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Preface (in Spanish)

Esta es una tesis de carácter teórico que propone y discute tres
aplicaciones de la teoŕıa de juegos al análisis económico. Consta de
tres caṕıtulos:

El primer caṕıtulo se titula “Bubbles with Random Behavioral
Trading”. Este caṕıtulo se enmarca dentro de la teoŕıa de las finanzas
conductuales. Es un análisis teórico de las condiciones necesarias para
que aparezcan y se sostengan burbujas especulativas en los mercados
de activos. Explica cómo la presencia de cierta masa de agentes irra-
cionales en los mercados induce a los especuladores a elegir estrategias
de inversión que favorecen una subida injustificada de los precios. La
idea básica es que los especuladores entienden que, a menudo que los
precios crecen durante la burbuja, cada vez más agentes irracionales en-
tran en el mercado atráıdos por la subida. Esto permite a los primeros
vender a los segundos a precios aún más altos en el futuro. La princi-
pal aportación original de este caṕıtulo es la consideración del carácter
aleatorio del comportamiento de los agentes irracionales. El modelo
está construido sobre la base del art́ıculo “Bubbles and Crashes” de
Abreu y Brunnermeier, que considera el comportamiento de los agentes
irracionales como constante. Este caṕıtulo demuestra que introducir
aleatoriedad en ese punto permite sostener una burbuja, aún cuando
se elimina el principal supuesto de Abreu y Brunnermeier: información
asimétrica sobre el valor fundamental de los activos.

El segundo caṕıtulo se titula “Currency Speculation in a Game-
Theoretic Model of International Reserves” y está escrito en colabo-
ración con Manuel S. Santos. Este caṕıtulo propone un modelo de
especulación en los mercados internacionales de divisas. Cuando un
gobierno trata de mantener un tipo de cambio fijo que no se corres-
ponde con el tipo de equilibrio, corre el riesgo de que su moneda sea
objeto de un ataque especulativo. Si los especuladores consideran que
el gobierno no tiene suficientes reservas para hacer frente al ataque,
pueden coordinarse vendiendo masivamente la moneda doméstica —al
gobierno— al tipo de cambio fijo, provocando aśı una devaluación, y
recomprando posteriormente a un precio más ventajoso. El volumen
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vi PREFACE (IN SPANISH)

de reservas de que dispone el gobierno es clave para determinar si un
ataque tendrá o no lugar y cómo de provechoso será este último para
los especuladores que lo lleven a cabo; un ataque exitoso produce más
beneficios para los atacantes cuantas más reservas hay en juego. La
principal aportación original de este art́ıculo es la incorporación de
este papel fundamental de las reservas en un modelo de ataques es-
peculativos con información asimétrica sobre los fundamentales de la
economı́a. Extiende los resultados de existencia y unicidad de equili-
brio establecidos por Morris y Shin (1998) en un modelo sin reservas, y
demuestra que algunas de las conclusiones obtenidas por estos autores
acerca del valor de la transparencia de la poĺıtica monetaria no son
robustas.

El tercer caṕıtulo se titula “Technology Adoption with Switching
Costs and Learning by Doing” y está escrito en colaboración con Car-
los J. Ponce. En este caṕıtulo se discute el problema de la adopción
de nuevas tecnoloǵıas en un contexto dinámico de competencia en pre-
cios. En nuestro modelo, dos vendedores compiten en cada periodo por
un comprador de vida corta y demanda unitaria. Uno de los vende-
dores tiene la opción de adoptar una nueva tecnoloǵıa que presenta
costes de ajuste y aprendizaje por experiencia. Mostramos que existen
tecnoloǵıas eficientes que, sin embargo, no se adoptan en equilibrio.
La razón de ello estriba en que el vendedor que no tiene la opción de
adoptar tiene incentivos a bajar su precio de venta para evitar que el
otro vendedor aprenda la nueva tecnoloǵıa. Esto reduce los beneficios
derivados de adoptar la nueva tecnoloǵıa y, en algunos casos, llega a
hacer que la adopción sea inviable. También se muestra que existe un
sesgo endógeno a adoptar tecnoloǵıas que se aprenden más rápido, sean
o no las más eficientes. Ambos resultados son originales.

Getafe, Madrid.
Noviembre 2010.



CHAPTER 1

Bubbles with Random Behavioral Trading

Abstract. We present a model in which a bubble can persist
despite that (a) it is common knowledge among arbitrageurs, and
(b) they can make it burst.

1.1. Introduction

In its most inclusive form, the efficient markets hypothesis (EMH
henceforth) states that, besides the fact that behavioral traders are
present in the stock market and their trades do not tend to cancel each
other, the trading activity of rational arbitrageurs keeps stock prices
close to their fundamental values (Shleifer, 2000, page 2). The EMH
thus presents arbitrageurs as a stabilizing force whose action neutralizes
the distorting effect of behavioral traders. On the other hand, literary
explanations of the emergence and persistence of bubbles (Kindleberger
and Aliber, 2005) argue on the contrary; they say that bubbles rise with
the complicity of arbitrageurs who buy overpriced stocks that they
later sell to behavioral traders at an even higher price. Arbitrageurs
represent here a destabilizing force which acts against informational
efficiency.

Informal accounts of bubbles usually go as follows: After some par-
ticularly good news about the profitability of a certain investment,
arbitrageurs buy stocks bidding up their price. The initial price in-
crease calls the attention of behavioral traders who extrapolate the
most recent trend and get into the market seeking for capital gains.
As behavioral traders keep entering the market, the price grows even
higher, at an unsustainable rate. Then, a spiral of speculation devel-
ops which allows arbitrageurs to leave the market before the inevitable
burst of the bubble.

From this perspective, the strategic side of a bubble has a very sim-
ple logic. Arbitrageurs use the initial price increase as a bait to attract
behavioral traders into the market. Since they know that behavioral
traders buy stocks whenever they see signs of a price up-trend, they
do their best by buying stocks, inducing an initial price increase, and
selling them later to the excited behavioral traders. However, a mere

1
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178 d. abreu and m. brunnermeier

equilibria, and any degree of asymmetric information leads to a unique equi-
librium. Thus, there is a discontinuity at the point where asymmetry vanishes.
In contrast, in our dynamic model the preemption motive leads to a unique
equilibrium even under symmetric information. Furthermore, as the extent of
asymmetric information goes to zero, the equilibrium outcome converges to the
symmetric information (no bubble) outcome.

3� the model

Historically, bubbles have often emerged in periods of productivity enhancing
structural change. Examples include the railway boom, the electricity boom, and
the recent internet and telecommunication boom. In the latter case, and in many
of the historical examples, sophisticated market participants gradually understood
that the immediate economic impact of these structural changes was limited and
that their full implementation would take a long time. They also realized that
only a few of the companies engaged in the new technology would survive in
the long run. On the other hand, less sophisticated traders over-optimistically
believed that a ‘paradigm shift’ or a ‘new economy’ would lead to permanently
higher growth rates.

We assume the price process depicted in Figure 1. This price process reflects
the scenario outlined above, and may be interpreted as follows. Prior to t = 0

Figure 1.—Illustration of price paths.Figure 1. Illustration of price paths from Abreu and
Brunnermeier (2003).

price up-trend cannot be a sufficient condition for the rise of a bub-
ble, since otherwise we would observe bubbles occurring everywhere,
all the time. Certain complementary conditions should be met. One of
them is precisely the one that would justify the price increase; a series
of good news about the stocks or, in the words of Hyman P. Minsky,
a “displacement” which could lead behavioral traders to interpret the
initial price increase as an evidence that something fundamentally good
has happened.

1.1.1. The Model of Abreu and Brunnermeier (2003). Dilip
Abreu and Markus K. Brunnermeier proposed a model which rational-
izes the idea that speculation can be destabilizing. They explain why in
the presence of “irrationally exuberant” behavioral traders, speculators
may choose to ride the bubble rather than to attack it.

In the model of Abreu and Brunnermeier there is a mass of size one
of rational arbitrageurs and a mass of behavioral traders. The price
process is exogenously given as depicted in figure 1. The fundamental
value of stocks is egt before the random date t0 and drops to (1−β(t−
t0))egt at t = t0. The price pt = egt equals the fundamental value until
t0, but keeps growing at rate g thereafter. That is, a fraction β(·) of
the price is not justified by fundamentals from t0 onwards.
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The price is kept above its fundamental value by behavioral traders.
As soon as the cumulative selling pressure by arbitrageurs exceeds κ,
the absorption capacity of behavioral traders, the stock price drops
back to its fundamental value. If this does not happen, the bubble is
assumed to burst for exogenous reasons at t0 + τ .

Arbitrageurs do not observe t0. At each instant t from t0 to t0 +η a
new cohort of mass 1/η of arbitrageurs is informed of the fact that t0 ≤
t. As figure 1 illustrates, only after instant t0 + η is every arbitrageur
aware of the misprizing. The key feature of this information structure
is that no arbitrageur can tell how many arbitrageurs became aware
before him.

Arbitrageurs wish to sell their stocks at the highest possible price
(note, however, that because κ < 1 not all arbitrageurs can sell be-
fore the date of burst). This could be done by selling just before the
crash, but its exact timing is not known to anyone. This is because
the behavior of each arbitrageur—and thus the date of burst of the
bubble—depends on the random date t0 about which arbitrageurs are
imperfectly and asymmetrically informed.

Abreu and Brunnermeier show that there is an equilibrium in which
each arbitrageur rides the bubble for some time. In particular, they
show that the misprizing lasts beyond instant t0 + ηκ—at which the
mass of arbitrageurs who are aware of the bubble is sufficient to make
it burst. Arbitrageurs wait to sell because they know that they are
possibly among the first κ who became aware of the bubble.

1.1.2. Our proposal. In the model of Abreu and Brunnermeier
(2003) the behavior of the behavioral traders is deterministic and com-
mon knowledge among arbitrageurs. On the other hand, they attribute
the mayor role in explaining the rise and persistence of bubbles to the
asymmetric information about the fundamental value of stocks.

We propose here a model which takes the opposite view. We argue
that it is the behavior of the behavioral traders, by its essentially irra-
tional nature, what puzzles arbitrageurs more. The basic idea is that
the behavior of the crowd—the market sentiment—is hard to predict
and subject to sudden changes. Of course, it exhibits certain regular-
ities as, for example, trend-chasing behavior, but it is ultimately seen
as a random phenomenon by rational investors.

On the other hand, we assume that the fundamental value of stocks
is common knowledge among arbitrageurs. This is an exaggeration, but
it helps to make our point clearer. Recall that it is the asymmetry and
not the lack of perfect information about fundamentals what drives
the results in Abreu and Brunnermeier (2003). Our model presumes



4 1. BUBBLES

that the fundamental valuations that rational investors make of stocks
are based mainly on publicly available “hard” information, following
similar valuation procedures. This is something that can hardly be
true for the assessment of market sentiment. We defer the analysis of
asymmetric information about behavioral trading to a future paper.

1.2. The Model

We consider a market for stocks. There is a continuum of mass 0 <
µ < 1 of arbitrageurs who seek to maximize the expected discounted
value of their transactions. They can sell and buy back shares at any
time at the discounted cost 0 < c < 1 per transaction, but they are
constrained on the maximum long and short positions they can take.
In particular, the selling pressure exerted by each arbitrageur must lie
within the unit interval at any time. There is also a continuum of mass
1 of behavioral traders whose trading behavior is exogenously given and
summarized by their aggregate absorption capacity κ. The absorption
capacity of behavioral traders is an unobservable stochastic process.

The fundamental value of the stock is ert for all t ≥ 0. The pre-crash
price of the stock is given by egt, with g > r. The pre-crash price is the
market price of the stock as long as the aggregate selling pressure of
arbitrageurs stays below the absorption capacity of behavioral traders.
At the first instant at which this ceases to happen, the market price
drops to its post-crash price ert.

The market price process should be interpreted as follows: A series
of good news have happened before t = 0 which justified the higher
price growth rate g. From then on, this higher rate is no longer justified
by fundamentals, which now grow at rate r. A bubble starts at t = 0
which persists until the first instant at which the selling pressure of
arbitrageurs equals (or exceeds) the absorption capacity of behavioral
traders.

The absorption capacity depends on the realization of a random
variable X with standard uniform distribution. It is a hidden state
variable, but its probability law is common knowledge among arbi-
trageurs. Given a realization x of X, the absorption capacity κ has the
form

(1.1) κ(x, t) :=

{
x sin

(
t
x

)
if 0 ≤ t < πx

0 if t ≥ πx.

Various sample paths of κ are plotted in figure 2. It is a continuous
function which takes only positive values, non-decreasing in x for t
fixed and uni-modal in t for fixed x. The shape of the sample paths
of κ reflects the idea that, as long as the bubble persists, more and
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Figure 2. Various sample paths of κ (dashed) and the
equilibrium aggregate selling pressure for the parameter
values µ = 0.8 and g − r = 0.1.

more money from the behavioral traders enters the market until the
maximum established by the state variable X is reached; at this point,
the process is reversed. Larger states correspond unambiguously to
more aggressive behavior from the part of behavioral traders; for larger
values of x two things happen: (a) more money flows into the market,
and (b) it stays in for longer. This allows us to interpret the state
variable X as an index of their confidence on the persistence of the
bubble.

For every state x > µ, there is an interval of time in which the
absorption capacity exceeds µ, the maximum feasible aggregate selling
pressure. We call such an interval a mania. A mania is, thus, a period
in which not even a coordinated attack from the part of arbitrageurs
can burst the bubble; it is a paradise for speculation. We will see
below that if a mania could not happen, we would only have equilibria
in which the bubble collapses at t = 0 for every state. Its relevance
comes form the fact that, whereas the price growth gives incentives to
stay in the market, the possibility of a mania allows an arbitrageur to
stay in for longer than others.

As will become clear below, our choice of κ is to a great extent
arbitrary. In the first place, we want a process whose sample paths
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start and end below µ—and for which a mania takes place with posi-
tive probability—to represent the behavioral traders’s confidence. On
the other hand, our proofs make use of the continuity and the following
monotonicity property of κ: if x1 > x0, then κ(x1, t) > κ(x0, t) when-
ever κ(x0, t) > 0. Both properties seem quite natural in our setting.

The possibility of occurrence of a mania is the cornerstone of our
main result. This means that its empirical relevance rests on the plau-
sibility of an assumption about the relative market power of the real-
world investors represented by our two sets of traders. The customary
association of arbitrageurs with institutional investors and of behav-
ioral traders with individual investors seems overly naive to us. What
should count for somebody to qualify as an arbitrageur or as a behav-
ioral trader is the way in which he perceives and analyzes the situa-
tion rather than his main occupation. People who think strategically,
who understand the logic of the situation at hand and act accordingly,
should qualify as arbitrageurs; those who exhibit trend-chasing behav-
ior, who form extrapolative expectations from the most recent data
alone, should not.

