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Abstract

This paper provides a general framework for pricing options with a constant barrier under
spectrally one-sided exponential Lévy model, and uses it to implement of Carr’s approximation
for the value of the American put under this model. Simple analytic approximations for the
exercise boundary and option value are obtained. (©) 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper develops Carr’s “Erlang approximation” for the price of an American put
option under the spectrally negative exponential Lévy model.

There has been lots of recent interest in mathematical finance (see for example, Ge-
man et al., 1999) towards extending results based on the exponential Brownian motion
model to results based on exponential Lévy models. This is motivated by the superior
fits to the data and hence improved pricing formulas and hedging strategies provided
by several special classes of Lévy models—see for example the hyperbolic model of
Eberlein and Keller (1995), the variance-gamma model of Madan (1999) and the in-
verse Gaussian model of Barndorff-Nielsen and Sheppard (2000). Following previous
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work of Gerber and Shiu (1994) and Gerber and Landry (1998), we investigated the
Lévy pricing of American puts, starting with the considerably easier case of spectrally
one sided Lévy processes. The results for these processes are different depending on
whether the barrier can only be crossed “continuously” or also by jumps, the first case
being very similar to the classical Brownian case. We have chosen therefore to work
on the latter more complicated case of pricing American puts under spectrally negative
exponential Lévy models. Note that this clearly requires knowing the distribution of
the “overshoot” below the barrier, and convenient formulas for this are available in
the spectrally negative case which relieving one of the need to perform a Wiener Hopf
factorization. The general case of Lévy processes which may jump in either direction
will require further:

(1) Either obtaining Wiener—Hopf factorizations in the special cases mentioned above,
or developing numerical approximations for these (as employed for example in
analogue problems in queueing theory).

(2) Modifying the “early exercise decomposition” as accumulated interest on the strike
price while below the barrier due to Kim (1990), Jacka (1991) and Carr et al.
(1992), so as to include the effect of jumps back over the barrier identified by
Pham (1997).

The pricing of American put options, with payoff

e7”’(1(' - S‘L’ )+5

where T = min(t,,7), T is the expiration time and 7, denotes the hitting time of
an optimal exercise boundary B;, 0 <s < 7, is quite challenging due the fact that
the optimal exercise boundary depends on time. More precisely, the optimal exercise
point at time s is some function of the remaining time 7 — s until expiration. An
excellent overview of the problem may be found for example in the book of Kwok
(1998).

To remove the dependence of the barrier on time, McKean and Samuelson (1965)
proposed already in 1965 in what was maybe the first paper in mathematical finance
to approximate the problem by that of pricing a “perpetual” option (with infinite ex-
piration time 7 = oco). For the perpetual, the dependence on the remaining time dis-
appears, leaving us with the problem of valuation of a barrier put with fixed constant
barrier B, followed by the optimization of B. By this approach, perpetual American
options were recently priced under the spectrally positive/negative exponential Lévy
models by Gerber and Shiu (1994) and Gerber and Landry (1998), and under the
general exponential Lévy model by Boyarchenko and Levendorskii (2000); the price
is simply the average of the discounted put payoff with respect to the distribution
of the price after the barrier crossing. Note however that perpetual approximations
are generally too crude. More refined analytic approximations have been proposed
by McMillan (1986) (who also removes the boundary’s dependence of time by a
transformation) and Omberg (1987) (who looked for the best exponential exercise
boundary).

Recently, a new method for removing the dependence on time has been proposed by
Carr (1998). The first step consists in replacing the perpetual by an option with random
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exponential expiration time 7', with E7 =T, which was called a “Canadian option.” The
exponential assumption has the virtue of making the optimal exercise boundary inde-
pendent of time, just like in the classical perpetual case and so this step is as easy to im-
plement as McKean’s perpetual approximation. The Canadian approximation was then
further refined by considering options whose expiration time 7 is a sum of n exponen-
tials and thus I, /7 distributed (with E T=T); this will be referred to as “n-Erlangian”
options. The value of an n-Erlangian option may be computed via an iterative method
with n stages. When n — oo, this approximation converges to the true value.

Carr’s method retains some of the simplicity of the perpetual approximation and at
the same time has the virtue of converging to the true value. Already the first stage
“Canadian” approximation leads to a simple time-dependent analytic answer for the
put exercise barrier (see (14) below) which is exact for both very short and very long
expiration times (in the limit).

