
Analysis of Location Prediction Performance of LZ Algorithms

Using GSM Cell-based Location Data

Alicia Rodriguez-Carrion, Carlos Garcia-Rubio, Celeste Campo, Alberto Cortés-Martín, Estrella Garcia-Lozano,
Patricia Noriega-Vivas

Department of Telematic Engineering
University Carlos III of Madrid

Leganés (Madrid), Spain
e-mail: {arcarrio, cgr, celeste, alcortes, emglozan, pnoriega}@it.uc3m.es

Abstract—Predictions about users' next locations allow
bringing forward their future context, thus having additional
time to react. To make such predictions, algorithms capable of
learning mobility patterns and estimating the next location are
needed. This work is focused on making the predictions on
mobile terminals, thus resource consumption being an
important constraint. Among the predictors with low resource
consumption, the family of LZ algorithms has been chosen to
study their performance, analyzing the results drawn from
processing location records of 95 users. The main contribution
is to divide the algorithms into two phases, thus being possible
to use the best combination to obtain better prediction
accuracy or lower resource consumption.

Keywords-location; prediction; LZ;

I. INTRODUCTION

Many applications are based on users’ current context,
but sometimes this is not enough. If the application reacts
when the current context changes and the task to carry out
due to the change takes some time to complete, then the
result of this reaction may not come in time. Even more,
reacting too late to context changes may make the user
experience worse by showing information out of context or
performing unexpected actions for the user. To solve these
situations we could add information about the most probable
next context, so that those applications would have more
time to make the necessary adjustments and be ready when
the user’s context actually changes.

This work is focused on a particular aspect of users’
context, their location, thus aiming to offer services based on
users’ future destinations. More precisely, we are going to
study some tools for estimating those future locations: the
so-called location prediction algorithms.

Location predictions may be an interesting improvement
for ubiquitous computing applications, such as Location
Based Services (LBSs). The prediction of user’s next
location would allow providing services related not only to
the user’s current location, but also to her future destinations.
This way the user could be aware about information of a
certain place (restaurant, museum) and decide whether to
stop by that place or not right before getting there. The
mobile phone itself may also be aware of the user’s future
location, thus being able interact with that location (e.g. an

office or home) so it is prepared somehow when the user gets
there (computer, lights or heat turned on).

We are also interested in learning and predicting using
the mobile terminal itself because of several reasons,
namely: (i) the advantages drawn from the fact that each user
(terminal) learns and predicts her location, thus making the
process distributed (with respect to the option of the network
doing all the work); (ii) the improvement in privacy, since
there is no need for sending location data through the
network (the device obtains that information and process it);
and (iii) the possibility of choosing the preferred technology
for location tracking among the many ones integrated in
mobile devices (GPS, WiFi or GSM/MTS…).

Taking into account the limited resources of mobile
devices and the goal of increasing the number of correct
predictions, our work is focused on the LZ family, a set of
three compression algorithms: LZ [1], LeZi Update [2] and
Active LeZi [3]. The interest in these algorithms is due to
their ability to make real time predictions without consuming
many resources, thus being good candidates to be executed
on mobile devices. In addition to that, they are able to adapt
to routine changes, which is an interesting feature taking into
account the variability of user’s behaviors.

One of the main contributions of our research is the new
approach followed when analyzing these algorithms. Instead
of considering them as a block process, we split each one
into two independent phases: tree updating scheme and
probability calculation method. This approach allows
studying which instance of each phase is the best for
reducing error rate and achieving the lowest resource
consumption. We discuss the working principles of these
predictors and how to make this separation in section II.

In section III we present the results obtained after
evaluating the combination of different instances of each
phase, regarding both error rates and resource consumption.
The analysis is based on GSM location records, but there are
similar analysis using Wi-Fi data [4]. In a previous study [5]
we showed preliminary results obtained after processing 10
traces randomly chosen from a set of 95 users. The
contributions of the current work over [5] are: (i) the analysis
of the results obtained after processing of 95 users’ traces
using the prediction algorithms to validate the performance
evaluation results shown in the previous work; (ii) the
analysis of the results drawn from processing some mobility

traces we have recorded for comparing them with those of
the anonymous users; and (iii) the explanation of certain
unexpected results related to Active LeZi algorithm.

To finish the paper we summarize the main conclusions
along with some future research lines in section IV.

