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Robust Henderson III Estimators of Variance

Components in the Nested Error Model

Betsabé Pérez, Daniel Peña and Isabel Molina

December 23, 2011

1 Introduction

In the last decades linear mixed models have received considerable attention in the lit-

erature from a practical and theoretical point of view (e.g. McCulloch and Searle [14],

Verbeke and Molenberghs [23], Demidenko [3]). These models are frequently used in

many fields such as small area estimation or longitudinal studies because they model

adequately the within-subject correlation typically present in these type of data. Other

fields of application include clinical trials (Vangeneugden et al. [22]) and environmental

studies (Wellenius et al. [24]). Despite the many different applications of these models,

still diagnostic methods are not so well developed. Christensen et al. [2] studied case

deletion diagnostics. Banerjee and Frees [1] studied case deletion and subject deletion

diagnostics. Galpin and Zewotir [5] and [6] extended some diagnostic tools of ordinary

linear regression, such as residuals, leverages and outliers to LMMs when the variances

of the random factors are known. In practice, however, these variances are unknown and

need to be estimated from sample data. If sample data are contaminated, then the esti-

mation of variance components might be seriously affected and this will in turn affect all

diagnostic tools. Given the importance of adequately estimating variance components, we

introduce new robust estimators of variance components based on Henderson method III.

This method has been chosen for three reasons; first, because it provides explicit formulas

for the estimators, avoiding iterative procedures and the need for starting values and re-

ducing the computational time; second, because it does not need any assumption on the

shape of the probability of the distribution apart from the existence of first and second

order moments; third, the estimation procedure consists simply of solving two standard
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regression problems. These estimators can later be used to derive robust estimators of

regression coefficients. Finally, we describe an application of this procedure to small area

estimation, in which the main target is the estimation of the means of areas or domains

when the within-area sample sizes are small.

2 Linear model with random effects

Let us consider sample data that come from D different populations groups. Suppose

that there are nd observations from group d, d = 1, . . . , D, where n =
∑D

d=1 nd is the

total sample size. Denote ydj the value of the study variable for j-th sample unit from

d-th group and xdj a (column) vector containing the values of p auxiliary variables for the

same unit. The model at individual level is given by

ydj = xTdjβ + ud + edj j = 1, . . . , nd d = 1, . . . , D. (1)

where β is the p× 1 vector of fixed parameters, ud is the random effect of d-th group and

edj is the model error. Random group effects and errors are supposed to be independent

with distributions

ud
iid∼ N(0, σ2

u) and edj
iid∼ N(0, σ2

e).

Observe that under this model, in contrast with model (3.1), the means of the observations

are not affected by the group effect ud since E(ydj) = xTdjβ. However, the random group

effects induce a (constant) correlation between all pairs of observations in the same group,

because cov(ydj, ydk) = σ2
u for k 6= j. Still, observations in different groups are uncorre-

lated. Stacking the elements of the model in columns, we obtain y = (y11, y12, . . . , yDnD
)T

of size n, u = (u1, u2, . . . , uD)T of size D and e = (e11, e12, . . . , eDnD
)T of size n. In turn,

concatenation of the predictor vectors gives the n× p matrix X = (x11,x12, . . . ,xDnD
)T .

Additionally, we define the n×D block diagonal matrix

Z =


1n1 0 · · · 0

0 1n2 · ...
... · . . . 0

0 · · · 0 1nD


where here, 1nd

denotes a vector of ones of size nd. Then, in matrix notation, the model

can be written as

y = Xβ + Zu + e, u ∼ N(0, σ2
uID), e ∼ N(0, σ2

eIn). (2)
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The expectation and covariance matrix of y are given by

E(y) = Xβ and var(y) = σ2
uZZT + σ2

eIn = V.

which means that

y ∼ N(Xβ, σ2
uZZT + σ2

eIn)

Let us define the vector of variance components θ = (σ2
u, σ

2
e)
T . When θ is known, Hender-

son [32] obtained the Best Linear Unbiased Estimator (BLUE) of β and the Best Linear

Unbiased Predictor (BLUP) of u, which are defined respectively as

β̃ = (XTV−1X)−1XTV−1y, (3)

ũ = σ2
uZ

TV−1(y −Xβ̃). (4)

3 Estimation of variance components

The estimator (3) and the predictor (4) depend on θ, which in practice is unknown and

needs to be estimated from sample data. The empirical versions of (3) and (4), called

EBLUE and EBLUP respectively, are obtained by replacing a suitable estimator θ̂ for θ

in (3) and (4) and are given by

β̂ = (XT V̂−1X)−1XT V̂−1y, (5)

û = σ̂2
uZ

T V̂−1(y −Xβ̂), (6)

where the hat over V indicates that θ has been replaced by its estimator θ̂.

Traditional methods for estimating variance components include those based on the like-

lihood, namely maximum likelihood (ML) and restricted/residual ML (REML), and a

moments method called Henderson method III, see e.g., Searle et al. [21]. However, when

outliers are present, these methods may deliver estimators with poor properties. Below

we briefly review each of these methods.

