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1. Introduction

ABSTRACT

This work compares simulation and experimental results of the hydrodynamics of a two dimensional,
bubbling air fluidized bed. The simulation in this study has been conducted using an Eulerian Eulerian
two fluid approach based on two different and well known closure models for the gas particle
interaction: the drag models due to Gidaspow and Syamlal & O’Brien. The experimental results have
been obtained by means of Digital Image Analysis (DIA) and Particle Image Velocimetry (PIV)
techniques applied on a real bubbling fluidized bed of 0.005 m thickness to ensure its two dimensional
behaviour. Several results have been obtained in this work from both simulation and experiments and
mutually compared. Previous studies in literature devoted to the comparison between two fluid
models and experiments are usually focused on bubble behaviour (i.e. bubble velocity and diameter)
and dense phase distribution. However, the present work examines and compares not only the bubble
hydrodynamics and dense phase probability within the bed, but also the time averaged vertical and
horizontal component of the dense phase velocity, the air throughflow and the instantaneous
interaction between bubbles and dense phase. Besides, quantitative comparison of the time averaged
dense phase probability as well as the velocity profiles at various distances from the distributor has
been undertaken in this study by means of the definition of a discrepancy factor, which accounts for the
quadratic difference between simulation and experiments The resulting comparison shows and
acceptable resemblance between simulation and experiments for dense phase probability, and good
agreement for bubble diameter and velocity in two dimensional beds, which is in harmony with other
previous studies. However, regarding the time averaged velocity of the dense phase, the present study
clearly reveals that simulation and experiments only agree qualitatively in the two dimensional bed
tested, the vertical component of the simulated dense phase velocity being nearly an order of
magnitude larger than the one obtained from the PIV experiments. This discrepancy increases with
the height above the distributor of the two dimensional bed, and it is even larger for the horizontal
component of the time averaged dense phase velocity. In other words, the results presented in this
work indicate that the fine agreement commonly encountered between simulated and real beds on
bubble hydrodynamics is not a sufficient condition to ensure that the dense phase velocity obtained
with two fluid models is similar to that from experimental measurements on two dimensional beds.

simulation being a key part in the understanding, design and
optimisation of such systems.

Large scale gas fluidized beds are used in many branches of
engineering and science, including catalytic cracking, controlled
combustion and gasification, and a variety of chemical operations
(Kunii and Levenspiel, 1991; Basu, 2006; Yang, 2003). Current
research on gas fluidized beds requires an ever increasing knowl
edge of the hydrodynamics of the gas and dense phase, the

In order to simulate large scale gas fluidized beds, it is
essential to use efficient numerical algorithms that combine
reliability with not very long computing times. Four main
approaches can be found in literature for the simulation of
fluidised beds depending on the level of detail and resolution
required (Grace and Taghipour, 2004; Van der Hoef et al., 2005).
The most detailed approach is the direct simulation of the fluid
flow surrounding solid particles and the interaction between
them. For such approach lattice Boltzmann methods are normally
used (see, for example, Ladd and Verberg, 2001). Certainly, the
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direct simulation of gas fluidized beds demands large computa
tional resources, surpassing the current hardware capabilities
unless a relatively small number of particles are to be simulated.
A second approach in the simulation of fluidized beds is the direct
particle or discrete element modelling, which is based on the
Lagrangian simulation of each particle trajectory coupled with the
Eulerian simulation of the bulk gas flow, the solid gas interaction
being computed through semi empirical losure models to dimin
ish the level of detail required in the solution of the gas phase
(Deen et al., 2007). Although very promising, this Lagrangian
Eulerian approach is still computationally intensive, leading to
inadmissible memory needs and computing times when simulat
ing the huge amount of particles normally encountered in
medium or large scale fluidized beds. The level of resolution in
particle motion can be reduced by computing only the bulk
velocity behaviour of particles and not their individual trajec
tories. This is the essence of a third approach known as Eulerian
Eulerian, or CFD, two fluid modelling of fluidized beds (Gidaspow,
1994; Van Wachem and Almstedt, 2003). In this approach the gas
phase and the particle or solids phase are treated as two inter
penetrating and continuum media in an Eulerian framework
using the conservation equation of fluids. As in the case of the
Lagrangian Eulerian approach, the two fluid simulation of flui
dized beds requires the use of closure models for the gas solids
interaction. However, the lack of detailed description of particle
motion in two fluid simulation necessitates also of the inclusion
of sophisticated particle particle interaction models, which are
normally based on empirical and theoretical relations linked to
the kinetic theory of gases through the concept of granular
temperature (Gidaspow, 1994). A fourth approach can be followed
using Bubble discrete models and phenomenological methods, in
which only the most relevant macroscopic characteristics of the bed
are reproduced, e.g. gross bubble behaviour and general motion of
the emulsion phase (see, for example, Bokkers et al., 2006). As this
approach is based on simplified models and phenomenological
correlations, it is the less computationally expensive and, therefore,
it is especially suitable for the simulation and optimisation of
large scale fluidized beds supporting chemical reactions such as
combustion or gasification.

The Eulerian Eulerian two fluid approach is by far the method
most encountered in current simulation of fluidized beds. This is
perhaps due to its compromise between computational cost, level
of detail provided, and potential of applicability. As a conse
quence, there is an increasing need of verification and validation
of the closure models utilised in the two fluid simulation of gas
fluidized beds in different operative conditions and applications
(see, for instance, Peirano et al., 2001; McKeen and Pugsley, 2003;
Patil et al., 2005; Taghipour et al., 2005; Li et al., 2009). However,
as some authors have pointed out (Grace and Taghipour, 2004),
this verification and validation should be interpreted and extra
polated with caution due to the complex nature of fluidized beds.

The majority of the works comparing two fluid models and
experiment results are primarily focused on the behaviour of
bubbles, bed expansion, pressure signals and time averaged solids
or gas volume fractions. The literature on this topic is abundant;
from the earlier works of Boemer et al. (1998), and Van Wachem
et al. (1998), to the more recent studies comprising image analysis
(Busciglio et al, 2009), particle drag optimisation procedures
(Mahinpey et al., 2007; Vejahati et al., 2009), and time averaged
volume fraction (Deza et al., 2009; Min et al., 2010; Wang et al.,
2010). Particularly, the works of Deza et al. (2009) and Min et al.
(2010) show a reasonable agreement between two dimensional
(2D) and three dimensional (3D) simulations and X ray imaging
experiments of cylindrical fluidized beds of internal diameter of
0.095 and 0.152 m, respectively. Wang et al. (2010) compared their
3D simulation results of time average solids volume fraction in a

bubbling bed with experimental data from y ray absorption, capa
citance probe and differential pressure measurements, and showed
that industrial scale fluidized beds can be reasonable predicted with
acceptable computational cost. It is worth noticing that, in con
cordance with the two phase theory of gas fluidized beds (Davidson
and Harrison, 1963), the velocity and growth of bubbles in a gas
fluidized bed primarily depends on the emulsion equivalent density
(related to void fraction) and the excess of gas, being less relevant
other factors such as the size of the bed and the dense phase motion
(Kunii and Levenspiel, 1991). Besides, several studies demonstrate
that the simplified two phase theory describes fairly well the
behaviour of bubbles in three and two dimensional beds (see for
example Darton et al., 1977; Shen et al., 2004).

However, it seems necessary to extend the classical bubble
behaviour validation to other macroscopic characteristics such as
the mean particle motion. The mean particle motion is a key
factor in the motion and mixing of small and large particles
(e.g. biomass) in bubbling fluidized beds (Kunii and Levenspiel,
1991). With the development of CCD cameras and Particle Image
Velocimetry (PIV) or other velocimetry techniques, there are
several studies showing experimental information on particle
velocity in very thin, fluidized beds, whose behaviour can be
considered two or quasi two dimensional (e.g. Bokkers et al.,
2004; Liu et al., 2005; Santana et al., 2005; Almendros Ibafiez
et al., 2006; Laverman et al., 2008; Sanchez Delgado et al., 2010).
At this regard, reported mean particle velocities are clearly
smaller than the characteristic bubble velocity in two dimen
sional beds working with Geldart B particles and superficial
velocity around 2 times the minimum fluidisation velocity Upy.
For example, tracking the individual particle trajectories in a
quasi two dimensional bed of 0.022 m thickness, Jung et al.
(2005), measured the time averaged vertical velocity of particles
far from the lateral walls, obtaining an ascending vertical velocity
of value around 0.12 m/s. Using PIV in a two dimensional bed of
0.015 m thickness, Laverman et al. (2008), obtained peak velo
cities over 0.075 and 0.11 m/s for, respectively, the upward and
downward mean flow of particles at a vertical distance of 0.15 m
from the distributor. These values are for beds of relatively small
lateral width (i.e. 0.15m) at 0.14 0.15 m height over the dis
tributor, being the particle velocities smaller if the bed width is
increased (Laverman et al., 2008). It seems, however, that the
vertical velocity of particles in three dimensional beds (Lin et al.,
1985) can be larger than in two dimensional beds, especially for
superficial velocities of more than 3 times Upy.

Inspection of open literature reveals that, only recently, a
reduced number of works make a comparison between the mean
particle motion of experiments and two fluid model simulations.
Jung and Gidaspow (2006), and also Dan et al. (2010), presented
simulation results of a gas fluidized bed with 0.022 m thickness
and 0.15m width. Among other results, they compared the
simulated time averaged particle velocity with previous experi
ments of a similar bed (Jung et al., 2005). The comparison was
performed at a height of 0.14 m from the distributor in the central
part of the bed plane (i.e. far from the lateral walls), and the
level of agreement shown was excellent. Lindborg et al. (2007)
made a qualitative comparison of the velocity vector fields of
two dimensional simulations and three dimensional measurements
taken from Lin et al. (1985). This was equally done by Hosseini
et al. (2010), incorporating also in the comparison the velocity
vectors from Laverman et al. (2008). These results evidence a
clear resemblance in the particle recirculation patterns obtained
in simulation and experiments, but it appears that the simula
tions over predict the modulus of the particle velocity vectors for
small superficial velocities (U/Un=1.65 in Lindborg et al., 2007),
and that the prediction of the vertical position of the recirculation
centre is not completely satisfactory (Hosseini et al., 2010).

