are taken with respect to the robot’s reference system, which its

position is affected by the uncertainty of the odometry. So, not only position but

measurements are exposed to errors, getting error minimization problem even

more difficult.

2. In most cases, a big map is required to be obtained, moving on extra computa-

tional cost and more imprecision in the odometry as robot moves.

3. Surroundings are normally dynamic, specially in mobile manipulator robots or

humanoids which are designed to collaborate with humans or uncontrolled workspaces.

Those transition objects can be treated as noise, and be removed by means of

probabilities.

4. The association of observations with real map objects can be complicated as long

as objects are similar between them geometrically or in texture. Normally, a de-

terministic correspondence does not make sense, turning into a probabilistic cor-

respondence.

5. Sensors can be simplified to have a planar conception working perfectly on 2D

environments but having difficult the transition to 3D environments, increasing

the complexity and initial statements.

5

Chapter 2. What is SLAM and what is it used for

Figure 2.1: SLAM basics. Kalman Filter, odometry and GPS signals represented for the

same path

2.2 Facing SLAM problem: Taxonomy

SLAM problem has been treated from different points of view, sharing all of them

a final purpose of establishing a position over a spatial map.

• Volumetric Versus Feature-Based In volumetric SLAM, the map is reconstructed

at a resolution high enough to be able to build a map with photographic resolu-

tion. On the other hand, feature-based SLAM only highlighted environmental

features are extracted from the sensors. Those features are the ones used to create

the map, much more efficient but inaccurate due to the data reduction.

• Topological Versus Metric Other mapping techniques only take into account a

qualitative description of the environment that resumes the basic locations. This

is the topological point of view. A topological map can be defined as a set of

different places with several relations in common (such as A is close to B). Metric

methods, in the other hand, only gather metric information about the relations

6

Chapter 2. What is SLAM and what is it used for

between places. During the last years, topological methods have been displace

on a second row, even realizing that human beings usually use this topological

information to locate themselves in new unknown places.

• Known Versus Unknown Correspondence One of the most difficult issues when

performing SLAM is data association. The problem consist on relating the iden-

tity of the objects observed in instant twith the ones observed during instant t−1.

Some alternatives assume that the identity of the landmarks is done while others

do not. Those last stipulate special mechanism to estimate the correspondences

for the observed features stored in the map.

• Static Versus Dynamic Static SLAM algorithms assumes that environment does

not change with time. However, dynamic methods believes that changes in the

environments can exist. Most part of the bibliography treat the problem as static,

removing dynamic effects converting them into noise. Methods that integrate the

movement of the environment are more complex, but tend to be more robust in

most of the applications.

• Small Versus Large Uncertainty Depending on the level of uncertainly that robots

are able to handle during location, SLAM algorithms are also classified. Simplest

can only deal with small errors to succeed while complex systems might with-

stand with paths with intersections or large changes in direction. In case the

robot can reach the target using multiple alternatives system uncertainly will get

highly increased. Furthermore, the well-known loop closing problem takes an

important part in this kind of classification. The ability to detect and fuse the

data when closing a loop is one of the challenging research lines right now.

• Active Versus Passive Depending on the decision-making of the SLAM algo-

7

Chapter 2. What is SLAM and what is it used for

rithm over the movement of the robot, the strategy can be active in case it does,

or passive in case the designer decides where the robot goes to. Almost all alter-

natives offer freedom of movement to the robot. Active SLAM uses to explore

actively the environment trying to create a precise map in the fewest time.

• Single-Robot Versus Multi-robot Multi-robot platforms are a new alternative

where multiple robots explore the environment and share the information with

the surrounding colleagues. Communication and synchronization problems, BW

limitation and delays turn this technique into a hard question to solve.

So, as it has been listed above, there exists a large quantity of strategies to solve

the location and mapping problem. Depending on the ultimate application, sensors,

conditions and statements,

2.3 Three ways to solve the same problem

During this section, the three most common alternatives to solve the SLAM problem

are described. From those main three, some other alternatives have been developed af-

terwards refining the results and improving the details.

The first one, very well known as Extended Kalman Filter (EKF) was the premier his-

torically, but its use has been decreased due to the limitations this method posses. Even

though, a version named EKF-SLAM was created proposing a single state vector to es-

timate the location of the robot and a set of features in the environment. A covariance

matrix representing the uncertainty in these estimates and including the correlations

between the vehicle and and feature state estimates.

The second method, based on graphic representations applies the non-linear opti-

mization called Sparse Non-Linear Optimization Methods is nowadays the most widely

used strategy to solve the problem.

8

Chapter 2. What is SLAM and what is it used for

Last but not least, the third method uses Particle Filters to solve the entire problem

by means of non-parametric statistical filtering. This alternative is quite common in

online-SLAM and introduces a new way to answer the association job.

2.4 Graph-Based SLAM Optimization Technique

Before explaining the GraphSLAM architecture, a resumed mathematical explana-

tion of the SLAM concept will be written. As it has been mentioned before, it relies on

the extended Kalman Filter (EKF) for representing the robotâĂŹs best estimate.

2.4.1 Mathematical statements

SLAM is formally described in probabilistic terminology due to the large uncer-

tainly attached to the problem. Let say the location of the robot is xt at time t. If the

problem is two-dimensional {xt} = {x, y, θ} contains the position coordinates x, y and

the orientation θ for each instant t. The group of location measurements (path) is given

as

XT = {x0, x1, x2, . . . xT} (2.1)

where T can move from time zero to infinite and the only known position is the

initial x0. As in other similar location problems, odometry takes an important role:

introduce relative location information between two consecutive instants of time. If

the motion estimated by means of odometry between time t − 1 and time t is labeled

as ut, the relative motion of the robot will be denoted as

UT = {u0, u1, u2, . . . uT} (2.2)

where empirically is well known that UT is not enough to obtain the exact position

of the robot in any moment due to the lack of accuracy and noise of the wheel encoders.

The map of the environment the robot is exploring is denoted by m. This static

map contains all the landmarks and features within their locations. What the robot

9

Chapter 2. What is SLAM and what is it used for

will measure in each point of time is the information between the features of m and the

robot location xt. This sequence of measurements is given as

ZT = {z1, z2, z3, . . . uT} (2.3)

where index starts by 1 because it contains the relative location information be-

tween u0 and u1. Figure 2.2 represents the previous assumptions graphically. It is

really useful to understand the variables involved in the SLAM problem and their re-

lationships.

Figure 2.2: SLAM basics. Involved variables represented graphically. The location of

the robot on each instant xt is estimated using the odometry ut, creating measurements

contrasted with the map zt

So, the target is to recover the world m and the path XT from the odometry and

measurements. There are two main alternatives to solve the same problem:

1. Full SLAM problem: This first method aims to solve the entire robot path with

the map. That is, to calculate the joint posterior probability over XT and m from

the available data. Logically, this alternative is highly time consuming and re-

quires of batch processing where the whole system is optimized at once, forcing

this mentioned problem to be solved off-line.

10

Chapter 2. What is SLAM and what is it used for

p(XT ,m|ZT , UT) (2.4)

2. Local SLAM problem: The second method, contrary to the previous one, tries to

obtain uniquely the present robot location xt and not the full path. This choice can

be solved incrementally on-line processing one scan at a time. Those algorithms

are usually called filters due to their time dependency. Therefore, the problem is

described as

p(xt,m|ZT , UT) (2.5)

To find the solution to the SLAM problem, two models have to be taken into ac-

count. In one hand, a mathematical model which links the odometry ut with the robot

locations in two consecutive points xt−1 and xt. In the other hand, a model that con-

nects measurements zt to the environment m and robot location xt. Those models are

the arrows in previous figure 2.3. Thanks to Bayes, it is possible to obtain probability

distributions from measured data transforming the probability distributions

• p(xt|xt−1, ut) Probability of location xt expecting robot to be in position xt−1 and

with a measured odometry ut), that is, the motion model.

• p(zt|xt,m) Probability of measuring zt from location xt in a known map m, that

is, the measurement model.

into a proper form.

The motion model g comes from the kinematics model of the robot. Using the

location vector xt−1 and the motion vector ut, function g(xt−1, ut) calculates with only

kinematics equations xt. Therefore

xt = g(xt−1, ut) (2.6)

11

Chapter 2. What is SLAM and what is it used for

This model can be represented as a normal distribution centered at g(xt−1, ut) with

Gaussian noise, with a covariance matrix Rt

p(xt|xt−1, ut) v G(g(xt−1, ut), Rt) (2.7)

Covariance size is 3 × 3 since as it was mentioned before location vector is {xt} =

{x, y, θ}. The measurement function h defines the information acquired by the sen-

sors. Supposing that the sensors are noise-free, measurements can be obtained using

environment information and robot location

zt = h(xt,m) (2.8)

As before, the previous model can be represented as a normal distribution centered

at h(xt,m) with Gaussian noise, with a covariance matrix Qt

p(zt|xt,m) v G(h(xt,m), Qt) (2.9)

2.4.2 GraphSLAM

As it has been mentioned before, this kind of techniques solve the problem through

non-linear sparse optimization [6]. Their purpose claims to focus the problem from a

graph representation way.

2.4.2.1 Mathematical relation

Taking map landmarks and robot locations as nodes in a graph, each pair of consec-

utive locations xt−1 and xt are connected by an arrow that represents the information

acquired by the odometry ut. Moreover, the links between positions xt and landmarks

mi are called soft constraints. These special constrains are relaxed to let the robot esti-

mate the optimal map and full path XT . So, as it is explained in figure 2.3, the con-

straints graph grows linearly with the elapsed time and the number of nodes in the

12

Chapter 2. What is SLAM and what is it used for

graph, creating a sparse matrix due to the poor connectivity between the nodes.

Figure 2.3: GraphSLAM representation and constraints matrix. Representation of nodes

1, 2 and 3 with the relations between them (left) and the generated sparse constraint

matrix with those relations (right)

Analyzing the graph as a spring-mass model, SLAM solution seems equivalent to

computing the state of minimal energy of this model. To see this, note that the graph

corresponds to the log-posterior of the full SLAM problem denoted in 2.4.

p(XT ,m|ZT , UT) = k ·
T∏
t=1

p(xt|xt−1, ut) · p(zt|xt,m) (2.10)

log p(XT ,m|ZT , UT) = k + log
T∑
t=1

p(xt|xt−1, ut) + log
T∑
t=1

p(zt|xt,m) (2.11)

where k is a constant representing the initial conditions (t = 0). So, the target is to

maximize the expression

{X∗t ,m∗} = arg max
XT ,m
{log p(XT ,m|ZT , UT)} (2.12)

And assuming the previous Gaussian estimation,

log p(XT ,m|ZT , UT) = k +
T∑
t=1

[xt − g(xt−1, ut)]
T ·R−1

t · [xt − g(xt−1, ut)] + (2.13)

T∑
t=1

[zt − h(xt,m)]T ·Q−1
t · [zt − h(xt,m)]

13

Chapter 2. What is SLAM and what is it used for

Now, this sparse function has to be optimized. To do that, several options exist as

gradient descend or conjugate gradient1.