3.1 Maximum likelihood

Maximum likelihood estimation is usually carried out under the assumption that y has a

multivariate normal distribution. Under this assumption, the joint likelihood is given by

f(β, θ|y) = (2π)−
n
2 |V|−1/2exp

{
−1

2
(y −Xβ)TV−1(y −Xβ)

}
.
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The joint log-likelihood is

`(β, θ|y) = ln(f(β, θ|y)) = c− 1

2
[ln |V|+ (y −Xβ)TV−1(y −Xβ)],

where c is denotes a constant. Using the relations

∂ ln |V|
∂θ

= tr

{
V−1∂V

∂θ

}
and

∂V−1

∂θ
= −V−1∂V

∂θ
V−1,

The first order partial derivatives of ` with respect to β, σ2
u and σ2

e are

∂`(β, θ|y)

∂β
= XTV−1(y −Xβ),

∂`(β, θ|y)

∂σ2
u

= −1

2
tr
{
V−1ZZT

}
+

1

2
(y −Xβ)TV−1ZZTV−1(y −Xβ),

∂`(β, θ|y)

∂σ2
e

= −1

2
tr{V−1}+

1

2
(y −Xβ)TV−1V−1(y −Xβ),

and equating them to zero we obtain the equations

XTV−1y = XV−1Xβ, (7)

tr{V−1ZZT} = (y −Xβ)TV−1ZZTV−1(y −Xβ), (8)

tr{V−1} = (y −Xβ)TV−1V−1(y −Xβ). (9)

Solving for β in (7), we obtain the ML estimating equation for β,

β̂ = (XTV−1X)−1XTV−1y,

where here V depends on the ML estimator of θ = (σ2
u, σ

2
e)
T . Equations (8) and (9) do

not have analytic solution and need to be solved numerically by iterative methods such

as Newton-Raphson or Fisher-scoring.

3.2 Restricted maximum likelihood

A criticism of ML estimators of variance components is that they are biased downward,

because they do not take into account the loss in degrees of freedom from the estimation

of β. REML method corrects for this problem by transforming y into two independent

vectors, y1 = K1y and y2 = K2y. The probability density function of y1 does not depend

on β and it holds E(y1) = 0, which means that K1X = 0. On the other hand, y2 is

independent of y1, which means that K1VK
T
2 = 0. The matrix K1 is chosen to have

maximum rank, i.e. n − p, so the rank of K2 is p. The likelihood function of y is the

product of the likelihoods of y1 and y2. The variance components coming from the REML
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approach are the ML estimators of these parameters based on y1. Similarly to the ML

case, the obtained equations do not have analytic solutions and need to be solved using

iterative techniques such as EM algorithm, Fisher-scoring or Newton-Raphson methods.

Jennrich and Schluchter [25] compared the performances of the three algorithms and noted

the following: (1) direct comparison of these algorithms in terms of required computational

burden is difficult, because this depend to a large degree of how efficiently the algorithms

are coded. (2) Newton-Raphson algorithm, with a quadratic convergence rate, generally

converges in a small number of iterations, with a higher cost per iteration. (3) EM method

has the lowest cost per iteration, but at times requires a large number of iterations. (4)

Fisher-scoring algorithm is intermediate in terms of cost per iteration and required number

of iterations. However, its cost per iteration is often not much smaller than that of Newton-

Raphson algorithm, whereas Fisher-scoring algorithm sometimes requires a considerably

larger number of iterations than Newton-Raphson algorithm. Lindstrom and Bates [26]

provided arguments favoring the use of Newton-Raphson method.

3.3 Henderson method III

ML and REML estimators of θ are usually based on the assumption that the vector y has a

multivariate normal distribution, although they remain consistent even when normality is

not satisfied exactly under some regularity conditions (Jiang, [10]). An alternative method

which does not rely on normality and provides explicit formulas for the estimators of the

variance components is Henderson method III (H3). This method works as follows. First,

consider a linear mixed model y = Xβ + e, where β might contain fixed and random

effects. Let us split β into two subvectors β1 and β2 and define the full model as

y = X1β1 + X2β2 + e. (10)

The partition in sum of squares of model (10) is given by

SSR (β1,β2) = yTX(XTX)−1Xy,

SSE (β1,β2) = eTe = [(In −X(XTX)−1X)y]T [(In −X(XTX)−1X)y],

SST (β1,β2) = yTy,

(11)
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with their corresponding expected values given by

E[SSR (β1,β2)] = tr


 XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

E(ββT )

+ rank(X)σ2
e ,

E[SSE (β1,β2)] = [n− rank(X)]σ2
e ,

E[SST (β1,β2)] = tr


 XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

E(ββT )

+ nσ2
e .

(12)

Now consider the reduced model with only β1,

y = X1β1 + ε. (13)

Analogously, the partition in sum of squares of model (13) is given by

SSR (β1) = yTX1(XT
1 X1)−1X1y,

SSE (β1) = εT ε = [(In −X1(XT
1 X1)−1X1)y]T [(In −X1(XT

1 X1)−1X1)y],

SST (β1) = yTy,

(14)

with their corresponding expected values

E[SSR (β1)] = tr


 XT

1 X1 XT
1 X2,

XT
2 X1 XT

2 X1(XT
1 X1)−1XT

1 X2

E(ββT )

+ rank(X1)σ2
e ,

E[SSE (β1)] = tr{XT [In −X1(XT
1 X1)−1XT

1 ]T [In −X1(XT
1 X1)−1XT

1 ]XE(ββT )}

+ [n− rank(X)]σ2
e ,

E[SST (β1)] = tr


 XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

E(ββT )

+ nσ2
e .

(15)

The reduction in sum of squares due to introducing X2 in the model with only X1 is

SSR(β2|β1) = SSR(β1,β2)− SSR(β1). (16)

The expectation of this reduction is given by

E[SSR (β2|β1)] = tr{XT
2 [In −X1(XT

1 X1)−1XT
1 ]X2E(ββT )}

+ [rank(X)− rank(X1)]σ2
e .