2



Ahuja and Patwardhan (2008), for U/Um=5.6, as well as Wang
and Liu (2010), this last study using FCC particles, compared their
two dimensional simulation results with three dimensional
experiments and found acceptable agreement in the radial pro
files of velocity. Very recently, Li et al. (2010) compared the
experimental results from the work done by Laverman et al.
(2008) in a pseudo 2D fluidized bed with 2D and 3D simulations
using the drag model of Gidaspow. Their results, accounting for a
bed column of 0.015 m thickness and 0.3 m width, indicate that
there is a great discrepancy with the experimental particle
velocities when the system is modelled as a pure 2D plane due to
the lack of interaction with the frontal and rear walls. Note that, for
the quantitative comparison, these works employed experimental
results from 3D beds or quasi 2D beds of thickness greater than
25 times the mean particle diameter and relatively small widths.
The reported studies comparing the simulated and the experimental
particle velocities devote most of their analyses to the vertical
velocity component along a horizontal line in the bed.

Despite the available experimental techniques, none of the
above described studies on simulation verification and validation
have performed a systematic quantitative comparison of two fluid
models and PIV results in the whole plane of a two dimensional bed
combining reduced thickness (less than 0.01 m), relatively large
width, and a small superficial velocity (U/Ups< 2). Such comparison
would be interesting since it could be used, not only as a practical
validation tool for the two fluid model employed, but also as a
complementary source of information in the interpretation of
PIV data.

The present work performs a comparison between Eulerian
Eulerian two fluid simulation and experimental results of a
two dimensional gas solid fluidized bed working in bubbling regime.
In particular, thanks to the use of non intrusive techniques based
on digital image analysis (DIA), the time averaged distribution,
size and velocity of bubbles taken from experiments in a quasi
two dimensional bed of reduced thickness are compared with the
simulation results of the same bed computed with several
implementations of two fluid models. Furthermore, this compar
ison is extended to the particle phase velocity outside bubbles,
which, in the case of the experiments, is obtained after applying
particle image velocimetry (PIV) techniques. The simulation
comprises two different closures: Gidaspow (Gidaspow, 1994)
and Syamlal & O’Brien (Syamlal and O’Brien, 1987) drag models.
All the closure models are used in standard form to reveal their
original behaviour, and no adjustment of coefficient is then
performed. The final aim of this multiple comparison is to show
whether the level of similarity between simulation and experi
ments encountered in bubble kinetics is also present, or not, in
particle phase velocity. Unexpectedly, the results obtained in the
present work seem to indicate that, despite the reasonable
agreement reached in bubble size and velocity, any of the
Eulerian Eulerian two fluid models tested overpredicts the mean
particle velocity by nearly an order of magnitude compared to the
experimental PIV results.

2. Experimental facility and data acquisition

The experimental facility used for the comparison of the
computational data is a two dimensional cold fluidized bed of
dimensions 0.5 m x 2 m x 0.005 m (width W, height h, and thick
ness Z) (Sanchez Delgado et al., 2010). Fig. 1 shows a schematics
of the facility. The fluidized bed was filled with ballotini glass
particles of Geldart B behaviour (Geldart, 1973), 2500 kg/m>
density, and 600 800 um diameter. The fixed bed height was
h;=0.3 m, and the superficial velocity at minimum fluidisation
conditions was Ums=0.35m/s). A very small fraction of the
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Fig. 1. Schematic of the 2D gas-fluidized bed tested.

particles (less than 1%) were black instead of transparent in order
to enhance the tracking of the solids phase by improving the peak
detection in the PIV correlation matrix. That means that in the
tested bed there are less than 9 particles in the bed thickness
direction, which ensures the 2D dimensionality of the bed
(Nedderman and Laohakul, 1980). Therefore, in principle, 3D
effects such as velocity components and gradients along the
thickness direction are not going to appear and are not needed
to be included in the simulation. The air distributor consists of a
perforated plate with 50 holes of 0.001 m diameter spaced 0.01 m
apart. The front wall was made of glass and the rear wall was
made in aluminium, covered by a black card to increase the
contrast in the images. The superficial gas velocity (Up=0.62 m/s)
was fixed to 1.75 times Upy.

Two 650 W spotlights were used to get a uniform illumination
of the bed. A high speed camera, Redlake Motion pro X3, took
images of the front view of the fluidized bed at 125 frames
per second. In order to increase the spatial resolution of the images
for bubble probability and, especially, dense phase velocity, only half
of the bed was recorded ([w; x hq] [992 x 1024 pixels]). Fig. 2a
shows an example of the image of particles taken from one half
on the bed in which the dark regions are the ascending bubbles.
From the statistical point of view, the fluidized bed was symme
trical in behaviour to the recorded area. On the other hand, to
calculate the geometrical properties of bubbles such as equivalent
diameter and velocity, it is not needed a great resolution, so
bubbles data can be obtained from images taken from the
entire bed.

The images from this experimental set up were processed by
means of DIA techniques, performed in Matlab R2008a, to obtain
the instantaneous bubble size as well as the bubble velocity
(i.e. velocity vectors) within the two dimensional domain. Parti
cularly, size and centroid position were extracted from the images
after performing a threshold that separated gas from dense phase
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Fig. 2. Processing of experimental results: (a) snapshot of the bubbling fluidized bed and (b) bubble mask and PIV velocity field of the dense phase.

(see Otsu, 1979). Therefore, each pixel of each image was classified
as bubble (C=0) or dense phase (C=1). This is represented in
Fig. 2b as black and white areas, respectively. The experimental
uncertainty associated with the bubble contour and centroid
position is 2.5e  4m, which is the spatial resolution in the particle
image calculated as half the size of a pixel. This uncertainty
constitutes a 0.5% of the typical bubble size in the bed (i.e. 0.05 m).

The processed images were summed and rescaled with the total
number of images processed, producing a time averaged image
that represents the proportion of time that a point is occupied by
solid, C(x,y) = Z,{" ;1 Gi(x,y)/N, where N is the number of images,
therefore, the proportion of time that a point is occupied by
bubbles is defined as B=1 C. B and C may be, respectively,
interpreted as the bubble and dense phase probability.

Regarding the dense phase velocity, it was calculated by means of
a particle image velocimetry (PIV) technique applied to the images.
The particular implementation of the technique is also explained in
Sanchez Delgado et al. (2010), and is based on the correlation of
consecutive in time images using the multigrid PIV code MATPIV
(Sveen, 1998 2007). Interrogation windows of 16 x 16 pixels with
0.5 overlap were typically used in this PIV analysis performed to
compute the velocity field of the dense phase. Following the
procedure of Laverman et al. (2008), the time averaged velocity
was calculated as V(x,y)= Zﬁv 1 GxY)vsi(xy)/ ng , Gi(xy) to
correct the influence of particle raining from the roof of bubbles.
Since Cis null inside bubbles, it is only necessary to obtain the particle
velocities outside them. Note that bubbles are regions relatively free
of particles and the PIV results there may not be reliable Therefore,
mean velocities are calculated from PIV results outside bubbles after
applying a mask that rejects dense phase velocity inside bubbles. This
is indicated in Fig. 2b, which contains an example of the instanta
neous velocity vector field of the dense phase. For illustrative
purposes the number of vectors per unit area has been reduced in
this figure. According to the standard theory of PIV measurement
(Raffel et al.,, 2007), the estimation of each velocity vector can be
affected by bias and subpixel errors. In a uniformly illuminated bed,
bias errors are principally generated by velocity gradients whose scale
is smaller than the interrogation window. In the present work the
bias error has been reduced thanks to the use of multigrid PIV
techniques that employ very small interrogation windows at the final
PIV processing stage. The size of these windows is 16 x 16 pixels
(about 8 mm size), which is shorter than the principal velocity scales

of the problem. Peak locking and background noise are the main
source of subpixel error in a two dimensional velocity field. As the
concentration of particles in the dense phase is high, the background
noise and peak locking are not expected to have a relevant impact in
the accuracy of the results (Raffel et al, 2007). All these effects,
together with the unsteady character of the bed, contribute to the
uncertainty of the time averaged results. One way to quantify an
upper bound for the overall uncertainty of the time averaged results
is to evaluate the standard deviation of the average from a series of
independing data blocks (Laverman et al., 2008). In the present study,
data blocks containing each one over 1000 image pairs were used and
compared with a long term average. Following this procedure, the
upper bounds of the uncertainty for the time average vertical
velocity, horizontal velocity and dense phase probability are 4.84%,
11% and 1%, respectively. The larger uncertainties are typically
obtained near the bed surface. These uncertainties resulted similar
to the standard error of the mean, which is obtained as the standard
deviation of the whole data set, divided by the square root of the total
number of images.