2.4.2.2 Linearizing the cost function

Usually functions g and h are linearized obtaining a pure quadratic function. Those

equations are nonlinear due to effects of robot orientation. To linearize the position

model it is possible to say that xt = F |x + J |x∆x using a column vector F |x and matrix

J |x representing the Jacobian of the constraint equations with respect to the state. A

single rigid-body constraint will provide three constraint equations filling a block-row

of the Jacobian. Naming the search direction d = ∆x and defining the error residual

r = u− g(xt−1, ut).F |x

log p(XT ,m|ZT , UT) ∝ (J |x · d− r)T ·R−1
t · (J |x · d− r)

cost = dT · J |Tx ·R−1
t · J |x · d− 2dT · JT ·R−1

t · r + rTR−1
t · r (2.14)

Minimizing it means, it this case, to differentiate the cost with respect to d and

setting the expression to zero. That is,

∂cost

∂d
=
∂
(
dT · J |Tx ·R−1

t · J |x · d
)

∂d
− 2 ·

∂
(
dT · J |Tx ·R−1

t · r
)

∂d
+
∂
(
rTR−1

t · r
)

∂d
= 0 (2.15)

2 · J |Tx ·R−1
t · J |x · d− 2 · J |Tx ·R−1

t · r = 0(
J |Tx ·R−1

t · J |x
)︸ ︷︷ ︸

A

·d = J |Tx ·R−1
t · r︸ ︷︷ ︸

b

(2.16)

Now the problem is a typical linear algebra problem with the information matrixA.

Solving this last equation 2.16 for d several times by re-evaluating J |x around the state

estimate each time the method of nonlinear least squares is yielded. Typically, as it has

been mentioned before, this problem is solved locally using well-known minimization

methods such as Newton–Raphson, Gradient Descent or Conjugate Gradient Descent.
1Optimization classic definition: Ax− b = 0⇒ f(x) = ‖Ax− b‖2 ⇒ ∇xf = 2A>(Ax− b) = 0

14

Chapter 2. What is SLAM and what is it used for

2.4.2.3 Soft Constraints

One of the advantages of graph representation is that the problem can be easily han-

dled to include data associations. That feature allows, for instance, the addition of soft

constraints between nodes. Those soft constraints can improve or include more details

about the whole system. For instance, if landmarks mq and mr are exactly the same

pose but they are obtained in different moments, it is possible to inform the system

about this boundary condition by saying that

[mq −mr]
T · Γ · [mq −mr] (2.17)

That is, if both landmarks represent the same information, one of the nodes can be

removed and all the edges attached to that node can be shifted to the remaining one.

In equation 2.17 Γ is a diagonal matrix which represents the penalty of not choosing

mq as the same node as mr (|Γ| � 1)

2.4.2.4 Comparing GraphSLAM with EKF

Graphical SLAM methods includes a really useful advantage over the EKF method:

scalability. Thanks to graph concept it is possible to scale to much higher dimensional

maps. Contrary to graph methods, EKF SLAM increases covariance matrix quadrat-

ically with the number of observations (that is, with the map size). Furthermore, the

number of optimizations is also affected proportionally with the map size, requiring

more computational time to be done.

In the other hand, the update time of graph methods is constant, while the amount

of memory required is considered linear if some considerations are taken. But, it is

true that the optimization of the log function 2.13 is never inexpensive. The resolution

increases with the number of close loops and size of those loops inside the map. As [5]

explains, the effectiveness of the EKF approaches comes from the fact that they estimate

a fully correlated posterior about landmark maps and robot poses. Their weakness lies

in the strong assumptions that have to be made on both, the robot motion model and

15

Chapter 2. What is SLAM and what is it used for

the sensor noise. Moreover, the landmarks are assumed to be uniquely identifiable.

There exist techniques to deal with unknown data association in the SLAM context,

however, if certain assumptions are violated the filter is likely to diverge.

16

Chapter 3
GraphSLAM Architecture

3.1 Architecture of the proposed system

In this chapter, the description of the proposed GraphSLAM architecture will be

detailed. Firstly, a brief description of the whole system will be presented and after-

wards each part of the developed architecture will be explained deeply. In figure 3.1

the complete processing steps are represented. This approach will generate a full 3D

color map from a set of RGB-D images.

All the beyond steps have been done using ROS architecture as it will be described

later on. In a very first place, the GraphSLAM algorithm will need a RGB-D feed. For

this requirement a ToF camera with a color webcam attached has been provided. It

will be input source of information, with the environment information and the color

for each pixel. However, not only the raw cloud point is needed, also the calibration

information of the camera and its distortion factors are required to do the inverse trans-

form and obtain 2D/3D projections for any pixel. In this case, as it will be explained

later on, some alternatives have been implemented.

Once the 3D cloud point is received, its time to introduce this new information in

the system. To do that, a feature extraction step is required. This process will get the

17

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

Figure 3.1: System flow The proposed GraphSLAM architecture constructs a full 3D

color map from a set of individual RGB-D images

relation between some of the points of the last scan and the actual one. With that re-

lation, is possible to compute in next step so called pose estimation the movement of

the camera (and in fact, the robot) during the last scan. With the world camera’s trans-

formation (R, t) both scans can be matched up. However, this last step is normally

not enough to obtain a clear and nice matching. Feature extraction is not completely

accurate and propagate some errors into the global pose estimation algorithm.

For this reason, after the "first approach", another one is performed. This time, it

is denominated a refinement because its main target is to reduce the error between

matches as much as possible. There exist several techniques to solve this cloud match-

ing and here ICP is used as it is explained during the next sections. Straightaway,

a graph-based optimization is performed to relax the nodes and diminish the global

system energy.

18

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.2 Environment acquisition. ToF technology

Just because humans are living in a three–dimensional world, they are provided

with an adequate set of tools to describe and locate different objects in any surround-

ing scene. These given features include motion, relative position, size and evolution

of perceived objects. The demand of spatial perception has been satisfied by nature

providing animals and humans with at least two eyes. This stereo vision ability al-

low humans to process an image flow inside the brain and compute precisely depth

measures of the observed environment.

3.2.1 Previous alternatives

Before ToF technology was introduced, there were several methods to acquire and

estimate 3D point clouds: those classical stereo vision algorithms which are based on

correspondence matching such as dense depth maps generated with Dynamic Pro-

gramming [7], block-matching approach [8] or even improved methods based on var-

ious consecutive frames to enhance the results [9]. Besides, instead of passive systems

like stereo vision, active sensors came up removing problems such as illumination

conditions, unfocused scenes or image artifacts. This alternative is essentially a laser

scanning line that delivers an specific signal and measure the received answer. Those

methods have been widely implemented in location problems, SLAM, environment

modeling, surgery or industrial applications.

3.2.1.1 Stereo Vision System

Stereo Vision systems comprise two perspective cameras with limited Field Of Vi-

sion (FOV). Any physical point is found in the observed 3D-space using both cameras.

For each pixel in one image, the appropriate location in the other view must be found.

Assuming that both cameras are perfectly calibrated, undistorted and rectified, image

planes for both images are coplanar if optical axis are exactly parallel. In that case,

19

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

both cameras would have equal focal lengths fl = fr and also equal principal points 1

cx
l = cx

r as the following Figure 3.2 describes.

Figure 3.2: Stereo Vision. Perfect model of a stereo-pair for depth acquisition. (Bradski

and Kaehler, 2008)

In order to do that, pinhole model can be easily imposed in both cameras, giving

Equation 3.1 the corresponding relation between depth and disparity on pixels location

using the triangulation principle.

T − (xl − xr)
Z − f

=
T

Z
→ Z =

fT

xl − xr
(3.1)

where xl − xr is defined as disparity For this action, the most obvious drawback

found is the correspondence problem, that is to match the pixel-wise pairs in both images.

This operation requires a large consumption process in terms of computing resources

and time to achieve good results due to the fact that pixels are not easy to find. Several

applications have been developed during the last years in order to decrease comput-

ing times using new concepts such as parallel computing using CUDA [10] , dynamic

programming or Parallel cells such as [11].

1A principal point is where the principal ray intersects the camera plane. This intersection depends

just on the optical axis of the lens

20

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.2.2 Time-Of-Flight technology

Once again, nature has beaten humans when talking about intelligence. Several

thousands of years have passed since bats or dolphins were able to see without proper

eyes. Those species use this sensor to both navigate and object tracking. This feature

make them possible to detect and locate external actions or events in order to escape

or attack. Humans have applied time-of-flight measurement systems later on, for in-

stance when measuring the unknown depth of a well listening to the returned echo

after a stone was thrown. These ToF methods are based on the propagation time of

sound instead of light. It was in the 17th century when Galileo Galilei performed an

experiment to estimate the speed of light [12]. To do that, he took two people handling

a torch and placed them at the top of two mountains one kilometer far. If one of them

turned it on, the other would do the same and viceversa. With this simple experiment,

he tried to measure the light speed neglecting the time of reaction of the contributors.

There are two mainly approaches currently employed in ToF technology [13]. The

first one uses modulated, incoherent light and it is based on a phase measurement

that is possible to be implemented in standard CMOS or CCD technology. The second

solution is based on an optical shutter technology having first used in studio cameras

and later on miniaturized cameras. In Figure 3.3 are represented the most notable ToF

cameras and their respective manufacturers.

Figure 3.3: ToF Cameras. PMDTec CamCube, MESA SR4000 and Canesta sensors from

left to right

The basic principle of a ToF camera is represented in Figure 3.4 and it is resumed

21

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

by [14] as follows: A source emits a light pulse and starts a highly accurate stopwatch.

The light pulse travels to the target and back. Reception of the light pulse by the de-

tector mechanism stops the stopwatch, which now shows the time of flight of the light

pulse. Considering the fact that the light pulse travels the distance twice (forth and

back) and that the speed of light is 299.792.458 m/s, then a measured time of 6.67 ns

corresponds to a distance of one meter. As it is logical, the hardest problem here is

to create a high accuracy time measurement system able to deal with nano and pico

seconds. For instance, a resolution of 1 cm requires a time interval of 70 pico seconds.