It is simply impossible to estimate the proportion of people that
should be assigned to each class. However, we argue that the amount of
people who may qualify as behavioral traders tends to be larger in both
groups, of institutional and of individual investors, during a bubble. If
this is true, that is, if most of the irrational money which enters the
stock market during a bubble is not in the market under normal circum-
stances, we would have also an explanation for why behavioral traders
do not necessarily disappear in the long run as suggested by Friedman
(1953); behavioral traders would save in quiet times the money that
they lose in the bubble. Regarding individual investors, we refer once
more to the work of Kindleberger and Aliber (2005) who comment on
how people who hardly ever bought stocks before entered the market,
even getting themselves into debt, at the peak of the great bubbles.
On the other hand, Galbraith (1994) and Shiller (2005) expound that
many institutional investors, besides their presumed superior training,
are subject to the same behavioral biases as the inexperienced indi-
vidual investors. As an example, Greenwood and Nagel (2009) have
shown that young fund managers betted disproportionately on technol-
ogy stocks and exhibited trend-chasing behavior during the technology
bubble of the late 1990’s. They argue, thoroughly, that young man-
agers formed adaptive expectations which put more weight on the most
recent trend than those who were more experienced. But it is not just
that their behavior resembled that of behavioral traders, Greenwood
and Nagel also found that such behavior was rewarded by substantial
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inflows of new capital which enhanced their market power along the
bubble. Again, the question is how much wealth is in the hands of
more and less sophisticated investors—a question which can hardly be
given a serious answer. We do not pretend to have a solid quantitative
argument supporting our assumption; we just say that, once one aban-
dons the individual versus institutional investors dichotomy, it becomes
a possibility whose consequences are worth exploring.

Arbitrageurs receive no signal before the crash. On the other hand,
the best they can do after the crash is to quit and never re-enter the
market—because all transactions made after the crash are costly and
worthless. There are no contingencies to which they may have to adapt
besides the crash itself, and the adaptation to this event is trivial. This
means that a strategy for an arbitrageur only has to specify a set of
orders that will be placed sequentially as long as the bubble persists.
Because transactions are costly, each arbitrageur plans, at most, a finite
amount of them.

A pure strategy profile is a measurable function σ : [0, µ] × R+ →
[0, 1] which specifies the selling pressure σ(i, t) exerted by each arbi-
trageur i ∈ [0, µ] at each instant t ∈ R+. Without loss of generality,
we assume that all arbitrageurs start at their maximum long position,
i.e.: σ(i, 0) = 0 for all i. Their aggregate selling pressure is defined as

s(t) :=

∫ µ

0

σ(i, t) di.

A trigger-strategy for an arbitrageur specifies a unique transaction at
which he completely sells out. The set of such trigger-strategies is in-
dexed by the time at which the sales occur, which allows us to give
a name to each one of them. For example, if each arbitrageur i plays
some trigger-strategy ti, we obtain the profile σ(i, t) = 1[ti,+∞)(t). A
mixed trigger-strategy is a mixed strategy which only contains trigger-
strategies in its support. If each arbitrageur independently draws a
trigger-strategy from the same distribution F , we have that the corre-
sponding aggregate selling pressure is s(t) = µF (t) almost surely for
all t.

Once we have defined the absorption capacity and the aggregate
selling pressure, we can define the date of burst of the bubble.

Definition 1.1. The date of burst of the bubble is the random
variable defined by the function

(1.2) T (x) := inf {t : s(t) ≥ κ(x, t), t > 0}.

The date of burst determines the path of the market price. As we
have said before, the market price jumps from the pre-crash price to
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the post-crash price precisely at the date of burst, i.e.:

p(x, t) :=

{
egt if t < T (x)
ert if t ≥ T (x).

All transactions take place at the market price. This assumption is
questionable if there are states for which the limit from the left of
the aggregate selling pressure is strictly smaller than the absorption
capacity at the date of burst. It would be more natural to assume that
some of the orders placed at the date of burst, up to the limit imposed
by the outstanding absorption capacity at that moment, are executed
at the pre-crash price. Our assumption simplifies the analysis and does
not change the results.

1.3. Symmetric Equilibria in Trigger-Strategies

Arbitrageurs try to do their best against other arbitrageurs. They
form a rational conjecture about the date of burst and choose their most
preferred selling strategy accordingly. The second step is straightfor-
ward, but to form a rational conjecture about the date of burst requires
a good deal of strategic thinking.

Our aim is to show that there exist symmetric equilibria in mixed
trigger-strategies. These equilibria are characterized by a mixed trigger-
strategy F such that, when all the rest are playing according to it,
each arbitrageur finds it optimal to play any strategy in its support.
The mixed trigger-strategy F determines the aggregate selling pressure
which, trough (1.2), defines the date of burst. Since there is a contin-
uum of arbitrageurs, no-one of them can affect the date of burst, which
is the only way in which the pay-off of an arbitrageur is affected by the
choices of other arbitrageurs. Hence, the problem of an arbitrageur is
to choose a best response given the distribution of the date of burst
induced by F . A symmetric equilibrium is found when every strategy
in the support of F is indeed a best response.

The pay-off from the trigger-strategy t is given by

v(t) := E
[
e−rtp(X, t)− c

]
= e(g−r)t[1−G(t)] +G(t)− c,(1.3)

where G is the distribution function of the date of burst. An expres-
sion for the pay-off from an arbitrary strategy is given in the proof of
Proposition 1.6 in Appendix A.1. The formula (1.3) neatly expresses
the arbitrageur’s trade-off between staying in and quitting the market.
On one side, the discounted pre-crash price grows with time; on the
other side, the probability of survival of the bubble decreases.
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1.3.1. Pure strategies. Our first result is rather trivial. When
all other arbitrageurs play the trigger-strategy t = 0, the bubble bursts
immediately. Any transaction takes place at the post-crash price and,
hence, yields, at most, 1−c. This shows that the trigger-strategy t = 0
is a best response, which characterizes an equilibrium.

Proposition 1.2. There is a unique symmetric equilibrium in pure
trigger-strategies. In this equilibrium, each arbitrageur plays the trigger-
strategy t = 0.

It is easy to see that there is no other symmetric equilibrium in
pure trigger-strategies. No such equilibrium exists for t ≥ π because
the bubble never bursts after π. When everyone else sells at the same
date 0 < t < π, there is an upward jump in the probability distribution
of the date of burst at t. An arbitrageur who deviates and sells a bit
earlier sacrifices an infinitesimal reduction in the pre-crash price in
return for a discrete decrease in the probability of burst. This shows
that selling at the same date as others do cannot be a best response.
The usual argument which rules out bubbles in models in which all
traders are rational goes along this line.

Note that there are uncountably many equilibria in which the bub-
ble bursts at t = 0. For example, there are uncountably many symmet-
ric equilibria in which every arbitrageur plays a mixed trigger-strategy
F which puts strictly positive mass on the trigger-strategy t = 0. From
now on, we restrict ourselves to equilibria in which the bubble has some
chance of survival, that is, to equilibria in which G(0) < 1.

We see that our model keeps the standard (EMH) solution: despite
the potential speculative profits, there are equilibria in which competi-
tion among arbitrageurs causes an early burst and no-one benefits from
them. As we have written down the model, the bubble is very weak
in its infancy. The survival of the bubble requires coordination among
arbitrageurs. They have the opportunity to feed the bubble, perhaps
all the way to a mania, but the fear that other arbitrageurs may not
concur can ruin it all. Their problem is that they cannot observe the
realization of X; things would be much easier otherwise.

1.3.2. Non-degenerate mixed strategies. Do arbitrageurs have
to content themselves with this solution? Our answer is no. It is possi-
ble to reconcile the individual incentive that arbitrageurs have to time
the market with their collective interest in feeding the bubble. The
ingredient that makes it possible is the possibility of occurrence of a
mania. If a mania could not happen, an arbitrageur would stay in
the market only if he believed that a sufficiently big mass of other
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arbitrageurs will stay in as well. However, arbitrageurs cannot hold
these beliefs because they are inconsistent: all arbitrageurs stay in the
market for a finite period and there has to be one who stays in the
longest. But if there is the possibility of a mania taking place, some
arbitrageurs may find it optimal to stay in for long, knowing that they
will succeed only if a mania develops, as long as they believe that the
other arbitrageurs will not kill the bubble too soon. The reason for this
is that arbitrageurs are no longer competitors during a mania; they can
all quit the market at a profit.

But, how can those arbitrageurs be sure that the rest will not kill
the bubble too soon? We show below how this coordination problem
is resolved in equilibrium. Arbitrageurs will leave the market orderly,
in such a way that their aggregate selling pressure does not exceed the
absorption capacity too soon; they will adapt their behavior to the
shape of κ. But this behavior must also be compatible with individual
rationality to constitute an equilibrium; we prove that it is optimal for
arbitrageurs to behave in a way that allows the outbreak of manias.

What is optimal for an arbitrageur is determined by the shape of
the distribution function G. We know that for a mixed trigger-strategy
F to characterize an equilibrium, all strategies in the interior of its
support must be optimal. This imposes restrictions on G that translate
into restrictions on F trough the function T . The following result states
two properties of the function T that will be used to explain how the
conditions of optimality restrict the shape of any equilibrium F .

Lemma 1.3. Suppose that there is a symmetric equilibrium in mixed
trigger-strategies which fulfills G(0) < 1. Then, the function T is
strictly increasing and continuous.

The previous lemma tells us how we can obtain the distribution
function of the date of burst from the distribution function of the state
variable:

G(t) = P(T (X) ≤ t) = P(X ≤ T−1(t)) = T−1(t).

Corollary 1.4. Given the conditions of Lemma 1.3, G(t) = T−1(t)
for all t ≤ π − arcsin(µ).1

We see that restrictions on G translate directly into restrictions on
T−1. Before proceeding, let us label the infimum and the supremum of
the support of F as t and t (Lemma A.2 in Appendix A.1 states that

1We restrict arcsin to its principal branch. π − arcsin(µ) is the second time at
which κ(1, t) is equal to µ. Since κ is smaller than µ for all x and all t > π−arcsin(µ),
the bubble never bursts after this point in equilibrium.
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the support of F is an interval). Because no arbitrageur sells before t
in equilibrium, we have that for all states x < t/π the bubble bursts
when the absorption capacity returns to zero (see figure 2). This means
that the function T−1 is equal to t/π for all t < t. Given the previous
corollary, we can rewrite the pay-off function v as

v(t) = e(g−r)t [1− T−1(t)
]

+ T−1(t)− c.
Let us label the equilibrium pay-off as v∗. Since the pay-off has to
be maximum for all strategies inside the equilibrium support, we must
have that

T−1(t) =
e(g−r)t − v∗ − c
e(g−r)t − 1

for all t ≤ t ≤ t (Lemma A.1 in Appendix A.1 states that this condition
is fulfilled at the boundaries). Because T is strictly increasing and
continuous by Lemma 1.3, we know that some price path must decrease
at each t < t ≤ π − arcsin(µ). This implies that the sample path of
κ which touches s at t cannot be strictly increasing at t. Otherwise,
because s is flat for t ≥ t, there would be some interval (t, t+ ε] (with
ε > 0) in which no price path decreases, contradicting Lemma 1.3.
Given the functional form of the absorption capacity, all subsequent
paths must intersect s for the first time while they are decreasing.
Hence, T−1(t) is the solution to κ(x, t) = µ for all t > t. In short:
given the extreme points of the equilibrium support, the function T−1

is determined. The following lemma shows that such extreme points
are, in fact, unique.

Lemma 1.5. All F fulfilling the conditions of Lemma 1.3 have the
same support.

Lemma 1.5 shows that the function T is unique for the class of
equilibria that we consider. Hence, to find an equilibrium within this
class amounts to find a mixed trigger-strategy which, trough (1.2),
induces such T . Our main result is that there exists a unique mixed
trigger-strategy which does the job.

Proposition 1.6. There is a unique equilibrium fulfilling the con-
ditions of Lemma 1.3. In this equilibrium, each arbitrageur plays the
mixed trigger-strategy

F (t) =
1

µ
κ
(
T−1(t), t

)
for all t ≤ π − arcsin(µ).

We have included a plot of an equilibrium s in figure 2 where we
can see, graphically, how the different pieces fit together. The bubble
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bursts at the point at which the realized sample path of κ crosses s.
We see that some sample paths of κ cross s while they are increasing,
whereas others cross it while they are decreasing. For those who cross
it after they have reached their maximum we may say, informally, that
the bubble is burst by behavioral traders. The key to understand how
the equilibrium works is to note that all paths which correspond to
states fulfilling x > µ belong to this set, that is, that all potential
manias take place. Arbitrageurs start selling at t, but their aggregate
selling pressure accumulates slowly enough to feed the bubble, to let it
grow.

Some arbitrageurs sell earlier than others. The ones who rush out
of the market have more chances to sell at the pre-crash price and the
ones who wait have the opportunity to earn higher profits, but they all
expect the same pay-off ex-ante. The coordination achieved in equilib-
rium is remarkable, but far from perfect. Most sample paths of κ cross
s before they reach their maximum, which means that arbitrageurs, as
a group, could have done it better; it is not optimal to burst a bub-
ble when there are still some behavioral traders willing to inject more
money into the market. This is the curse of competition, the same that
may induce an immediate collapse as the one described in Proposition
1.2.

1.4. Concluding Remarks

Our model is a caricature which reflects a particular view on how
the strategic side of a bubble is perceived by real-world sophisticated
investors. As any caricature, it gives a very simplified and biased ac-
count of the situation which, nonetheless, we believe, retains its very
essence. Having said this, we want to add a remark about the way we
interpret the equilibrium in Proposition 1.6. We have focused on sym-
metric equilibria though it is easy to see that there are uncountably
many asymmetric equilibria which share the same s. The reason is that
we find that an asymmetric equilibrium is an unnatural solution con-
cept within our essentially symmetric context. We would find it hard to
justify why otherwise identical arbitrageurs played different strategies
in equilibrium, how did they know which strategy should they play,
and so on. But symmetry cannot be more than a rough approxima-
tion to reality, however appealing and convenient. Asymmetries surely
play their role in the workings of financial markets, though we do not
bring them to the center of the discussion. We interpret our mixed
strategy equilibrium from the Bayesian perspective, that is, from the
view that it serves as an approximation to a more complex world in
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which each arbitrageur harbors doubts about privately known charac-
teristics of other arbitrageurs. Rather than to a classical randomizing
interpretation of mixed strategies, we subscribe to the modern view in
which our arbitrageurs would in fact be playing pure strategies, with
mixed-strategies representing their uncertainties about others. Since
every arbitrageur is negligible, we do not see why anyone would want
to hide his choice.