3. Computational model

The numerical simulation, performed by solving the conserva
tion equations of mass and momentum and granular temperature
using FLUENT 6.3.26 CFD software. A multifluid Eulerian model
was applied, where gas and solids (i.e. particles) are treated as two
interpenetrating phases. The kinetic theory of granular flow, which
deals with the conservation of the stochastic fluctuation of solids
kinetic energy, was used for the closure of the solids stress terms.
Two drag models were employed to solve the interaction between
both phases: Gidaspow drag function (Gidaspow, 1994) and
Syamlal O’Brien drag function (Syamlal and O’Brien, 1987, 1989).
Gidaspow drag model was selected due to the robustness in
convergence that it showed during the simulation campaign of
the present study. In the Gidaspow model, the kinetic viscosity of
solids, psin, and the diffusion coefficient of granular temperature,
ke, from Gidaspow (1994), are also used in the simulation. The
simulation with Syamlal & O’Brien drag function, with p ki, and ke
also from Syamlal et al. (1993). Previous studies (Taghipour et al.,
2005) have shown little differences between Gidaspow and
Syamlal O’Brien model, nevertheless, simulations with this two
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drag models have been carried out in order to compare them. The
governing equations can be summarised as follows.
Mass conservation of gas (g) and solid (s) phases:

0

21 5Pg)+ V(g pgVg) =0 (1)
8 —

g(ocspsHV-(aspsvs) =0 2

Momentum conservation equations of gas and solid phases:

0 2 _
&(agpgv—g))+V'(ocgngg) )= agvP+V'Tg+OCgpg§> Kes(Vg V)

3)
0 2 =
&(aspsvs))"‘v'(aspsvs) )= osVp Vps“‘v'rs“‘asps?‘f‘Kgs(V_g) Vs))
)
Granular temperature, ©®, conservation like equation:
316 -
5 3P0+ V- (s ©)| = ( pl +75): VS
+V:(koVO) 7o 3Kgx0 (5)

where ( ps] +7;) : VV; is the generation of @ by the solids stress
tensor kg- V@ is the diffusion of @ energy, ye is the collisional
dissipation of @ and 3Kg@ is the transfer of kinetic energy. In
mass and momentum conservation, the code solves the equation
for one phase, and calculates the other assuming that az=1 o,.
The closure expressions for Kgs, Ts, Ps, ko and e can be found in
Appendix A.

A second order scheme was used to discretized the convective
derivatives: Second order implicit for time advance formulation,
Phase Coupled SIMPLE for pressure velocity coupling, Second
Order Upwind for Momentum and Granular Temperature, QUICK
for volume fraction. The 2D computational domain was discre
tized using 20301 nodes in a structured but inhomogeneous mesh
of rectangular cells. The mesh size has been chosen on the basis of
a sensitivity analysis on the mesh density shown in Section 4.1.
A time step of 5e 45, with 75 iterations per time step, was
chosen in order to ensure the convergence of the problem, with a
maximum residual criterion (as defined in Fluent 6.3 (Fluent,
2006)) of 5e 4 for all equations. 75 iterations per time steps
resulted in a conservative figure that ensured, by far, that in each
time step the obtained solution was converged, below the maximum
residual limit, and did not change if more time steps were added.
The Syamlal & O’Brien drag function was solved with the same time
step, but 100 iterations per time step were needed in order to ensure
its convergence. The restitution coefficient implemented was 0.9,
which is an acceptable value reported in the literature for glass
particles (Syamlal and O’Brien, 1987). Note also that this value
includes the effects of energy dissipation due to the particles
inelastic deformation and frictional losses (Goldschmidt et al., 2001).

A laminar regime for the gas phase and the walls were
modelled employing the standard no slip boundary condition
for both phases. This approximate condition ensures that particle
velocity profiles are in good agreement with the experimental
results (see Section 4). A simple pressure boundary condition was
imposed at the top of the freeboard (outlet vent with null lost
coefficient). The inlet gas velocity was modelled with a uniform
profile, which can be considered similar to that appearing in
porous plate distributors and a first approximation for perforated
plate distributors. The initial solids volume fraction chosen for the
simulation starting was «s=0.6, and the selected maximum
packing limit is o mex =0.63. The particle diameter selected
corresponds to the averaged diameter of particles used in the
experimental set up described in Section 2. More information

Table 1
Main simulation parameters.

Parameter Value
Particle density, ps 2500 kg/m>
Gas density, pg 1.225 kg/m?®
Particle diameter, d, 700 pm
Restitution coefficient, ess 0.90

Initial solids volume fraction, oy 0.60

Bed width, W 0.5m

Bed height, h 2m

Static bed height, h, 03 m

Drag function
Wall boundary condition
Inlet boundary condition

Gidaspow, Syamlal-O’Brien
No-slip, partial-slip, free-slip
Velocity inlet, 0.62 m/s

Outlet boundary condition Outlet vent
Regime Laminar
Time step 5e—4s
Outlet
vent
.
No slip No slip h
boundary boundary
condition condition
Static
bed
height
'

T

Velocity inlet,
Vo

Fig. 3. Computational domain with the boundary conditions used in the simula-
tions (left) and a snapshot of solids volume fraction in the bed after 20 s of
simulation (right).

on the geometrical and operative conditions of the simulated
fluidized bed can be encountered in Table 1.

Fig. 3 illustrates the computational domain employed in the
present study, which involves only the two dimensional fluidized
bed, that is to say, without considering the plenum and the
distributor, and its dimensions correspond to the experimental
facility (0.5m x2m). As Fig. 3 shows, the rectangular grid
concentrates toward the inlet in order to improve the spatial
resolution in the bubble formation region. Note that, due to the
stochastic nature of the instantaneous bubble distribution in the
fluidized bed, the computational domain covers all the bed
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volume and not only the half plane used for the experimental data
acquisition. In this figure the computational mesh is presented
with its boundary condition together with a snapshot of the solids
volume fraction obtained after simulating a time period of 20 s.

4. Results comparison

The post processed data from the simulation have been
compared with the experimental data. The time used for aver
aging the experimental data is 26s, excluding the transient
fluidisation start, with a frame rate of 125 Hz which gives a total
number of 3271 images. For the calculation of the time averaged
quantities 35 s were simulated. The first 5s of the simulation
startup were removed in order to eliminate the initial transient
behaviour of the bed. By this way, the actual time period
employed for the evaluation of the time average quantities in
the simulation was 30 s, which is comparable to the time period
used in the experiments. In the simulation, data was exported every
5e 3 real time seconds, which gives 6000 frames to postprocess.
The difference between the number of frames used in the simulation
and the experiments should not affect the results because the bed is
under statistically steady conditions. The main results of this
comparison are described in the following subsections.

It has to be said, that in order to be consistent with the
technique employed in the experiments, where raining particles
inside bubbles are not taken into account (as done in Laverman
et al., 2008), the same technique has been developed with the
simulation results. On each frame on either simulation or experi
ment, the velocity obtained is imposed to be null inside bubbles.

4.1. Sensitivity of results on mesh density

The influence of the number of nodes on the results has been
studied for the reference case described in Table 1. This sensitivity
of the results on the mesh density can be considered as indicative
of the level of discretization error in the simulation. Fig. 4
contains some examples of time averaged results for the refer
ence case (Table 1) using a refined mesh of 80601 nodes and a
coarse mesh of 10431 nodes, compared with the simulation
results for the mesh of the previous sections (20301). Each result
has been normalised with the simulation output of the case using
a mesh of 20301 nodes. In the figure, the VOF mean value variable
corresponds to the time averaged of the mean dense phase
volume fraction over the whole bed plane. Also in Fig. 4 the

11+
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Fig. 4. Sensitivity of time-averaged results on the mesh density.

Table 2
Sensitivity results on the mesh density.

Mesh (number of min Ax (m)  max Ay Average Compu-

nodes) (m) solids tational
volume cost (h)
fraction

10431 (57 x 183) 0.0089 0.0039 0.4853 ~100

20301 (101 x 201)  0.005 0.0028 0.5019 ~200

80601 (201 x 401)  0.0025 0.0014 0.5095 ~800

recirculation centre height refers to the mean height of the two
main recirculations of solids in the bed (see Section 4.3), and the 3
bubble probability is the discrepancy in bubble probability over
the whole bed (Section 4.2). Although some differences between
the case of 20301 nodes and the case of 80601 are encountered in
Fig. 4, these differences constitute less than 10% of the resultant
values. In contrast, a mesh of 10431 nodes leads to larger
differences in the parameters shown in Fig. 4. The time of
computation and the effort required for the image analysis of
the refined mesh was more than 4 times that of the mesh for
20301. Thus, a mesh with 80601 nodes yields little changes in the
results compared to a mesh of 20301 nodes but much more
computational effort.

In addition, the average solids volume fraction in a middle
point of the bed (x=0.25m, y=0.25m) (Table 2) has been
calculated over 30 s of simulation for the three tested meshes.
Also the computational cost (time to complete each computation)
is included for a simulated time of 30 s. Taking into account all
the results on the grid sensitivity, it seems that the mesh with
20301 provides simulation results very similar to the refined
mesh (80601 nodes) while requiring a quarter of computational
effort. Therefore, this justifies the use of the mesh with 20301
nodes as the default option in the present work.

4.2. Bubble probability and time averaged particle velocity

Fig. 5a and b compares the bubble probability maps with the
experimental measurements and the simulation using the para
meters of Table 1. In the construction of the probability maps, the
simulation results were processed in the same way as described
for the image of particles in Section 2, that is, assuming a value of
0 at the points of the simulated fluidized bed that are inside a
bubble and a value 1 otherwise. Note that this methodology
eliminates the continuous transition of particle volume fraction
that connects the interior to the exterior of the bubbles in the
simulated results. A threshold value of 0.3 in particle volume
fraction was used to separate the interior from the exterior of a
bubble.

The lowest values in bubble probability, for both numerical
and experimental results, appear at the bottom of the bed and
near the walls. This indicates, as expected, that bubbles are less
frequent near the lateral walls of the bed and smaller in size near
the distributor. Paying attention to the bubble channelling, it can
be observed that the highest bubble probability is near the free
surface and also in a vertically aligned region in the bed created
by the tendency of bubbles to ascend through the same path
(i.e. bubble channel). The bubble channelling is less intense in the
computed than in the experimental bed. This indicates that the
simulation model of Table 1 provides a better distribution of
bubble than the experiment.

One interesting question is whether the bubble probability
maps obtained are equivalent or not to the mean void fraction
concentration maps. Or, otherwise, it would be useful to know if
dense phase probability maps (i.e. one minus the bubble
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Fig. 5. Bubble probability, B, maps calculated from the experimental results (a), simulation results (Gidaspow drag model) (b). A map of simulated mean volume fraction of

particles, o, is also included (c).

probability) may be used to estimate the mean volume fraction of
particles in a bubbling fluidized bed. Since the maps of both dense
phase probability and mean volume fraction of particle are
directly available from the numerical results, the simulation can
be used to give an answer to this question. For this purpose, the
mean volume fraction of particles, Fig. 5c, has been calculated
from the simulation described in Table 1. From the comparison of
Fig. 5b and c it is clear that mean dense phase the two dimen
sional patterns of probability distribution and the mean volume
fraction of particles are very similar.