II. PREDICTION ALGORITHMS

In this section we study the working principles of the
three LZ family algorithms: LZ, LeZi Update and Active
LeZi. These algorithms are domain independent, meaning
that they consider each location as a different symbol
without taking into account any other information about that
location (as opposite to domain dependent algorithms, which
make their predictions based on location context information
such as coordinates or place function). They process a
symbol string, known as movement history or trace (L) that
represents the locations visited by the user. The predictions
made by these algorithms are based on two main hypotheses:
(i) user's mobility patterns are repetitive, thus movement
history being a stationary process; and (ii) user's movement
follows a probabilistic model, and therefore L is also a
stochastic process.

There are two main reasons for considering these
algorithms: (i) they do not need many resources, thus being
possible to execute them on mobile devices; and (ii) they
take into account changes in user's behavior, therefore if a
user usually visits certain places and at some point starts
visiting other locations, the algorithm will realize this change
and make the predictions according to the new routine.

Along this section we describe the aforementioned
algorithms, highlighting the possibility of splitting each one
into two independent phases as described later in the section.

A. LZ algorithm

This is the base algorithm and works as follows [1]. Let
γ be the empty string and L the input movement history. LZ
algorithm takes L and splits it into substrings s0s1…sm such
that s0 =γ and for all j≥1 the prefix of substring sj (i.e. all
but the last character of sj) is equal to some previous si, for
all i<j . The division is made sequentially, so that when each
si is parsed, then the algorithm considers only the remaining
trace. In order to store these substrings (patterns) in an
efficient way, LZ algorithm builds the so called LZ tree, each
node of which representing a pattern and storing the number
of times that substring appears among the parsed patterns.

After updating the tree, the next step is to calculate the
probability for each known symbol to be the corresponding
to the next location. In order to do that, LZ algorithm uses an
approach proposed by Vitter [6]. Finally, LZ algorithm
chooses the symbol with the highest probability of being the
corresponding to the next location.

LZ algorithm has three main drawbacks: (i) patterns
between two parsed substrings are lost; (ii) patterns
contained within substrings parsed by LZ scheme are also
lost; and (iii) Vitter method cannot make any prediction
when a pattern is detected for the first time, since it has not
enough information. The two next algorithms try to
overcome these limitations.

B. LeZi Update algorithm

Bhattacharya and Das [2] propose to make the same
parsing of LZ algorithm, but instead of adding just the
substrings resulting from this parsing, LeZi Update adds also
all the suffixes of each substring to the LZU tree. Therefore
patterns within substrings are also taken into account.

Regarding probability calculation method, LeZi Update
algorithm uses PPM (Prediction by Partial Matching [7]) and
applies what is known as exclusion technique [2]. This
algorithm solves the problems posed by Vitter approach, and
the probability estimations are based on more information.

C. Active LeZi algorithm

The algorithm proposed by Gopalratnam [3] is intended
to consider the substrings among consecutive parsed patterns
when building the so called ALZ tree, thus solving the
remaining problem of LZ algorithm. In order to achieve this,
Active LeZi uses a window of variable length, which is
determined by the longest pattern parsed by LZ algorithm at
each step. Once the length of the window is updated (if
needed) and the new symbol is added to it, all the suffixes of
the window are added to the tree.

The probability calculation process is based on PPM
algorithm as before, but in this case exclusion method is not
applied. With Active LeZi algorithm all the initial problems
are solved at the expense of increasing the information
stored, and therefore memory and time resources required, as
we will see in the next section.

D. Our proposal

After describing each algorithm, we may realize that they
share a common structure. Every algorithm takes each new
symbol, processes it to update the corresponding tree and
finally calculates some probabilities. Therefore, we can
distinguish two stages: (i) tree updating scheme, which
processes each new symbol and updates the corresponding
tree, which is in charge of storing user’s mobility patterns;
and (ii) probability calculation method, which takes the
data of the updated tree to estimate the probability of each
known symbol to be the corresponding to the next location.
Once all the probabilities are calculated, the prediction
would be the symbol with the highest probability.

This division allows studying each step separately and
determining its impact on the performance. Some results
derived from processing several traces with all the possible
combinations will be shown in the next section.

III. PERFORMANCE EVALUATION

In this section we show some results obtained from
processing mobility traces with the algorithms described in
section II. The analysis will be focused on hit rate as well as
the memory usage and processing time. But before starting
with the performance analysis, a description of the mobility
data used is provided.