Propositions 1.2 and 1.6 provide two legitimate solutions of the
game. Proposition 1.6 hints on the logic of the persistence of bubbles
and suggests how this phenomenon can be reconciled with a good deal
of rationality in the market. The standard equilibrium in Proposition
1.2, we believe, loses strength when compared to it. The reason is
that now it looks quite paranoid to quit the market right away on the
fear that other arbitrageurs will do the same. Why don’t you wait a
while to confirm that your beliefs are right? You have nothing to lose.
The standard equilibrium is quite appealing when it is unique, but not
that much when there is another option available that everybody would
prefer. It is quite natural to think that, after some particularly good
news about the stocks, arbitrageurs will choose to wait for a while to
see whether a bubble rises up.





CHAPTER 2

Currency Speculation in a Game-Theoretic Model
of International Reserves

Abstract. This paper is concerned with the ability of speculation
to generate a currency crisis. We consider a game-theoretic setting
between a unit mass of speculators and a government that holds
foreign currency reserves. We analyze conditions under which the
speculators may be able to force the government to devaluate the
currency. Among these conditions, we analyze the role of heteroge-
neous beliefs, transaction costs, the level of international reserves,
and the widening of currency bands. The explicit consideration of
international reserves in our model makes speculators’ actions to
be strategic substitutes—rather than strategic complements. This
is a main analytical departure with respect to related global games
of currency speculation not including reserve holdings [e.g., Mor-
ris and Shin (1998)]. Our simple framework with international
reserves becomes suitable to review some long-standing policy is-
sues.

2.1. Introduction

2.1.1. Currency crises. Foreign currency reserves allow govern-
ments to follow exchange rate policies by intervention in the foreign
exchange market. In a currency peg, these international reserves are
used to absorb balance of payments deficits and to provide a cushion
against other market forces. But currency speculation may also occur:
If a mass of trades considers that the stock of international reserves is
too low then they may rush to short the currency. The stock of re-
serves may be depleted—and the government is forced to leave the peg
and float the currency. A currency attack can result in a sudden de-
valuation with severe negative effects on the financial and real sectors;
these effects may stem from collateral requirements and other financial
frictions, and price rigidities. A currency crisis may then emerge.

There are numerous examples of currency attacks, and there are
long-standing issues regarding the optimal amount of transparency,
transaction costs, and other regulations, to protect the value of a cur-
rency. Some of these issues became apparent in the last three most
important currency crises.

15
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Since its inception in 1979, the European exchange rate mechanism
(ERM) experienced constant tensions that translated into a substan-
tial number of currency realignments. After a swing of devaluations
affecting some major currencies (e.g., the French franc, British pound,
and Italian lira) the ERM essentially collapsed in 1993 as it moved to a
much broader currency band. Then, currency values stabilized. Most
models of exchange rate determination are not suited to assess the in-
fluence of currency bands on currency speculation. We shall study a
simple extension of our model in which it becomes harder to attack the
currency under a broader currency band.

The 1994 currency crisis of the Mexican peso brought up some
transparency issues. For instance, in several papers Calvo [e.g., see
Calvo (1998)] argued that with uncertainty on the fundamentals, eco-
nomic crises may spread by contagion and herding behavior. The Inter-
national Monetary Fund (IMF) has set up the Special Data Dissemina-
tion Standards (SDDS) for all member countries. Disclosure practices
of foreign currency reserves and other macro variables have varied over
time and across member countries, but it is often argued that it is
desirable to adhere to the highest possible standards of transparency
(see op. cit.). Global games with heterogeneous beliefs provide a nat-
ural setting to deal with uncertainty on the fundamentals (Carlsson
and Damme, 1993). Equilibrium effects from changes in heterogene-
ity of beliefs have already been addressed in Morris and Shin (1998)
and several other papers. Our interest is to see how these conclusions
from the existing literature may survive in our setting with explicit
consideration of international reserves.

In the Asian crisis that started in 1997, the Thai government spent
billions of dollars of its foreign currency reserves to defend its baht
against speculative attacks. The lack of timely response by the IMF
and other institutions such as the US Fed was blamed to be a hitch at
the onset of the crisis. In this paper we address how the borrowing of
international reserves could be effective to deter currency speculation.
Indeed, the effectiveness of these interventions is going to depend on the
degree of coordination of the speculators: If there is common knowl-
edge about the fundamentals then we know from some simple models
of exchange rate determination that over a certain region external aid
from other central banks may be quite inoperative (e.g., see Figure 1
below). These models generate multiple equilibria over a wide range
of parameter values and hence they lack predictive power. Transac-
tion costs, taxes on capital gains, and the size of currency depreciation
have actually no apparent effect. Hence, an obvious policy prescrip-
tion of some of these models with multiple equilibria would be to shut



2.1. INTRODUCTION 17

down international capital markets. The current Greek debt crisis is
another case in point. Massive coordination by European countries has
proved to lower risk premiums—albeit the reprieve may only last for
a few years. The effectiveness of these coordination efforts is not clear
since in some cases the whole private sector could short more currency
than global entities can ever supply. Hence, the question is whether or
not external borrowing of international reserves becomes more effective
under asymmetric information to prevent a currency crisis.

2.1.2. Self-fulfilling currency attacks. In a fixed exchange rate,
the government bears the risk of a speculative attack as it is willing to
exchange the currency at a predetermined price. Although there are
associated benefits of fixing the value of a currency, the costs could
be prohibitive. For speculators it is of paramount importance that
the government wants to resist the attack; it is precisely this foreseen
resistance what motivates their actions in the first place. That is,
speculators would like to short the domestic currency at the pegged
price—and later undo the trading at a lower equilibrium price.

Currency attacks may be self-fulfilling. The mere belief on an im-
minent attack may induce speculators to flee from the currency. A
frenzied rush of capital outflows is then vindicated by a devaluation
that confirms the initial beliefs. The point has been neatly discussed
in Obstfeld (1996). Obstfeld proposed a game in which two private
holders of domestic currency must decide whether to sell or to hold
the currency. The government owns reserves to sustain the peg, yet
a 50% devaluation sets off if reserves are depleted. Let us assume the
following conditions: (a) The government owns 10 units of reserves, (b)
The pegged rate is 1-1, (c) Each holder has 6 units of currency, and (d)
Each holder bears a cost of 1 upon selling. Then, we get the following
pay-off matrix:

Hold Sell
Hold 0, 0 0,−1
Sell −1, 0 3/2, 3/2

Figure 1. The intermediate reserve game in Obstfeld (1996).

Note that none of the two holders can break the peg unilaterally.
Hence, an individual holder alone cannot recover the transaction cost.
But if both traders sell, then there is a capital gain from the 50%
devaluation which outweighs the transaction cost. Therefore, this game
has two pure-strategy equilibria; one in which both holders sell and
another one in which no holder sells. The players’ actions are strategic
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complements because selling is profitable only if the other holder sells.
But this game also reflects the idea that the total gains from speculation
depend on the amount of reserves released for sale by the government;
or put it somewhat differently, in the (sell, sell)-equilibrium a trader
would be better off if the other holder had only 4 units of currency.

As pointed out by Morris and Shin (1998), a main problem with
various models with multiple equilibria is that the immediate reasons
behind the actual onset of an attack are left unexplained.

2.1.3. Our results. At this venture it may be helpful to provide a
cursory review of our results with those of Figure 1. In this figure there
are two equilibria: (hold, hold) and (sell, sell). Many models of cur-
rency speculation have emphasized the existence of multiple equilibria,
and the need of coordination devices over those equilibria. Coordi-
nation may actually come in the form of sound economic policies [cf.
Kaminsky et al. (1998)] that direct traders to non-speculative equilib-
ria. We must note, however, that in a corresponding extensive form
representation of the game the (sell, sell) equilibrium is sub-game per-
fect. Hence, this is a focal point of the game: For low transaction
costs any sensible perturbation of the game will point towards this
equilibrium. This simple observation seems to be absent in the so
called second-generation models of currency crises that simply stress
multiplicity of equilibria without regard to further properties of these
equilibria. But the problem with the simple game of Figure 1 is that
(sell, sell) remains the preferred equilibrium outcome regardless of the
size of transactions costs and the benefits from speculation. This is a
really odd result that comes from perfect information. The only pre-
scriptions of this game is for the government to meet the amount of
reserves, or to shut down the economy from international capital flows.
It should nevertheless be pointed out that the (sell, sell) equilibrium
pinpoints the inherent instability of fixed exchange rate regimes, since
traders are motivated by the gains of speculation.

The above game allows each agent to be placed in the position of
the other player: There is common knowledge about the fundamentals.
Asymmetric information will certainly change the picture. Players with
diffused information about the stock of reserves may not be so sure
about shorting the currency and bear the transaction cost if there is
a certain probability that other players may not move to short the
currency. That is, each player has to guess the beliefs of other players,
and everyone will be guessing about others’ guesses, and so on. This
is a complex topic that leads us to the literature of global games.
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2.1.4. The model of Morris and Shin. These authors propose
a two-stage game played by the government and a continuum of spec-
ulators. In the first stage, each speculator decides whether or not to
sell short one unit of the domestic currency at a certain cost t > 0,
whereas in the second stage the government decides whether or not to
defend the peg e∗. If the government defends, the price stays at the
original level e∗ and the speculators who attack earn nothing and pay
the cost of short-selling. If the government does not defend and floats
the currency, the price falls to f(θ), where f is increasing in the state θ
of the fundamentals, and the speculators exchanging the currency earn
the price difference minus the cost: e∗ − f(θ) − t. The government’s
pay-off upon defending is written as,

v − c(α, θ).

This value increases with the state θ of the fundamentals and goes
down with the mass α of speculators who attack.

As in the example above, Morris and Shin show that under common
knowledge there is a wide range of θ in which the game has two equilib-
ria; one in which no speculator attacks and the government maintains
the peg, and another one in which all speculators attack and the gov-
ernment accommodates. Morris and Shin show that this multiplicity
of equilibria is not robust: Asymmetric information about the state of
the fundamentals induces a unique equilibrium.

Conditioning upon the government not defending, the pay-off that
a speculator receives from attacking is independent of the mass of spec-
ulators who attack. The actions of the speculators are thus strategic
complements because the chances of a devaluation increase with the
mass of speculators who attack. Therefore, Morris and Shin assume
that all speculators can sell the domestic currency at the pegged price
if the government does not defend. In this model it is not really clear
who buys the domestic currency from speculators since the pay-off of
each speculator is independent of the mass of speculators who attack.
Further, the domestic currency always depreciates if the government
does not defend, which implies that there must be an excess supply
of the domestic currency at the pegged price—even if no speculator
attacks.

In our model below, speculators’ actions are strategic substitutes:
When the peg is abandoned the gains from trading that accrue to each
speculator are inversely related to the mass of speculators shorting the
currency. As is well known from the global games literature, strategic
substitutability may generate additional technical problems for exis-
tence and uniqueness of equilibria.
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2.1.5. Other related work.
2.1.5.1. Bank runs. Banks play an important role as providers of

liquidity insurance. Demand-deposit contracts pool idiosyncratic risks
to finance more attractive long-term investments. But the early in-
terruption of long-term investments typically entails a loss. If id-
iosyncratic liquidity shocks are sufficiently uncommon and independent
across the population, banks can improve upon the autarkic allocation.

Hence, banks are also vulnerable to runs that may cause them to
vanish. As in the case of currency attacks, the fear of an imminent
run may propel massive withdrawals—vindicating the initial beliefs.
As is well known, Diamond and Dybvig (1983) provide a model of
demand-deposit contracts in which there are two equilibria; an efficient
equilibrium in which only investors facing liquidity shocks withdraw
early, and a bank run equilibrium in which all investors withdraw and
the bank fails.

The model of Diamond and Dybvig is subject to the same criti-
cisms as models of currency attacks with multiple equilibria. Gold-
stein and Pauzner proposed a model with asymmetric information à la
Morris and Shin and show that the multiplicity of equilibria in Di-
amond and Dybvig (1983) washes out. In the model of Goldstein
and Pauzner (2005) the actions of the depositors are not strategic
complements everywhere. This is because conditioning on the bank
failing, as more depositors withdraw their funds, the lower is their
share on the bank’s liquidation value. There are, however, one− sided
strategic complementarities, because if the bank survives then early
withdrawals reduce the pay-offs to the depositors that stay with the
bank. Goldstein and Pauzner build their proof of uniqueness upon this
property of the pay-offs.

2.1.5.2. Bubbles. Our work is also related to the theory of bubbles
in behavioral finance. In Abreu and Brunnermeier (2003) a continuum
of speculators must decide at each instant whether or not to sell an
overpriced stock. They face a mass of behavioral traders who are re-
sponsible for the abnormal price growth. It is assumed that the price of
the stock will continue to grow at the bubbly rate as long as the mass
of speculators who sell remains below the mass of behavioral traders
(who buy); once trading surpasses this threshold, the bubble bursts
out immediately.

Although the problem is framed in a richer, dynamic setting, the
similarities between their problem and ours are evident. A speculator
should sell immediately in the belief of imminent collapse and wait
otherwise; moreover, the belief of a sudden crash is self-confirming.
However, the technical approach of Abreu and Brunnermeier to this
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problem was very different. They did not follow the line of the global
games literature because, in their own words: “In the richer strategy set
of our model strategic complementarity is not satisfied and the global
games approach does not apply” (Abreu and Brunnermeier, 2003, page
177).

In their model, speculators have an incentive to preempt others
because the pay-off from selling at the date of bursting of the bub-
ble is decreasing in the mass of speculators who sell. The pay-offs
exhibit strategic substitutability at the date of bursting because then
the amount of speculators who sell outweighs the amount of behavioral
traders who buy and the market must clear—behavioral traders play
here the role played by the government in a model of currency crisis.
Given the similarities between the two problems, we expect that our
work will serve as a first step towards the incorporation of global games
to the theory of bubbles.

2.2. The Model

The state of the world is given by the amount R of international
reserves that the government has ready to defend the peg. The govern-
ment operates here as a passive player who buys the domestic currency
until it runs out of reserves. The amount of reserves may be inter-
preted as the government’s degree of commitment to the exchange rate
defense rather than as an exogenous limit (as in Obstfeld, 1996). That
is, R must be thought of as the outcome of a previous, yet not mod-
eled, deliberation by the government; e.g., its ability to draw in funds
from international capital markets. This information is usually hard
to guess by both the government and the traders as it may depend on
unexpected external forces.

Intervention is necessary because the government’s desired exchange
rate, the pegged rate, differs from the equilibrium rate: There is an ex-
cess supply of se units of the domestic currency which would cause a
devaluation if the government did not intervene.

We consider a simultaneous-move game played by a continuum of
speculators of unit mass. Each speculator can short one unit of the
domestic currency at a cost c > 0. If the mass of speculators who short
the currency, s, plus the excess supply, se, exceed the government’s
reserves, s + se > R, the domestic currency depreciates by a fraction
δ ∈ (0, 1). Otherwise, the peg survives.