A more detailed comparison of bubble and dense phase
probability results has been done at different bed heights: near
the lower end part of the bed, y=0.05 m, at the half of the bed,
y=0.15m and 0.25m, and at a region close to the freeboard,
y=0.30 m. In particular, Fig. 6a and ¢ compares the experimental
and simulation profiles of bubble probability and mean dense
phase vertical velocity, Vj, for a horizontal cut at 0.25 m from the
distributor. Apart from the drag model of Gidaspow (1994) used
as reference case, Table 1, a complementary simulation is also
included in Fig. 6b relying on the same operating parameters as
the reference case but using the Syamlal & O’Brien drag model
(Syamlal and O’Brien, 1987). In experimental as well as numerical
results, the bubble probability increases towards the centre of the
bed, i.e. x=0.25 m in Fig. 5a, due to the mentioned channelling of
bubbles. However, the channelling region is wider in the numer
ical results due to a better distribution of bubbles in the
computed bed. This effect is present in both models, but seems
to be more pronounced in the simulation with the Syamlal &
O’Brien drag model. Interestingly, all the simulations show an
increment in bubble probability near the wall that is not observed
in experiments. This indicates that the bubbles in the numerical
simulation are more prone to attach to the wall than in the
experiments.

A comparison of time averaged vertical velocities of solids
particles, V,, is shown in Fig. 6¢, where we can see that although
the trends are similar, the magnitude of the numerical velocities
are higher, especially when using the drag model from Syamlal &
O’Brien. This fact indicates that the simulated bubbles impel
upwardly the dense phase in a more effective way than the actual
bubbles in the experimental bed. As a result, sharper gradients of
descending V, appear near the wall in the simulation results
compared to the PIV measurements. Due to the wide bubble path
shown by the simulation, the time averaged downward velocity
has a peak value closer to the wall than the experiments. As the

experimental time averaged particle velocity is very small com

pared to the simulated one, the PIV velocity profiles are nearly flat
in Fig. 6¢. Particularly, for the downwardly moving mean flow of
particles (close to the wall) the minimum velocity is of order
0.02 m/s, whereas far from the walls the peak of ascending
velocity is 0.015 m/s. Note that these very reduced values of
particle velocity are also observed in the work of Laverman
et al. (2008). For illustrative purposes, experimental results for
U/Umg=2.5 are also included in Fig. 6¢. These experimental results
demonstrate that after increasing the superficial gas velocity from
U=1.75Uyy to 2.5U,; the magnitude of time averaged particle
velocity remains very small compared to the simulation.

The largest velocity gradients and the velocity peak closest to
the wall are found in Fig. 6b for the Syamlal & O’Brien model.
Therefore, in view of Fig. 6a and b, of the two drag models tested in
the present two dimensional configuration of fluidized bed, the
drag model of Gidaspow seems to yield the closest qualitative
results to the experimental profiles of bubble probability and
dense phase velocity. However, the discrepancies in magnitude
between the time averaged particle velocity of the simulation
using Gidaspow drag model and the experimental results for
the two dimensional bed of Table 1 are still enormous. When the
simulation is performed increasing the restitution coefficient to
ess=0.99, the time averaged velocity is reduced up to a 70%
from the es,=0.9, as Fig. 6b indicates, but the particle velocity
overestimation continues to be very appreciable and the simulated
profiles of bubble probability clearly separates from the experiments
for x > 0.1 m (Fig. 6a). The time averaged velocity of particles is also
diminished by reducing the initial solids volume fraction of the
simulation to an arbitrary small value os=0.55, instead of the more
realistic bed parameter os=0.6, and maintaining the rest of operative
conditions of Table 1. As in the case of increasing the coefficient of
restitution, the price to be paid with the diminishing of o is the
reduction of the simulated bubble probability near the bed centre
(x=0.25 m). Furthermore, it seems that increasing es; or o also
eliminates the qualitative agreement between the velocity profiles.
This is shown in Fig. 6b, in which the velocity profiles for the
simulation using Gidaspow drag model with e,x=0.99 or o;=0.55
are characterised by a downflow motion of particles at x=0.25 m
that is more intense than the obtained for original parameters
ess=0.9 and o;=0.6.

Fig. 6b also illustrates that the no slip boundary condition
imposed in the simulation for the solids phase is as approximately
verified in the experimental results. However, the region in which
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descending particles are slowed down by the lateral walls is
larger in the experiments than in the simulation, suggesting that
perhaps other effects such as frontal and posterior walls friction

0.05 0.1 0.15 02 0.25
X (m)

Fig. 6. Comparison of simulation and experimental profiles at y 0.25 m for B (a), and time-averaged velocity of dense phase (b) and (c), and its standard deviation (d).
Also, included the comparison of scaled dense phase probability, C oy, and mean solids volume fraction, @, calculated from the simulation (e).

are influencing the measured bed in this region. Profiles for two
different lateral boundary conditions have been included, i.e. free
slip (specularity coefficient=0) and partial slip (specularity
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Table 3

Discrepancy of measurements from simulation results using Gidaspow drag function.

Variable y 0.05m y 0.15m y 025m y 030m
g or (%) 0 r (%) g or (%) 0 or (%)
C 0.0591 6.15 0.0399 4.52 0.0707 8.17 0.1287 15.21
B 0.0591 138.18 0.0399 3233 0.0707 46.36 0.1287 70.91
vy 0.0119 m/s 136.59 0.0554 m/s 657.43 0.1166 m/s 944.34 0.0993 m/s 748.77
Vi 0.0173 m/s 439.35 0.0554 m/s 1088.33 0.0374 m/s 1355.25 0.0592 m/s 2334.65
Table 4
Discrepancy of measurements from simulation results using Syamlal & O’Brien drag function.
Variable y 0.05m y 0.15m y 025m y 030m
g or (%) o or (%) 0 0,(%) 0 or (%)
C 0.0429 4.46 0.0270 3.06 0.0721 8.31 0.1188 13.93
B 0.0429 106.73 0.0270 21.85 0.0721 47.33 0.1188 69.63
vy 0.0733 m/s 840.50 0.1281 m/s 1520.19 0.1015 m/s 821.79 0.0980 m/s 739.09
Vi 0.0802 m/s 2039.98 0.0159 m/s 312.15 0.0805 m/s 2918.38 0.0630 m/s 2481.40

coefficient=0.6), in order to ensure that the overestimation of the
solids velocity is not a consequence of the lateral walls boundary
condition. As it can be seen, the three conditions give velocities in
the same order of magnitude and generate the same bed beha

viour. Taking this into account, the effects of the lateral walls
boundary condition will not be longer discussed in this paper.

Fig. 6d shows the standard deviation of the solids phase
velocity shown in Fig. 6b, comprising the experimental results,
as well as the simulation results using Gidaspow and Syamlal
O’Brien drag models. The standard deviations have been obtained
in each point time averaging the squared difference of the
instantaneous vertical velocity and its mean value. The velocity
standard deviation follows the same trend than the time aver
aged values. Note that the simulation gives values an order of
magnitude higher than the experiments. Obviously close to the
wall, the standard deviation calculated from the simulation tends
to zero as no slip conditions were selected. Nevertheless, this
happens for a small region near the wall that do not affects the
rest of the bed. In the experimental results this decrement of
velocity standard deviation is also appreciated but not with the
same intensity.

As mentioned previously, in order to compare dense phase
probability with mean particle concentration, it is necessary to
rescale one of the variables. In Fig. 6e, the horizontal profile of the
dense phase probability has been rescaled, by multiplying it by
0.6, and depicted together with the mean particle concentration
from simulations that use Gidaspow and Syamlal & O’Brien drag
models. Clearly, the dense phase concentration is practically
equal to the mean volume fraction of particles. This is probably
due to the nearly uniformity of the void fraction in the dense
phase outside bubbles. In consequence, Fig. 6e encourages the use
of the scaled dense phase probability as a good approximation to
the mean volume fraction of particles in bubbling fluidized beds.

Fig. 6e illustrates in addition the scaled dense phase prob
ability for different bubble detection thresholds. This representa
tion clearly shows that using 0.3 as threshold ensures that the
simulated dense phase probability (1 B) is analogous to the
simulated time averaged dense phase. The results indicate that
the boundary of the bubble placed with threshold os=0.3 perfectly
balances de gradients of solids volume fraction towards the interior
of the bubble and towards the exterior.

The root mean squared discrepancy along a horizontal line in
the bed, J, can be used in order to obtain a numerical quantifica
tion of the differences between simulation and experiments in
two dimensional beds:

1 N
0= le:l (Xexpi Xsim,v)2 (6)

where X corresponds to the variable which is going to be
compared and N is the number of data values (i.e. points along
the selected horizontal line) included in the calculation of the
mean square discrepancy.

Thus, the relative discrepancy of the simulation in reproducing
the experimental data is calculated after dividing 6 by the root
mean square value of the measured variable:

o
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Tables 3 and 4 summarise the discrepancies encountered between
the experimental measurements of the two dimensional bed and
the simulation with Gidaspow and Syamlal & O’Brien drag models.
Four different heights have been selected. For the two drag models
tested, the tabulated results show that the absolute discrepancy, o,
in dense phase and bubble probability increase with y for
y>0.05m. The relative discrepancy in bubble probability is an
order of magnitude superior ( < 138%) than in dense phase prob

ability ( < 15%) on account of the reduced root mean square value of
bubble probability, especially near the distributor. The relative
discrepancy in dense phase velocities is by far larger than in bubble
probability, reaching a maximum of 1323% and 2389% for vertical
and horizontal velocities, respectively. The lowest absolute discre

pancies d in velocity are typically encountered near the distributor,
probability while the largest discrepancies are placed at the centre
of the bed height (i.e. V) or near the bed surface (V, for Gidaspow
drag model). As the root mean square value of V), increases rapidly
with the distance to the distributor, there is a decrease in the
relative value of discrepancy, ¢,, for the two drag models. Observe
that the relative discrepancy for horizontal velocity V, is usually
larger than for V.