(17)

Now consider model (1) and rewrite it as (10) taking β1 = β, β2 = u, X1 = X and

X2 = Z. This method equates the sum of squares SSR(β1,β2) in (14) and SSR(β2|β1) in

(16) to their expectations in (12) and (17) respectively, obtaining two equations. Solving

for σ2
e and σ2

u in the resulting equations, we obtain unbiased estimators for σ2
e and σ2

u

6



(for more details see [21], chapter 5). Let ê and ε̂ be the vectors of residuals obtained by

fitting the two models (10) and (13) respectively, considering β2 as fixed. If rank(X) = p

and rank(X|Z) = p + D, then the Henderson III estimators of the variance components

are given by

σ̂2
e,H3 =

∑D
d=1

∑nd

j=1 ê
2
dj

n− p−D
, σ̂2

u,H3 =

∑D
d=1

∑nd

j=1 ε̂
2
dj − σ̂2

e(n− p)
tr {ZT [I−X(XTX)−1XT ]Z}

, (18)

where êdj is the residual corresponding to observation (xTdj, ydj) in model (10) and ε̂dj is

the corresponding in model (13).

4 Diagnostic methods

Limited work has been done on diagnostic methods for linear mixed models. Christensen

et al. [2] considered the case deletion diagnostics and Galpin and Zewotir [6] provided

a definition of residuals, leverages and outliers when some variance components are known.

Fitted values of the response variable are

ŷ = Xβ̂ + Zû,

and residuals are then

ê = y − ŷ = Ry,

with R = V−1 −V−1X(XTV−1X)−1XTV−1.

Studentized residuals (internal studentization):

tdj =
êdj√

var(êdj)
=

êdj
σ̂e
√
rdj

where rdj is the dj-th diagonal element of matrix R and edj is the dj-th element of vector

ê = Ry.

Studentized residuals (external studentization): Let σ̂e(dj) denote the estimate of

σe when the dj -th observation is deleted. If σ̂2
e(dj) is used in place of σ̂2

e we obtain the

dj -th externally Studentized residual, given by

t∗dj =
êdj

σ̂e(dj)
√
rdj
.

The estimator t∗dj satisfies that t∗2dj ∼ n−1
n−p−1

F (1, n − p − 1) where F (1, n − p − 1) is an

F -distribution with degrees of freedom 1 and (n− p− 1).

7



Note that element the rdj used to standardized residuals depends on the variance com-

ponents σ2
e and σ2

u, which are unknown. When there are outliers, these might affect the

estimators of variance components, and these estimators will change the distribution of

standarized residuals.

To illustrate this, we have simulated data from model (1), with D = 15 groups and total

sample size n = 2500. The theoretical values of the variance components are σ2
e = 0.5 and

σ2
u = 0.5. In order to increase the estimator of the error variance σ2

e , we introduced atyp-

ical data on y as mean shifts, by increasing the values of the some of the response values

by k times the theoretical standard deviation with k = 5. Index plots of internally studen-

tized residuals, using the true variance components and the estimated ones, appear in the

left and right panels of Figure 1 respectively. This example illustrates how the estimation

of variance components affect the studentized residuals. On the right plot obtained with

estimated variances, all residuals appear in the interval (-2.5,2.5); as a consequence, us-

ing the standard rule applied to these residuals, outlying observations will not be detected.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

-1
5

0
-1

0
0

-5
0

0
5

0
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0
0

1
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0

O b s e rva tio ns

R
e

s
id

u
a
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(a) Variance components known

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

-2
-1

0
1

2

O b s e rva tio ns

R
e

s
id

u
a

ls

(b) Henderson III

Figure 1: Internally studentized residuals (a) using the true variance components and

(b) when they are estimated using H3 method.
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Leverage effect in the nested-error model

Assuming that θ is known, the vector of predicted values is

ỹ = (I−R)y (19)

This relation evokes the definition of the Hat matrix, as

Hỹ = I−R.

The diagonal elements (1 − rdj) of this matrix are measures of the leverage effect of the

observations and are called leverages. Galpin and Zewotir [6] proposed the use of the

rdjs to identify influential observations. If rdj approaches zero, this indicates that the

corresponding observation has a large leverage effect.

Due to the grouped data structure in linear mixed models with one random factor, it

seems more relevant to study the leverage effect of groups instead of that of isolated

observations. The leverage effect of group d is defined here as

hd = xTd (XTV−1X)−1xd, , d = 1, . . . , D (20)

where xd = n−1
d

∑nd

j=1 xdj. In practice, V could be estimated using the robust variance

components estimators described in the next section.

5 Robust Henderson method III

Consider the linear regression model with random effects given in (1). The estimators of

variance components obtained by Henderson method III (H3 estimators) are given by

σ̂2
e,H3 =

∑D
d=1

∑nd

j=1 ê
2
dj

n− (p+D)
, σ̂2

u,H3 =

∑D
d=1

∑nd

j=1 ε̂
2
dj − σ̂2

e(n− p)
tr {ZT [I−X(XTX)−1XT ]Z}

, (21)

where êdj is the residual corresponding to observation (xTdj, ydj) in the full model (10) with

group effects assumed to be fixed and ε̂dj is the corresponding residual in the reduced

model (13).

Remark 1 Henderson III estimators are scale equivariant, that is,

σ̂e,H3(cy) = |c|σe,H3(y) and σ̂u,H3(cy) = |c|σu,H3(y).

.
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The estimator σ̂2
e,H3 can be expressed as

σ̂2
e,H3 = σ̂2

e,H3(y) =
SSE(β∗)

n− rank(X∗)
=

yT (In −H∗)y

n− (p+D)

where H∗ = X∗(X∗TX∗)−1X∗T , X∗ = (X|Z) and β∗ = (βT ,uT )T .

Then,

σ̂e,H3(cy) =

√
(cy)T (In −H∗)(cy)

n− (p+D)

=

√
c2yT (In −H∗)y

n− (p+D)

= |c|

√
yT (In −H∗)y

n− (p+D)

= |c|σ̂e,H3(y)

Therefore, the estimator σ̂e,H3 is scale invariant. Now we check that σ̂u,H3 is also scale

equivariant.