Because ToF cameras are highly compact devices, the active light source and receiver

are located very closely avoiding shadowing effects. That is, illumination and obser-

vation directions are collinear [15]. Furthermore, one of the most important conditions

of ToF sensors in general is that emitter and detector are operated synchronously, ex-

tracting the time of flight as accurate as possible.

Figure 3.4: ToF concept. Schema of how ToF camera works.

ToF cameras are able to return three different sources of information. Firstly, a

range map with a resolution of 204 × 204 pixels float precision in centimeters. This

information it is obviously used to acquire object distances, scene segmentation and

object modeling (Figure 3.5.a). Secondly, an intensity image that reveals the texture

and brightness for each item inside the scene. That information becomes crucial for

22

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

pattern recognition and camera calibration (Figure 3.5.b). Finally, an amplitude image

that contains an estimation of the committed error measuring the time of flight for

every pixel (Figure 3.5.c). Exploiting this information may increase the reliability of

distance for each pixel, as it would considered subsequently with the discussion of the

shading constraint [16]. In Figure 3.5.d it is displayed the original scenario to obtain a

better understanding.

Figure 3.5: ToF outputs. Depth map, intensity image, amplitude map of the PMD cam-

era and original scenario.

3.2.3 General Image processing chain

3.2.3.1 Common arising problems

There exist several problems when processing images of captured objects. Aperture

problem leads the list exhibiting the limited aperture angle of the camera optics giving

information of a partial environment. FOV problem arises when fixing the field to an

specific application. 3D information get lost when projecting information into a planar

sensor, that is, the optical projection problem. Finally, the detection of fast object move-

23

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

ments cannot be sampled due to the sampling rate limit given by the camera calling

to this situation sampling problem. To all those problems, it has to be added the error

committed measuring gray level changes in pixels (divergence problem).

Figure 3.6: Functional block Image processing chain comparison between SV systems

and ToF (Hussmann and Ringbeck, 2008)

ToF cameras do not contain every of those problems as Figure 3.6 shows. Only

sampling and aperture problems appear. Other issues such as FOV problem does not

affect just because hardware setup can be changed easily. There is not correspondence,

divergence or allocation problem due to the fact that each pixel of sensor calculates a

range value so no object information is lost by the optical projection on a planar sensor.

3.2.4 Field of View problem

ToF cameras do not depend on geometrical parameters counter to SV systems where

the distance between cameras implies different triangulation possibilities and therefore

a range of depth resolutions. The usage of active modulated light source makes ToF

systems more effective and reliable.

24

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

Two different approaches are the most common modulation techniques used for

depth measurement. The first one is pulsed modulation, introduced 20 years ago by [17]

and not too much used. The alternative is continuous wave modulation (CWM) explained

by [18]. CWM is nowadays used on ToF systems because this method do not required

high rise and fall times allowing then several sources of light to be used. Usually,

square waves or sinusoidal waveforms are applied for modulation. The idea is simply

to measure the phase between sent signal and received signal instead of measuring

the time to go and return of a single light source. Once modulation frequency fmod is

established, the measured corresponding phase means directly the time-of-flight [14].

Using Equation 3.9 and replacing φ by the frequency response of the modulation

φ = (
ϕ0

360o
+N · 360o) with N = 0, 1, 2, 3, ... (3.2)

In case of modulation, 2 · πω in 3.9 equals to fmod and therefore range of the camera

can be expressed as

R = (
c

2 · fmod

) · (ϕ0

360o
+N · 360o) with N = 0, 1, 2, 3, ... (3.3)

Studying the above Equation 3.3, if fmod is set to 20Mhz as [19] recommends for

typical PMD cameras, the Non Ambiguity Range (NAR) turns to

NAR = max (R) =
c

2 · fmod

=
3 · 108m/s

2 · 2 · 107s−1
= 7.5m (3.4)

giving an idea of the spaciousness those devices can take in. Equations 3.3 and 3.4

demonstrates that NAR depends only on the frequency fmod applied to obtain a larger

or shorter distance region.

3.2.5 Correspondence problem

As it has been mentioned before, one of the most relevant problems that emerge

in ToF technology is the correspondence problem also known as by correspondenceless

25

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

[20]. The idea is quite simple, SV systems need of rich textured frames to offer good

reliability. That is because disparity has to be found between equivalent pixels in both

images. If gray values are quite similar along the epipolar lines, disparity levels would

be erroneous inducing into bad disparity maps.

The following Figure 3.7 proves this problem. A small jug have been captured in the

laboratory (Figure 3.7.a) and computed with a SV system (Figure 3.7.b) and then with

a ToF system (Figure 3.7.c). It is trivial to find out how background is computed erro-

neously when it is poorly textured. Contrary to ToF cameras, SV systems require sev-

eral settings such as disparity window size or maximum disparity levels to be defined

beforehand, otherwise depth maps will not correspond to observed systems. Further-

more, due to SV systems run without active lighting they generate shadows creating

false positives and hence, they can not estimate the 3D information of the objects due

to the correspondence problem.

Figure 3.7: Correspondence problem Real example comparing SV and ToF technologies

3.2.6 Intensity Modulation Principle

Most important companies have focused out their prototypes following this kind

of ToF-principle such as Mesa Imaging 2 (Figure 3.3.a), PMDTech electronics 3 (Figure

2Mesa Imaging – http://www.mesa-imaging.ch
3PMDTech electronics – http://www.pmdtec.com

26

http://www.mesa-imaging.ch
http://www.pmdtec.com

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.3.b) and CanestaVision Camera Modules 4(Figure 3.3.c). The intensity modulation

principle is based on the on-chip correlation of the incident optical signal s, which

comes from a modulated NIR near infra-red source and reflected by the objects inside

the scenario, with a reference signal g, which posses an internal offset τ :

c(τ) = s⊗ g = lim
T→∞

∫ +T/2

−T/2

s(t) · g(t+ τ)dt (3.5)

Choosing s and g as sinusoidal signals:

g(t) = cos(ω · t), s(t) = b+ a · cos(ω · t+ φ) (3.6)

where ω represents the modulation frequency, a is the amplitude of the incident

optical signal, b corresponds to the correlation bias and φ is the phase offset due to the

incident object distance. The convolution of those signals yields

c(τ) =
A

2
cos(ω · τ + φ) + b (3.7)

Every pixel of the sensor samples the amount of modulated light reflected by any object

four times every period at equal intervals m1 to m4. These four values are sufficient to

recover the sinusoidal signal easily. The phase offset between the emitted light and

received signal is

φ = arctan(
m4 −m2

m3 −m1

), mi = c (i,
π

2
), i = 1, . . . , 4. (3.8)

and this value determines the range of the object in the scene

R =
c

4πω
· φ, c ≈ 299.792.458m/s (3.9)

The intensity of the objects in the image can be recovered from the average light

reflected as

I =
m1 +m2 +m3 +m4

4
(3.10)

The amplitude of the measured sinusoidal can be expressed as

4Canesta Vision – http://canesta.com/

27

http://canesta.com/

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

A =

√
(m3 −m1)2 + (m4 +m2)2

2
(3.11)

and therefore it allows to predict the quality of the measurement ∆R as

∆R =
c

2ω
√

8

√
I

2A
(3.12)

With all this information, it is possible to obtain in real time not only depth values

for each pixel but also the reliability or estimated error for each pixel.

3.2.7 Time-Of-Flight Applications

ToF cameras are a young family of devices which are progressing continuously.

Last years the Time-of-Flight imaging became more attractive to a growing research

community [21]. Nowadays 3D matrix cameras can be manufactured and be applied

for many application such as robotics [22], automotive [23], industrial [24], medical

[25] and multimedia [26] applications. The fast advances in ToF-camera market will

grow during the next years. [19] expects the unit price of these systems in the mass

production to drop down to 100 euros. Figure 3.8 shows an integrated system which

captures hand gestures of the vehicle’s driver and perform different activities such as

phone mode activation or the name of the actual street taking the information of the

GPS coordinates. All those actions are interpreted from 3D data captured with an

embedded camera on the frontal zone of the car.

3.3 Texture feature extracion: SIFT

This algorithm was proposed by [27] as a revolutionary solution to achieve a large

quantity of important points from bustling scenarios. This method has been used not

only for points extraction but also to correlate photos of the same scenario from differ-

ent points of view. The correct correlation of several clouds of points might be used for

building a complete 3D scene from a batch of 2D samples [28], [29].

28

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

Figure 3.8: ToF application Hand gesture recognition inside a car using an embedded

ToF camera (Hussmann and Ringbeck, 2008)

SIFT algorithm is divided mainly in four steps, each one extracts a different feature

from the image giving at the end a list of points with a complete description represent-

ing the most important data fields for each frame [30].

1. Maximums and minimums detection in the space-scale: First step consist on the search

of possible candidates to represent keypoints. This search is done using Gaussian

Functions differences in order to identify points invariant to scale and orienta-

tion.

2. Keypoints’s localization: After localize candidates, scale and localization is com-

puted. Afterwards, those keypoints which are more stable are selected.

3. Orientation assignment: To each selected point, its orientation (or principal ori-

entations) is selected. Those orientations are defined based on local gradients

around the keypoint.

4. Keypoints’s descriptors: Local gradients are measured and transformed into a de-

scriptor vector. This representation allows to describe the distortion levels around

keypoints and changes in illumination.

29

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

As it is going to be explained afterwards, the number of keypoints extracted from

any image will be dependent of the number of objects, textures and edges of those

objects. These keypoints can become very useful to have an idea of the important

regions of the image and then to pay more attention to find out objects in these areas.

Next sections will cover the four steps in detail, to get a global idea of how this method

works.

3.3.1 Maximums and minimums detection in the space-scale

As it has been commented before, the first stage of SIFT algorithm corresponds to

the detection of possible keypoints. To do that, stable features are searched along the

frame on different scales. Once this requirement is fulfilled, a Gaussian function is in

charge of space-scale changes.

Indeed, L(x, y, σ) is defined as a space-scale function in an image. It corresponds

to a convolution between a Gaussian of an scalar variable G(x, y, σ) and the original

image I(x, y) in this way:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.13)

where Gaussian function is defined as

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (3.14)

To perform an efficient calculation of stable keypoints, in scale and space, it is pro-

posed the usage of maximums and minimums of D(x, y, σ) function, that corresponds

to the difference of Gaussians convoluted with the image. Difference of Gaussians can

be obtained from two contiguous scales separated by a multiplicative constant k as

D(x, y, σ) = [G(x, y, k · σ)−G(x, y, σ)] ∗ I(x, y)

= L(x, y, k · σ)− L(x, y, σ) (3.15)

30

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

This approximation is quite fast and easy to compute in a computer. Furthermore,

it represents a good representation of the normalized Laplacian σ2∇2G. That is impor-

tant due to σ2 factor makes the transformation scale invariant. It is also demonstrated

that maximums and minimums of the normalized Laplacian function are more stable

than gradient, Hessian function or even Harris corners.