In a devaluation, the total amount of reserves is shared among those
who sell (or, equivalently, they all have equal chances to sell before the
devaluation). Therefore, the pay-off to a speculator who attacks is −c
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if the peg survives, and
R

s+ se
δ − c

if it does not survive. A speculator who does not attack gets zero in
any case.

In summary, the gains from speculation stem from selling short the
domestic currency at the pegged rate and then purchasing back the
same currency at the ensuing equilibrium rate after the depreciation.
The overall gains from speculation are the total reserves times the rate
of depreciation. The government will try to sustain the peg, but the
amount of reserves is limited. We assume that these reserves are equally
shared by all traders executing the transaction. Then, the actions of
the speculators are strategic substitutes if s+ se > R: Conditioning on
the peg being abandoned, the pay-off to a speculator from attacking
decreases with the mass of speculators who attack.

2.2.1. Perfect information. Let us begin with the simple case
in which the amount of reserves held by the government is common
knowledge among speculators. Depending on the size of R we can
identify three different types of games (as in Obstfeld, 1996):

• If R < se we are in a low reserve game. The government
does not have enough reserves to defend the peg even if no
speculator attacks. Therefore, a devaluation will come for sure.
Assuming that the cost associated to short selling is sufficiently
small;

(2.1) c <
R

1 + se
δ,

we can ensure that attacking is a dominant strategy whenever
R < se. In this case, there is a unique equilibrium in which all
speculators attack.
• If se ≤ R < 1+se we are in an intermediate reserve game. The

peg will be abandoned depending on the mass of speculators
who attack; s ∈ [0, 1]. Attacking is the optimal choice for all
speculators who believe that s + se > R, and not attacking
is the optimal choice for those who believe that s + se ≤ R.
Moreover, both beliefs are self-confirming because they end
up being right if they are held equally across the population of
speculators. There are, thus, two equilibria in pure strategies
within this range of reserves: One in which all speculators
attack and the peg is abandoned, and another one in which no
speculator attacks and the peg survives.
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• If R ≥ 1 + se we are in a high reserve game. Here the govern-
ment has enough reserves to defend the peg even if all spec-
ulators attack. The peg will thus survive, and so attacking
becomes a strictly dominated strategy. There is a unique equi-
librium in which no speculator attacks.

2.2.2. Imperfectly observed reserves. Let us now assume that
speculators do not observe R directly, but hold certain beliefs. Suppose
that each speculator holds a uniform prior over the interval [R,R],
where R = R fulfills (2.1) and R > 1 + se. Each speculator receives a
conditionally independent signal x which is also distributed uniformly
over the interval [R−ε, R+ε] (with ε > 0).1 Under these assumptions,
the posterior belief about R of a speculator who receives the signal x
is uniform over the interval [x− ε, x+ ε].

Note that under this specification parameter ε is both a measure of
the precision of each signal and the degree of informational asymmetry
among speculators since signals are conditionally independent; varying
the degree of dependence between the signals would allow us to disen-
tangle both features. More importantly, it is crucial to realize that only
the event [R,R] is common knowledge among speculators, no matter
how small ε might be. Note that an event E ⊂ [R,R] is nth-order
mutual knowledge at R ∈ E only if E ⊇ [R − 2nε,R + 2nε] ∩ [R,R],
which means that there is always some n for which the last inclusion
fails to hold.

As shown below, small departures from common knowledge lead to
very different results. Indeed, the two pure strategy equilibria of the
intermediate reserve game in the previous subsection require a high
degree of coordination among speculators. A speculator must predict
the behavior of speculators who receive signals which are an ε away
from this speculator, which in turn depends on their beliefs about the
behavior of speculators who are an ε away from them, and so on. This
is how a small seed of noise infects the whole range of signals.

A strategy for a speculator is now a function from the set of signals
to the set of actions. Let π(x) denote the proportion of speculators who
attack from those who have received the signal x. Adding up across
signals, the aggregate short sales under the stock of reserves R we get:

s(R, π) =
1

2ε

∫ R+ε

R−ε
π(x) dx.

1The limits of this interval should obviously be adjusted if x < R + ε or x >
R− ε.
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Given π, the peg is abandoned in the event:

A(π) := {R : s(R, π) + se > R}.

And the expected pay-off from attacking to a speculator who receives
the signal x must be:

(2.2) u(x, π) =
1

2ε

∫
A(π)∩[x−ε,x+ε]

R

s(R, π) + se
δ dR− c.

An equilibrium of the game occurs if π(x) = 1 whenever u(x, π) > 0,
and π(x) = 0 whenever u(x, π) < 0.

2.3. Results

2.3.1. Threshold equilibrium. A threshold equilibrium is an
equilibrium in which there is a R∗ such that: (a) The peg is aban-
doned for all R < R∗ and (b) The peg survives for all R ≥ R∗. We will
see below that functions π and s have both a particularly simple form
in a threshold equilibrium. This will be of great help in order to show
that there is a unique threshold equilibrium.

Suppose that R∗ characterizes a threshold equilibrium. For every
signal x ≤ R∗−ε we have that u(x, π) > 0 because speculator x believes
that the peg will be abandoned with probability one. For every signal
x ≥ R∗ + ε we have that u(x, π) = −c because speculator x believes
that the peg will survive with probability one. Moreover, u(x, π) is
strictly decreasing in x in the interval (R∗−ε, R∗+ε) since as we move
to the right within this interval, the integral in (2.2) adds up states in
which the pay-off is −c and leaves off states in which it is positive. By
the continuity of the integral, there is a unique x∗ fulfilling u(x∗, π) = 0.
Therefore, we have shown that, in any threshold equilibrium, π must
have the form:2

(2.3) Ix(z) =

{
1 if z ≤ x
0 if z > x.

If π = Ix, we know that s(R, π) is equal to one if R ≤ x − ε and
equal to zero if R > x + ε; moreover, it decreases at the rate of 1/2ε
between these two points. In short:

s(R, Ix) =

 1 if R ≤ x− ε
1
2
− 1

2ε
(R− x) if x− ε < R ≤ x+ ε

0 if R > x+ ε.

2The value of Ix(x) can be chosen arbitrarily from [0,1].
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Consequently, event A(π) becomes A(Ix) = [R, ρ(x)), where

ρ(x) =
1

1 + 2ε
[x+ (1 + 2se)ε].

Every x fulfilling u(x, Ix) = 0 characterizes an equilibrium. We
show now that there is exactly one such x. Considering u(x, Ix) as a
function of x alone, we see that if ε is not too big3 this function is
positive at the lower end of the set of signals and negative at the upper
end. As one moves to the right, two opposite effects are in action:
(i) More speculators are required to cause a devaluation; and (ii) The
individual benefit from shorting the currency goes down with the mass
of speculators attacking the currency. The first effect is not present in
models of bank runs (Goldstein and Pauzner, 2005), the second is not
present in models with global strategic complementarities (Morris and
Shin, 1998). The expression for u(x, Ix) is

u(x, Ix) = δ

{
(1 + 2ε)ρ(x) log

(
1 + se
ρ(x)

)
− [ρ(x)− (x− ε)]

}
− c.

Taking its second derivative with respect to x,

∂2u(x, Ix)

∂x2
= − δ

(1 + 2ε)ρ(x)
,

we see that u(x, Ix) is strictly concave, which, in turn, implies that
there is a unique x∗ fulfilling u(x∗, Ix∗) = 0. We have just proved the
following proposition.

Proposition 2.1. There is a unique threshold equilibrium. In this
equilibrium there is a signal x∗ such that: (a) All speculators who re-
ceive a signal x < x∗ attack, (b) All speculators who receive a signal
x > x∗ do not attack, (c) The peg is abandoned for all R < ρ(x∗) and
(d) The peg survives for all R ≥ ρ(x∗).

Remark 2.2. Strictly speaking, there is a continuum of threshold
equilibria which only differ in a set of measure zero (at x∗).

2.3.2. Iterated deletion of dominated strategies. A remark-
able property of the model of Morris and Shin is that the equilib-
rium strategies are the only ones surviving iterated deletion of strictly
dominated strategies. This property is a direct consequence of global
strategic complementarities; we now show that it does not hold for
more general pay-off structures.

Attacking is a dominant action for all speculators who receive a
signal below se−ε because they believe that the peg will be abandoned

3A sufficient condition is 2ε < min{se −R,R− (1 + se)}.
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for sure. This fact has an effect on the behavior of speculators who
receive signals above se − ε, since they now know that π(x) = 1 for
all x < se − ε. That is, some speculators to the right of se − ε may
find that because all speculators below se − ε attack then this is a
sufficient condition for them to attack as well. More generally, we
are interested in the lowest pay-off that speculator x can expect from
attacking, provided that π(z) = 1 for all z < x. If such expected pay-off
is positive, we know that speculator x will attack.

Proposition 2.3. Not attacking does not survive the iterated dele-
tion of strictly dominated strategies for all signals below x∗.

Proof. The proof proceeds in three steps:
Step 1 : We first show that the expected pay-off for speculator x, pro-
vided that π(z) = 1 for all z < x, is bounded below by the one derived
from some threshold function Ix0 . If π(z) = 1 for all z < x, we know
that s(R, π) is weakly decreasing in the interval (x − ε, x + ε). Since
we are looking for the minimum expected pay-off, it has to be the case
that s(R0, π)+se = R0 for some R0 in (x−ε, x+ε). Now, choose the x0

that makes s(R0, Ix0)+se = R0. We must have that u(x, Ix0) ≤ u(x, π)
since Ix0 lies above π on (x− ε, R0).
Step 2 : The next step is to show that u(x, Ix) ≤ u(x, Ix0). The first
integrates over the interval [x− ε, ρ(x)], whereas the second integrates
over [x − ε, ρ(x0)], which is larger. What we will do is to compare,
moving to the left from the right limit of each interval, the pay-offs at
each state. The pay-offs for Ix can be written as:

(2.4)
R

ρ(x) + 1
2ε

[ρ(x)−R]
δ − c.

Pairing each state in [x− ε, ρ(x)] with the corresponding state in [x−
ε, ρ(x0)] (recall that we are moving to the left from the right end of
each interval), the pay-offs for Ix0 are:

(2.5)
R + ρ(x0)− ρ(x)

ρ(x0) + 1
2ε

[ρ(x)−R]
δ − c

if R > x0 − ε+ ρ(x)− ρ(x0), and

(2.6)
R + ρ(x0)− ρ(x)

1 + se
δ − c

otherwise. Subtracting (2.4) from (2.5) gives us

2ε(1 + 2ε)[ρ(x)−R][ρ(x0)− ρ(x)]

[(1 + 2ε)ρ(x)−R][ρ(x) + 2ερ(x0)−R]
δ ≥ 0.

Since (2.6) is greater than (2.5), the proof is complete.
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Step 3 : We have just shown that the least that speculator x can get
from attacking, provided that π(z) = 1 for all z < x, is u(x, Ix). Since
u(x, Ix) > 0 for all x < x∗, this implies our result. �

In the previous proof we have shown that, if π(z) = 1 for all z < x,
the case in which speculator x gets the least from attacking is when
π(z) = 0 for all z > x. If we had global strategic complementarities,
the converse would be true when π(z) = 0 for all z > x. Then, it
would be immediate to see that the threshold equilibrium is the unique
equilibrium. This is not our case, however. If we look now for the most
that speculator x can get from attacking if π(z) = 0 for all x > z, we see
that the answer is not given by the threshold function Ix. The reason
is that, conditioning on the peg being abandoned, the more speculators
who attack, the lower is the pay-off that they get from attacking.

Proposition 2.4. There is a minimal x�, with x� > x∗, such that
attacking does not survive the iterated deletion of strictly dominated
strategies for all signals above x�.

Proof. The proof proceeds in three steps:
Step 1 : We first construct an upper bound for the expected pay-off
of speculator x whenever π(z) = 0 for all z > x. If π(z) = 0 for all
z > x, then s(R, π) is weakly decreasing in (x − ε, x + ε). Since we
are looking for the maximum expected pay-off, it has to be the case
that s(R0, π) + se = R0 for some R0 in (x − ε, x + ε), and also that
s(R, π) is constant in (x − ε, R0). Conditioning on s(R, π) + se = R0

in (x− ε, R0), the expected pay-off at x is

(2.7)
1

2ε

∫ R0

x−ε

R

R0

δ dR− c,

which is strictly increasing in R0. Then, the maximum expected pay-off
is attained at the maximum R0, namely, ρ(x) (recall that π(z) = 0 for
all z > x). Hence, any π fulfilling π(z) = 0 for z ∈ (x − 2ε, ρ(x) − ε),
and π(z) = 1 for z ∈ (ρ(x) − ε, x), attains the maximum expected
pay-off.
Step 2 : Substituting ρ(x) for R0 in (2.7), we see that the maximum
expected pay-off is positive if x is sufficiently small and negative if it is
sufficiently large. We can compute its second derivative with respect
to x,

−2(1 + se)
2ε(1 + 2ε)

[x+ (1 + 2se)ε]3
δ,

and see that it is strictly concave. This means that there is exactly one
x� at which the maximum expected payoff is zero, that it is positive for
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x < x�, and that it becomes negative for x > x�. Therefore, attacking
does not survive the iterated deletion of strictly dominated strategies
if, and only if, x > x�.
Step 3 : That x� > x∗ comes directly from the fact that the maximum
expected pay-off constructed in Step 1 for each x is always larger than
u(x, Ix). �

2.3.3. Uniqueness of the threshold equilibrium. Our main
result concerns the uniqueness of the threshold equilibrium.

Proposition 2.5. The equilibrium in Proposition 2.1 is the only
equilibrium.

Proof. The proof is by contradiction. We suppose that there ex-
ists an equilibrium which is not a threshold equilibrium and then show
that this is impossible. Suppose that π characterizes an equilibrium.
Define x as

x := sup{x|π(x) > 0}
and x as

x :=

{
x if π(x) = 1 for all x < x
sup{x < x|π(x) < 1} otherwise.