Our paper extends Carr’s results for American put options to the spectrally negative
exponential Lévy model. To achieve that, we needed to develop a general approach
for pricing “Canadian” barrier options under this model.

1.1. Literature survey

Besides McMillan’s, Omberg’s and Carr’s approaches, some other very successful
recent approximation methods under the exponential Brownian motion model are due to
Broadie and Detemple (1996), Ju (1998) (who extended Omberg’s approach to a mul-
tistage procedure) and Ju and Zhong (1999) (who provided a second-order perturbation
approximation).

In the context of American options under the exponential Lévy model, Zhang (1995,
1997) extended the approach of McMillan (1986) and Pham (1997) extended the rep-
resentation of the American early exercise premium due to Kim (1990), Jacka (1991)
and Carr et al. (1992).

Gerber and Shiu (1994) showed that analytical formulas for the exercise barrier of
perpetual options may be obtained under certain exponential Lévy models, since they
depend on knowing the Laplace transform of the value function rather than on the value
function itself. Their first results were obtained under the assumption of a pure jump
spectrally one sided Lévy process (the classical risk process), which allows one to use
the machinery of renewal equations. Later, Gerber and Landry (1998) incorporated a
Brownian component and Chan (1999b) extended the results to the case of general
spectrally negative Lévy processes.

Note: Extending these results to Lévy processes with jumps of both signs is a
problem of great practical interest (Madan, 1999), but considerably more complicated.
Several results, like Proposition 2.1, Bingham’s Theorem 6(b) (which is based on the
Wiener—-Hopf factorization) used in our Section 3 and Pham’s representation of the
American early exercise premium change substantially in the general case. Previous
work in the general Lévy case was based on two special representations of Lévy
processes: one as time-changed Brownian motions and the other as additive functionals
of Brownian motion evaluated at the inverse of the local time at 0—see Geman et al.
(1999) and Revuz and Yor (1991).
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1.2. The exponential Lévy model

On a probability space (@, {Z,}, 7,P), let W; be a standard Brownian motion and
J; an independent Lévy jump process with positive jumps. We consider below assets
modelled by an exponential Lévy process of the form

Si=e", (1)

Y, =y+ut+ oW, —J. )

Thus, Y; is a spectrally negative Lévy process. (As usual, we assume that Y, is
right-continuous with left limits.) We will assume that the Lévy measure of J; v satisfies
the simplifying assumption

1
/ xv(dx) < oo, 3)
0

which ensures that J has finite variation. !

If J is a compound Poisson process vaz’l Z;, where N; is a Poisson process with
intensity 4 and the jumps Z; are i.i.d. random variables independent of N, with a
distribution P(dx) concentrated on the positive axis, then v(dx) = AP(dx) and (3) is
automatically satisfied. 2

Because the jumps of J are all positive, the moment generating function E[e’:—2)]
exists for all 0 = 0 and

[E[ef?()’,—y)] — lc(®) (4)

for some function ¢, which is referred to as the cumulant generating function. Under
the simplifying assumption (3), the cumulant generating function is given by

202

c(0) = —— 4 o + / (e — 1)w(dx) = % + 10 +v*(0), (5)
where we denoted by v*(0) = fo (e — 1)1(dx) a “Laplace transform” of the jump
measure v(dx) appropriately modified to allow for the case when it has infinite mass
around the origin (in which case v*(6) is still well defined by (3)).

By the fundamental theorem of asset pricing, to avoid arbitrage, it is necessary to
use a risk neutral pricing measure for options. If the observed stock prices follow
an exponential Lévy model, the risk neutral pricing measure is not unique and the
issue of choosing between the possible risk neutral measures is quite delicate. It is
not the purpose of this present paper to address this question. However, it is known
(see, for example, Chan, 1999a) that under a large class of risk neutral measures
which includes many of those that have been proposed and studied in the literature

! Condition (3) is assumed purely for convenience, to enable us to avoid excessively messy expressions.
The extension of the results described in the sequel to Lévy processes with infinite variation is essentially
trivial and is left to the interested reader—one must compensate for the small jumps in integrals with respect
to v, resulting in rather messier algebra.