The relation between D and σ2∇2G can be compared with the heat diffusion equa-

tion, where temporal parameter is σ2(t = σ2)

∂G

∂σ
= σ2∇2G (3.16)

where in case of close scales kσ and σ it can be approximated

σ2∇2G =
∂G

∂σ
≈ G(x, y, k · σ)−G(x, y, σ)

kσ − σ
(3.17)

therefore,

G(x, y, k · σ)−G(x, y, σ) ≈ (k − 1)σ2∇2G (3.18)

This result demonstrates that DoG function differs from normalized function just

by factor (k− 1). Because this factor affects on every scale, it does not change the max-

imums and minimums location. Next Figure 3.9 displays an optimal way to construct

D(x, y, σ) function.

Initial image is increasingly convoluted with Gaussians to produce separated im-

ages by a constant scale factor k (left row). Each initial image forms an octave. Each

octave is divided a number of intervals s due to k = 21/s. Afterwards it has to be pro-

duced s+ 3 images by octave in the group of fuzzy images so detection of maximums

and minimums covers a complete octave. Finally adjacent images are subtracted to

obtain a DoG image. After finishing the process for one octave, images have to be sam-

pled again, but this time with a σ value double to initial value, taken the second pixel

for each column and row. Precision is reduced in each iteration. Figure 3.10 shows

some Gaussians of the same octave and how they get blurred.

31

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

Figure 3.9: Difference of Gaussians How SIFT works. Each octave generates several DoG

images. On each iteration, image is reduced and blurred again

To obtain the local maximums and minimums, not only the greater and closer pix-

els from the neighbors pixels are good candidates, but they also those pixels that are

maximums and minimums on previous and next images in the same column as Figure

3.11 displays. The computational cost of this maximum and minimum obtaining is

small due to most of the points are removed during the initial checking.

A small spatial sampling does not ensure a large number of stable points. It has to

be chosen experimentally the number of scales per octave: if a large number of scales

is chosen, a lot of instable points would appear being less repetitive.

3.3.2 Keypoints’s localization

Once the keypoints are found, next step is to adjust their location, scale and bright-

ness in the neighborhood. This information can reject points due to a low contrast or

32

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

Figure 3.10: Difference of Gaussians Three Gaussians of the same octave get deformed as

fast as process iterates

Figure 3.11: Difference of Gaussians Finding maximums and minimums not only in the

same scale but also in upper and bottom scales

poor localization near an edge. Again, another approximation has been done to im-

prove calculus and better computational times. In this case, DoG function has been

approximated to a Taylor series as

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x (3.19)

where D and its derivatives are evaluated in the sampling point and x = (x, y, σ)T

represents the offset in that point. The location if the critical point x̂ equaling Equation

3.19 to zero. Then, it is obtained that

x̂ =
∂2D−1

∂x2

∂D

∂x
(3.20)

and it can be demonstrated that Hessian and derivative are approximated by the

33

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

use of difference of points around near samples. If the offset x̂ is greater than 0.5 in any

dimension, that means that there is a critic point very close, and a simple interpolation

between both points is performed. Using Equations 3.19 and 3.20 the critical point

D(x̂) is obtained as:

D(x̂) = D +
1

2

∂DT

∂x
x̂ (3.21)

According to [27], those points where ‖D(x̂)‖ < 0.03 can be discarded for normal-

izes pixels between 0 and 1. And that removes all those points with a low contrast.

Nonetheless, there is another condition required for keypoints to became real can-

didates: those points with a low location along an edge, as DoG posses a high response

along the edges. The principal curvature of a point can be processed from a 2x2 Hes-

sian matrix evaluated in the keypoint

H =

 Dx,x Dx,y

Dy,x Dy,y

 (3.22)

The required derivatives to obtainH matrix have been computed taking differences

with neighbors in the sampling point. The H eigenvalues are proportional to princi-

pal curvatures of D. Taking α as the greatest eigenvalue and β as the smallest, the

summation of eigenvalues can be done from the trace as

Tr(H) = Dx,x +Dy,y = α + β (3.23)

and the determinant as the product

Det(H) = Dx,x ·Dy,y − (Dx,y)
2 = α · β (3.24)

Taking R as the ratio between those eigenvalues (α = rβ), it is obtained

Tr(H)2

Det(H)
=

(α + β)2

α · β
=

(r + 1)2

r
(3.25)

34

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

that only depends on the relation between eigenvalues. So, according to [27], a

reasonable threshold is r = 10 for Equation 3.26 to reject those instable points because

of a poor location in an edge.

Tr(H)2

Det(H)
<

(r + 1)2

r
(3.26)

3.3.3 Orientation assignment

The orientation of keypoints is quite important. A good assignment can make the

point invariant to rotation. The approach here exposed is based on local image proper-

ties. This has a disadvantage, the number of descriptors selected is reduced, cropping

areas of the image.

The selection of the orientation is based on local gradients around the keypoints.

For this, image is blurred with the highest Gaussian in that point. In this way, calculus

are done over information invariant to scale. For each sampling image, L(x, y), gradi-

ent magnitude m(x, y) and orientation θ(x, y) are calculated using pixel’s differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = arctg

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
(3.27)

An histogram of a keypoint is formed with the orientation of the sampling point’s

gradients around the keypoint’s neighborhood. The orientation histogram is formed

by 36 divisions that covers 360o. Each sample added to the histogram has a weight

times the gradient magnitude times a Gaussian mask with a 1.5 times the value of

the keypoint. Strong directions in the orientation histogram correspond to dominant

directions in local gradients. The maximum in the histogram is recorded and compared

with the second maximum. If there exist maximums above 80% the largest one, those

will be used to create new keypoints with different orientations, creating a keypoint

set with the same location but different orientation.

35

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.3.4 Keypoints’s descriptors

Once all keypoints are found, processed and segmented, keypoint’s neighborhood

is divided into 4 × 4 regions of 4 × 4 pixels (See Figure 3.12). Then a gradient orienta-

tion histogram is generated for each region with a weight Gaussian function with σ = 4

pixels. To decrease conflicts made by small displacements, each pixel’s contribution is

multiplied by a weight 1 − d where d represents the distance to the neighborhood’s

center. Because orientation histograms for each region are divided on 8 columns, for

each neighborhood a three dimensional histogram of 4× 4× 8(128) values each.

Figure 3.12: Keypoints orientation Divisions performed to create a gradient orientation

histogram

3.3.5 Keypoints’s matching between different subsets

Once feature extraction is done, it takes a very interesting point to match keypoints

from different scans or images. This matching can determine the similarity between

both views. In case there exist a large number of equalities or matches between two

images, it is possible to determine the physical relation between both views, and what

is more, the world transformation between them. Figure 3.13 shows an example of

this matching. If the camera is well defined (it is calibrated and all its parameters are

known) it is possible to obtain extrinsic parameters: Rotation matrix R and translation

36

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

vector t.

To do this matching, a K-NN search is done over the data base of descriptors using

the euclidean distance for the measurements. Once the distance of all the keypoints is

done for each keypoint, the relation between the two closest is done. If this relation is

lower than a certain threshold 5, its possible to confirm that there is a relation between

the keypoint in the first image and the second one.

Figure 3.13: Keypoints matching Matching between keypoints is done using K-NN

search over the 128 descriptor

3.4 Estimating 6 DOF pose though 3D cloud points

Successive frames are aligned by jointly optimizing over both appearance and shape

matching. Appearance-based alignment is done with RANSAC (Random Samples Con-

sensus, originally proposed by [31]) over SIFT features annotated with 3D position (3D

SIFT) proposed by [32]. This method permits to estimate the transformation between

two consecutive frames projecting and un-projecting each matched pair-feature and

optimizing the transformation matrices recursively. RANSAC is an iterative optimiza-

tion method whose task is to pick up the best observations and reject the outliers af-

fecting to the whole system.

5Empirically, this value is set between 0.8 and 0.9 to avoid false positives during matching process

37

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.4.1 Definition of outliers

The definition of an outlier is not easy, as [33] annotates:

A datum is considered to be an outlier if it will not fit the "true" model instantiated by

the "true" set of parameters within some error threshold that defines the maximum deviation

attributable to the effects of noise.

That is, it is possible to assume that some of the points in a distribution are correct

and the rest are not. This last subset is called outliers. In this case, for the estimation of

the camera transformation between two consecutive scans, outliers are detected over

the SIFT matching results.

In fact, the rejection system proposed by [27] and explained in subsection 3.3.5 is

not perfect. For this reason, RANSAC can select which of those matching pairs are

wrong and remove them from the initial guesses, improving the pair-wise pose esti-

mation after all. With this process, and after the algorithm converges, a selection of the

best subset of matchings will be done, with the certain of choosing the optimal trans-

formation. Applying this technique to the initial matching set represented in figure

3.13 the result is displayed in figure 3.14.

Figure 3.14: RANSAC over SIFT points RANSAC removes the outliers of the initial dis-

tribution improving the resulting matching

38

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

As it can be shown easily, those matching pairs which did not follow the same ori-

entation as the majority do are removed (outliers), remaining the correct ones (inliers).

3.4.2 RANSAC Algorithm

The algorithm is quite simple to implement. The basic steps are as follows:

Algorithm 1 RANSAC pseudo-code
1: Select randomly the minimum number of points required to determine the model

parameters.

2: Solve for the parameters of the model.

3: Determine how many points from the set of all points fit with a predefined toler-

ance ε

4: If the fraction of the number of inliers over the total number points in the set ex-

ceeds a predefined threshold τ , re-estimate the model parameters using all the

identified inliers and terminate.

5: Otherwise, repeat steps 1 through 4 (maximum of N times).

3.5 Local refinement and matching with ICP

However, this pose estimation is not sufficient to obtain the best matching. Some of

the reasons are

1. SIFT is not always exact while extracting the features: it depends on light condi-

tions, movement of the camera, abrupt changes of light or occlusions.

2. Pair matching can fail. Furthermore, the number of matching pairs can be insuf-

ficient enough to estimate a wrong pose.

3. The fact that there is not a minimum number of pairs to estimate the pose (with

three is sufficient) can cause incoherences.

39

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

For this reason, after the initial guess, a second step will refine and improve this

3D cloud matching. The state of art in clouds matching is large, but the most famous

algorithm for cloud matching is called ICP (Iterative Closest Point). It is important to

remember that now the cloud point is matched using directly the 3D points (P (x, y, z))

while in RANSAC, the classification was done using the pair descriptor’s matching

orientation.