Note that, if the equilibrium is not a threshold equilibrium, we must
have that x < x. Also, by continuity, we must have that u(x, π) =
u(x, π) = 0. We presently show that this is impossible.
Step 1 : The peg survives for all R > ρ(x). We know that s(R, π) must
be weakly decreasing in (x− ε, x+ ε). Since u(x, π) = 0, there must be
a R0 in (x−ε, x+ε) at which s(R0, π)+se = R0. The expected pay-off
u(x, π) is strictly positive within the interval [R0 − ε, x) since, as we
move to the left from its right end, we are excluding states in which the
peg survives (and adding some in which it is abandoned). Therefore,
π(x) = 1 for all x in [R0− ε, x) which, in turn, implies that R0 = ρ(x).
Furthermore, for the same reason, s(R, π) must start decreasing at the
fastest rate before ρ(x).
Step 2 : If x < x − 2ε, then x = x. If x < x − 2ε, we have that
u(x, π) = u(x, Ix), which is zero only if x = x∗ (Proposition 1). But,
then, what we have is a threshold equilibrium.
Step 3 : If x ≥ x − 2ε, then u(x, π) > u(x, π). In order to compute
u(x, π) and u(x, π) we must integrate over the intervals [x − ε, x +
ε] and [x − ε, x + ε]. Both intervals overlap and, therefore, we only
need to compare the pay-off accumulated at both sides of the common
subinterval.
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Step 3.1 : To accomplish this task, we first find a lower bound to the
pay-off accumulated on the left-hand side subinterval. From (2.2) we
know that such a lower bound can be obtained by (a) reducing the
size of the set A(π), and (b) substituting the denominator s(R, π) + se
by a larger quantity at each state R. Let s0 = s(x − ε, π) and let
R0 = max{R < x− ε|s(R, π) + se = R}. First, we reduce the set A(π)
by assuming that the peg survives for all states in [x−ε, R0). Second, we
find an upper bound for the denominator s(R, π)+se within [R0, x−ε].
We know that s(R, π) is weakly increasing in (x − ε, x − ε), which
means that s(R, π) ≤ s0 within this interval. The pay-off accumulated
in [x− ε, x− ε] is bounded below by

(2.8)
1

2ε

[∫ R1

R0

R

R0 + 1
2ε

(R−R0)
δ dR +

∫ x−ε

R1

R

s0

δ dR− c
]
,

where R1 = min{R0 + 2ε(s0 − R0), x − ε}. The denominator inside
the first integral corresponds to an upward sloping line, starting at the
point R0 on the 45-degree line and growing at the maximum feasible
rate until the upper limit s0 is reached; in the second integral the
curve becomes flat. Thus, we have constructed the largest admissible
denominators given the constraints: s(R0, π)+se = R0 and s(R, π) ≤ s0

in [x− ε, x− ε].
We now show that (2.8) is decreasing in R0. A sufficient condition

for (2.8) to be decreasing in R0 is that the first integral is so when
R1 = R0 + 2ε(s0 − R0). The derivative of the first summand in (2.8)
in this case is negative if

log

(
s0

R0

)
≤ 1

1− 2ε
.

Since s0 < 1 + se and R0 > ρ(x∗), a sufficient condition for this to be
true is that

(2.9) ρ(x∗) ≥ 1 + se
e

,

where e = 2.7182 . . . On the other hand, we know that the derivative
of u(x, Ix) with respect to x,

∂u(x, Ix)

∂x
= δ

[
log

(
1 + se
ρ(x)

)
− 1

1 + 2ε

]
,

has to be negative at x = x∗. Since this implies (2.9), we have shown
that (2.8) decreases with R0. Therefore, substituting R0 by a larger
number in (2.8) gives us a lower bound for the pay-off accumulated on
the left-hand side subinterval.
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Step 3.2 : Let %(x) be the point at which s(R, 1− Ix) + se = R, i.e.:

%(x) =
1

1− 2ε
[x− (1 + 2se)ε].

We know that %(x) ≥ R0 because s0 ≥ ρ(x). Then, the pay-off accu-
mulated on the left-hand side is bounded below by

(2.10)
1

2ε

[∫ x−ε

%(x)

%(x)
1
2

+ 1
2ε

(R− x) + se
δ dR− c

]
.

On the other hand, the pay-off accumulated on the right-hand side is
bounded above by

(2.11)
1

2ε

[∫ ρ(x)

x+ε

ρ(x)
1
2
− 1

2ε
(R− x) + se

δ dR− c

]
.

We have that (2.10) is larger than (2.11) if

(2.12) %(x) log

(
x−x
2ε

+ se

%(x)

)
≥ ρ(x) log

(
x−x
2ε

+ se

ρ(x)

)
.

But the function

x log
(a
x

)
is decreasing if

x ≥ a

e
.

In our case

%(x) ≥
x−x
2ε

+ se

e
,

and so

%(x) ≥ 1 + se
e

suffices for (2.12) to be true. Combining %(x) > ρ(x∗) and (2.9) we
have that u(x, π) > u(x, π). �

From these results we can now show:

Proposition 2.6. In the limit, as ε goes to zero, x∗ is obtained as
the solution of the following equation:

x log

(
1 + se
x

)
=
c

δ
.
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Figure 2. Various plots of ρ(x∗)− se as a function of ε
for se = 3 and c/δ < 1/2.

2.3.4. Comparative statics. The previous proposition becomes
fundamental to perform comparative static exercises. As suggested
in the introduction, most important results refer to variations in the
size ε of the noise term, which can be interpreted as a measure of
the lack of transparency of the monetary policy. In particular, we
shall be interested in the behavior of the quantity ρ(x∗) − se, which
gives the proportion of states in which the peg is abandoned, as the
noise ε becomes small. Our results show that, in general, this quantity
gets bigger as the size of the noise decreases. That is, an increase in
the transparency of the monetary policy tends to enlarge the set of
states in which currency attacks succeed. In any case, this effect is of
quantitative little importance for the majority of parameter values (in
fact, it is almost zero for the most interesting cases).

Figure 2 presents several plots of ρ(x∗) − se as a function of ε for
different values of the ratio c/δ and se = 3. We have chosen the maxi-
mum value of ε to be 0.5 because this is the value that makes speculator
se + 1/2 believe that all states in the intermediate reserve region are
possible. The values for the ratio c/δ are all smaller that 1/2 in order
to fulfill our parameter’s restrictions [(2.1) and R < se − 2ε].

Our results are in sharp contrast with the findings of Morris and
Shin, who write on the same issue:4

4Morris and Shin, 1998, page 595.
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Above all, our analysis suggests an important role for
public announcements by the monetary authorities,
and more generally, the transparency of the conduct of
monetary policy and its dissemination to the public.
If it is the case that the onset of currency crises may
be precipitated by higher-order beliefs, even though
participants believe that the fundamentals are sound,
then the policy instruments which will stabilize the
market are those which aim to restore transparency
to the situation, in an attempt to restore common
knowledge of the fundamentals.

Finally, we see that for fixed ε, both a lower cost and a higher
depreciation rate imply a larger range of states in which the peg is
abandoned. But he general picture does not change for variations in
se; in this case the game becomes roughly an invariant translation: An
increase in se must come forth with the same increase in R.

2.4. Extensions

2.4.1. Determinants of exchange rates. So far we have con-
sidered that at the prevailing exchange rate e there is an excess supply
se. Besides the own exchange rate, e, this excess supply could actually
be a function of some fundamental value, θ. Variable θ can be con-
formed by various internal and external market forces. A change in θ
may trigger a move away from the exchange rate fundamental value
e∗ as reflected by a variation in the excess supply se. In light of the
preceding analysis, there is no loss of generality to assume that both θ
and se are common knowledge, since the case of heterogeneous beliefs
on θ can be easily accommodated under our framework.

We may even suppose that the fundamental value of the currency e∗

depends on the amount of speculation, s, and the amount of reserves, R.
The idea is that extensive speculation may lead to an undershooting of
the currency, and an increased amount of reserves may instill confidence
in the economy. Again, these considerations can easily be integrated
into the above framework.

2.4.2. Currency bands. In a currency band, the exchange rate
is allowed to fluctuate within certain margins. In our simple model,
the risk of speculation becomes smaller the longer the currency is away
from the floor, say e. Let us assume that the value of the currency
is at some point e0 > e. Then, in a speculative attack the exchange
rate would have to move first from e0 to e. This move puts downward
pressure on both the excess supply, se, and the gains from speculation,
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δ, as the government would trade reserves at the lower exchange rate,
e. Likewise, other managed float schemes may seem appropriate to
minimize the benefits of speculation and boost currency stability.

2.4.3. Large trader, and sequential games. These important
extensions are considered in Corsetti et al. (2004). If the actions of the
large trader are not observed, it does not seem to be so obvious what
would be their effects on the behavior of the small traders. Neverthe-
less, Proposition 5 above suggests that for very small transaction costs,
speculators will attack the currency whenever se + 1 > R. Hence, in
those cases it seems that the existence of a large trader will not change
the results. But as Figure 2 shows the degree of asymmetric informa-
tion matters when transaction costs are larger.

2.5. Concluding Remarks

In this paper we study a game-theoretic model of currency specula-
tion with asymmetric information. There is a continuum of speculators
that can short the currency and a government that holds a stock of
international reserves to sustain a currency peg. Unlike most global
games, speculators’ actions aren’t global complements. We neverthe-
less establish existence of a unique threshold equilibrium, and this is
the only equilibrium of the game.

In various numerical exercises we observe that variations in the
degree of asymmetric information have mild effects in equilibrium out-
comes. The strategic substitutability condition embedded in the game
seems to lead to more active speculation behavior as the degree of asym-
metric information vanishes. These asymmetric information effects are
more pronounced under large transaction costs (or small gains from
currency depreciation) where traders with diffused priors become less
forthcoming about the benefits of the currency attack.

Under asymmetric information, both transactions costs and capi-
tal gains influence the required amount of reserves to deter a currency
attack. But as seen by Proposition 2.6 above, for small transaction
costs, as the noise goes to zero, such required amount of reserves has
to exceed the borrowing capacity of speculators. Furthermore, our
numerical experiments suggests that this required quantity remains
invariant to changes in the degree of asymmetric information. There-
fore, our results point at the inherent instability of fixed exchange rate
regimes. A shock to the economy that generates an excess supply of
currency may need to be accommodated by a corresponding increase in
international reserves: If international reserves cannot be spared then
a speculative attack would be the likely outcome. Therefore, policy
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coordination among central banks and other global institutions would
be the most effective tool to avoid currency attacks by enlarging the
borrowing capacities of the economy. Of course, these attacks will be
more intensive the further away is the peg from the fundamental value;
likewise, the so called ”sand-in-the-wheels” in the way of taxes or other
transaction costs will have mitigating effects on currency speculation.



CHAPTER 3

Technology Adoption with Learning by Doing and
Switching Costs

Abstract. We present a dynamic, finite-time model in which two
long-lived sellers compete at each period for a short-lived buyer.
One of the sellers has the option to adopt a new technology for
production which exhibits both switching costs and learning by
doing. We show that some efficient technologies are not adopted in
equilibrium. Switching costs and learning by doing give incentives
to the second seller to undercut prices and render the adoption
unprofitable. We characterize the set of technologies which are
adopted in equilibrium and show that those technologies which are
learned faster—and not necessarily those which are more efficient—
are more likely to be adopted.

3.1. Introduction

In this paper we study a dynamic model of technology adoption
and price competition. Our main goal is to examine whether efficient
technologies are introduced in equilibrium or not. The adoption of a
new technology is characterized by two main features: First, adopting
a new technology entails a switching cost with respect to the old tech-
nology; Second, the productivity of the new technology is advanced
through learning by doing.

In our model, two long-lived sellers compete at each of a finite num-
ber of dates for a short-lived buyer with unit demand. At each date,
one of the sellers has the option to adopt a given new technology—if he
has not done that yet. Then, after observing the adoption decision, the
sellers compete by simultaneously declaring prices to the living buyer,
who buys from the seller who offers the highest consumer surplus.

The main idea that the model intends to capture is simple. As
adopting a new technology involves switching costs, the adopting seller
will be, for some period, in a market disadvantage with respect to its
rival. This temporary market disadvantage may become perpetual if
his rival trades with the buyers that the adopting seller needs to learn
the new technology. Hence, the prospect of future “monopoly” profits
that the rival seller might obtain if a new technology remains unlearned
discourages its adoption in the first place.

35
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Our basic model has a number of interesting results. First, and in
line with much empirical evidence [see Holmes and Schmitz (2010); Par-
ente and Prescott (2002)], some efficient technologies are never adopted
in equilibrium. Second, equilibrium adoption exhibits what we call the
impatience property: Among technologies that have the same social
surplus, the adoption is biased towards technologies whose benefits are
received earlier rather than later. Put somewhat differently: the adop-
tion of a new technology is determined not only by the social surplus it
creates but also by the inter-temporal distribution of this surplus. For
the same social surplus, some technologies might be adopted and oth-
ers might not; those who are adopted tend to exhibit smaller switching
costs and also smaller productivity improvements over time.

Our basic model can also be extended to explore the value of com-
petition. That is, the effect that the presence of an additional seller
has on the equilibrium set of adopted technologies.

3.1.1. Related Literature. Our results show that Pareto tech-
nologies may remain unused even in the absence of sunk adoption costs.
In its interest to understand adoption by a seller, our paper is con-
nected with Arrow (1962) who was the first to compare the incentives
to adopt a technology under competition and monopoly. However, Ar-
row and the literature that follows [see, for instance, Gilbert and New-
bery (1982)] assume away both the presence of switching costs and of
learning by doing.

Our paper is also related to a series of papers in which learning
by doing and switching cost do play an important role. Jovanovic and
Nyarko (1996) discuss a model of a single decision maker who must
decide how fast to switch to a new—and potentially more productive—
technology. Switching entails a productivity loss that might prevent an
agent who is already skilled in the old technology to adopt a new one,
even when the latter is superior. Chari and Hopenhayn (1991) also
exploit the idea that capital is specific to a given technological vintage
in a perfectly competitive model to explain adoption and diffusion of
new technologies. Clearly, our paper shares some of these features. We
inspect, however, the adoption of Pareto technologies in an strategic
setting. This allows us to exploit the idea that switching costs represent
an opportunity for the non-adopting seller to undercut prices and thus
increase the cost of trading with the adopting seller in the long-run.
This distinctive feature of our model is absent in those related papers.

In its emphasis on learning by doing and how it affects the dy-
namics of leadership in an industry our model is related to Cabral and
Riordan (1994). Although their main goal is to understand whether
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market dominance may emerge as an equilibrium outcome, there is a
link between our results and theirs. In our model a technology is never
adopted when the adopting seller anticipates that his rival will be-
come (or continue being) the market leader. Put somewhat differently:
Adopted technologies are those which guarantee market leadership to
the adopting seller.

Two more papers are related to ours: Bergemann and Välimäki
(2006) and Holmes et al. (2008). Our framework shares some formal
similarities with that of Bergemann and Välimäki (2006). Notably, we
also assume that the sellers compete by declaring prices in a transfer-
able utility economy. Moreover, in our set-up it also results crucial for
the efficiency of the equilibrium how the surplus created by a new tech-
nology is divided among buyers and sellers. A difference that should be
noted is that buyers are short-run agents in our framework while there
is a unique long-run buyer interacting with the sellers in their dynamic
game. Our assumption of short-lived buyers intends to capture the
notion of negligible and perfectly competitive buyers.