The estimator σ̂2
u,H3 is given by

σ̂2
u,H3 = σ̂2

u,H3(y) =
SSE(β)− σ̂2

e,H3(n− p)
tr[ZT (In −H)Z]

=
y(In −H)y −

[
yT (In−H∗)y
n−(p+D)

]
(n− p)

tr[ZT (In −H)Z]

denoting m = tr[ZT (In −H)Z]

σ̂2
u,H3 =

1

m

{
y(In −H)y − n− p

n− (p+D)
yT (In −H∗)y

}
thus,

σ̂u,H3(y) =

√
1

m

{
yT (In −H)y − n− p

n− (p+D)
yT (In −H∗)y

}
Then,

σ̂u,H3(cy) =

√
1

m

{
(cy)T (In −H)(cy)− n− p

n− (p+D)
(cy)T (In −H∗)(cy)

}

=

√
c2

m

{
yT (In −H)y − n− p

n− (p+D)
yT (In −H∗)y

}

= |c|

√
1

m

{
yT (In −H)y − n− p

n− (p+D)
yT (In −H∗)y

}
= |c|σ̂u,H3(y)

10



Therefore, the estimator σ̂u,H3 is scale invariant.

Let us express Henderson III estimators in terms of the means of squared residuals

σ̂2
e,H3 =

n
[∑D

d=1

∑nd

j=1 ê
2
dj/n

]
n− (p+D)

, σ̂2
u,H3 =

n
[∑D

d=1

∑nd

j=1 ε̂
2
dj/n

]
− σ̂2

e(n− p)

tr {ZT [I−X(XTX)−1XT ]Z}
, (22)

We propose to robustify these estimators using, first, robust methods to fit the two models

(10) and (13) and, after that, replacing in (22) the means of squared residuals by other

robust functions.

Model (13) is a standard linear regression model, which can be robustly fitted using any

method available in the literature such as L1 estimation, M estimation or the fast method

of Peña and Yohai [30]. Model (10) is a model with fixed group effects, which can be

robustly fitted using an adaptation of the principal sensibility components method of

Peña and Yohai [30] to the grouped data structure. An alternative approach is the M-S

estimation of Maronna and Yohai [31].

These fitting methods will provide better residuals êdj and ε̂dj, which are in turn used to

find robust estimators of the variance components. Below we describe different estimators

based on robust functions of these new residuals.

MADH3 estimators: In the two estimators given in (22), we substitute the means of

squared residuals by the square of the normalized medians of absolute deviations (MAD),

given by

MAD = 1.481 median(|ξ̂dj|, ξ̂dj 6= 0),

where ξ̂dj is the residual of observation (xTdj, ydj) under the corresponding fitted model,

either (10) or (13).

TH3 estimators: Trimming consists of giving zero weight to a percentage of extreme

cases. In this case, in the two equations given in (22) we trim residuals that are outside

the interval (b1, b2) with

b1 = q1 − k(q3 − q1) and b2 = q3 + k(q3 − q1). (23)

11



Here, q1 and q2 are the first and third sample quartiles of residuals and k is a constant.

Based on results obtained from different simulation studies, we propose to use the constant

k = 2, just slightly smaller than that one used as outer frontier in the box-plot for detecting

outliers.

RH3 estimators: Instead of replacing extreme residuals by zero as in the previous pro-

posal, we can smooth residuals appearing in (22) according to an appropriate smoothing

function. Here we consider Tukey’s biweight function, given by

ϕ(x) = x[1− (x/k)2]2, if |x| ≤ k. (24)

In this case, the robust Henderson III estimators are given by

σ̂2
e,RH3 =

σ2
e,MAD

∑D
d=1

∑nd

j=1 ϕ
2(êdj/σe,MAD)

n− (p+D)
, (25)

σ̂2
u,RH3 =

σ2
u,MAD

∑D
d=1

∑nd

j=1 ϕ
2(ε̂dj/σu,MAD)− σ̂2

e,RH3(n− p)
tr{ZT (In −X(XTX)−1XT )Z}

. (26)

Remark 2 The function h(x) = σxϕ(x/σx) is scale invariant, where σx is a scale such

that σcx = cσx, c > 0. If we consider σx = MAD(x), let us verify that

MAD(cx) = cMAD(x), c > 0.

By definition MAD(x) = 1.4826 median(|x−median(x)|)

MAD(cx) = 1.4826 median(|(cx)−median(cx)|)

= 1.4826 median(|c|(x−median(x))|)

= |c|[1.4826 median(|x−median(x)|)]

= |c|MAD(x).

Since σc x = c σx, we have that

h(c x) = cσxψ

(
c x

cσx

)
= cσxψ

(
x

σx

)
= h(x).

Remark 3 RH3 estimators of σ2
e and σ2

u are scale invariant.

Consider the estimator σ̂2
e,RH3

σ̂2
e,RH3 =

σ2
e,MAD

∑D
d=1

∑nd

j=1 ϕ
2(êdj/σe,MAD)

n− (p+D)
=

√∑D
d=1

∑nd

j=1 h
2(êdj)

n− (p+D)
,

12



where h(·) is scale invariant. Therefore, σ̂e,RH3 is scale invariant.

Let m = tr{ZT (In −X(XTX)−1XT )Z}. The estimator σ̂2
u,RH3 is given by

σ̂2
u,RH3 =

1

m

{
σ2
ε,MAD

D∑
d=1

nd∑
j=1

ϕ2

(
ε̂dj

σε,MAD

)
− σ̂2

e,RH3(n− p)

}

=
1

m

{
D∑
d=1

nd∑
j=1

h2(ε̂dj)−
∑D

d=1

∑nd

j=1 h
2(êdj)

n− (p+D)
(n− p)

}
.