3.5.1 ICP method

ICP was originally presented by [34] and proposed for point matching for free-

form curves and surfaces, but it can be easily extended to three-dimensional problems

or any N-dimensional system. As it has been mentioned before, ICP is in charge of

refining the 3D point cloud focusing on the position of each point. It iteratively revises

the transformation (translation, rotation) needed to minimize the distance between the

points of two raw scans.

The original algorithm is presented in Algorithm 2. It’s complexity is low enough

to work in real time even with 3D cloud points. The key concept of the standard ICP

algorithm can be summarized in two steps:

1. Compute correspondences between the two scans.

2. Compute a transformation which minimizes distance between corresponding

points.

For this project, a modified version of the algorithm proposed by [35] called Gener-

alized ICP has been used. Generalized-ICP is based on attaching a probabilistic model

to the minimization step on line 10 of Algorithm 2. This option does extract planes

from both clouds, doing a plane matching instead of point matching. This probabilis-

tic approach mix the simplicity of the original proposal over the advantages of other

fully probabilistic techniques: speed and simplicity.

40

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

Algorithm 2 Iterative Closest Point pseudo-code
Require: Two point clouds: A = {ai} and B = {bi}

Require: Initial transformation : T0

Ensure: The correct transformation t which aligns A and B

1: T ← T0

2: while not converged do

3: for i← 1 to N do

4: mi ← FindNearestPointInA(T · bi)

5: if ||mi − T · bi|| ≤ dmax then

6: wi ← 1

7: else

8: wi ← 0

9: end if

10: T ← arg min
T
{
∑

iwi · ||T · bi −mi||2}

11: end for

12: end while

Figure 3.15: ICP matching example. Matching of three 3D scans of a human face. Left:

three scans. Right: Results after ICP minimization refinement (Matt Chiang, NTU)

41

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.5.2 Optimization function

For the 3D cloud matching problem, the cost function which ICP has to deal with

is the following: Given the previously defined two independent sets of 3D points A

(model set, |A| = N) and B (data set, |B| = N) 6 which correspond to a single shape, it

is aimed to find the transformation consisting of a rotation R and a translation t which

minimizes the following cost function:

E(R, t) =
N∑
i=1

N∑
j=1

wi,j · ||mi − (R · dj + t)||2 (3.28)

wi,j is assigned 1 if the i-th point of A describes the same point in space as the j-th

point of B. Otherwise wi,j is 0.

3.6 Global pose graph optimization

The last step of the proposed Graph-SLAM algorithm is the global graph optimiza-

tion. This final action includes a very specific target: to improve the matches between

nodes by relaxing the whole system optimizing the edges between all the nodes. Fur-

thermore, the system has to detect loop closures while running and adapt the nodes

properly.

3.6.1 Data association: χ2 test

Problems such as loop closure or cluttered environments difficult the measure-

ments of the joint compatibility between nodes, requiring of techniques to determine

the best solution to data association. For this reason, the χ2 test is done for each pair of

nodes to determine the independence and variance estimation. The probability density

function (pdf) of this distribution is

6N is supposed to be the same for both clouds simply because the sensor is the same

42

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

f(x; k) =

1

2k/2Γ(k/2)
xk/2−1e−x/2, x ≥ 0;

0, otherwise.
(3.29)

where Γ(k/2) denotes the Gamma function. So, the like-hood between two nodes

will be done using this distribution. The P-value is the probability of observing a test

statistic at least as extreme in a χ2 distribution. A P-value of 0.05 or less is usually

regarded as statistically significant.

3.6.2 Relaxation on a mesh to localize the robot and build the map

Minimizing the error in the constraint network is the way maps are relaxed. To

understand the concept of relaxing a graph, the spring–mass example is normally ex-

plained: In this view, the nodes are regarded as masses and the constraints as springs

connected to the masses. The minimal energy configuration of the springs and masses

describes a solution to the mapping problem [4]. Figure 3.16 shows an example of an

uncorrected constraint network and the corresponding corrected one.

Figure 3.16: Constraint network. Example of an constraint network corresponding to a

raw dataset (before optimization) and the corresponding corrected one (after optimiza-

tion)

43

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

Let’s consider a pair of masses (or rigid bodies) p and q that are connected by a

spring. If xp represents the pose of p from an arbitrary global coordinate system and xq

the pose in the same global coordinate system. Let zp contains the pose of p in a local

coordinate system (LCS) and zq denote the pose of the object in LCS of their respective

bodies. The energy Upq of this spring is given by

Upq =
1

2
kpq(ξxpzp − ξxqzq)2 (3.30)

where ξ is a coordinate transform operator that maps points from local to global

coordinate systems. The spring constant is typically set to 1/σ2, where σ is the uncer-

tainty in the measurement represented by this spring. Therefore, if exist a mesh with

several rigid bodies, the total energy of the mesh can be calculated as

U =
1

2

∑
pq

Upq (3.31)

The goal here is to find out the set of poses {xp, xq, ..} that minimizes this energy. In

a real scenario, springs and masses will get into equilibrium immediately if the system

is released. It is possible to emulate the physical equations of this system and apply

them to this simile. This is done in two steps as follows. It is repeated until the global

energy reach a minimum threshold (ideally this value might be zero)

1. For each body p, compute the total force acting on it:

Fp =
∑
q

Fpq = −
∑
q

∇xpUpq (3.32)

where Fpq is the force generated by the spring Upq and ∇xp denotes the gradient

with respect to xp.

2. For each body p refresh the pose xp using the equation

xp ← xp +
1

2
∆t2Fp (3.33)

where ∆t is a time constant that regulates the rate of convergence.

44

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.6.3 Hierarchical optimization solution to the GraphSLAM

In this project, the optimization has been done using HOG-Man optimizer (Hierar-

chical Optimization on Manifolds7 proposed initially proposed by [5]). It splits up the

problem in two different slides:

1. Constraints need to be extracted from sensor data to construct the abstract graph

representation. This is referred to as the SLAM front-end.

2. Given the constraints, the most likely configuration of the poses as well as the

pose uncertainty need to be computed. This is referred to as the SLAM back-

end.

3.6.3.1 Front-end problem

The first problem can be addressed solving the data association problem: detecting

if the robot is perceiving the same information as the measurements in previous ob-

servations. It is not necessary to cover the whole graph each iteration to perform the

exploration, the search area can be resized based on the current uncertainty estimate

of the robot. For this, an optimization based on Gauss-Newton with sparse Cholesky

factorization is used on the previously explained Equation 2.16, and χ2 test is applied

to perform the comparisons.

The method proposed by [5] not only use an optimized versio of Gauss-Newton

with sparse Cholesky factorization but also linearize on a Manifold. The reason why

this strategy is done falls on the fact that normally the space of parameters Xt is con-

sidered to be Euclidean, which is not valid for SLAM (this may lead to sub-optimal

solutions). The explanation of the linearization on a Manifold is out of the limits of this

project, but can be further read in detail in [5].

7A manifold is a topological space that can be assumed as Euclidean space of a specific dimension in

a small scale

45

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

3.6.3.2 Back-end problem

The second problem is the optimization engine. That one is solved using a hierar-

chical approach where in each step instead of repeatedly optimizing all nodes of the

graph, it computes a solution to a simplified problem. The levels in the hierarchy rep-

resent the levels of abstraction. For instance, if a high level node is modified, only those

nodes of the middle layer which are connected to that node have to be updated. With

this method, large computational cost can be saved. Figure 3.17 represents the same

graph at different levels of abstraction.

Figure 3.17: Hierarchical levels in a graph. Representation of different levels of abstrac-

tion of a hierarchical graph. Left sphere represents the graph at level k = 0 while the

right sphere contains the nodes of the last layer k = 2

Mathematical definition

The idea of a hierarchical pose-graph claims on represent different levels of abstrac-

tion: each level is a pose-graph with connections modeling correspondences between

levels of abstraction. The lowest level represents the original input in k = 0. Each node

at level k > 0 is a graph at level k − 1. The number of parameters describing the en-

vironment decreases with the level of abstraction. Therefore, the highest level (k = K)

represents the lowest quality but at the same time is the faster to be optimized. Thus,

46

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

if there exist K levels, G [k] represents the graph at level k. Graph G [k] consist of a group

of nodes {x[k]
i } and a set of edges between them {e[k]

ij }.

Each node x[k]
i at level k is linked to

i) A "representative" node x[k−1]
i at level k − 1

ii) A connected sub-graph G [k−1]
i at level k − 1

There will be an edge e[k]
ij between x[k]

i and x[k]
j at level k > 0 if two sub-graphs G [k−1]

i

and G [k−1]
j are already linked. Therefore, lower level graphs are split in local maps

{G [k−1]
i } creating high level graphs (see figure 3.18). Each local graph is represented by

a node at the higher level. Edges between nodes contains the information about the

relations between local maps.

Figure 3.18: Hierarchical Graph. Definition and relation between sub-graphs in different

levels of abstraction and edges linking them

Construction of the graph

The rule followed to build graph G [k] from the graph G [k−1] is based on the distance

on the graph. That means that nodes are grouped at level k − 1 when they are closer

than a certain threshold τ . Those groups are named {G [k−1]
i } and a representative node

x
[k−1]
i has to be selected. This representative becomes the node x at level k. An edge will

47

Chapter 3. GraphSLAM in deep: Architecture and sub-systems

be attached between x[k]
i and x[k]

j at level k if the corresponding sub-graphs are already

connected. This edge will contain the information included in all edges of G [k−1]
i and

G [k−1]
j as well as the edges connecting both.

Propagating the hierarchy to upper levels

As soon as the robots moves and a new node is added to the bottom level, the new

node is added to a previously created group or it becomes the representative of a new

one at level k = 0. This process is done recursively until there are no need for new

groups.

Refreshing the graph

When the hierarchical pose-graph is modified, an optimization is done from the

top level. Only if there are sufficient changes in one level, it is propagated to lower

levels. Those changes can be seen comparing the distance between nodes x[k]
i and its

representative in level k − 1, x[k−1]
i as they are supposed to be solid rigid 8.

8Due to both nodes represent the same pose, if an upper layer change, the restriction x
[k]
i = x

[k−1]
i

has to be applied to update the lower layer and validates the equation

48

Chapter 4
Development

4.1 Software

This software has been developed, with some technical modifications, based on a

GraphSLAM application offered by [36]. All the source is implemented in ROS plat-

form, making easy its integration with other parts of the robot: odometry, lasers, cam-

eras, GPS, IMU’s or any other source of information. In this section, it is explained and

analyzed the different parts of the application, how are they connected among them

and how the whole system works.