A. Data collection analysis

The set of algorithms explained in section II deals with
symbols representing the locations visited by the user. In
order to obtain those symbols, two steps are needed. The first

step is to gather location-related information, using any of
the several technologies integrated in almost every mobile
device nowadays and which retrieves this information. We
have chosen location data based on GSM network
information. Devices can record the base station (BS) to
which they are connected every time. The BS a user is
connected to changes as she moves so that the movement can
be followed by tracking the BS series the user has been
connected to. Although it is the option with worst location
accuracy (with respect to Wi-Fi or GPS), GSM network
provides global coverage even in indoor environments, and
implies the lowest power consumption. During the second
step the location information extracted from the GSM
network is translated into symbols in the following way. The
network splits the space into cells, each one identified by a
Location Area Code (LAC) and a cell identifier. These two
parameters can be translated into a unique symbol that
represents the zone covered by the cell. Therefore each time
the terminal changes from one cell to another, the device
records the new location represented by its corresponding
symbol.

In order to evaluate the predictors’ performance we have
analyzed two different datasets made up of GSM-based
location data. The first one comprises the trace we have
recorded, which stores the movements of a person who
makes a regular routine (going from home to work, then
going to a restaurant for having lunch, afterwards returning
to work and finally going back home) during four days,
generating a trace that gathers 2897 cell changes among 33
different cells. However, since we want to study the behavior
of the algorithms in general scenarios, we have considered
the Reality Mining Project dataset [8], which recorded the
movement history of 95 different anonymous users during
the 2004-2005 academic year.

B. Hit rate analysis

We are going to use the 9 combinations that can be made
with the three instances of each phase described in section II-
D to process the traces described above. Figure 1 represents
the percentage of traces (users) that attain, at least, the
corresponding averaged hit rate (number of predicted next
cell and actual next cell matches divided by the total number
of cell changes). For example, in the case of Active LeZi
(ALZ) algorithm combined with Vitter or PPM without
exclusion, 50% of users achieve, at least, an averaged hit rate
around 60%.

Figure 1. Comparison of hit rate attained when fixing the tree updating

scheme and varying the probability calculation method

Figure 2. Hit rate evolution when processing the 4 days trace with Active
LeZi updating scheme combined with each probability calculation method

For this first comparison we have fixed the updating
scheme, represented in each of the three subfigures, and
applied each probability calculation method. We can see that
PPM without exclusion method is the best one in all cases.
Vitter method results are very close to those of PPM without
exclusion, even being a much simpler calculation method
and thus consuming fewer resources, as we will see later. Hit
rate achieved by Active LeZi combined with PPM with
exclusion method is much lower than in the rest of the cases.
This same behavior can be also observed in our 4 days trace.
Figure 2 shows the evolution of hit rate along the 4 days,
considering Active LeZi updating scheme combined with the
three probability calculation methods. As it can be noticed,
hit rate achieved by Vitter method is very close to that
achieved by PPM without exclusion, whilst PPM with
exclusion hit rate remains much lower.

This last fact may be surprising, but if we take a deeper
look into the working principles of PPM with exclusion
method, the reason becomes clear. This method is focused in
assigning probabilities to complete patterns (set of
consecutive symbols), as we can see in [2], instead of
assigning probabilities to symbols (as done by PPM without
exclusion [3]). Active LeZi adds always the content of the
window (i.e. complete patterns) to the its tree whilst LeZi
Update or LZ adds incremental patterns that starts with one-
symbol patterns and increment their length as the trace is
analyzed. Therefore, whereas LeZi Update or LZ tree has
one-symbol patterns that can be evaluated by PPM with
exclusion, Active LeZi does not. Since we are only
interested, by now, in the next location, we only want the
probabilities of the next one-symbol patterns. Consequently,
the combination of LeZi Update or LZ and PPM with
exclusion provides good results, but Active LeZi does not
provide enough information to PPM with exclusion to make
correct predictions.

With respect to the comparison of updating schemes (i.e.
if we fix the probability calculating method and apply
different updating schemes), we can see in figure 3 that
Active LeZi (ALZ) is the best choice when working with
Vitter and even with PPM without exclusion, although the
differences in the last case are very small. LeZi Update
works better with PPM with exclusion because of what we

Figure 3. Comparison of hit rate attained when fixing the probability

calculation method and varying the tree updating scheme

have previously discussed. Without taking into account the
combination of Active LeZi with PPM with exclusion
method, the results are consistent with those shown in [4].
This conclusion could be foreseen since information
gathered by ALZ tree is greater with respect to LZU tree, and
the same applies to LZU tree with respect to LZ tree.