Similarly, since h(·) is scale invariant, σ̂u,RH3 is scale invariant.

5.1 Simulation experiment

This section describes a Monte Carlo simulation study that compares the robust esti-

mators of the variance components with the traditional non-robust ones. For this, we

generated data coming from D = 10 groups. The group sample sizes nd, d = 1, . . . , D

were respectively 20, 20, 30, 30, 40, 40, 50, 50, 60 and 60, with a total sample size of

n = 400. We considered p = 4 auxiliary variables, and they were generated from nor-

mal distributions with means and standard deviations coming from a real data set from

the Australian Agricultural and Grazing Industries Survey. Thus, the values of the four

auxiliary variables were generated respectively as X1 ∼ N(3.3, 0.6), X2 ∼ N(1.7, 1.2),

X3 ∼ N(1.7, 1.6) and X4 ∼ N(2.4, 2.6). The simulation study is based on L = 500 Monte

Carlo replicates. In each iteration, we generated group effects as ud
iid∼ N(0, σ2

u) with

σ2
u = 0.25. Similarly, we generated errors as edj

iid∼ N(0, σ2
e) with σ2

e = 0.25. Then we gen-

erated the model responses ydj, j = 1, . . . , nd, d = 1, . . . , D, from model (1). Observe that

in principle there is no contamination. Finally, we introduced contamination according

to three different scenarios:

A. No contamination.

B. Groups with a mean shift: A subset Dc ⊆ {1, 2, . . . , D} of groups was selected

for contamination. For each selected group d ∈ Dc, half of the observations were

replaced by cd1 = ȳd+k sY,d and the other half by cd2 = ȳd−k sY,d with k = 5, where

ȳd and sY,d are respectively the mean and the standard deviation of the outcome for

the clean data in d-th group. This increases the between group variability σ2
u.

C. Groups with high variability: A small percentage of contaminated observations was

introduced in each selected group d ∈ Dc, similarly as described in Scenario B. This

13



Table 1: Theoretical values σ2
u = σ2

e = 0.25. Scenario 0: No contamination.

Method Estimators Bias MSE

×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 0,24 0,25 -0,0081 0,0014 1,43 0,03

ML 0,22 0,25 -0,0298 -0,0011 1,16 0,03

REML 0,25 0,25 -0,0046 0,0014 1,32 0,03

MADH3 0,25 0,25 0,0041 0,0018 2,33 0,09

TH3 0,23 0,25 -0,0189 -0,0019 1,04 0,04

RH3 0,24 0,23 -0,0136 -0,0179 1,25 0,06

increases the within group variability σ2
e .

Then, we calculated the traditional estimators H3, ML and REML, and the proposed

robust estimators, MADH3, TH3 and RH3. After the L = 500 replicates, we computed

the empirical bias and mean squared error (MSE) of the estimators.

Table 1 reports the resulting empirical bias and percent MSE of each estimator under

Scenario A, without contamination. Observe in that table that in absence of outlying

observations, the traditional non-robust estimators, H3, ML and REML, provide the

minimum MSE, but the robust alternatives TH3 and RH3 are not too far away from them.

However, under Scenario B with full groups contaminated with a mean shift (Tables 2

and 3), the estimators ML, REML and H3 of σ2
u increase considerably their MSE. The

estimator TH3 achieves the minimum MSE, followed by RH3. Under Scenario C with

contamination introduced to make the within cluster variability increase (Tables 4 and

5), now the estimators ML, REML and H3 of σ2
e increase considerably their MSE whereas

the robust estimators resist quite well.

5.2 Discussion

This part introduces three robust versions of H3 estimators called MADH3, TH3 and

RH3 estimators. These estimators are obtained by first, fitting in a robust way the

two submodels (10) and (13) and, then, replacing the means of squared residuals in H3

estimators by other robust functions of the residuals coming from those robust fittings.

14



Table 2: Theoretical values σ2
u = σ2

e = 0.25. Scenario B: One outlying group.

Method Estimators Bias MSE

×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 1,28 0,24 1,0286 -0,0095 123,73 0,04

ML 1,15 0,24 0,9000 -0,0120 123,27 0,04

REML 1,28 0,24 1,0285 -0,0096 123,38 0,04

MADH3 0,44 0,23 0,1884 -0,0169 7,84 0,10

TH3 0,24 0,24 -0,0089 -0,0142 1,25 0,05

RH3 0,46 0,22 0,2106 -0,0277 6,04 0,10

Table 3: Theoretical values σ2
u = σ2

e = 0.25. Scenario B: Two outlying groups.

Method Estimators Bias MSE

×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 2,79 0,23 2,5375 -0,0242 715,98 0,08

ML 2,13 0,22 1,8807 -0,0266 495,49 0,10

REML 2,37 0,23 2,1179 -0,0242 500,14 0,08

MADH3 1,10 0,21 0,8529 -0,0437 91,67 0,25

TH3 0,27 0,22 0,0227 -0,0319 2,13 0,13

RH3 0,76 0,21 0,5088 -0,0412 31,52 0,19
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Table 4: Theoretical values σ2
u = σ2

e = 0.25. Scenario C: 10% of atypical observations

shared among groups.