4.1.1 Introduction to ROS platform

ROS (Robot Operative System 1) was originally developed in 2007 by the Stanford

AI Lab with the name switch yard. After a while, in 2009, the development was assigned

to Willow Garage who has continue developing and updating the libraries for free. It

can be downloaded and modified in https://code.ros.org/gf/project/ros

(last visit, Oct. 2011).

As their own creators say, ROS can be defined as:

1Also, the acronym stands for Robot Open Software

49

https://code.ros.org/gf/project/ros

Chapter 4. Development of the complete system

ROS (Robot Operating System) provides libraries and tools to help software developers cre-

ate robot applications. It provides hardware abstraction, device drivers, libraries, visualizers,

message-passing, package management, and more under an open source, BSD license.

ROS can be resumed in three fundamental things:

1. Meta- Operative System

2. Robotic Software Framework

3. Distributed Robotic Architecture

It covers most of the low-level programming (threads, communication protocols,

semaphores, memory maps, etc.) giving the opportunity to their users to develop fast

and specific code (see figure 4.1) with a community in steady growth with 100+ pack-

ages, approximately 200 stacks and 50+ updated repositories around the world.

Figure 4.1: ROS task Vs OS task. ROS is designed to work at low level in harmony with

the OS. Low level operations are handled by ROS to let users think only in high-level

applications

One of the most important features of ROS is the amplitude of their researches.

It covers almost every branch in robotics: path planning, object recognition, machine

50

Chapter 4. Development of the complete system

learning, perception, localization, SLAM, tele-operation, manipulation, etc (some snap-

shots are shown in figure 4.2) and it is being used in 50+ robots nowadays.

Figure 4.2: Examples of PR2 robot using ROS From left to right: PR2 moving a trolley,

PR2 opening a door and PR2 recognizing and grasping a bottle in a kitchen.

4.1.1.1 Advantages and disadvantages

As any solution, ROS offers a great variety of advantages but also leaks in some

points. The following list highlights its pros and finds the cons.

, Advantages

• Focus the problem on high level problems, reducing the low-level processing

• Wide compatibility with "standard" robotics structures (laser scans, images, loca-

tion messages, etc.)

• Growth learning curve: approximately six months are needed to understand the

structure

• Easy to share and learn: Subversions and Git servers allow to share and improve

algorithms though any open source platform

• Research in robotics community accept and support it!

51

Chapter 4. Development of the complete system

/ Disadvantages

• Its philosophy is to reach every robot and to be able to control it, and this means

a great dispersion

• It requires some experience in low level programming to understand how to

adapt the code to the platform

• Focused on Unix OS, it does not support Windows/Mac (nowadays)

4.1.1.2 Internal structure

ROS is a distributed system which allows to execute portions of code in different

machines distributed in a network and connected via TCP/IP. Furthermore, this con-

nections are designed as a Peer-to-peer configuration, allowing the system to distribute

the payload and processing task. The platform accepts different programming lan-

guages such as C, C++, Phyton, LISP, Octave. Furthermore, some of the most famous

libraries are easily integrated:

• PCL: Library specialized in 3D cloud management: filtering, transformations,

clustering or meshing.

• OpenCV: Library specialized in image processing: image filtering, pattern recog-

nition, machine learning or features extraction.

• OpenRAVE: Library specialized in developing, testing and deploying motion

planning algorithms.

• Player: Library specialized in robot control interface and simulator.

Nodes

Nodes are each sub-process or task that the robot is able to do: odometry, planning,

object recognition, etc. That is, each node is able to publish some information based on

other nodes. For instance (see figure 4.3), if a node is in charge of recognize objects in

52

Chapter 4. Development of the complete system

a table, probably will need firstly a node which acquire 3D cloud points, another that

get the support plane, then another one to cluster the objects in the table and finally a

last one saying which object is seeing2.

Figure 4.3: Explanation of how nodes work in ROS. From left to right: first node is in

charge of 3D Point cloud extraction from the camera. Afterwards second node extracts

the supporting plane (table). Then third node segments the objects laying on the table.

Finally, last node recognize the object successfully as a mug.

ROS connects and disconnects nodes in real time. Those messages are transported

by a main node called roscore. Any node can get subscribed to any other node that

publish information whenever it needs it. The only aspect which must be reminded is

how the information is passed through them. That is in charge of messages.

Messages

Two nodes can communicate by means of messages. There exist different structures

for this messages depending on the information to be transmitted. For instance, if a

camera node wants to publish 3D cloud point information gathered from the Kinect

camera, it will construct a RGB-D message which contains, among other fields:

• Red, green and blue color channels [unsigned char (uint8_t)]

• Height and width of the color frame [unsigned char (uint8_t)]

• Depth map [float]

• Height and width of the depth frame [unsigned char (uint8_t)]

2This example has been extracted from a previous work of the author. More information in [37]

53

Chapter 4. Development of the complete system

• Time stamp of the frame [ros::Time]

• Extrinsic parameters matrix [3 x 3 float]

• Intrinsic parameters matrix [3 x 3 float]

• Distortion factors [1 x 3 float]

Topics

The vehicle to transmit the information between nodes are the messages, but the

way a node inform that is publishing a new data is with topics. Therefore, nodes work

with a publish-subscriber messaging pattern. A node publish an specific topic and any

node interested on this information will subscribe to it.

4.1.2 Application components

The ROS application developed named GraphSLAM is divided on different mod-

ules. Each one has a specific task that will be described in following table 4.1. The next

figure 4.4 represents how modules are inter-connected.

4.1.3 Application GUI

Next figure 4.5 shows the GUI’s (Graphical User Interface) for the application. Be-

cause the program has been done in Qt all the graphical objects are standard compo-

nents (QButton,QMessageBox, QTextEdit, etc. 3) It has been tested in Ubuntu

Linux x86_64 (2.6.35-30) in an Intel(R) Core(TM)2 Duo CPU P8700@2.53GHz 4GB

RAM and a nVidia graphics card GeForce GT 240M.

3More info at http://doc.qt.nokia.com/latest/qtgui.html

54

http://doc.qt.nokia.com/latest/qtgui.html

Chapter 4. Development of the complete system

Figure 4.4: Flowchart of the application. Connection between the modules and represen-

tation of how information is tranfered along the application

55

Chapter 4. Development of the complete system

Module Name Description

GICP Module in charge of obtaining the refine transformation of the

cloud point, that is, from two RGB-D messages, it returns the

best rotation and displacement.

GLViewer Module in charge of displaying the 3D model in OpenGL. Points

clouds are represented using single points with color.

GraphManager Module in charge of applying the HOG-man transformation be-

tween nodes and refresh globally the whole graph on each itera-

tion.

Main Module in charge of starting the application and receiving the

neccessary topics and establishing the topics which are going to

be published.

Node Module in charge of holding the data for one graph node and

providing functionality to compute relative transformations to

other nodes.

Parameters Server Module in charge of storing the default values of the application,

global constants and manage all publishing topics.

OpenNIListener Module in charge of most of the ROS-based communication and

Kinect feed synchorinzation.

QTCV Module in charge of the GUI of the application: menus, mes-

sages, file management, frames and buttons.

QTROS Module in charge of setting up a thread for ROS event process-

ing: external events, etc.

SiftGPU Module in charge of computing the SIFT feature extraction in

GPU (only valid for nVidia CUDA technology cards.)

Table 4.1: Modules of the application Description of the different parts of the GraphSLAM

algorithm. All of them are implemented for ROS platform.

56

Chapter 4. Development of the complete system

Figure 4.5: Graphical User Interface The main window is divided on two parts. The

openGL view with the 3D processed cloud on the top and the three views (grayscale

frames, depht frames, feature matching frames) for processing tasks.

57

Chapter 4. Development of the complete system

4.2 Hardware

As it has been mentioned before, this project has been developed using Manfred

robot as a platform. It is presented in the next section. The perception system used

for the demos and trials is a Kinect Camera (instead of the presented RGB-D system)

because of several outward things:

• Kinect camera is cheaper than the PMD-Tech. Its usage is less risky and gives an

option to be broken

• Kinect camera integrates color on the information channel. That means that no

transformation is needed before playing with the data

• Kinect depth resolution is lower than the PMD-Tech one, but spatial resolution is

greater. This represents a disadvantage for small workspace applications such as

object recognition, object modeling or object grasping but offer some advantages

in large environments such as localization or SLAM

• The weight of the PMD-Tech camera is greater than the Kinect’s. That is an im-

portant feature in terms of integration in the robot structure.

• Kinect camera is commonly used between research groups, and it has received

lot of support during last months.

4.2.1 Manfred manipulator

Manfred is an advance mobile manipulator designed and developed entirely in

Robotics Lab (UC3M). It has been used as one of the research lines of the group, focused

on manipulation, navigation, in-hand movements, grasping, perception and control.

The most important features and sensors of this robot are stated below:

• 6 DOF carbon fiber arm

• Arm weight: 18 Kg.

58

Chapter 4. Development of the complete system

• Arm length: 1205mm

• Maximum Load: 4.5 Kg

• Control: PMAC 8 axis (2 base + 6 arm)

• Harmonic drive gearings

• Brush-less motors (C.C)

• Torque sensor

• Differential wheeled base

• Motorized SICK

• Motorized Hokuyo

• RGB-D camera

and there is a large list of task it is able to perform:

• Switch the light on/off

• Open doors

• Local planification based on Voronoi Diagrams (updates global planning)

• Cooperation with humans

• SLAM using laser data

• Machine Learning for grasping

59

Chapter 4. Development of the complete system

Figure 4.6: Hardware specifications. Mobile manipulator Manfred has been used for the

presented research. Some of its connected devices are a RGB-D camera for perception,

lasers for navigation and a gripper for manipulation.

4.2.1.1 Manipulation skills

His development trajectory has been very interesting. Robotics Lab started devel-

oping a first version built using commercial elements (the robot was named Otilio).

Afterwards, it was developed the mobile manipulator named Manfred-1 and also the

lightweight carbon fibber robot UC3M-LWR1. Last version is called Manfred-2 main-

taining the original arm UC3M-LWR1.

On each one of the designs, it has been looked for a new progresses and new ca-

pacities to make the robot more versatile. In this sense, nowadays it looks for an evo-

lution for UC3M-LWR1 into a more anthropomorphic capacities, that is 7 DOF, a weight

between 10-11 Kg and 4-5 Kg. load capacity. Also, as a new feature it would have

attached an anthropomorphic hand. Theoretical studies and simulations performed

until this moment revealed that this suggested arm is achievable.