Table 5

Discrepancy between the mean volume fraction of particles and the scaled dense phase probability.

ime-averaged particle concentration vs y 0.05m y 0.15m y 025m y 030m
Ti d icl i 0.05 0.15 0.25 0.30
scaled dense phase probability _—
0 or (%) oy (%) g (%) é r (%)
Gidaspow drag function 0.0372 10.38 0.005 1.40 0.0081 2.30 0.0110 335
Syamlal-O'Brien drag function 0.0320 8.57 0.0099 2.65 0.0082 2.29 0.0097 2.92
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Fig. 7. Time-averaged velocity vectors of dense phase calculated from simulation (a) and experiments (b).

As Tables 3 and 4 shows, Syamlal & O’Brien drag model
produces a slightly smaller discrepancy of the simulated bubble
or dense phase probability compared to Gidaspow model. However,
regarding the smaller time averaged dense phase velocity, it is the
Gidaspow model which yields the discrepancies, especially near the
distributor. For brevity reasons, only the simulations for this drag
model will be shown in the remaining sections.

Table 5 contains the discrepancies between the mean volume
fraction of particles and the scaled dense phase probability, where
both magnitudes obtained from simulations. The tabulated
results corroborate that the mean volume fraction of particles
can be estimated with the scaled dense phase probability, being
the estimation discrepancy 3% near the surface of the bed and
around 10% close to the distributor (i.e. y=0.05 m).

4.3. Recirculation regions and flow of solids in the time averaged BEd

The causes of the discrepancies between simulations and
experiments encountered in the previous section can be surveyed
by comparing the recirculation of particles within the bed. Fig. 7
shows the time averaged velocity field for the simulation in
Table 1 and for the PIV results from experiments. To enhance
visualisation not all the vectors has been displayed in Fig. 7. It can
be observed that the velocities in the upflow and downflow of
particles are remarkable larger in the simulation, Fig. 7a, than in
the actual fluidized bed, Fig. 7b. Another clear difference is the
location of the mean recirculation centres. To visualise more
easily the position of the recirculation centres, Fig. 8 presents
the streamlines connecting the tangent direction of each time
averaged vector field presented in Fig. 7. Although not very
rigorously, these streamlines may be interpreted as indicative of
the time averaged pathlines of the bed particles. Appendix B

details the method used for the computation of the streamlines.
It should be noted that the streamlines have been obtained assum
ing the dense phase as an incompressible and two dimensional
fluid. The incompressibility of the dense phase outside bubbles is a
well grounded assumption (Davidson and Harrison, 1963). Of
course the bubbles have a perturbation effect on the incompres
sibility of the dense phase that is transmitted to the time averaged
velocity field. Time averaging the Eq. (1), the incompressibility
condition (i.e. V-vs = 0) surfaces up since, for the fluidisation regime
studied here, the gradients of the time averaged volume fraction of
particles are small (except near the bed surface, see Fig. 5) and the
coupled oscillation of particle velocity and volume fraction is
confined only to the bubble perimeter and bed surface.

Recalling that half of the bed has been studied, Fig. 8 indicates
the existence of two main recirculation regions in the bed (i.e. one
per half area studied) whose centre position is placed in the
simulation nearer to the wall and to the distributor than in the
results from the experiments. The location of the recirculation
centre is shown in Table 6. This concentrates the experimental
streamlines towards the centre line of symmetry (y=0.25m in
Fig. 8b) in contrast to the ascending streamlines from the
simulation, which are closer to the wall (Fig. 8a). Therefore, in
order to preserve the descending flow of particles (streamlines
near the wall at y=0 m), the simulation results are characterised
by a larger downward velocity than the corresponding experi
mental data. According to Table 6, the descending flow of
particles has a peak velocity whose modulus, max|Vy| and
max|V, |, are an order of magnitude larger in the simulation than
in the experiments. Not only is the displacement of the recircula
tion region the cause of the large values of ¢ in Tables 3 and 4.
Calculating the time averaged particle mass flow as the integral
along a horizontal line connecting the two main recirculation
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Table 6
Comparison of time-averaged results for the dense phase flow in the bed.

Variable Numerical Experimental
Xgc (M) 0.0700 0.0927
Yre (m) 0.25063 0.2863
max|Vy| (m/s) 0.2190 0.0212
max|Vy| (m/s) 0.3243 0.0348
mp (kg/s) 0.1956 0.0243
centres of a bed,
1y = / Ve yttsp,Z dx @)

the results in Table 6 evidence that the transport of particles is 10
times larger in the simulation compared to the experiment. As the
superficial gas velocity is equal in both cases, one plausible
explanation is that the ultimate origin of the discrepancies
between simulations and experiments is due to an over predicted
net drag force on the ascending dense phase in the two fluid
models employed in the present study.

Fig. 8a and b also sheds light into the high discrepancies in
time averaged velocity of particles encountered near the distri
butor. In the numerical results of Fig. 8a it appears another minor
recirculation zone close to the distributor. It seems that in the
experiments there is also small intensity recirculations located
nearby the distributor but smaller than in the simulation. However,
the nature of the minor recirculations near the distributor in
the experiments seems to be probably produced by the three
dimensionality of particle flow near the distributor. The three
dimensional character of the particle flow near the distributor is
caused by the bubbles, whose size in that region is smaller or
comparable to the thickness of the bed. Of course, the two
dimensional simulations cannot reproduce these small recircula
tions. Without a doubt, this contributes to the large discrepancies
for Vy and V), observed in Tables 3 and 4 at y=0.05 m.

4.4. Bubble diameter and velocity

After processing the results from the two phase code, the
bubble data can be compared with the experimental data and
with theoretical models. The procedure to capture the simulated
bubbles is based on a threshold value. Contours of solids volume

fraction equal 0.3 are obtained on each frame, and bubble
centroid and bubble equivalent diameter are obtained at this
point using the contour and avoiding bubbles with a diameter
lower than 0.01 m. Bubble velocity is obtained associating
bubbles on time step t with the time step t+1, taking into
account the size of the bubble and its height. This can be easily
done because the time step used to analyse the data is small
enough to track any bubble properly. The procedure followed by
the calculation of bubble diameter and velocity using the simula
tion results is exactly the same than using the experimental
results once the bubble contour is defined.

The theoretical model used in the present study is the
adaptation of the Darton’s model (Darton et al., 1977) to two
dimensional beds (Shen et al., 2004), in which the diameter of a
bubble subjected to coalescence is modelled as

5.4543\ %3 o A1
Do=(*5E) |0 U (v+ 5g7sy )| £ ©

Uy = @+/gDy (10)

where ¢ is a parameter that takes several values depending on the
literature. Davidson and Harrison (1971) gave a value for ¢ equal to
0.71 for three dimensional beds. Later Shen et al. (2004) proposed
a value between 0.8 and 1 applicable to two dimensional beds.
Also in Eq. (9), Ao is the total area of the distributor divided by the
number of orifices, b is the thickness of the bed, U is the
superficial velocity of the gas, Ups is minimum fluidisation
velocity, y is the vertical distance from the distributor to the
bubble centroid, and 4 is a constant obtained from experiments
which for the studied fluidized bed takes a value around 9.86
(Almendros Ibafez et al., 2006).

Fig. 9 shows the relation between the mean (time average)
and standard deviation of the equivalent bubble diameter
(Caicedo et al., 2003) versus the vertical distance from the
distributor to the bubble centroid, y, and Fig. 10 depicts the
dependence of the mean and standard deviation of bubble
velocity on the equivalent bubble diameter. The simulation and
the experimental data compared in these figures are represented
by average values (Figs. 9a and 10a) and their standard deviation
(Figs. 9b and 10b). In particular, for the construction the average
data in Figs. 9a and 10a, the arithmetical mean is calculated with
the bubbles whose centroid is placed within a thin interval
surrounding each value selected in the horizontal axis.
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The standard deviation of the instantaneous values of the bubble
diameter and velocity in Figs. 9b and 10b characterize the
dispersion from the mean values.

As Fig. 9 illustrates, the Gidaspow’s drag model yields the
bubble growth with height in terms of both mean and standard
deviation values, that most closely resembles the experimental
data. In particular, the mean bubble diameter of the simulation
with this drag model is slightly smaller but in acceptable agree
ment with the theoretical model of Shen et al. (2004), Eq. (9),
except at distances greater than the static height of the bed
surface, y 0.30 m, where the theoretical model is not applicable.
This level of similarity between model and simulation for mean
bubble diameter profile along the bed height is also observed in
other previous publications (see, for instance, Van Wachem et al.,
1998; Patil et al., 2005) The experimental data of bubble diameter
are inside the simulation data dispersion shown in Fig. 9b. The
standard deviation of the simulated bubble diameter is remark
able close to the experimental one. However, the experimental
data do not fit the theoretical model as closely as the numerical
results. The apparently more randomly behaviour of the experi
mental results due to the lower number of bubbles taken from the
images may be the reason of this discrepancy. It is symptomatic

that both experiments and simulation predict larger bubble
diameter in a similar degree near the bed surface, indicating that
Eq. (9) could be adjusted and extended to this complex region of
the bed. However, more experimental data would be advisable to
support this improvement.