Holmes et al. (2008) is closest to our paper. These authors explain
why a more competitive environment might lead to higher incentives to
adopt new technologies. Key for their results is the presence of switch-
ing cost. At the heart of our model lies the interplay between switching
cost and learning by doing in a dynamic model of price competition.
This trade-off allows us to complement their results. Hence we are able
to offer a sharp characterization of what types of technologies could be
adopted in equilibrium. The next target in our agenda is to understand
under which conditions competition has a positive value.

3.2. The Model

We consider a transferable utility (TU) economy which lasts finitely
many dates t = 0, . . . , T . There is one short-lived buyer alive at each
date who can buy at most one good from one of two long-lived sellers
s ∈ {i, j}. If the buyer alive at date t buys from seller s, they create
the (static) gain from trade θs ≥ 0. The gains from trade (hereafter,
gains) are just the difference between the utility obtained by the buyer
and the production cost of the seller. We use this terminology because,
as will become clear later, it is irrelevant whether a difference in gains
arises from a higher utility or a lower cost—we allow for heterogeneous
goods.

Seller i has the option of adopting a new technology. The gains
associated to the new technology are given by a function

θ : {0, . . . , T} −→ R+
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of the past cumulative sales x made by seller i. Since this function
contains all the relevant information about the new technology, we
refer to the latter as the technology θ. We assume that θ fulfills

θ(0) ≤ θj,(3.1)

θ(x+ 1) ≥ θ(x)(3.2)

and

(3.3)
T∑
x=0

θ(x) ≥ (T + 1) max
s
{θs}.

The inequalities (3.1) and (3.2) say that, whereas the first sale made by
seller i with the new technology creates a smaller gain than the one cre-
ated with seller j, the gain from each additional sale increases with the
amount of past cumulative sales made by seller i. In other words, the
inequality (3.1) captures the idea of switching costs and the inequality
(3.2) learning by doing. The last inequality states that producing the
T + 1 goods with the new technology is a weak Pareto improvement
(recall that in a TU economy an allocation is Pareto optimal if, and
only if, maximizes the social surplus). The set of all technologies ful-
filling (3.1), (3.2) and (3.3) for a given pair of old technologies {θi, θj}
is called a Pareto set. We denote it by Θ. The following example
illustrates:1

Example 3.1. Let T = 1. Suppose that the utility to each buyer
from a unit of consumption is u. Let cs be the cost of production of
seller s and (c0, c1) be costs of production with the new technology if
zero and one cumulative sales have been made. That is: θs = u − cs,
θ(0) = u− c0 and θ(1) = u− c1. The set of cost pairs C = {(c0, c1) ∈
R2

+ : c0 ≥ cj, c
1 ≤ c0, c0 + c1 ≤ 2 mins{cs}} characterizes the largest

subset of the Pareto set where θ(1) ≤ u. This set is depicted in Figure
1 for the case ci = cj = 1.

We assume that seller i has, at each date, the option to switch from
the old technology θi to the new technology θ if he has not switched at
any previous date. This choice is irreversible; once seller i has adopted
the new technology he cannot switch back to the old one.

At each date, and after observing the adoption decision, the two
sellers compete by simultaneously declaring prices to the living buyer.
Then, the buyer buys from the seller offering him the highest surplus.
We assume that the sale is always made by the seller who is willing
to offer the highest surplus. In case of a tie the sale is made by seller

1All the examples below continue on this one.
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Figure 1. Example with T = 1, constant utility and
costs ci = cj = 1.

i. Both sellers wish to maximize the sum of their short-run profits—
without discounting.

3.3. The Equilibrium

We restrict our attention to Markov perfect equilibria. A MPE is a
perfect equilibrium in which the strategies of the players only depend
on the pay-off relevant information. In our economy this information is:
(a) the current date t, (b) whether seller i adopted the new technology
at some previous date and (c) the number x of sales made by seller i
with the new technology.

3.3.1. Dynamic price competition. We solve for equilibria by
backwards induction. Because the adoption decision is irreversible, we
solve first for all states in which the new technology has been adopted
already. That is, we abstract momentarily from the adoption decision
and concentrate on the dynamic price competition that starts once the
new technology has been adopted. This is a necessary preliminary step
before addressing optimal adoption decisions; one needs to compute
the value from adopting a new technology to decide whether one should
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adopt it or not. To simplify the notation, we will refer to a pair (x, t)
as a state within this subsection.

Once the new technology has been adopted, the sales made by each
seller have a prominent strategic role. The key point is that each sale
accrued by seller i strengthens his strategic position against seller j.
Note that because of (3.3), there must be a minimum amount of sales
x such that θ(x) ≥ θj for all x ≥ x, formally:

x := min{x : θ(x) ≥ θj}.

If seller i manages to accrue x sales, then he sells at a profit at every
subsequent period. But every sale made before x should entail a short-
run loss because the technology of seller j is better whenever x < x.
On the other hand, seller j can prevent seller i from learning the new
technology by incurring in short-run losses. If seller j manages to reach
a state (x, t) for which the periods remaining are not more than the
sales before x; if T + 1 − t ≤ x − x, then he also sells at a profit at
every subsequent period. In summary, the value from making a sale
transcends short-run considerations and both sellers are, in principle,
willing to incur in short-run losses to improve their strategic position.

For the exposition, we find it convenient to view the sellers as of-
fering surplus to the buyers rather than declaring prices. From this
perspective, sellers can be seen as bidding for the buyers in a second-
price auction at each state. Let Vs(x, t) denote the profit (value) of
seller s at state (x, t). The maximum amount of utility that each seller
is willing to transfer to the buyer at state (x, t) is given by the following
bidding functions :

bi(x, t) = θ(x) + Vi(x+ 1, t+ 1)− Vi(x, t+ 1),

bj(x, t) = θj + Vj(x, t+ 1)− Vj(x+ 1, t+ 1).

They read as follows: suppose that seller i had to transfer bi(x, t) to
the seller to make a sale. If he sells, he earns the short-run gain θ(x),
minus the transfer bi(x, t), plus the continuation value Vi(x+ 1, t+ 1);
if he does not sell, he earns his continuation value Vi(x, t + 1). The
bidding functions give us the amount that leaves each seller indifferent
between selling or not at (x, t).

We have assumed that seller i sells at (x, t) if, and only if, bi(x, t) ≥
bj(x, t). Since the winner must pay the bid of the loser, the value of
each seller at (x, t) is written as:

Vi(x, t) = max{θ(x)− bj(x, t) + Vi(x+ 1, t+ 1), Vi(x, t+ 1)}
Vj(x, t) = max{θj − bi(x, t) + Vj(x, t+ 1), Vj(x+ 1, t+ 1)}.
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Example 3.2. Suppose that seller i introduced the new technology
at t = 0. The bidding functions at t = 1 are: bi(0, 1) = u−c0, bi(1, 1) =
u− c1 and bj(0, 1) = bj(1, 1) = u− cj. This implies that the values at
t = 1 are: Vi(1, 1) = cj−c1, Vj(0, 1) = c0−cj and Vi(0, 1) = Vj(1, 1) = 0,
because the price at t = 1 must equal the highest cost. Going one
period backwards, we have that bi(0, 0) = u−c0 +cj−c1 and bj(0, 0) =
u − cj + c0 − cj. This implies that Vi(0, 0) = max{3cj − 2c0 − c1, 0}
and Vj(0, 0) = max{2c0 + c1 − 3cj, 0}, because the price at t = 0 must
equal the loser’s reservation price: min{2cj − c0, c0 + c1 − cj}. The set
of cost pairs C0 = {(c0, c1) ∈ R2

+ : c0 ≥ cj, c
1 ≤ c0, 2c0 + c1 ≤ 3cj} for

cj = 1 is depicted in Figure 1.

The previous example shows that—if T = 1 and seller i introduces
the new technology at t = 0—either seller i sells at both periods or
at none of them. The following proposition states that this is true
in general for the sub-game that starts when the new technology is
adopted.

Proposition 3.3. Consider the sub-game that starts when the new
technology is adopted. In a MPE of this sub-game the same seller sells
at each date.

On the other hand, in Example 3.2 we have that seller i is the
winning seller if, and only if, 2c0 + c1 ≤ 3cj. That is, there is a unique
equilibrium for each specification of the costs. This is also true in
general, as stated in the next proposition.

Proposition 3.4. The sub-game that starts when the new technol-
ogy is adopted has a unique MPE.

3.3.2. The adoption decision. We turn now to the adoption
decision. We assume that if seller i is indifferent between adopting
or not the new technology he will not adopt it. This rules out some
uninteresting equilibria. Under this assumption, our first result states
that the new technology is never adopted with delay.

Proposition 3.5. In a MPE the new technology is either adopted
at t = 0 or never.

Therefore, seller i adopts the new technology only if he finds it prof-
itable at t = 0. The next proposition gives a necessary and sufficient
condition for this to happen.

Proposition 3.6. Let Z be

Z(θ) :=
T∑
k=0

(T + 1− k)[θ(k)− θj].
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In a MPE the new technology is adopted if, and only if,

(3.4) Z(θ) > (T + 1) max{θi − θj, 0}.

Note that the function Z puts more weight on the lower values of k
for which θ(k)− θj is smaller (negative). Hence, Z is typically smaller
than

∑
k[θ(k) − θj]. We will see below that, for this reason, some

efficient technologies are not adopted in equilibrium. The following
result is an immediate consequence of the Propositions 3.3–3.6.

Corollary 3.7. There is a unique MPE for each θ ∈ Θ. If (3.4)
holds the new technology is adopted at t = 0 and seller i sells at every
date. If (3.4) does not hold the new technology is never adopted. In
this latter case, seller i sells at every date if θi ≥ θj; otherwise, seller
j sells at every date.

3.4. Efficiency

In this section we are interested in the comparison of different tech-
nologies that have the same total gain. In doing so, we will isolate the
role of the inter-temporal distribution of gains (i.e., the speed of the
learning process) in determining equilibrium outcomes. To begin with,
we partition the set of Pareto technologies according to their total gain.
Let Γ(g) denote the class of Pareto technologies with total gain g:

Γ(g) :=

{
θ ∈ Θ :

T∑
k=0

θ(k) = g

}
.

Our first result states that some classes are so productive that all tech-
nologies within these classes are adopted in equilibrium—no matter
how the total gain is distributed across dates.

Proposition 3.8. If g > (T + 1)(maxs{θs} + T
2
θj), then all tech-

nologies in Γ(g) are adopted in equilibrium.

For the rest of classes, however, we can always find a Pareto tech-
nology which is not adopted in equilibrium. These classes exhibit what
we shall call the impatience property. The word “impatience” refers to
the fact that those technologies which are learned faster (in the precise
sense of having a larger Z) are the ones that are adopted in equilibrium.

Proposition 3.9. All classes Γ(g) with g ≤ (T + 1)(maxs{θs} +
T
2
θj) exhibit the impatience property (excluding g = (T + 1) maxs{θs}

if T = 1).

The impatience property implies, for example, that if seller i is of-
fered to choose among several technologies, he may choose to adopt a
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less efficient one just because its gains are more biased towards earlier
periods. Note that this preference appears in a world without time dis-
counting and without borrowing constraints. The technologies which
are learned faster leave less profits to seller j when he prevents seller
i from reaching the minimum scale x (of course, this occurs out of the
equilibrium path). For this reason, they are easier to implement in
equilibrium.

Example 3.10. Consider the set of cost pairs {(c0, c1) ∈ R2
+ : c0 ≥

1, c1 ≤ c0, c0 + c1 = κ} for κ ∈ [1, 2]. These classes are lines of slope −1
in Figure 1 (parallel displacements of the dashed line). We see that, if
κ < 1.5, all technologies in the same class are adopted in equilibrium
(the whole line lies in C0). If κ ≥ 1.5, however, some technologies lie
outside C0 and, therefore, are not adopted in equilibrium. This is an
elementary illustration of the impatience property: Let κ1 > κ2 > 1.5.
Seller i would prefer a less efficient technology—with c0+c1 = κ1—that
is adopted in equilibrium to a more efficient one—with c0 + c1 = κ2—
which is not adopted.

3.5. Future Work

The next step in our agenda will be the study of the value of com-
petition. We will get into this issue by introducing a third seller m in
our model. The next example gives us an idea of the results that we
may expect.

Example 3.11. Suppose that we introduce a new seller m with a
cost of production cm ∈ [cj, c

0] (and that ci = cj). If seller i introduces
the new technology and sells at t = 0, he will also sell at t = 1 at the
price cj. This means that he is willing to lose, at most, cj− c1 at t = 0,
which implies that his reservation price at t = 0 is c0 +c1−cj. If seller j
has sold at t = 0 and seller i has introduced the new technology, seller
j will also sell at t = 1 at the price cm. This means that he is willing to
lose, at most, cm− cj at t = 0, which implies that his reservation price
at t = 0 is 2cj − cm. Therefore, the new technology will be adopted if,
and only if, cm + c0 + c1 ≤ 3cj. Since cm ≤ c0, the set of technologies
which are adopted with the new seller is never smaller than with two
sellers.

Introducing a third seller in our example reduces the profits that
seller j will get in the second period (provided that seller i introduced
the new technology and that seller j sold at t = 0). Seller j has to
lower the price to compete with seller m, which reduces his incentives
to sell at t = 0. On the other hand, the value from selling at t = 0
for seller i remains unchanged because cm ≤ cj (he does not have to
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lower his second-period price). This explains why more technologies
are adopted in equilibrium.

If a new technology is adopted, the price at t = 0 is equal to the
reservation price of the seller j, that is, equal to 2cj−cm. Since cm ≤ c0,
this leads us to the surprising result that increasing competition may
lead to higher prices at t = 0 (recall that the same price with two
sellers was 2cj − c0). The reason for this is that the new seller reduces
the seller j’s willingness to transfer utility to the buyer alive at t = 0,
which, in turn, increases the market power of seller i. Since the second-
period price does not change, consumers are generally worse-off with
the new seller for those technologies which were also adopted with two
sellers. If a technology was not adopted with two sellers, the price at
both periods was equal to maxs{cs}. Consider a technology which was
not adopted with two seller but it is now adopted with three. Because
cm ≥ cj, the consumer surplus with two sellers 2(u−maxs{cs}) is never
larger than the consumer surplus with three sellers 2u+cm−3cj. Lastly,
for the technologies which are not adopted even with three sellers the
equilibrium prices do not change.



APPENDIX A

Details of Chapter 1

A.1. Proofs

Two properties of the functions G and v will be used repeatedly.
First: becauseG is a distribution function, it is right-continuous, which,
in turn, implies that v is also right-continuous. Second: v is increasing
whenever G is constant and vice versa.

A.1.1. Preliminary results.

Lemma A.1. Given the conditions of Lemma 1.3, v(t) = v(t) = v∗.

Proof. If either the infimum or the supremum is an isolated point
of the support, then it is a mass point of the distribution F and v at
that point must be v∗.