60

Chapter 4. Development of the complete system

4.2.1.2 Planning based on sensors

In planning terms, during last years it has been developed researching focused on

methods based on sensors from the Level Set Methods proposed by [38]. Based on

the Fast Marching technique, there had been developed the methods VFM and FM2

for planning based on trajectories’s sensors in 2D, 2+1/2 D and 3D environments. In

the following figure 4.7, there are three examples of this method. In the first one, the

dynamic re-planning of trajectories in indoor 2D environments, where it can be shown

how trajectory to the target point changes as long as new obstacles are found. There-

fore, new obstacles that initially were not considered in an a priori static environment

map are taken into account.

Figure 4.7: Global localization VFM method for dynamic calculation of trajectories in 2D

environments

On the second example, a recent version of the planning VFM method for outdoor

environments is shown. Here trajectories are calculated based on a 2+1/2 D elevation

terrain map.

61

Chapter 4. Development of the complete system

Figure 4.8: Global localization VFM algorithm used for trajectories calculation in 3D

outdoor maps.

4.2.1.3 Evolutionary-based methods applied to optimization and learning

When applying different evolutionary-based methods in mobile manipulators, there

have been developed evolutionary-based methods not only for the global location

problem but also for SLAM in 2D environments based on information obtained with

2D laser telemetry. It has been developed also an exploration method, learning and au-

tonomous location in a 2D environment. (Observe in the next figure 4.9 how the mobile

manipulator explores its environment, re-plans and modify its trajectory dynamically

as long as it moves along the map environment maintaining its location).

Figure 4.9: Autonomous exploration Autonomous exploration and environment learning

for indoor applications.

62

Chapter 5
Results

During this chapter, some of the results of the complete algorithm will be spotted.

The experiments have been classified into four different categories: speed tests, feature

extraction tests, pose estimation tests, global optimization tests and dynamic environ-

ment tests.

5.1 Experiment 1: Speed tests

5.1.1 Description of the experiment

The goal of this experiment is to understand the computer resources that demand

each part of the process and compare them. Figure 5.1 represents the time-line of a

graph experiment in a room. The experiment consists on 114 nodes. For each node,

the time required by the camera callback, features extraction and matching, pose esti-

mation and graph optimization has been logged. With this information, it is expected

to study which parts of the process create bottlenecks and how to fix them.

Furthermore, this experiment is very handy and useful to see the relationship be-

tween the number of nodes of the system and the speed of the process.

63

Chapter 5. Results of the experiments

Figure 5.1: Time consuming vs graph size Time for each part of the process for a set of 114

nodes. Also, this graph shows the relation between the number of nodes of the graph

and the total consuming time

5.1.2 Results

As it can be seen in the previous figure, most of the time is consumed by the camera

callback. This makes a lot of sense, the camera is connected to the computer via an USB

port which is reducing the flow of data from the camera to the application. However,

the problem can be attached not only to the physical connection but also to the driver

that manages the information source and receiver.

In figure 5.2 it is plotted, in average, the time required of each part of the process.

Clearly, Camera callback requires the most time (55%), followed by HOG-man (23%)

which makes most sense because of the complex algorithm and sparse optimization

process and then features extraction (20%) and finally pose estimation (2%) which is

quite fast due to the Flann KDD Tree optimized for ROS.

64

Chapter 5. Results of the experiments

Figure 5.2: Time consuming by task Time required in average for each task. Camera

callback requires the most time (55%), followed by HOG-man (23%) and then features

extraction (20%) and finally pose estimation (2%)

5.2 Experiment 2: Feature detector tests

5.2.1 Description of the experiment

The goal of this experiment is to compare the performance of the complete system

using different feature detectors. The most common feature extractors are SIFT, SURF,

FAST, MSER, GFTT and STAR. Each of them extract different kind of points according

to their specifications. Furthermore, the number of points extracted by each method

varies.

The minimum number of matching points required to evaluate if there is a new

node in the graph is 16 to make the process more accurate and restrictive 1. Next table

5.1 gives the average number of features detected by node.

1As it is widely demonstrated, with 3 pairs of matched points is possible to determine the inverse

transform of the camera. The more number of pairs, the better estimation.

65

Chapter 5. Results of the experiments

Feature extractor Number of features (avg) Time [s] (avg) Detector speed [feat./s]

STAR 34.9808 0.02822 1239.392705

FAST 84.657 0.0943 897.6670201

GFTT 31.51 0.04924 639.9268887

MSER 53.98 0.1241 434.9717969

SURF 199.789 0.6736 296.5988717

SIFT 113 1.5022 75.22189349

Table 5.1: Feature extractor speed. Study of the different feature extractors and their

values

5.2.2 Results

In a first impression, it would seem better to choose STAR feature extractor due to

the number of features per second is able to extract. This speed data can be confused

if it is not taken with care. As in any others on-line problems, the time is a key vari-

able. In this case, analyzing all the extractors, it is important not only the speed but the

quality of the features. This quality is measured with the number of features per node

(first column of table 5.1).

In this way, depending on the problem, the user will take care of the number of fea-

tures per frame in order to estimate a consistent pose transform choosing then SURF

or SIFT feature extractor. Or, if it is primordial to perform the problem as fast as possi-

ble with a lack of accuracy, FAST or MSER feature extractors must be chosen (STAR or

GFTT’s number features might be insufficient).

5.2.3 Description of the experiment

To get a more precise discussion of the previous experiment, the statistical χ2 has

been compared for all the feature extractors in the same environment over similar con-

ditions. Figure 5.3 describes the evolution of χ2 with the growth of the graph.

66

Chapter 5. Results of the experiments

Figure 5.3: Evolution of χ2 Representation of the evolution of χ2 with the increase of the

graph nodes. SIFT gives the best performance followed by SURF

5.2.4 Results

The previous figure 5.3 gives SIFT as a winner after the eighth node in the graph.

The grow slope is very high due to the number of features this extractor retrieves. Tak-

ing into account both experiments, SIFT might be the best feature extractor followed

by SURF (taking into account not only the graph performance but also the extraction

speed).

5.3 Experiment 2: Pose estimation tests

5.3.1 Description of the experiment

With this experiment, the pose estimation and refinement algorithm will be stud-

ied. For this reason, some of the parameters of the algorithm has been measured. In

particular, it has been payed attention to four:

67

Chapter 5. Results of the experiments

• Number of iterations: How many iterations have been done before obtaining a

valid pose.

• Percentage of inliers: Proportion of inliers over the whole number of matching

points.

• Quantity of inliers: Size of the complete matching points vector.

• Error: Error committed after the matching (euclidean distance between clouds)

All this experiment has been done using SURF feature extractor. Next figure 5.4

shows the error explained above. As it is shown, the error remains constant with the

number of nodes in the graph. That is, the size of the graph does not alter the refine-

ment and pose estimation of the node.

Figure 5.4: Refinement error vs size of the graph The error in the pose refinement remains

constant with the size of the graph. The error value moves between 0.7 and 1.7 cm,

that is, the euclidean distance error.

The following table 5.2 shows the overall average values for the presented variables

in the ICP algorithm.

68

Chapter 5. Results of the experiments

iterations % inliers # inliers Error [cm]

82.93 50.52% 167.06 1.26

Table 5.2: Iterative Closest Point variables. Analysis of the number of iterations, amount

of inliers and error committed by the pose refinement in the room experiment.

5.3.2 Results

The error given by ICP moves between 0.7 and 1.7 cm. This data maintains constant

with the number of graph nodes, and explains the kind of environment that has been

mapped. During the first 10 nodes it is almost constant. Then the camera moves into

a dark or untextured zone (frame 20) and then come back to a bright or previous zone

(frame 26). Exactly the same can explains the tendency during the frames 80-110 where

the error diminishes due to the same factors.

With relation with table 5.2, it resumes the variables of the ICP process. The number

of inliers may appear slightly low, but it must be taken into account the fact that the

environment light conditions can be bad and textures can be flat in some parts of the

room scenario.

5.4 Experiment 3: Loop Closure

5.4.1 Description of the experiment

In this experiment, some environments have been mapped and the top view of the

room are plotted. There is not a feasible way of measuring the performance of the al-

gorithm with this information but the reader can, at least, understand the quality of

the mapping technique and the loop closure of the map.

Figure 5.5 represents the top view of some of the scenarios the algorithm has been

applied on. The first map correspond to the room experiment, the second one to the

69

Chapter 5. Results of the experiments

Figure 5.5: Top view of some scenarios The top view of the scenes represent the quality of

the matching and graph optimization.

70

Chapter 5. Results of the experiments

kitchen experiment while the third one represents the office experiment and the last

one the laboratory.

5.4.2 Results

As it can be seen in figure 5.5, the walls match up great and there are not big inco-

herences in the scans. However, as it can be seen in figure 5.6, sometimes the nodes are

not perfectly fitted.

Figure 5.6: Errors in matching Red marks point out some of the problems found during

mapping. The lack of features or the movement of the objects during the mapping

create wrong matches.

There are cases where the GraphSLAM algorithm does not work properly. Some of

the possible reasons of this failures are:

• There are not enough features in the area

• Dynamic objects are not supported by the algorithm. There is not a strategy for

that.

• Thin objects are not taken into account by the ICP matching

71

Chapter 5. Results of the experiments

• Similar objects can be wrongly matched mistaken

In figure 5.7 another scenario is shown. This time, it was selected on purpose a

place with too many similar textures in order to find out the problems stated before.

As it can be seen, the close loop fails due to the lack of features and significant nodes.

Figure 5.7: Errors in matching Top view of a scenario with similar walls and roof. The

loop closure fails mostly because of the lack of new information in the graph.

Finally, last figure 5.8 shows the top view of a room where the loop closure is not

well done. After the analysis of the environment, the reason for this problem was

found in the texture of the zone. Due to the flat color of the walls, the number of

72

Chapter 5. Results of the experiments

matching features in this area decreases (low keypoints), obtaining a low pose (R, t)

estimation. In this circumstances, the number of iterations of the ICP algorithm is over

exceeded and the final solution is poor.

Figure 5.8: Errors in matching Top view of a scenario with a failure loop closure. Flat

textures in the walls reduce the number of keypoints and therefore the (R, t) initial

estimation

5.5 Some examples

To sum up the actual project, next figures show some of the results obtained during

the experiments. In those figures, the reader can see different environments and how

the location and mapping are performed taking into account the problems experienced

before.

73

Chapter 5. Results of the experiments

Figure 5.9: Experiment: room Real image of the room scenario and snapshots from dif-

ferent points of view of the mapped room.

74

Chapter 5. Results of the experiments

Figure 5.10: Experiment: office Real image of the office 1 scenario and snapshots from

different points of view of the mapped office.

75

Chapter 5. Results of the experiments

Figure 5.11: Experiment: office2 Real image of the office 2 scenario and snapshots from

different points of view of the mapped office.