2 The extension from compound Poisson to general Lévy processes is quite important in view of the fact
that the current “favourites” for asset prices modelling, the hyperbolic and the variance gamma process have
unbounded Lévy measure at 0.
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(see Chan, 1999a for a list of references to these), ¥, remains a Lévy process. In this
paper we shall therefore assume that a risk neutral measure has been chosen under
which Y, remains a Lévy process and simply work with this measure. In particular,
we assume that the reference measure [P is already a risk neutral measure and in the
sequel all expectations E(-) will be taken with respect to this measure; moreover, the
random expiry time 7 will be an exponential random variable under P. If the asset
continuously pays dividends at rate g, the process e~"~9"S, is a martingale under P;
this is tantamount to assuming the condition (see Gerber and Shiu (1994)):

c(ly=r—agq, (6)

where 7 is the discount rate and ¢ is the dividend rate. (Although Gerber and Shiu
(1994) treats one specific choice of risk neutral measure, (6) is simply the necessary
and sufficient condition in terms of ¢ for e~"~9)S, to be a martingale and is unaffected
by the choice of equivalent martingale measure used to achieve this.) Condition (6)
means that the drift must satisfy

p=r—q—a’2-v(1) (7)

so we are working only with cumulant generating functions of the form:

2 o]
(0) = % 0% —0)+ / (e — e~ )y(dx) + (r — ¢)0.
0
1.3. The “Black Scholes” equation for barrier options

We consider below “down” barrier options, which may earn either a final payoff
f(Yr) at the expiration time 7 or a rebate or boundary payoff n(Y.,) at the first
time 13 when the asset process Y; drops below the exercise boundary B, which may
depend on time. The example we are interested is that of the American put option,
in which case the payoff and rebate have the same functional dependence given by
f=n=(K—Sr); =(K —e'"),. However, the Erlang stages approximation method
we use forces us eventually to consider options with arbitrary final payoffs f(y) (the
boundary “put” payoff = = (K — Sr). will stay fixed).

Let vp g r,(t,y) = v(t,y) denote the arbitrage free value of this option under the
complete exponential Brownian motion model, expressed in terms of the value y at
time ¢ of the logarithm of the price Y;. Then

vp(t, ¥) = Egymp [e7 ™) 1(Ye,) Ligyery + T £(Y7) 1igyoy ) (8)

Recall that e~ (~9’S;, is a martingale under the risk neutral measure. Under
the unique dividends adjusted risk neutral exponential Brownian motion model, v(z, y)
satisfies:

Fv—rv+%:0 for y > B,
u(t,y)=mn(y) for y <B,
u(T,y)=f(»), 9)

3 European options are the particular case in which there exists only a final payoff f and 7 = 0.
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where I', the infinitesimal generator of Y is (I'f)(u) = (¢2/2)f" (u) + wf’(u) and
u=r—q— c¢*/2. (This is essentially a consequence of It6’s formula—if v is the so-
lution to (9) then v can be expressed as (8). The detailed argument in the case of
European options is a standard one and can be found in, for example, Karatzas and
Shreve (1991); the argument for American options is similar except for the obvious
change to the boundary conditions and one needs some additional results on the free
boundary problem (9)—see, Jacka (1991) for the details.)

It is sometimes convenient to work with the equations in which the current time
variable ¢ is replaced by the remaining time until expiration s = 7 — ¢, yielding

I'v—rv— @:0 for y > B,,
0s
u(s, y)=mn(y) for y < B,
v(0,y) = f(»). (10)

If the stock price is modelled as an exponential Lévy model, v(s, y) satisfies the
same equations (9) or (10), but with the generator modified to that of Y:

2 0o
(Ff)(u)Z%f”(u)+ﬂf’(u)+/0 [f(u—z)— fw)]v(dz). (11)

(where p satisfies the risk neutrality assumption (7)). In this case, one has to be careful
under what conditions a solution to (9) exists and whether representations (8) and (9)
are equivalent. This is a question that is beyond the scope of the present paper and
in any case, is not essential for the subsequent results in this paper. For now, we will
simply assume that a solution to (9) satisfying certain additional regularity conditions
exists, and that under such conditions, the solution is given by (8). The main idea
in what follows is to consider a simpler time-homogeneous version of (9)—for which
the analogous representation (8) does hold—and use this as an approximation to the
function defined by (8).