Because v is right-continuous, limt↓t v(t) = v(t), which, if t is not
isolated, implies that v(t) = v∗.

Suppose that v(t) < v∗. If t is not isolated, this can happen only if
v has a downward jump at t, which, by (1.3), only occurs if G jumps
at t. G jumps only if s (and F ) also have a jump at the same point; a
point in which s first surpasses a strictly positive mass of sample paths
of κ. But this means that t is a mass point of F , and so v(t) = v∗. �

Lemma A.2. Given the conditions of Lemma 1.3, t > 0, and the
support of F is an interval.

Proof. We know from Proposition 1.2 that F is non-degenerate.
Because G is right-continuous and G(0) < 1, we know that for every
ε > 0 there must exist some δ such that t < δ implies that G(t) <
G(0) + ε. Take any ε < 1−G(0) and see that v(δ) > 1− c. This shows
that v(t) = v∗ > 1− c, and so t > 0.

We will use the following properties of the function s. We must
have both s(t) < κ(1, t) for all 0 < t ≤ arcsin(µ) and s(t) = µ for all
t ≥ π − arcsin (µ). Otherwise, the bubble bursts no later than t with
probability one, which would imply that v(t) = v∗ = 1− c.

Now we can show that F is strictly increasing for all t ≤ t ≤
t. Suppose that F (t0) = F (t1) = k0/µ for some t ≤ t0 < t1 ≤ t,
that is, s(t) = k0 for all t ∈ [t0, t1]. We will see that this leads to

45
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a contradiction. Let t− = inf{t|F (t) = k0/µ}, that is, t− belongs to
the support of F . Let x− be the solution to the equation κ(x, t−) = k0

(that this equation has a solution is implied by the previous paragraph).
The derivative of κ(x−, t) with respect to t, evaluated at t−, cannot be
strictly positive. If this were the case, then, there would exist some
ε > 0 such that s(t) = k0 < κ(x−, t) for all t− < t ≤ t− + ε, which,
in turn, implies that no market price path decreases therein. But this
contradicts that fact that t− belongs to the equilibrium support; any
point fulfilling t− < t ≤ t− + ε pays more than v(t−) = v∗ because
G(t) = G(t−).

Let t+ = sup{t|F (t) = k0/µ}, that is, t+ belongs to the support of
F . Since some price path has to decrease in (t−, t−+ ε] for every ε > 0,
and since the aforementioned derivative has to be either negative or
zero, we have that a price path decreases at each instant t− < t < t+,
that is, a sample path of κ intersects s for the first time at each of those
instants. Let x+ be solution to the equation κ(x, t+) = k0. What we
have just shown is that the function T is

T (x) =

[
π − arcsin

(
k0

x

)]
x

for all x− < x < x+. Therefore, we can make the change of variable
t = T (x) and rewrite the pay-off function v for t− < t < t+ as

(A.1) e(g−r)T (x)(1− x) + x− c,

where x− < x < x+. Since the function (A.1) is uni-modal for k0 ≤
x ≤ 1 (provided that k0 > 0), we must have that v is decreasing for
t− < t < t+; otherwise, the pay-off would not be maximized at t−. The
pay-off function v can only have downward jumps (which correspond to
upward jumps of G) and, therefore, we must have that v(t−) > v(t+),
which contradicts the fact that t+ belongs to the equilibrium support.
This shows that F is strictly increasing in [t, t]. �

Lemma A.3. Given the conditions of Lemma 1.3, G is continuous
and strictly increasing for all t ≤ π − arcsin(µ).

Proof. Since s(t) = 0 for all t < t, we have that T (x) = πx for
all x < t/π, which implies that G(t) = t/π for all t < t. Thus, G is
strictly increasing and continuous for all t < t.

Suppose that there were t ≤ t0 < t1 ≤ t such that G(t0) = G(t1) =
h0. Then, v(t0) < v(t1), contradicting the fact that v(t0) = v∗, as
implied by the previous lemma. Also, if G had a jump at some t ≤
t0 ≤ t, then v would have a downward jump at t0, which cannot happen
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if v(t0) = v∗. Thus, G is strictly increasing and continuous for all
t ≤ t ≤ t.

There cannot be any ε > 0 such that no price path decreases in
(t, t+ε] because that would mean that G(t+ε) = G(t), that is, v(t+ε) >
v(t), which contradicts the fact that v(t) = v∗. Since s is flat for all
t ≥ t, any sample path of κ which intersects s for the first time in that
range has to be decreasing. This implies that one price path decreases
at each t < t ≤ π − arcsin(µ). Thus, G is strictly increasing and
continuous for all t < t ≤ π − arcsin(µ). �

A.1.2. Results in the main text.

Lemma 1.3. Suppose that there is a symmetric equilibrium in mixed
trigger-strategies which fulfills G(0) < 1. Then, the function T is
strictly increasing and continuous.

Proof. T is monotone increasing because κ(x1, t) ≥ κ(x0, t) for all
t and all x1 > x0. Let us define

ξ(t) := sup {x|T (x) ≤ t}.
It is clear from the definition that T (x) ≤ t implies x ≤ ξ(t) and, hence,
P(T (X) ≤ t) ≤ P(X ≤ ξ(t)). If x < ξ(t), then T (x) ≤ t; since T is
monotone increasing, T (x) > t would contradict the definition of ξ(t).
Therefore, there is at most one point which could satisfy both x ≤ ξ(t)
and T (x) > t, namely x = ξ(t). Because the standard uniform is a
continuous distribution, any singleton has probability zero. Thus, we
can write:

(A.2) G(t) = P(T (X) ≤ t) = P(X ≤ ξ(t)) = ξ(t).

Since T is monotone increasing, it can only have jump discontinu-
ities. Suppose that T had a discontinuity at x0 and let t0 < t1 be the
one-sided limits of T as x approaches to x0. Then, we should have that
ξ(t) = ξ(t0) for all t0 ≤ t < t1, which, by Lemma A.3 and (A.2), cannot
happen (ξ is strictly increasing for all t ≤ π − arcsin(µ)). This shows
that T is continuous.

To show that T is strictly increasing, suppose that T (x0) = T (x1) =
t0 for some x0 < x1. Let x− = inf{x|T (x) = t0} and x+ = sup{x|T (x) =
t0}. Because T is increasing, ξ(t0) = x+ and ξ(t0−ε) ≤ x− for all ε > 0.
This means that ξ must have a discontinuity at t0, which cannot happen
since Lemma A.3 together with (A.2) imply that ξ is continuous.

Since T is strictly increasing and continuous, then ξ = T−1. �

Lemma 1.5. All F fulfilling the conditions of Lemma 1.3 have the
same support.
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Proof. Using the change of variable t = T (x), we can write

(A.3) v(T (x)) = e(g−r)[π−arcsin(µ/x)]x(1− x) + x− c

for all x ≥ T−1(t). This function is uni-modal for µ ≤ x ≤ 1. Since
v(t) must be smaller or equal than v∗ for all t > t, we know that T−1(t)
cannot be smaller that the point x which maximizes (A.3). Otherwise,
(A.3) would be strictly increasing at T−1(t), which contradicts the fact
that v(t) = v∗.

On the other hand, we know that s(t) ≤ µ for all t. This im-
plies that, for all x > µ, the inequalities arcsin(µ/x)x < T (x) <
[π − arcsin(µ/x)]x cannot both be true: within the interval of time
(arcsin(µ/x)x, [π − arcsin(µ/x)]x)—the mania—the absorption capac-
ity is strictly greater than µ for all x > µ, which means that no price
path can decrease therein. The inequality T (x) ≤ arcsin(µ/x)x can nei-
ther be true. Suppose that there exists some x0 > µ such that T (x0) ≤
arcsin(µ/x0)x0. We know that for all x > x0 and all arcsin(µ/x0)x0 ≤
t ≤ [π−arcsin(µ/x0)]x0, κ(x, t) > µ. Therefore, no price path decreases
within the interval of time (arcsin(µ/x0)x0, [π−arcsin(µ/x0)]x0), which
is incompatible with T being continuous. In short, we must have that
T (x) ≥ [π− arcsin(µ/x)]x for all µ < x ≤ T−1(t). Going back to v, we
must have that

(A.4) v(T (x)) ≥ e(g−r)[π−arcsin(µ/x)]x(1− x) + x− c

for all µ < x ≤ T−1(t). This implies that T−1(t) cannot be greater
than x, since x would then contradict the inequality. Hence, there is
only one admissible T−1(t), namely, x, and t = [π − arcsin(µ/x)]x.

Clearly, t gives us v∗. On the other hand, t is the solution to

(A.5) e(g−t)t
(

1− t

π

)
+
t

π
− c = v∗

for t < t. Such solution always exists and is unique because the left-
hand side of (A.5), with the change of variable t = πx, is uni-modal
in [0, 1], equal to zero at t = 0, and lies above the right-hand side of
(A.3) for all x > µ. �

Proposition 1.6. There is a unique equilibrium fulfilling the con-
ditions of Lemma 1.3. In this equilibrium, each arbitrageur plays the
mixed trigger-strategy

F (t) =
1

µ
κ
(
T−1(t), t

)
for all t ≤ π − arcsin(µ).
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Proof. We first show that F characterizes an equilibrium. We
start showing that F is a distribution function. Because T−1(t) = t/π
for all t ≤ t, F (t) = 0 for all t ≤ t, and because T−1(t) is the solution
to κ(x, t) = µ for all t > t, F (t) = 1 for all t ≥ t. To prove that F is
non-decreasing one should take the derivative of

1

µ

e(g−r)t − v∗ − c
e(g−r)t − 1

sin

(
e(g−r)t − 1

e(g−r)t − v∗ − c
t

)

with respect to t and show that it is non-negative for all t ≤ t ≤ t.
The problem is that t is obtained from a maximization problem for
which there is no closed-form solution, whereas t is obtained from t
via an equation which neither has a closed-form solution. Since the
derivative changes sign, the precise location of both points is crucial.
We have computed F for a fine grid of parameter values 0 < µ < 1
and 0 < g − r < 1 to find that it is indeed strictly increasing inside
the equilibrium support for all of them. A program which produces
an animated plot of F for such range of parameter values is printed in
Appendix A.2.

We now show that F induces T , that is,

(A.6) T (x) = inf{t|µF (t) ≥ κ(x, t), t ≥ 0}.

Take any 0 ≤ x0 ≤ 1. It is obvious that µF (T (x0)) = κ(x0, T (x0)).
Also, for all t < T (x0), we have that T−1(t) < x0 and, hence, µF (t) <
κ(x0, t).

We have seen in the proof of Lemma 1.5 that v(t) is strictly in-
creasing for all t < t and strictly decreasing for all t > t. That is,
all trigger-strategies outside the equilibrium support pay less than the
equilibrium pay-off v∗. It only remains to show that no other pure strat-
egy pays more that v∗. Consider an arbitrary pure strategy involving
N > 1 transactions (since all arbitrageurs liquidate a some time, every
pure strategy which is not a trigger-strategy involves more than one
transaction). Let (t, z) be the vector specifying the transaction dates
(t1, . . . , tN) and the positions held between transactions (z1, . . . , zN),
where zN = 1. Such strategy is a plan of action; it tells us what
the arbitrageur will do as long as the bubble persists. If the bubble
bursts between to transaction dates, the arbitrageur liquidates. The
pay-off of a general pure strategy involving finitely many transactions
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is, therefore,

V ((t, z)) :=
N∑
n=1

[
(zn − zn−1)e(g−r)tn − c

]
[1−G(tn)]

+ (1− zn−1 − c)[G(tn)−G(tn−1)]1[0,1)(zn−1),

where z0 = t0 = 0. It is a simple matter of algebra to show that

V ((t, z)) <
N∑
n=1

[zn − zn−1]v(tn)

whenever (t, z) does not correspond to a trigger-strategy. We can
rewrite the right-hand side as

v(tN) +
N−1∑
n=1

zn[v(tn)− v(tn+1)].

Now let N1 = max{n|tn ≤ t}. Since v is non-decreasing for all t < t,
we have that the last expression is bounded above by

v(tN) +
N−1∑
n=N1

zn[v(tn)− v(tn+1)],

which, because 0 ≤ zn ≤ 1 and v(tn) − v(tn+1) ≥ 0 for all n ≥ N1,
cannot be greater than v∗.

We now show that there is no other equilibrium F fulfilling (A.6).
Because any F has to be continuous from the right, we know that

t0 = inf{t|µF (t) ≥ κ(x0, t), t ≥ 0}
if, and only if, (a) µF (t) < κ(x0, t) for all t < t0 and (b) µF (t0) ≥
κ(x0, t0). Thus, any other equilibrium F must fulfil (b) with strict
inequality for some x0. This means that F must have a jump at t0.
Now, let x1 be the solution to κ(x, t0) = µF (t0). We must have both
x1 > x0 and T (x1) = T (x0) (because (a) also implies that µF (t) <
κ(x1, t) for all t < t0), which contradicts Lemma 1.3. �

A.2. Program

The following Mathematica 6 1 program produces an animated plot
of F for parameter values 10−4 ≤ µ ≤ 1 and 10−4 ≤ g − r ≤ 1. The
functions w, a, and b in the program correspond to the quantities v∗+c,
T−1(t), and T−1(t); g, µ, and F correspond to g − r, µ, and F in the
model; φ and Φ are auxiliary functions.

1www.wolfram.com
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Clear[φ,w, b, a,Φ, F ]

φ[g , µ ]:=φ[g, µ] = Maximize
[{
eg(π−ArcSin[µx ])x(1− x) + x, µ ≤ x ≤ 1

}
, x
]

w[g , µ ]:=φ[g, µ][[1]]

b[g , µ ]:=φ[g, µ][[2, 1, 2]]

a[g , µ ]:=a[g, µ] = FindRoot [eg π x(1− x) + x == w[g, µ], {x, 0}] [[1, 2]]

Φ[t , g , µ ]:= 1
µ
eg t−w[g,µ]
eg t−1 Sin

[
eg t−1

eg t−w[g,µ] t
]

F [t , g , µ ]:=


0 0 ≤ t < π a[g, µ]

Φ[t, g, µ] π a[g, µ] ≤ t <
(
π −ArcSin

[
µ

b[g,µ]

])
b[g, µ]

1 t ≥
(
π −ArcSin

[
µ

b[g,µ]

])
b[g, µ]

Manipulate[Plot[F [t, g, µ], {t, 0, π}], {µ, 0.0001, 1}, {g, 0.0001, 1}]





APPENDIX B

Details of Chapter 3

Proposition 3.3. Consider the sub-game that starts when the new
technology is adopted. In a MPE of this sub-game the same seller sells
at each date.