Method Estimators Bias MSE

×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 0,23 0,60 -0,0175 0,3512 1,47 12,58

ML 0,21 0,60 -0,0397 0,3450 1,23 12,15

REML 0,24 0,60 -0,0144 0,3512 1,35 12,58

MADH3 0,28 0,27 0,0253 0,0198 2,78 0,14

TH3 0,24 0,25 -0,0073 -0,0012 1,17 0,04

RH3 0,22 0,30 -0,0266 0,0487 1,22 0,26

Table 5: Theoretical values σ2
u = σ2

e = 0.25. Scenario C: 20% of atypical observations

shared among groups

Method Estimators Bias MSE

×102

σ̂2
u σ̂2

e σ̂2
u σ̂2

e σ̂2
u σ̂2

e

H3 0,22 0,93 -0,0268 0,6814 1,50 47,19

ML 0,20 0,92 -0,0489 0,6719 1,32 45,89

REML 0,23 0,93 -0,0236 0,6814 1,39 47,19

MADH3 0,30 0,29 0,0473 0,0406 3,48 0,29

TH3 0,25 0,25 0,0045 0,0003 1,27 0,04

RH3 0,21 0,37 -0,0400 0,1151 1,18 1,35
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In simulations we have analyzed the robustness of our proposed estimators under two

different contamination scenarios: when the between groups variability is increased by

including a mean shift in some of the groups, and when the within group variability is

increased by introducing given percentages of outliers within the groups. The new robust

estimator RH3 achieves great efficiency under both types of contamination and at the

same time preserves good efficiency when there is not contamination.

6 Robust estimation of regression coefficients

This section deals with robust estimation of regression coefficients using the estimators of

variance components introduced above. These estimators are then used to derive robust

predictors of the means in small areas.

6.1 Small area estimators

Small area estimation is usually done under the setup of finite population. Thus, we

have a population U of size N that is assumed to be partitioned into D subpopulations

U1, . . . , UD of sizes N1, . . . , ND called small areas. Particular quantities of interest are the

means of the small areas,

Y d =
1

Nd

Nd∑
j=1

ydj, d = 1 . . . , D

A sample sd of size nd is drawn from Ud, d = 1, . . . , D. We assume that the model holds

for all population units, that is, for units in the sample and out of the sample. Under

this setup, the target area means are random. Therefore, is it common to say predicting

Y d rather than estimating Y d. The mean of small area d can be split into two terms, one

for the sample elements an the other for the out-of-sample elements, obtaining a linear

combination of the sample mean ysd and the out-of-sample mean yscd .

Y d =
1

Nd

∑
j∈sd

ydj +
∑
j∈scd

ydj

 =
nd
Nd

ysd +

(
nd
Nd

yscd

)
, d = 1 . . . , D

When studying outliers in finite population inference, the existing literature is developed

exclusively under one of the following assumptions:
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Assumption 1. Non representative outliers: We assume that atypical observations

appear only in the sample but not in the non-sample part of the population. Then, it

seems natural to project the working model into the entire non-sampled part of the popu-

lation. Chambers [27] call these type of outliers non-representative outliers. In this case,

the appropriate methods for estimating model parameters are called Robust Projective,

meaning that they project sample non-outlier behavior on to the non-sampled part of the

population.

Assumption 2. Representative outliers We assume that atypical observations ap-

pear in the sample and non-sample part of the population. In this case, robust projective

methods will provide biased estimators of the small area means; therefore, it is necessary

to correct for this bias using an appropriate correction factor.

Next section introduces two robust projective methods given in the literature, Fellner’s

approach and Sinha and Rao’s procedure.

6.2 Previous robust procedures

6.2.1 Fellner’s approach

Fellner [4] derived robust estimators of variance components and regression coefficients

β, together with a robust predictor of u, which could in turn be used to derive a robust

EBLUP. The joint probability density function of y is given by

f(β, θ|y) = (2π)−n/2|V|−1/2 exp

{
−1

2
(y −Xβ)TV−1(y −Xβ)

}
. (27)

Similarly, the joint density function of u = (u1, . . . , uD)T is

g(u;σ2
u) = (2πσ2

u)
−D/2 exp{−uTu/2}.

Assuming θ known, the BLUE of β and the BLUP of u can be obtained simultaneously

by maximizing the joint loglikelihood of y and u, ln f(β, θ|y,u) = ln f(θ|y) + ln g(u),

with respect to β and u. The resulting system of normal equations is given by XTX/σ2
e XTZ/σ2

e

ZTX/σ2
e I/σ2

u + ZTZ/σ2
e

 β
u

 =

 XTy/σ2
e

ZTy/σ2
e + (I/σ2

u)0D


Fellner’s method is based in the idea of replacing in these equations, observations ydi and

random effects ud that are far from their predicted values ŷdi = xTdjβ̂+ ûd and ûd by what
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he called pseudo-observations. More explicitly, Fellner’s method solves the system XTX/σ2
e XTZ/σ2

e

ZTX/σ2
e I/σ2

u + ZTZ/σ2
e

 β
u

 =

 XTy∗/σ2
e

ZTy∗/σ2
e + (I/σ2

u)0
∗
D

 , (28)

where y∗ = (y∗di, i = 1, . . . , nd, d = 1, . . . , D) with y∗di = xTdjβ̂ + ûd + σeψ(êdj/σe) and

0∗D = (ûd− σuφ(ûd/σu); d = 1, . . . , D) and ψ es an odd, monotonic and bounded function

such as Huber’s psi function.

Equations (28) assume that variance components are known, but Fellner [4] also gave

REML equations for variance components which, solved jointly with (28), yield also a

robust estimator of β together with a robust predictor of u. For this, he proposes to

robustify REML equations in the form

σ̂2
u = {h(D − v∗)}−1σ̂u

D∑
d=1

ψ2(ûd/σ̂u),

σ̂2
e = {h(n− p−D + v∗)}−1σ̂e

D∑
d=1

ψ2(êdj/σ̂e),

where h is an appropriately chosen constant to adjust for the bias in σ̂2
u and σ̂2

e at the

normal distribution. This leads to h = E{ψ2(X)}, where X ∼ N(0, 1).