C. Resource consumption

Each of the two phases explained in section II-D has very
different effects related to resource consumption. Tree
updating scheme takes care of building the pattern tree, thus
being tightly coupled with memory consumption, whilst the
probability calculation is related to the processing time and
depends on the complexity of the method used.

Figure 4 represents the node count evolution of each tree
as each symbol of a single trace is processed. ALZ tree
grows much faster, whereas LZ and LZU tree sizes also
starts growing quickly but stops increasing so fast at a lower
level, achieving a size two orders of magnitude lower than
ALZ tree in the end. This shows that Active LeZi scheme
achieves the best hit rate in most cases at the expense of
much higher memory consumption, which may be
unacceptable for some applications.

With respect to processing time, Vitter method needs
much less time than PPM methods, which spend an
accumulated time (after processing an entire trace) even two
orders of magnitude larger than Vitter method. Therefore, if
applications using these algorithms are time sensitive, Vitter
method would be more convenient even having lower hit
rate.

Figure 4. Node count of different trees (log scale)

IV. CONCLUSIONS

Along this paper we have evaluated three LZ family
algorithms (LZ, LeZi Update and Active LeZi), by
separating them into two independent phases, and taking into
account hit rate and resource consumption. The following
conclusions can be drawn from this work: (i) Active LeZi
updating scheme achieves the highest hit rate at the expense
of being the highest memory consumer; (ii) the best
probability calculation method depends on the updating
scheme and the trace to be processed: PPM methods are
usually the best ones, whereas Vitter method is much faster.

With respect to the analysis done in [5] we have
considered an entire set of 95 anonymous users’ as well as
controlled traces we have recorded. Regarding Song’s work
[4], we have studied the algorithms as two independent
phases, we have included Active LeZi algorithm, and used
GSM-based traces, thus covering a countrywide area. It
would be interesting to consider Markov models in future
works to check if order-2 Markov model achieves better
results than LZ algorithms as showed in [4] (where a campus
wide network was considered) when processing country
wide location data. It would also be interesting to study,
among others, the following topics: (i) how to include time
information in the predictions to know also when the user
will move; (ii) how to filter cell changes when user does not
move; and (iii) to study the energy consumption associated
to the execution of the algorithms on the terminals.

ACKNOWLEDGMENT

This work has been partially supported by the project
España Virtual, led by DEIMOS Space and funded by CDTI
as part of the Ingenio 2010 program.It has been also partially
supported by the Spanish Ministry of Science and Innovation
through the CONSEQUENCE project (TEC2010-20572-
C02-01) and partially founded by UC3M and DGUI in the
framework of the project CCG10-UC3M/TIC-4992.

REFERENCES
[1] J. Ziv and A. Lempel, “Compression of individual sequences via

variable-rate coding,” IEEE Trans. Inf. Theory IT-24, 5, pp. 530–536,
Sep 1978.

[2] A. Bhattacharya and S. K. Das, “LeZi-update: an information-
theoretic framework for personal mobility tracking in PCS networks,”
ACM/Kluwer Wireless Networks J. 8, 2- 3, pp. 121–135, Mar 2002.

[3] K. Gopalratnam and D. J. Cook, “Online sequential prediction via
incremental parsing: The Active LeZi algorithm,” IEEE Intell. Syst.
22, 1, pp. 52–58, Jan/Feb 2007.

[4] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating Next-Cell
Predictors with Extensive Wi-Fi Mobility Data,” IEEE Transactions
on Mobile Computing 5, 12, pp. 1633– 1649, Dec 2006.

[5] A. Rodriguez-Carrion, C. Garcia-Rubio, and C. Campo,
“Performance evaluation of LZ-based location prediction algo- rithms
in cellular networks,” Comm. Letters. 14, pp. 707– 709, August 2010.

[6] J. S. Vitter and P. Krishnan, “Optimal prefetching via data
compression,” Journal of the ACM 43, 5, pp. 771– 793, Sep 1996.

[7] J. G. Cleary and W. J. Teahan, “Unbounded length contexts for
PPM,” in The Computer Journal, pp. 52–61, 1997.

[8] N. Eagle, A. Pentland, and D. Lazer, “Inferring Social Network
Structure using Mobile Phone Data,” Proceedings of the National
Academy of Sciences (PNAS) 106, 36, pp. 15 274–15 278, 2009.