Fig. 9a also indicates that the drag model of Syamlal & O’Brien
tends to slightly underestimate the bubble growth from experi
ments and from the model of Shen et al. (2004), when applied to
the operative conditions studied in the present work. However,
according to Fig. 10a, but this is not as clear for the standard
deviation for the bubble velocity shown in Fig. 10b, the drag
model of Syamlal & O’Brien confers for relatively small bubbles,
Dy, <0.04 m, the velocity dependence on bubble diameter most
fitted to the classical dependence of Harrison and Davidson,
Eq. (10) for ¢=0.71. This seems to be facilitated by an under
prediction of bubble velocity at low heights. The simulation based
on Gidaspow drag model leads to the closest results to the
experimental data in Fig. 10a. As a general trend, it can be said
that the theoretical model for isolated bubbles due to Eq. (10)
with ¢=0.71, overpredicts the bubble velocity of the present
experiments in the range of medium sized and large bubbles.
Notice that the model of bubble growth used in this study
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assumes that bubbles are not close to the eruption stage, but large
bubbles in Fig. 10a presumably are placed near the bed surface as
Fig. 9a shows. This would explain the systematic deviation of the
simulation results when Dj, < 0.09 m.

In Figs. 9a and 10a results obtained for different bubble
threshold, 0.2 and 0.4 are also included. The bubble diameter
varies accordingly with this value. Obviously, larger bubbles are
obtained when this value is 0.4 and smaller bubbles when the
value is 0.2, but both results are in accordance with the theore
tical model. Paying attention to the bubble velocity, no differences
can be seen in the range where data are reliable, this range covers
bubble diameters up to 0.07 m placed up to 0.3 m above the
distributor, which is the static bed height. In general, the value of
0.3 for bubble threshold provides the results most similar to
experiments and the theoretical model.

4.5. Air throughflow

The distribution mechanisms of the air flow in the studied
fluidized bed can be analysed to explain the encountered differ
ences in dense phase velocities between the experiments and the
simulation. As presented in Shen et al. (2004), three are the main
distribution channels of air in the bed: the transport of air
contained in bubbles, the air percolating between particles
(i.e. minimum fluidisation air), and the air throughflow. The air
throughflow is the excess of air that ascends bypassing pairs or
groups of consecutive bubbles. It is calculated here using the
conservation of mass balance of Shen et al. (2004)

Un=Uo (1 p)Uns 65U, (11)

where Uy, is the throughflow velocity, that is, the air throughflow
per unit of distributor area, Uy is the superficial air velocity, Upyis
the minimum fluidisation velocity, and U, is the mean ascending
velocity of the bubbles weighted with their frontal area:

N,
2o 1AV
N
i 1 Abi
where v, and A, the ascending velocity and the frontal area,
respectively, of a bubble, i.e. area on the images or simulation
plane, and N, is the number of bubbles present in the studied

region of the bed of frontal area A In Eq. (11) J;, is the fraction of
the studied region that is occupied by bubbles:

5y = >0 1 Abi
Ay

U, = (12)

13)

Using Eq. (11) the throughflow velocity has been calculated for
the total sampling area of the bed, Ar=w;h;, and time averaged.
Table 7 compares de simulation and experimental results. For the
simulation, the reference case described in Table 1 has been
selected, taking the same minimum fluidisation velocity than in
the experiments, U,,/=0.35 m/s.

According to the results of Table 7, the fractional area of the bed
occupied by bubbles is only 3% larger in the simulation than in the
experiments. The visible bubble flow per distributor area, which is

Table 7
Simulation and experimental results for the visible flow and throughflow in the
bed and bed expansion.

Variable Simulation Experimental
Jp 0.122 0.118

Uvis (m/s) 0.0579 0.0410

U (m/s) 0.2466 0.2629
Freeboard mean y-coordinate (m) 0.3771 0.3391

calculated as U,;=0,Up, is an order of magnitude smaller than the
other terms of Eq. (11), including the throughflow velocity Uy,. This
agrees with the results presented by Shen et al. (2004). Besides, the
visible bubble flow obtained from the simulation is more than 40%
larger, and the throughflow is 6.6% smaller, than in the results from
the experiments. This has important consequences in the analysis of
the results: there is a slight underestimation of the throughflow
velocity in the simulation compensated by an increase in visible
flow. As the visible bubble flow is six or more times smaller than the
throughflow, the slight underestimation of U, generates an impor

tant increase, in relative terms, in U,;; and also in U, provided oy
remains nearly unchanged. Thus, using the weighted average of
Eq. (12), the simulation performed is characterised by a larger U,
which enhances the transport of dense phase compared to the
experiments. However, this 40% increment of U, seems by itself
unable to generate in most of the simulated bed a vertical flow of
dense phase between 4 to more than 9 times superior than in
experiments, as show in Table 1. Therefore, other relevant causes in
addition to the overprediction of Up, may be behind the large values
of the discrepancy &, in Table 1. One hypothesis is that some fraction
of the air throughflow of Table 7 in the experimental fluidized bed is
actually bypassing the dense phase, ascending just close to the wall
surfaces, where the void fraction is large since the packing of
particles close to the wall is not as efficient as in the bulk of the
bed. If this attached to wall air flow is significant, it can reduce the
throughflow crossing the bulk of the dense phase and, as a
consequence, reduce the drag forces between gas and dense phase
and hence decrement particle velocities in the experiments.
Provided that in a real two dimensional fluidized bed the ratio
surface area to volume is high (but not in the simulated bed), this
may be a hypothesis that should not be disregarded. Another
hypothesis is that the drag models between air and particles, lead
to an overprediction of net forces on dense phase even if the
throughflow velocity crossing the bulk of the bed is similar in
simulation and experiments. Finally, due to the complex nonlinear
nature of the bed hydrodynamics, it is also possible that the models
accounting for frictional forces between particles may not reproduce
the effective viscosity of the dense phase in regions involved in the
transport of particles, such as the bubble wake. A dimensionless
parameter can be defined for the visible bubble flow rate, as done by
Hilligardt and Werther (1986).

Y= visible bubble flow rate Uy
" expected bubble flow Uy Uy

(14)

This parameter indicates the fraction of the excess of flow actually
carried by bubbles. The simulation and experimental results for
are plotted in Fig. 11 together with two models. One of the models
for y has been taken from Hilligardt and Werther (1986):

Yy =026 for y<0.275m
. y 0.5
y=03s(3)

where y is the distance above de distributor and W is the width of
the bed.
The other model used is from Johnsson et al. (1991)

for y>0.275m (15)

¥ =H+4VA0)™ (16)
where
f>=(0.26+0.70exp( 3.3dp10%))(0.15+ (U Uypy)) 17)

where d, is the particle diameter and Ao is the area of the
distributor per orifice.

As expected, the fraction of visible flow i is higher in the
simulation than in the experimental results, since Eq. (14) is
proportional to U,;. Apart from the differences between the
experimental and the simulation results, the model from
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Hilligartd and Werther (1986), gives a value of y constant for the
range of vertical position studied (i.e. from the bottom of the bed
till the static bed height), and does not follow the growth
experienced by the simulation and the experimental data. This
can be explained by the fact that the model from Hilligardt and
Werther (1986), was developed for a three dimensional fluidized
bed. Besides, Eq. (15) has been selected for Geldart D particles
since the model for Geldart B leads to {y=0.65. On the other hand,
the model of Johnsson et al. (1991), provides a growth of the
fraction of visible flow that seems to be more representative of
the two dimensional bed studied. Nevertheless, Eq. (16) does not
tend to zero close to the distributor in contrast to the simulation
and the experimental results presented in Fig. 11.

The last part of this section compares the bed expansion
obtained from the two fluid simulation (Gidaspow model) and

045 | x simulation data X
+ Experimental data
0.4 + —Johnson model X 4

---Hilligardt and Werther model
035 + 1

005 | 5 ]
0 X st L L ! 1
0 0.05 0.1 0.15 0.2 0.25 03

y (m)

Fig. 11. Fraction of visible bubble flow.

the experimental data. Results on this regard are included on
Table 7. The bed expansion has been calculated with the mean
y coordinate of the freeboard (i.e. transversally averaged height of
the bed surface), which has been time averaged over the same
number of snapshots utilised for the calculation of bubble
diameter and velocity in the previous section. The resulting
time averaged mean y coordinate of the freeboard is 0.3771
and 0.3391m for the simulation and experimental results,
respectively. As the visible flow in the simulation results is higher
than in the experiments, more bubbles appear in the simulation
and, therefore, the bed expansion has to be higher than in the real
bed tested.

4.6. Instantaneous interaction between bubble and dense phase

A comparison of the instantaneous behaviour of dense phase
surrounding bubbles can be valuable in order to explain the
differences encountered between the simulation and experimen
tal results. Fig. 12 shows the relative vectors of two coalescent
bubbles for the simulation and experimental results superim
posed to the instantaneous dense phase concentration maps and
the images of particles, respectively.

Both simulation and experiments reveal the same physical
interaction between bubbles and dense phase: downward motion
of particles at the sides of the bubble, high particle velocity in the
wake of the leading bubble, and deformation of the trailing
bubble in the wake of the leading one.

Table 8 compares some hydrodynamics values of the two
bubbles depicted in Fig. 12. Obviously, it was not possible to
capture two identical pairs of coalescent bubbles in the experi
ments and the simulation. In fact the pair of bubbles from the
simulation is nearly two times bigger than the pair selected from
the experimental images.

Fig. 13a depicts the streamlines of the dense phase velocity of the
two coalescent bubbles obtained from experiments, Fig. 12b. In
Fig. 13a, the image of particles of this part of the bed has been
superimposed to the streamlines, being the bubbles the dark areas
of the image. Also, the streamlines for the dense phase velocity of

Fig. 12. Dense phase velocity vectors surrounding a pair of coalescent bubbles taken from the bed simulation (a), and from the experiments (b). The simulation and
experimental results are, respectively, shown superimposed to their particle volume fraction map and image of particles.
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the bubbles in Fig. 12a, have been calculated for the simulation
results and presented in Fig. 13b. In order to compare the simulation
and experimental results in the same conditions, in Fig. 13a and b,
the streamline calculation procedure described in Appendix B fills
the interior of the bubbles with null dense phase velocity, since no
information in PIV is obtained there. As explained in the Appendix B,
the method of streamline calculation ensures soft curvature stream

lines inside regions of unknown particle velocity. The actual
streamlines of the falling particles inside bubbles is also expected
to follow soft trajectories (i.e. parabolic trajectories). To verify this
assumption, Fig. 13c presents the streamlines of the same simulated
bubbles of Fig. 13b but now using all the velocity information of
dense phase, that is, including the velocities inside bubbles. Note
that no significant differences between Fig. 13b and c appear. Thus,
it is assumed that the streamlines of Fig. 13a are weakly affected by
the computing artefacts related to the lack of experimental velocity
data inside bubbles.