6.2.2 REBLUP estimators

Sinha and Rao [28] proposed a two-step procedure for constructing robust estimators of

model parameters. The steps of the procedure are the following:

• Step 1. The estimators β̂
SR

and θ̂SR are obtained simultaneously based on robus-

tified ML equations.

• Step 2. The predictor ûSR is obtained using the estimators of Step 1.

In Step 1, the ML equations for β and θ are defined by

XTV−1(y −Xβ) = 0,

(y −Xβ)TV−1∂V

∂θ`
V−1(y −Xβ)− tr

{
V−1∂V

∂θ`

}
= 0, ` = 1, 2,

where θ` is the `-th element of θ = (σ2
u, σ

2
e)
T .
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If some fitted values ŷdj = xTdjβ̂ are unusually different from the corresponding observed

values ydj, then we have the indication of apparent outliers in the data. To handle outliers

in the response values, they proposed robustified ML equations in the form

XTV−1U
1
2 Ψ(r) = 0,

Ψ(r)TU
1
2 V−1∂V

∂θ`
V−1U

1
2 Ψ(r)− tr

{
KV−1∂V

∂θ`

}
= 0, ` = 1, 2,

where

r = U−
1
2 (y − Xβ), U = diag(V), K = E{ψ2

b (X)}In with X ∼ N(0, 1), Ψ(u) =

(ψb(u1), ψb(u2), . . .)T with ψb(u) = u ·min(1, b
|u|) and b = 1.345.

The complete algorithm for robust estimation of β and θ is:

1. Choose starting values β(0) and θ(0). Set m = 0.

2. (a) Calculate β(m+1). (b) Calculate θ(m+1). (c) Set m = m+ 1.

3. Repeat until convergence is achieved. Denote the estimates at convergence as β̂
SR

and θ̂SR.

In Step 2, the predictor ûSR is obtained using the estimators of β and θ obtained in Step

1 and solving the following robustified equation

σ̂e ZTΨ {(y −Xβ − Zu)/σ̂e} − σ̂uΨ(u/σ̂u) = 0

Sinha and Rao [28] proposed to solve this equation using the Newton-Raphson method.

Finally, the Robust EBLUPs (REBLUPs) of the small area means are given by

Ŷ
SR

d =
1

Nd

∑
j∈sd

ydj +
∑
jεscd

ŷSRdj

 , d = 1, . . . , D

where ŷSRdj = xTdjβ̂
SR

+ ûSRd .

Some comments

The Newton-Raphson procedure is a commonly used iterative method for the solution

of nonlinear equations. To solve the equation h(t) = 0, at each iteration the function h

is linearized in the sense that it is replaced by its Taylor expansion of order one about
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the current approximation. Let us denote by tm the m-th approximation. Then the next

value is the solution of

h(tm) + h′(tm)(tm+1 − tm) = 0

that is,

tm+1 = tm − h(tm)

h′(tm)

If the procedure converges, the convergence is very fast; but it is not guaranteed to

converge. If h′ is not bounded away from zero, the denominator may become very small,

making the sequence tm unstable unless the initial value t0 is very near to the solution

(Maronna et al., [29]).

6.3 Procedure using RH3

We propose a two-step procedure that provides robust estimators of model parameters

based on the robust estimators of variance components given in (5).

• Step 1. Obtain the estimator θ̂RH3 using the robustified version of Henderson

Method III given in (25) and (26).

• Step 2. Obtain the estimator β̂
RH3

and the predictor ûRH3 similarly as in Sinha

and Rao [28], solving the robustified normal equations (28).

Then, the new robust EBLUPs, called here RH3-EBLUPs of the small area means are

given by

Ŷ
RH3

d =
1

Nd

∑
j∈sd

ydj +
∑
jεscd

ŷRH3
dj

 , d = 1, . . . , D

where ŷRH3
dj = xTdjβ̂

RH3
+ ûRH3

d .

6.4 Simulation experiment

In this simulation study we generated data coming from D = 30 groups. Concerning the

group sample sizes, half of them were taken of size nd = 10 and the other half of size

nd = 20, with a total sample size of n = 450. We considered p = 4 auxiliary variables, and

they were generated from normal distributions with means and standard deviations com-

ing from a real data set from the Australian Agricultural and Grazing Industries Survey.
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More concretely, the values of the four auxiliary variables were generated respectively as

X1 ∼ N(3.31, 0.68), X2 ∼ N(1.74, 1.23), X3 ∼ N(1.70, 1.65) and X4 ∼ N(2.41, 2.61).

The number of Monte Carlo samples was L = 200. In each replicate, group effects were

generated as ud
iid∼ N(0, σ2

u) with σ2
u = 1. Similarly, individual errors were generated as

edj
iid∼ N(0, σ2

e) with σ2
e = 1. Finally, model responses ydj, j = 1, . . . , nd, d = 1, . . . , D,

were generated from model (1). Using each Monte Carlo sample, the two models (10) and

(13) were fitted robustly using respectively the M-S estimator of Maronna and Yohai [31]

and the PSC method of Peña and Yohai [30]. We assume that outliers are representative

and use the correction factor proposed by Joingo et al. [?]. Firstly, data are generated

without contamination. After that, contamination is introduced according to the following

scenarios:

• Type 0. No contamination

• Type 1. Outlying areas: For each selected outlying domain, we substitute all their

sample observations ydj by the constant C1 = Ȳd + c ·
√∑Nd

j=1(ydj−Ȳd)2

Nd
, where c = 4

and Ȳd = 1
Nd

∑Nd

j=1 ydj .