76

Chapter 5. Results of the experiments

Figure 5.12: Experiment: office3 Real image of the office 3 scenario and snapshots from

different points of view of the mapped office.

77

Chapter 6
Conclusions

In this project a complete Graph-SLAM architecture is presented. It has been pro-

grammed in C++ and uses ROS platform to get integrated with other sensors and

devices. The application has been included in Manfred, a mobile manipulator robot

designed and developed in Robotics Lab. A TOF camera has been used to acquire the

information from the environment: a 3D color point cloud of 307200 elements at 15

frames per second.

Next list resumes the most important features and the goals achieved:

• A complete study of the basic concepts of SLAM algorithm

• Mathematical explanation of Graph SLAM

• Development and integration of a Graph SLAM algorithm in ROS platform

• Calibration and set-up of a RGB-D camera

• Kick off the complete system and performing of several experiments

• Analysis of the optimal feature extractor for the GraphSLAM

• Description of the most relevant issues and fails

78

Chapter 7
Future Works

As in any project, the most it is researched, the most ideas and works undone ap-

pear. SLAM is one of the most amazing an interesting branches in robotics nowadays.

Thanks to the new TOF sensors and the fast increase on computer performance, re-

searchers pay more attention to this world. The following list gathers some of the

ideas that the author propose as the immediately future tasks.

• Prepare the graph to be modified in dynamic scenarios

• Propose a new graph optimizer based on Differential Evolution

• Take advantage of the IR camera of the Kinect and create maps of rooms with the

light off

• Include a Bayesian filter to improve the node fusion creating more stable and

concise maps

• Add new constraints when adding new nodes to the graph such as the quality of

the color frame to reject fuzzy images

• Improve the performance programming SURF feature detector in parallel pro-

gramming

79

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press, 2001.

[2] P. Cheeseman, P. Smith, and M. Self. Estimating uncertain spatial relationships in

robotics. Autonomous robot vehicles, pages 167–193, 1990.

[3] HF Durrant-Whyte and JJ Leonard. Mobile robot localization by tracking geomet-

ric beacons. IEEE Transactions on Robotics and Automation, 7:376–382, 1991.

[4] A. Howard, M.J. Mataric, and G. Sukhatme. Relaxation on a mesh: a formalism

for generalized localization. In Intelligent Robots and Systems, 2001. Proceedings.

2001 IEEE/RSJ International Conference on, volume 2, pages 1055–1060. IEEE, 2001.

[5] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical

optimization on manifolds for online 2d and 3d mapping. In Robotics and Automa-

tion (ICRA), 2010 IEEE International Conference on, pages 273–278. IEEE, 2010.

[6] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose graphs with

poor initial estimates. In Robotics and Automation, 2006. ICRA 2006. Proceedings

2006 IEEE International Conference on, pages 2262–2269. Ieee, 2006.

[7] M. Gong and Yang Yee-Hong. Fast stereo matching using reliability-based dynamic

programming and consistency constraints. IEEE, 2003.

[8] Hu Wu-Chih. Adaptive Template Block-Based Block Matching for Object Tracking.

IEEE, 2008.

80

Bibliography

[9] J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz. Spacetime stereo: a

unifying framework for depth from triangulation. IEEE transactions on pattern

analysis and machine intelligence, 27(2):296–302, 2005.

[10] Clemente Martín Alejandro Iván. Generación de Mapas de Disparidad usando

CUDA. 2009.

[11] Jiaju Liu, Yanyan Xu, Reinhard Klette, Hui Chen, and Tobi Vaudrey. Disparity

Map Computation on a Cell Processor. Architecture, page 2009.

[12] Carl B. Boyer. Early Estimates of the Velocity of Light. The University Of Chicago

Press On Behalf Of The History Of Science, 33(1):24–40, 1941.

[13] Andreas Kolb, Erhardt Barth, and Reinhard Koch. ToF-sensors: New dimensions

for realism and interactivity. 2008 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops, pages 1–6, June 2008.

[14] Robert Lange. 3D Time-of-Flight Distance Measurement with Custom Solid-State Im-

age Sensors in CMOS/CCD-Technology. PhD thesis, University of Siegen, 2000.

[15] Stephan Hussmann and Thorsten Liepert. Robot Vision System based on a 3D-

TOF Camera. 2007 IEEE Instrumentation & Measurement Technology Conference

IMTC 2007, pages 1–5, May 2007.

[16] Martin Bohme, Martin Haker, Thomas Martinetz, and Erhardt Barth. Shading

constraint improves accuracy of time-of-flight measurements. 2008 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops, pages 1–6,

June 2008.

[17] I. Moring, T. Heikkinen, R. Myllyla, and A. Kilpela. Acquisition of three- dimen-

sional image data by a scanning laser range finder. Optical Engineering, 28(8):897–

902, 1989.

[18] G Beheim and K Fritsch. Range finding using frequency-modulated laser diode.

Applied optics, 25(9):1439, May 1986.

81

Bibliography

[19] Pmdtechnologies Gmbh and D-Siegen. A performance review of 3D TOF vision

systems in comparison to stereo vision systems. 2006.

[20] Ronald Chung. Correspondenceless Stereo Vision under General Stereo Camera

Configuration. Signal Processing, (October):405–410, 2003.

[21] Rudolf Schwarte, Zhanping Xu, Horst-Guenther Heinol, Joachim Olk, and Bernd

Buxbaum. New optical four-quadrant phase detector integrated into a photogate

array for small and precise 3D cameras. In Richard N. Ellson and Joseph H. Nurre,

editors, Three-Dimensional Image Capture, volume 3023, pages 119–128, San Jose,

CA, USA, March 1997. SPIE.

[22] J. U. Kuehnle, Z. Xue, M. Stotz, J. M. Zoellner, A. Verl, and R. Dillmann. Grasping

in Depth maps of time-of-flight cameras. IEEE, October 2008.

[23] S. Hussmann and H. Hess. Dreidimensionale Umwelterfassung. Elektronik auto-

motive, WEKA Publisher House, (8):55–59, 2006.

[24] Thorsten Ringbeck and B U Systems. A 3D Time Of Flight Camera for Object

Detection. Measurement, 2007.

[25] Stefan Soutschek, Jochen Penne, Joachim Hornegger, and Johannes Kornhuber. 3-

D Gesture-Based Scene Navigation in Medical Imaging Applications Using Time-

Of-Flight Cameras Chair of Pattern Recognition , Department of Computer Sci-

ence. Gesture, pages 2–7, 2008.

[26] Simon Meers and Koren Ward. Face Recognition using a Time-of-Flight Camera.

2009.

[27] D.G. Lowe. Object recognition from local scale-invariant features. In Computer Vi-

sion, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 2,

pages 1150–1157. Ieee, 1999.

[28] D. Schleicher, L.M. Bergasa, R. Barea, E. López, M. Ocaña, and J. Nuevo. Real-time

wide-angle stereo visual slam on large environments using sift features correction.

82

Bibliography

In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference

on, pages 3878–3883. IEEE, 2007.

[29] N. Zhang, M. Li, and B. Hong. Active mobile robot simultaneous localization and

mapping. In Robotics and Biomimetics, 2006. ROBIO’06. IEEE International Confer-

ence on, pages 1676–1681. IEEE, 2006.

[30] Abel Alguacil Gomez. Aplicaciones del operador sift al reconocimiento de objetos.

Master’s thesis, Universidad Carlos III Madrid, 2009.

[31] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, 24(6):381–395, 1981.

[32] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its appli-

cation to action recognition. In Proceedings of the 15th international conference on

Multimedia, pages 357–360. ACM, 2007.

[33] Marco Zuliani. RANSAC for Dummies, volume 1. University of California Santa

Barbara, 08 2011.

[34] Z. Zhang. Iterative point matching for registration of free-form curves and sur-

faces. International Journal of Computer Vision, 13:2:119–152, 1994.

[35] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Proc. of Robotics: Science

and Systems (RSS), 2009.

[36] Nikolas Engelhard, Jürgen Hess, Jürgen Sturm, Wolfram Burgard, and Felix En-

dres. Real-time 3d visual slam with a hand-held rgb-d camera. European Robotics

Research Network, 2011.

[37] Jorge Garcia Bueno, Piotr Jurewicz Slupska, Nicolas Burrus, and Luis Moreno

Lorente. Textureless object recognition and arm planning for a mobile manipula-

tor. 53rd International Symposium ELMAR, 1(1):59–62, September 2011.

83

Bibliography

[38] J.A. Sethian. Level set methods and fast marching methods: evolving interfaces in com-

putational geometry, fluid mechanics, computer vision, and materials science. Number 3.

Cambridge Univ Pr, 1999.

84

	Abstract
	Introduction
	Story of robotics
	Classification of robots
	The aim of this project

	SLAM Principles
	Definition
	Facing SLAM problem: Taxonomy
	Three ways to solve the same problem
	Graph-Based SLAM Optimization Technique
	Mathematical statements
	GraphSLAM
	Mathematical relation
	Linearizing the cost function
	Soft Constraints
	Comparing GraphSLAM with EKF

	GraphSLAM Architecture
	Architecture of the proposed system
	Environment acquisition. ToF technology
	Previous alternatives
	Stereo Vision System

	Time-Of-Flight technology
	General Image processing chain
	Common arising problems

	Field of View problem
	Correspondence problem
	Intensity Modulation Principle
	Time-Of-Flight Applications

	Texture feature extracion: SIFT
	Maximums and minimums detection in the space-scale
	Keypoints's localization
	Orientation assignment
	Keypoints's descriptors
	Keypoints's matching between different subsets

	Estimating 6 DOF pose though 3D cloud points
	Definition of outliers
	RANSAC Algorithm

	Local refinement and matching with ICP
	ICP method
	Optimization function

	Global pose graph optimization
	Data association: 2 test
	Relaxation on a mesh to localize the robot and build the map
	Hierarchical optimization solution to the GraphSLAM
	Front-end problem
	Back-end problem

	Development
	Software
	Introduction to ROS platform
	Advantages and disadvantages
	Internal structure

	Application components
	Application GUI

	Hardware
	Manfred manipulator
	Manipulation skills
	Planning based on sensors
	Evolutionary-based methods applied to optimization and learning

	Results
	Experiment 1: Speed tests
	Description of the experiment
	Results

	Experiment 2: Feature detector tests
	Description of the experiment
	Results
	Description of the experiment
	Results

	Experiment 2: Pose estimation tests
	Description of the experiment
	Results

	Experiment 3: Loop Closure
	Description of the experiment
	Results

	Some examples

	Conclusions
	Future Works