1.4. Canadian options

The idea of Canadian options is to consider options with an exponentially randomized
expiration time 7* of some arbitrary but fixed rate o. Owing to the memoryless
property of the exponential, this remove the dependence on the starting time in the
value of Canadian options.

Let Vg r r.r2(¥) = V(y) denote the value of the “Canadian barrier option” with
payoffs =, f, defined as

—r1g —rT®
Vi, f.ra(0) = Egymnp [e7™ m(Ye,) Loy + ¢ f(Yrw) 1oyl (12)

The dependence on B,m, f,r,a will usually be suppressed. If v(s, y) denotes the
value of the corresponding barrier option with the same payoffs, then the Canadian
value V() is obtained simply by averaging v(s, y) with an exponential distribution for
the remaining time s.

V(y)= /000 oe” *u(s, y)ds.
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This only differs from the Laplace transform in s by the extra factor o and is also
known as a Laplace—Carson transform.

Another essential simplification when valuing Canadian American options is pro-
vided by the memoryless property of the exponential distribution, which entails that
their optimal exercise boundaries have to be constant. As such, valuation reduces to a
one-dimensional optimization over the possible constant barriers B = a.

Consider, therefore, the value V, ; 7, ,(y)=V(y) of a Canadian barrier option with
fixed barrier a. Taking the Laplace—Carson transform in (10) changes the differentiation
operator in ¢ into multiplication, yielding the integro-differential equation:

(I'V)(y)=oV(y)+of(y)=0 fory=>a,
V(y)=n(y) fory<a, (13)

where we put 6 =r + o (which may be interpreted as a combined “killing” rate). This
equation is of course considerably simpler than its time-dependent counterpart. Suppose
now that = and f are bounded functions and that a bounded solution to (13) exists.
(The boundedness assumption is of course motivated by the fact that the price of a put
option with payoff /=7 = (K — Sr); cannot be greater than K.) We first verify that
under these assumptions, any bounded solution ¥ to (13) admits representation (12)
(and is therefore unique). Let V" be any bounded solution to (13) and let Yy =y > a.
An application of It6’s formula shows that

AN
M :=e NIV (Y, p,) — V(Yo)+/ ae ™ f(¥y)ds,
0

where 1, = inf{t: ¥; < a}, is a local martingale, which is bounded because of our
assumption that /' and f are bounded. Hence, not only is M actually a martingale,
but it is also uniformly integrable and so by the optional stopping theorem E(M-,)=0,
which when rearranged gives

V(y)=E, [e(m V(Y.)+ /0 e f(YS)ds}

=E, [e‘jr”n(YTa) +/ OCC‘SSf(Ys)dS]
0

—7T, —rT®
=Efe™n(Yy,) lg,<roy ¢ f(Yrw) 1z s3]

This shows that, with the boundary a fixed, any bounded solution to (13) admits the
representation (12). Of course, there is a little extra work that still needs to be done
to show that the same holds for the free boundary version of (13): namely that the
maximal solution pair (V,a*) to the free boundary problem admits the representation

V(iy)= Sup{[Ey [e™ " m( Y: )1 {to<T®} T e_rT(l)f( Yrw)1 { >T<1>}]}
a

— T —rT®
=Ey[e”" ™ n(Ye, e, <reoy + 7 f(Yre) e, s 7oy ]-
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However, we will avoid this slightly more delicate issue for now because in what fol-
lows we will use an alternative characterization of the optimal boundary a*, namely
that of the so-called “smooth pasting” condition which enables us to consider first
the solution ¥, to (13) for fixed a and then find the optimal boundary by requiring
V,(-) to be C! at the optimal boundary a*—see Proposition 2.1 and Corollary 3.1
below.

Note: The payoff of a standard American put is given by n(y)= (K — e”),. Since
we are interested in

—rT —rT®
V() =sup{Ey[e ™ n(Y: M7, <ren] + Eyle ™ f(Yro) g, > ren 1}

and since 1y, > 7@y = 1y, > 70y if @ < b, we will obviously only choose constant ex-
ercise levels a < logK, otherwise n(Y;,) =0 and the second term can only be smaller
with a choice of a higher value of a. Therefore, the boundary condition in (13) may be
simplified to V' (y)=n(y)=K —e” for y < a. This simplifies many of the subsequent
calculations and will be repeatedly used without further explicit mention.