• Type 2. Outlying individuals within areas: We replace some observations within

selected domains by C1 and some others by C2 = Ȳd − c ·
√∑Nd

j=1(ydj−Ȳd)2

Nd
.

To compare several predictors of the prediction of the small area means, we use the fol-

lowing measures averaged over areas

Average Absolute Relative Bias (ARB):

ARB =
1

D

D∑
d=1

∣∣∣∣∣ 1L
L∑
t=1

(
ˆ̄Yd − Ȳd
Ȳd

)∣∣∣∣∣
Average Relative Root MSE (RRMSE):

RRMSE =
1

D

D∑
d=1

MSE( ˆ̄Yd)
1
2

Ȳd
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Method Bias MSE

σ2
u σ2

e σ2
u σ2

e

ML -0,044 0,070 0,160 0,125

RML -0,125 0,141 0,247 0,195

RH3 -0,174 0,075 0,279 0,142

Table 6: Scenario Type 0: No contamination

Parameter ML REML RH3

Bias MSE Bias MSE Bias MSE

β0 -0,037 0,264 -0,033 0,312 -0,034 0,321

β1 0,316 0,014 0,314 0,015 0,312 0,014

β2 0,001 0,012 0,001 0,013 0,003 0,013

β3 -0,007 0,004 -0,006 0,005 -0,008 0,005

Table 7: Scenario Type 0: No contamination

6.5 Discussion

In this part we compare two ways to estimate regression coefficients in the linear with

random effects. Then, these estimators were used to derive robust predictors of the means

in small areas. Our simulation studies show that the new robust procedure RH3 gets the

best results in the case of outlying areas at the same time good efficiency when there is

not contamination.

Method ARB RRMSE

EBLUP 0,3667 0,3825

REBLUP 0,4015 0,5056

RH3-EBLUP 0,3843 0,4884

Table 8: Scenario Type 0: No contamination

23



Method Bias MSE

σ2
u σ2

e σ2
u σ2

e

ML 2,346 -0,022 6,248 0,119

RML 0,838 0,335 1,430 0,362

RH3 0,437 -0,167 0,586 0,227

Table 9: Scenario Type 1: One outlying domain.

Parameter ML REML RH3

Bias MSE Bias MSE Bias MSE

β0 0,250 0,319 0,092 0,308 0,087 0,306

β1 0,318 0,015 0,324 0,016 0,324 0,016

β2 -0,013 0,012 -0,005 0,013 -0,006 0,013

β3 -0,003 0,004 -0,007 0,005 -0,008 0,005

Table 10: Scenario Type 1: One outlying domain.

Method ARB RRMSE

EBLUP 0,4161 0,5301

REBLUP 0,4192 0,5251

RH3-EBLUP 0,4193 0,5248

Table 11: Scenario Type 1: One outlying domain.

Method Bias MSE

σ2
u σ2

e σ2
u σ2

e

ML 5,027 -0,267 26,706 0,186

RML 3,205 0,478 15,848 0,541

RH3 2,386 -0,319 6,076 0,277

Table 12: Scenario Type 1: Two outlying domains.
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Parameter ML REML RH3

Bias MSE Bias MSE Bias MSE

β0 0,637 0,688 0,336 0,453 0,307 0,459

β1 0,304 0,015 0,317 0,018 0,318 0,018

β2 -0,016 0,013 -0,009 0,014 -0,008 0,015

β3 -0,009 0,004 -0,012 0,005 -0,010 0,005

Table 13: Scenario Type 1: Two outlying domains.

Method ARB RRMSE

EBLUP 0,4162 0,6296

REBLUP 0,4316 0,5652

RH3-EBLUP 0,4338 0,5502

Table 14: Scenario Type 1: Two outlying domains.

Method Bias MSE

σ2
u σ2

e σ2
u σ2

e

ML -0,095 0,959 0,173 1,046

RML -0,159 0,363 0,296 0,349

RH3 -0,216 0,364 0,293 0,322

Table 15: Scenario Type 2: 10% outlying observations within groups.

Parameter ML REML RH3

Bias MSE Bias MSE Bias MSE

β0 -0,014 0,342 -0,028 0,337 -0,018 0,323

β1 0,316 0,016 0,315 0,016 0,314 0,015

β2 0,001 0,009 0,002 0,014 0,004 0,009

β3 -0,006 0,005 -0,006 0,005 -0,008 0,005

Table 16: Scenario Type 2: 10% outlying observations within groups.
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Method ARB RRMSE

EBLUP 0,4417 0,5286

REBLUP 0,3963 0,5002

RH3-EBLUP 0,3849 0,4881

Table 17: Scenario Type 2: 10% outlying observations within groups.

Method Bias MSE

σ2
u σ2

e σ2
u σ2

e

ML -0,180 1,912 0,184 3,783

RML -0,214 0,604 0,293 0,567

RH3 -0,232 0,575 0,286 0,554

Table 18: Scenario Type 2: 20% outlying observations within groups.

Parameter ML REML RH3

Bias MSE Bias MSE Bias MSE

β0 0,005 0,367 -0,028 0,352 -0,018 0,353

β1 0,306 0,020 0,316 0,018 0,314 0,017

β2 -0,006 0,015 -0,002 0,015 -0,001 0,015

β3 -0,007 0,006 -0,008 0,005 -0,009 0,005

Table 19: Scenario Type 2: 20% outlying observations within groups.

Method ARB RRMSE

EBLUP 0,4265 0,5440

REBLUP 0,3895 0,4920

RH3-EBLUP 0,3825 0,4845

Table 20: Scenario Type 2: 20% outlying observations within groups.
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