Those pair of bubbles have been compared with the theoretical
model developed by Toei and Matsumo (1967) for vertically
aligned bubbles, that correlates its dimensionless position
H*=H/Homin versus its dimensionless time T=(vpt)/Homin,
where H corresponds with the location of the top of each bubble,
Ho min is the distance between the top of the leading bubble and
the bottom of its wake, v} is the vertical velocity of the leading
bubble, and t is the time.

Table 8
Hydrodynamics related to two coalescent bubbles.

Parameter Simulation Experimental
Leading bubble diameter (m) 0.0984 0.0585
Leading bubble ascending velocity (m/s) 0.924 0.413
Leading bubble gas velocity (m/s) 3.46 -

Trailing bubble diameter (m) 0.0639 0.0310
Trailing bubble ascending velocity (m/s) 0.6 0.469
Trailing bubble gas vertical velocity (m/s) 3.38 -

Particles downflow velocity (m/s) —0.401 -0.126
Leading bubble wake velocity (m/s) 1.20 0.202

For the simulation results presented in Table 8, the dimensionless
position takes values of H;=3.05 and Hy=1.65 for the leading bubble
and the trailing one, respectively, that lead to an increment of
dimensionless position AH=H; Hy ~ 1.4. This value H;=3.05 cor
responds to a dimensionless time T~ 1.5 and with AHpge ~ 1.25
according to the experimental correlation plot shown in Toei and
Matsumo (1967). Regarding the experimental results of Table 8, the
dimensionless positions are H; =3.43 and H,=2.12, that is AH=1.31.
Using H;=3.43 in the correlation of Toei and Matsumo (1967), a
dimensionless time of T~ 1.8 and an increment of dimensionless
position AHpge1=1.13 is obtained. Therefore, the experimental result
for AH is 16% greater than the corresponding model prediction
AHppoge. Similarly, the numerical result for AH is 12% superior
than AHppge. That means that both simulation and experimental
results experience the same level of agreement with the bubble
coalescence model presented by Toei and Matsumo (1967). As
1<T<25 in for the simulation and experimental results, the
coalescent bubbles of Table 8 are not out of the range of interaction
and coalescence of vertically aligned bubbles shown in Toei and
Matsumo (1967).

The same analysis has been done for a simulated and experi
mental bubble as much isolated as the chaotic behaviour of the
bed admit. The main hydrodynamics parameters of the selected
semi isolated bubbles are included in Table 9, and Fig. 14 presents
their streamlines calculated in the same way than in Fig. 12. In
general, the streamlines from both simulation (Fig. 14b) and
experiments (Fig. 14a) are qualitatively similar, and negligible

Table 9
Hydrodynamics parameters of semi-isolated bubbles.

Parameter Simulation Experimental
Bubble diameter (m) 0.0893 0.0680
Bubble ascending velocity (m/s) 0.611 0.266
Bubble gas velocity (m/s) 1.71 -
Downflow velocity (m/s) —0.402 -0.174
Wake velocity (m/s) 0.565 0.245

1] Yy 0.653 0.326
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Fig. 13. Dense phase streamlines surrounding a pair of coalescent bubbles taken from the bed experiments (a), and the simulation (b). Also included the simulation results
with the streamlines incorporating the dense phase velocities inside bubbles (c). The simulation and experimental results are, respectively, shown superimposed to their

particle volume fraction map and image of particles.
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Fig. 14. Dense phase streamlines surrounding a bubble taken from experiments (a), and simulation (b). Also included the simulation results with the streamlines
incorporating the dense phase velocities inside bubbles (c). The simulation and experimental results are, respectively, shown superimposed to their particle volume

fraction map and image of particles.

differences appear between the simulation results for the stream
lines calculated without and with the particle velocities in the
bubbles (Fig. 14c).

The velocity coefficient ¢ in Table 9 has been calculated with
the instantaneous values of bubble diameter and velocity.
Although the experimental and the simulation values obtained
for ¢ are of the same order, the experimental results in Table 9
present a value clearly far from the well known range ¢=0.71 1.
However, the instantaneous values of ¢ are not necessarily
representative of mean bubble conditions, and can be merely
attributed to the stochastic behaviour of bubbling beds.

The bubble gas velocities presented in Tables 8 and 9 corre
spond to the vertical velocity of the air at the centre of each
bubble. Obviously, the gas velocity cannot be obtained from the
experimental results because only the dense phase velocity is
measured. It can be verified that the gas inside the bubble is much
faster than the bubble rising velocity. The difference between the
bubble gas velocity and the bubble velocity constitutes the
throughflow, reaching in this particular bubble a value around
1.1 m/s, that is 2.9 times the minimum fluidisation velocity Uy
That figure of throughflow is closer to the predictions of the
Davidson theory for three dimensional bubbles (3Uyy) than for
two dimensional ones (2Upy) (Davidson and Harrison, 1963). For
the case of coalescent bubbles, Table 8, the throughflow velocity
elevates to 2.54 and 2.78 m/s for the rear and trailing bubble. The
throughflow of air is the responsible of the acceleration of
particles between coalescent bubbles. As Table 8 shows, the
particle velocity between the coalescent bubbles (i.e. wake of
the leading bubble) is nearly six times superior in the simulation
than in the PIV experiments, but the diameter of the simulated
bubbles selected in Table 8 is less than twice that of the
experiments. Note also that the downflow velocity of particles
at both sides of the leading bubble (Table 8) in the case of the
simulation is less than 3.2 times intense than in the experiments.
Assuming that the solids velocity is proportional to the coalescent
bubbles velocity and their level of approximation (proportional to
T), the air between the coalescent bubbles selected from the
simulation in Table 8 would be more efficient in driving particles
than in the coalescent bubbles selected from experiments. An
overprediction of the air drag due to models tested can be an
important cause of the large particle velocity encountered
between simulated bubbles compared to PIV measurements,
since the drag force of air is the main factor participating in the
raising forces on a particle. From Table 9, it is also noticeable that
the wake velocity as well as the particle downflow velocity of the

simulated bubble is around 2.3 times larger than the experimen
tally measured bubble. However, the velocity of the simulated
bubble is also 2.3 larger than the experimental one, which
explains the reason of that difference in the wake velocity of
the semi isolated bubbles selected in Table 9.

Other kinds of bubbles morphologies (splitting, erupting and
wall attached bubbles) may be analysed but have not been
included here for brevity reasons.

5. Summary and conclusions

Two major kinds of information have been analysed in the
present study aimed to the comparison of Eulerian Eulerian two
fluid simulation and experimental results in a two dimensional
gas solid fluidized bed: bubble hydrodynamics, and dense phase
(i.e. particle phase) velocity. In particular, in contrast to previous
comparison studies usually focused on bubble behaviour and
dense phase distribution, the present work examines and com
pares not only the bubble hydrodynamics and dense phase
probability within the bed, but also the time averaged vertical
and horizontal component of the dense phase velocity, the air
throughflow and the instantaneous interaction between bubbles
and dense phase.

To increase generality of results, the two fluid simulations
presented in this work were conducted using two different and
well known closure models for the gas particle interaction. For
verifying the simulation results, an experimental bed of 0.005 m
thickness was measured here to ensure the two dimensionality of
the bed dynamics. The experimental data from this bed concern
ing bubble behaviour and dense phase distribution were obtained
in the present work through non intrusive techniques based on
the digital analysis of a long temporal sequence of images. In
harmony with previous studies present in literature, the two fluid
models tested here were able to qualitatively predict the bubble
growth and velocity as well as the bubble probability distribution
within the bed. Furthermore, an acceptable level of quantitative
agreement between two fluid simulation and experiments is
confirmed in this study regarding bubble diameter and velocity
in a two dimensional bed. The similitude encountered between
the simulated and experimental standard deviations of bubble
diameter and velocity are also noticeable. The results of the
present work reveals that, of the two drag models tested,
the model of Gidaspow (1994) provides the best approach to
the experiments and to simplified models based on the two phase
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theory of fluidized beds. Exception of this is the bubble prob
ability profiles in the studied two dimensional bed, which seem
to be best predicted using the Syamlal & O’Brien drag model
(Syamlal and O’Brien, 1987). Interestingly, both drags models,
Gidaspow and Syamlal & O’Brien, provide in this work a better
bubble distribution (i.e. more homogeneous bubble probability
maps) than the experimental bed.

Thanks to the simulation results, the present work clearly
proves that the dense phase probability can be used as a good
approximation of time averaged particle volume fraction in a
bubbling bed. In the simulations, since the transition of bubble
phase too dense phase is not as sharp as in experiments,
a bubble detection threshold equal to the arithmetic mean
between the maximum and minimum particle concentration
is recommended. This important fact, which seems to be
obviated by other previous publications, indicate that simple
digital image techniques can be used to obtain satisfactory
estimations of time averaged particle concentration in a
two dimensional bed.