Proof. We shall prove the result for the case in which adoption
takes place at t = 0. For later adoption dates we only need to change
the number of periods remaining—put T + 1− t instead of T + 1. The
proof proceeds in four steps:
Step 1. Let us define the function τ as

τ(x) := max{t : bi(x, t) ≥ bj(x, t)}

if the set {t : bi(x, t) ≥ bj(x, t)} is not empty, and τ(x) := x − 1 if it
is empty. We see that τ(x) = T for all x ≥ x, because, for all states
(x, t) with x ≥ x, we have that θ(x) ≥ θj. That is, we know that seller
i will sell at every successor state of (x, t).
Step 2. We show now that τ(x + 1) > τ(x) for all x < x. The proof
is by contradiction. Suppose that τ(x + 1) ≤ τ(x) for some x < x.
Then, we have that bj(x, t) > bi(x, t) and bj(x + 1, t) > bi(x + 1, t) for
all t > τ(x), which implies that bj(x, τ(x)) > bi(x, τ(x)) because seller
i knows at (x, τ(x)) that he will not sell at any later period. But this
contradicts the definition of τ .
Step 3. For every state (x, t) such that t < τ(x) (and x < x), we have
that bi(x, t) ≥ bj(x, t). Furthermore, we have that Vj(x, t) = 0 and
Vi(x, t) = wi(x, t). Let us start at the state (x − 1, τ(x − 1) − 1). At
this state, seller j knows that he will not sell at any future date—note
that, even if he sells, since bi(x− 1, τ(x− 1)) ≥ bj(x− 1, τ(x− 1)), he
knows that the state will move from (x−1, τ(x−1)) to (x, τ(x−1)+1)
in the next period. Therefore, he is willing to bid, at most, the short-
run gain: bj(x − 1, τ(x − 1) − 1) = θj. This implies that the value
at this state for him must be zero: Vj(x − 1, τ(x − 1) − 1) = 0, and
that the value for seller i must be maximum: Vi(x− 1, τ(x− 1)− 1) =
wi(x− 1, τ(x− 1)− 1). Going one period backwards, we see that seller
j also knows at state (x− 1, τ(x− 1)− 2) that he will not sell at any
future date. Repeating the same argument over and over again, we
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find that bi(x − 1, t) ≥ bj(x − 1, t) for all t < τ(x − 1). Furthermore,
Vj(x− 1, t) = 0 and Vi(x− 1, t) = wi(x− 1, t) for all t < τ(x− 1).

Because τ is strictly increasing, seller j knows at (x−2, τ(x−2)−1)
that he will not sell at any future date. Using the same reasoning of
the previous paragraph, we can establish the corresponding result for
all the states (x− 2, t) such that t < τ(x− 2).

Repeating the same argument over and over again for each x <
x − 2 we see that, for all states (x, t) such that t < τ(x), we have:
bi(x, t) ≥ bj(x, t), Vj(x, t) = 0 and Vi(x, t) = wi(x, t).
Step 4. We have just seen that bi(x, t) ≥ bj(x, t) for all states (x, t) such
that t ≤ τ(x). This, combined with the fact that τ is strictly increasing,
implies that either (a) seller i sells at every period (if τ(0) ≥ 0), or (b)
seller j sells at every period (if τ(0) = −1). �

Proposition 3.4. The sub-game that starts when the new technol-
ogy is adopted has a unique MPE.

Proof. We shall prove the result for the case in which adoption
takes place at t = 0. For later adoption dates we only need to change
the number of periods remaining—put T + 1− t instead of T + 1. Our
proof constructs the equilibrium. Let us start defining the auxiliary
functions wi and wj as:

wi(x, t) :=
T−t∑
k=0

[θ(x+ k)− θj],

wj(x, t) := (T + 1− t)[θj − θ(x)].

We proceed in five steps:
Step 1. For every state (x, t) such that x ≥ x, we have that

bi(x, t) = θ(x) + wi(x+ 1, t+ 1)− wi(x, t+ 1)

bj(x, t) = θj

and

Vi(x, t) = wi(x, t)

Vj(x, t) = 0.

This is true because both sellers know that the seller i will be the
winning seller at every future date.
Step 2. Let x < x. For every state (x, t) such that t ≥ τ(x+ 1), seller i
knows that he will not sell at any later period. This is true because τ is
strictly increasing if x < x. Therefore, we have that bi(x, t) = θ(x) and
Vi(x, t) = 0 for all states (x, t) such that t ≥ τ(x + 1). This gives us
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that Vj(x, t) = θj − θ(x) + Vj(x, t+ 1) for each (x, t) with t ≥ τ(x+ 1),
which, in turn, implies that Vj(x, t) = wj(x, t) for all t ≥ τ(x+ 1).
Step 3. So far, we have taken the function τ as given. What we will
do now is to construct such function (given the technology parameters
θ and θj). As a by-product, we will also obtain the values of Vi and Vj
for all states (x, t) such that τ(x) ≤ t < τ(x+ 1) (and x < x).

Define the auxiliary function z as

(B.1) z(x, t) :=
T−t∑
k=0

[T + 1− (t+ k)][θ(x+ k)− θj].

The following two properties of z will be used below

z(x, t) = z(x+ 1, t+ 1)− wj(x, t)(B.2)

= z(x, t+ 1) + wi(x, t).(B.3)

By definition, we have that τ(x − 1) = t0 if, and only if, bj(x −
1, t0 + k) > bi(x− 1, t0 + k) for k = 1, . . . , T − 1− t0 and bi(x− 1, t0) ≥
bj(x − 1, t0). Let us start with t0 = T − 1. At state (x − 1, T − 1)
each seller knows that if he does not sell now, he will neither sell in
the next (and last) period. Clearly, then, Vi(x, T ) = wi(x, T ) and
Vj(x − 1, T ) = −z(x − 1, T ), whereas Vi(x − 1, T ) = Vj(x, T ) = 0.
Therefore, bi(x− 1, T − 1) = θ(x− 1) +wi(x, T ) and bj(x− 1, T − 1) =
θj− z(x− 1, T ). We have thus that bi(x− 1, T − 1)− bj(x− 1, T − 1) =
θ(x−1)−θj+wi(x, T )+z(x−1, T ). Because of (B.3) and the definition
of wi we know that

Vi(x− 1, T − 1) = max{z(x− 1, T − 1), 0}
Vj(x− 1, T − 1) = max{−z(x− 1, T − 1), 0}.

Note that z(x−1, T −1) ≥ 0 is a necessary and sufficient condition for
seller i to be the winning seller at (x− 1, T − 1) (that is, for τ(x− 1) =
T −1). Otherwise, seller j would be the winning seller at (x−1, T −1).
Repeating the same argument over and over again for earlier periods,
we see that τ(x−1) = t0 if, and only if, (a) z(x−1, t) < 0 for all t > t0
and (b) z(x− 1, t0) ≥ 0.

Condition (a) can be simplified to z(x − 1, t0 + 1) < 0 since this
inequality implies the rest. Let us show why. In the first place, we have
that z(x, t) < 0 for all states (x − k, T − k − l) with k = 1, . . . , x and
l = 1, . . . , k. This is because at these states all the summands in (B.1)
are negative. Second, for all other states the last summand in (B.1) is
nonnegative. This implies that z is decreasing in t for those states. In
summary, z(x, t) < 0 implies that z(x, t+ k) < 0 for k = 1, . . . , T − t.
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Given τ(x+ 1), we can compute τ(x) in the same fashion by back-
wards induction. By definition, we know that τ(x) = t0 if, and only
if, bj(x, t0 + k) > bi(x, t0 + k) for k = 1, . . . , τ(x + 1) − 1 − t0 and
bi(x, t0) ≥ bj(x, t0). Let us start with t0 = τ(x + 1) − 1. We know
that Vi(x + 1, τ(x + 1)) = z(x + 1, τ(x + 1)) by our induction hy-
pothesis. Clearly, Vj(x, τ(x + 1)) = wj(x, τ(x + 1)) (Step 2) and
Vi(x, τ(x+1)) = Vj(x+1, τ(x+1)) = 0. Therefore, bi(x, τ(x+1)−1) =
θ(x) + z(x+ 1, τ(x+ 1)) and bj(x, τ(x+ 1)− 1) = θj +wj(x, τ(x+ 1)).
We have thus that bi(x, τ(x+ 1)− 1)− bj(x, τ(x+ 1)− 1) = θ(x)− θj−
wj(x, τ(x+ 1)) + z(x+ 1, τ(x+ 1)). Because of (B.2) and the definition
of wj we know that

Vi(x, τ(x+ 1)− 1) = max{z(x, τ(x+ 1)− 1), 0}
Vj(x, τ(x+ 1)− 1) = max{−z(x, τ(x+ 1)− 1), 0}.

Note that z(x, τ(x+ 1)− 1) ≥ 0 is a necessary and sufficient condition
for seller i to be the winning seller at (x, τ(x + 1) − 1) (that is, for
τ(x) = τ(x + 1) − 1). Otherwise, seller j would be the winning seller
at that state. Repeating the same argument over and over again for
earlier periods, we see that τ(x) = t0 if, and only if, (a) z(x, t0 + 1) < 0
and (b) z(x, t0) ≥ 0. (Note that we have used the result of the previous
paragraph).

In summary, we have shown that

τ(x) = max{t : z(x, t) ≥ 0}

if {t : z(x, t) ≥ 0} is not empty, and τ(x) = x− 1 otherwise.
Step 4. Besides constructing τ , we have also shown that:

(1) If τ(x) < t < τ(x+1), then Vi(x, t) = 0 and Vj(x, t) = −z(x, t).
(2) Vi(x, τ(x)) = z(x, τ(x)) and Vj(x, τ(x)) = 0.

Because z is increasing in t for t ≤ τ(x + 1) (and x < x)—see Step
3—we have that z(x+1, τ(x+1)−k) ≥ 0 for k = 1, . . . , τ(x+1)−x−1.
This implies that for all states (x, t) with τ(x) < t < τ(x + 1) (and
x < x), z(x+1, t+1) ≥ 0, which, through (B.2), implies that −z(x, t) ≤
wj(x, t). On the other hand, since z(x, τ(x) + 1) < 0 we have, through
(B.3), that z(x, τ(x)) < wi(x, τ(x)). Therefore, the value functions Vi
and Vj are bounded above by the functions wi and wj.
Step 5. We saw in Step 1 that the technology parameters uniquely de-
termine the pay-offs for all states (x, t) with x ≥ x. We have seen (Step
3) that the technology parameters uniquely determine the function τ
through the auxiliary function z, and that z determines also the values
Vi and Vj for all states (x, t) such that τ(x) ≤ t < τ(x + 1). In Step
2 we proved that, in combination with τ , the technology parameters
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determine the pay-offs for states (x, t) such that t ≥ τ(x + 1). This is
also true for the states fulfilling t < τ(x) (and x < x), as we saw in
Step 3 of the proof of Proposition 3.3. Therefore, the equilibrium is
unique. �

Remark B.1. We can summarize what we have learned about Vi
and Vj as follows:

(1) If z(x, t) ≥ 0 (t ≤ τ(x)), then Vj(x, t) = 0 and:
(1a) If z(x, t + 1) ≥ 0 (t < τ(x)), then Vi(x, t) = wi(x, t) ≤

z(x, t).
(1b) If z(x, t + 1) < 0 (t = τ(x)), then Vi(x, t) = z(x, t) <

wi(x, t).
(2) If z(x, t) < 0 (t > τ(x)), then Vi(x, t) = 0 and:

(2a) If z(x + 1, t + 1) < 0 (t > τ(x + 1)), then Vj(x, t) =
wj(x, t) < −z(x, t).

(2b) If z(x+1, t+1) ≥ 0 (τ(x) < t ≤ τ(x+1)), then Vj(x, t) =
−z(x, t) ≤ wj(x, t).

Or, in a more compact but less informative fashion:

(i) If z(x, t) ≥ 0, then Vi(x, t) = min{z(x, t), wi(x, t)} and Vj(x, t) =
0.

(ii) If z(x, t) < 0, then Vi(x, t) = 0 and Vj(x, t) = min{−z(x, t), wj(x, t)}.
Proposition 3.5. In a MPE the new technology is either adopted

at t = 0 or never.

Proof. The value for seller i from adopting the new technology at
date t is

(B.4) tmax{θi − θj, 0}+ Vi(0, t),

whereas the value from never adopting is (T + 1) max{θi − θj, 0}. We
have assumed that the new technology is adopted at t only if Vi(0, t) >
0. First, note that if z(0, 0) < 0 the new technology will never be
adopted because this implies that Vi(0, t) = 0 for all t. Second, if
Vi(0, 0) = z(0, 0), we also know that Vi(0, t) = 0 for all t ≥ 1. Therefore,
in this case we have that the new technology will be adopted at t = 0
if

z(0, 0) > (T + 1) max{θi − θj, 0},
or it will never be adopted.

If Vi(0, 0) = wi(0, 0) and θi ≤ θj, (B.4) is bounded above by wi(0, t),
which is itself strictly smaller than wi(0, 0) if t > 0, meaning that the
new technology will be adopted at t = 0. Suppose now that Vi(0, 0) =
wi(0, 0) and θi > θj. We know that (B.4) is bounded above by

t(θi − θj) + wi(0, t),
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which is equal to

tθi +
T−t∑
k=0

θ(k)− (T + 1)θj.

This is strictly smaller than wi(0, 0) because of (3.1) and (3.3). There-
fore, the new technology is adopted t = 0. Note that we have already
proved Proposition 3.6. �

Proposition 3.8. If g > (T + 1)(maxs{θs} + T
2
θj), then all tech-

nologies in Γ(g) are adopted in equilibrium.

Proof. Consider the optimization problem

min
θ∈Γ(g)

Z(θ).

The minimum is attained by the technology for which all learning takes
places at the last period:

θ(k) =

{
0 if k = 0, . . . , T − 1
g if k = T .

For this technology, Z is equal to

Z(θ) = g − T + 2

2
(T + 1)θj,

which is larger than (T +1) max{θi−θj, 0} (see Proposition 3.6) if, and
only if,

g > (T + 1)

(
max
s
{θs}+

T

2
θj

)
.

�

Proposition 3.9. All classes Γ(g) with g ≤ (T + 1)(maxs{θs} +
T
2
θj) exhibit the impatience property (excluding g = (T + 1) maxs{θs}

if T = 1).

Proof. From Proposition 3.8 we know that we can always find
a technology which is not adopted. Now consider the optimization
problem

max
θ∈Γ(g)

Z(θ).

The maximum is attained by the technology for which all learning
occurs between t = 0 and t = 1:

θ(k) =

{
θj if k = 0
g−θj
T

if k = 1, . . . , T .

For this technology, Z is equal to

Z(θ) =
1

2
(T + 1)[g − (T + 1)θj],
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which, because of (3.3), is bounded below by

1

2
(T + 1)2(max

s
{θs} − θj).

This is strictly larger than (T + 1) max{θj − θi, 0} if T > 1. If T = 1,
the class Γ((T + 1) maxs{θs}) is excluded. �
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