The main novelty of the present work is the quantitative
comparison between simulations and experiments performed
for the vertical as well as the horizontal component of the
time averaged dense phase velocity in the whole plane of the two
dimensional bed of reduced thickness. Regarding the experimental
velocity of the dense phase, it was extracted in this work from the
images of the real bed thanks to the application of a multigrid
particle image velocimetry (PIV) technique. The resulting experi
mental velocities of particles obtained in this work are coherent
with other PIV measurements of bubbling beds of small thickness
reported in literature. The comparison of time averaged velocity
of dense phase from simulation and experiments was done here
through the use of horizontal profiles of velocity as well as the
definition of a discrepancy factor, which allows a quantitative
comparison of dense phase velocities not conducted before in
bubbling fluidized beds studies. Additionally, a global analysis of
the dense phase velocity field from both simulation and experi
ment data was done in the present study with the aid of
streamlines maps calculated using an original and robust method
developed ad hoc that can be applicable to simulation and noisy
experimental data. Surprisingly, and despite the above described
similarities in bubble diameter and velocity, the results of the
present work indicate that the time averaged velocities of the
particle phase in the simulated bed are nearly one order of
magnitude larger than the velocities obtained from PIV experiments.
Therefore, the fine agreement in bubble behaviour found between
simulation and experiments does not ensure the same level of
agreement in dense phase velocities in the framework of two
dimensional beds. This significance result, not reported previously
in literature, occurs for the two well known drag models tested,
indicating that in Eulerian Eulerian two fluid simulations the beha
viour of bubble velocity and diameter is relatively uncoupled from,
or insensitive to, the resulting dense phase velocity. Since the
superficial air velocities in the simulation and in the experimental
bed have been set to similar values in this study, three principal
causes of such a high discrepancy can be postulated: (1) the possible
overestimative nature of the particle drag models in reproducing the
net forces of the gas on a particle in a two dimensional regime;
(2) the effects of particle wall friction that may be present at the
frontal and back wall of a real quasi two dimensional bed, and
(3) the influence of the higher porosity near the wall in a real
fluidized bed, which may bypass a significant fraction of the air near
the walls of a two dimensional bed and be the cause of the reduced
values of bubble visible flow (the driver mechanism of particles)
found in the experiments of this work compared to the performed
simulations. Further research involving perhaps different experi
ments and operative conditions are needed to discriminate the

relative influence of the postulated causes of the discrepancy in
dense phase velocity.

Nomenclature

C proportion of time that a point is occupied by solids
B proportion of time that a point is occupied by bubbles
Cp drag coefficient, dimensionless

d; diameter, m

Dy bubble diameter, m

ess restitution coefficient, dimensionless

8oss radial distribution coefficient, dimensionless

K gas/solid momentum exchange coefficient, kg/(m>s)
P pressure, Pa

g acceleration due to gravity, 9.8 m/s?

kos diffusion coefficient for granular energy, kg/(m>s)
Vi velocity, m/s

h bed height, m

1y particle mass flow rate, kg/s

Up bubble vertical velocity, m/s

— .

vi velocity vector, m/s

%4 mean particle velocity, m/s

t time, s

T dimensionless time

H vertical location of the bubble top, m

Uo superficial velocity, m/s

U throughflow velocity, m/s

Uyis visible flow

Up mean vertical bubble velocity, m/s

X horizontal position, m
y vertical position, m
V4 bed thickness, m

Greek letters

o volume fraction, dimensionless
0 root mean square discrepancy
or relative discrepancy

Op fractional area occupied by bubbles
o, granular temperature, m?/s?

y bubble growth coefficient

Ui shear viscosity, kg/s m

Di density, kg/m>

i stress tensor, Pa

@ bubble velocity coefficient

V] fraction of visible flow
Subscripts

g gas

i general index

S solids

mf minimum fluidisation

L leading bubble

RC recirculation centre

Tr trailing bubble
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Appendix A. Closure expressions
A.1. Particle drag coefficient

The model of Gidaspow used for the drag function between
particles and gas phase in the simulation is (Gidaspow, 1994):

- —
3 . UsOgPg|Vs Vg| s
— 5 Yg

Kgs = ZCD for oz >0.8 (A1)
S
o spg Vs Vel
Kgs =150 2 +1.75—2 for o;<08 (A2)
Clgds ds

where the drag coefficient is defined as

24 0.687
Cp= e, [1+0.15(oches) ] (A3)
dg|ve vg
with Re, — Pe%Vs Vel

Hg

The model of Syamlal & O’Brien (Syamlal and O’Brien, 1989) for the
drag function is

?)OCSO(gpg Res - —>
Kgs - 4Vr.52ds CD <WS> ‘Vs Ve ‘ (A.4)
where the drag coefficient is defined as
4.8
Cp=(063+——— (AS)
( /Res /vm)
ds|vs vg
with Re, — Pe%/Vs Vel
Hg
where

Vrs =0.5(A 0.06Res+\/(0.06Res)2+0.12Res(ZB A)+A2)

080328, ;<085

g .

A.2. Solids pressure

The Solids pressure can be expressed as a function of the
particle granular temperature (Lun et al., 1984)
Ds= “spg@s +2P5(1 +€ss)a52g0.ss@ (A6)

where

17371
s
= |1 —
gO,ss |: (as,max> :|

with o max is the maximum packing limit.
A.3. Solids stress tensor

The solid phase stress tensor is defined as

= T 2 -
Ts = o5 i (VVs + Vs ) +ts </15 §MS>V~7SI (A7)

where solid shear viscosity is

Hs = Ug o1+ Hs fr + Ks kin (A.8)

The model of Gidaspow for the kinetic viscosity (Gidaspow,
1994):

10p,ds/O1 4 2

Hs kin = m 1+ ggOSSas(l +ess) (A11)

The model of Syamlal O’Brien for the kinetic viscosity (Syamlal
et al., 1993):

o5 pds/OT

63 ew) (A12)

2
Hs kin = {1 + 5(1 +ess)(3ess  1)0sZoss

The collisional viscosity (Gidaspow, 1994; Syamlal et al., 1993) is
defined with

4 o\ 12
Hs,co = 5 05 050580 ss(1+€s5) (E) (A13)
And the frictional viscosity (Schaeffer, 1987):
pssin¢
= A14
Hs s 2\/12D ( )

A.4. Diffusion of granular temperature

The model of Gidaspow for the diffusion coefficient of granular
temperature (Gidaspow, 1994)

_ 150p,ds/On

© ™ 384(1 + e5)goss

6 2
|:1 + gangss(l +ess):|

(@]
+2,05d50652g035(1 +ess)\/75 (A9)

The model of Syamlal & O'Brien (Syamlal et al., 1993) for the
diffusion coefficient of granular temperature:

_ 15p,dsos/ O 12 , 16
ke 7441 33p) [ +5n (4n  3)0sgoss + ﬁ(m 3311 0tsZoss

(A.10)

. 1
withy = j(l +€ss)

where ¢ is the angle of internal friction, and Ip is the second
invariant of the deviatory stress tensor.

A.5. Collisional dissipation of energy

Finally, the collisional dissipation of energy is modelled as
(Lun et al., 1984):

2
120 gos (A15)

- ds¢npsa5283/2

Appendix B. Streamlines computation

Given that the particulate phase, outside bubbles, in fluidized
beds behaves like an incompressible fluid (Davidson and
Harrison, 1963), it is possible to use a Poisson equation for the
computation of the streamlines of the particulate phase in a
two dimensional flow. This procedure is described in the following
lines. Precaution in the interpretation of the streamlines should be
taken for regions of the bed where the void fraction of particles
varies greatly, such in the bubble interphase and bed surface, and
can depart from the incompressibility condition. This can be easily
deduced from the Eulerian equations of the particulate phase
(Eq. 2 and 4). However, these regions are narrow in size and the
dissipative nature of the Poisson equation yields smooth stream
lines, avoiding unrealistic oscillations or abrupt changes in the
streamlines direction. For the same reason, the method is especially
suitable for extracting the streamlines when the velocity field is
affected by measurement noise.

In a two dimensional incompressible flow, the stream function
Y is related to the horizontal and vertical components of the
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velocity, u and v, respectively:

alp
alp

Introducing Eq. (B.1) and (B.2) into the vorticity definition
ov au

(=5 W (B.3)
the next Poisson equation for the stream function appears

Y Py

a T b @4

With the appropriate boundary conditions for v, Eq. (B.4) can be
solved and the streamlines computed from the isovalue lines of
the stream function.

In the present work, centred finite differences have been used
for the discretization of the spatial derivatives in a rectangular
mesh not necessarily homogeneous

Uijr1 Ujj

Vig1j Vi
i~ B.5
C"l Ax; +AXxi_q Ay] + ij—l (B-5)
P L@ W 56
X2 |ij  AXi_1+AX \OX |iv1/2 X |i—1)2),
y? iy A1 +AY\oy lijra O lij—aj

where the indices (ij) refer to the position (x;y;) of a node in the
computational mesh, and (i+1/2,), (i 1/2,), and so on, account
for discretizations placed in intermediate positions between
nodes; for example:

& & Vi Vi (B.8)
X [i1(1/2) Ax; '
% ~ lpi\]#l ‘pij (B.9)
W lij+/2) Ay; ’

Note that Ax;=X;+1 X, Ax; 1=X X 1, Ayj=yj+1 y; and
Ay; 1=y; y; 1 are the horizontal and vertical separation of
consecutive nodes. In a homogeneous mesh Ax; and Ay; are
constant regardless the node position and the discretization
becomes second order accurate. It is assumed that the dense phase
does not penetrate the walls and the distributor. Therefore, these
boundaries are defined by a single value of \, which is arbitrarily
assigned to zero. The value of s at the upper part of the bed, i.e. the
free board, can be readily calculated integrating Eq. (B.2) (or its
discretized version as in (B.5)) along horizontal direction.

With the described discretization of spatial derivatives,
Eq. (B.4) can be expressed as

(a+brc+dyy; apiq; biq; clijor dij =y

where,

(B.10)

a= 2 1
- Ax;+Axi_1 Ax;

2 1

b= AXI‘—FAXF] AX,‘,]

e 2 1
- ij+ij,1 Ay]

de-_ 2 1
B Ayj+Ay;_1 Ayj_4

The expression (B.10) conforms a system of equations, each one
accounting for a node point (ij), that can be solved with a
standard matrix inversion procedure such as Gauss Seidel or
SOR methods. The above simple approximations of derivatives
are not computationally demanding and provide satisfactory
results for the fluidized beds tested. Obviously more precise and
sophisticated techniques can be used for the solution of Eq. (B.4).
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