1.5. Outline of main results

In Section 2 we provide in Proposition 2.1 an analytic expression for the Laplace
transform (with respect to the initial price) of the value of barrier options with ex-
ponential expiration. This result generalizes classical risk theory results on computing
“multivariate ruin probabilities”—see Corollary 2.5 and for comparison Theorem 6(a)
of Bingham (1975), Gerber and Shiu (1998), Gerber and Landry (1998) and Usabel
(1999). Essentially, it reduces the risk neutral valuation of any barrier option un-
der spectrally one-sided Lévy models to carrying out some integrations and inverting
Laplace transforms.

In Section 3 we determine the optimal exercise barrier for “Canadian American”
options (directly from the Laplace transform, avoiding the inversion). As an illustra-
tion of the elegance of the results obtained under the spectrally one-sided model, we
highlight now the time-dependent analytic approximation of the exercise boundary (28)
obtained already by the Canadian approximation. Let ¢, denote the largest solution of
the equation c(0)=46=r+ T, where c(0) is the cumulant generating function of the
process and T denotes the remaining time until expiration. In the absence of dividends,
the boundary L* is given by an explicit formula

L* =K((6, — L))o+ (14)

requiring the solution of only one algebraic equation (this generalizes the formula ob-
tained by Carr for the diffusion model), while in the presence of dividends an additional
algebraic equation (28) is required.

While barrier (14) is only optimal for Canadian American options with exponential
expiration of expected duration 7, we propose to use it also as an approximate formula
for the optimal exercise boundary of usual American options with remaining lifetime
T (with T decreasing to 0); this provides a time-dependent approximation for the
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exercise boundary which is shown to be asymptotically exact when 7 — oo and 0 (see
Corollary 3.1(d), (e) and the Remark 3 following it).*

In Section 4 we identify in Theorem 4.1 and Corollary 4.2 some classical fluctuation
theory identities which allow us to invert the Laplace transform in terms of the resolvent
density of the Lévy process; this is available explicitly sometimes (like for compound
Poisson processes with a phase-type distribution of jumps) and numerically in general.
The end result, Proposition 4.3 is an explicit formula for Canadian put options in terms
of either the resolvent (more convenient numerically) or the Wiener—Hopf factors of the
process. Since the resolvent may be computed numerically via Fast Fourier transform—
see Chan (1999b), this approach may be preferable numerically to the inversion of the
Laplace transform.

In Section 5 we consider n-Erlangian options. We discuss two possible recursive im-
plementations: one based on using Laplace transforms only, which reduces to solving
algebraic equations, and the second based on computing the resolvent. We also estab-
lish in Corollary 5.2 the convergence of the n-Erlangian approximation to the finite
expiration price.

Finally, in the appendix we compute the value of Canadian puts in the exponential
jumps case.

We illustrate now the importance of using statistically appropriate models by display-
ing the approximate exercise barrier as a function of the elapsed time 0 <7< 7 =10
when the log price process is compound Poisson with exponential jumps of distribu-
tion fe~#; the dotted line is the exercise barrier for a Gaussian approximation of this
process of equal given variance ¢t (this determines the intensity of the jumps via
B2 =02). We took K =10 and » = 0.1 = ¢2/2 (this fixes the long time limit of the
Gaussian barrier to L = K(1/1(+0¢%/2r)) = 5). We note that while for the first value
p=20 (Fig. 1) the barrier is very close to its Gaussian approximation, for f=1 (Fig. 2)
the difference is considerable, as both barriers approach quickly their different respective
long time limits of K(1/(1 + ¢%/2r))1/(1 + B~')?>) =8 and K(1/(1 + ¢%/2r)) = 5.

This example emphasizes the rather obvious point that underparametrized models
like either Brownian motion or spectrally one-sided compound Poisson models may be
quite inadequate for approximating more general processes and hence the desirability of
developing models which are rich enough to capture market behaviour (and hopefully
still admit convenient pricing and hedging formulas).

2. The Laplace transform with respect to the initial price of the value of Canadian
barrier options

We will consider from now Canadian barrier options with a fixed barrier B, =a and
value V' (y) (note that we are suppressing in the notation the dependence on a, 7, f,r, o).

4 The performance of this first approximation is comparable with that of the generalization of McMillan’s
approximation proposed by Zhang (1998), and we expect that it might bring by itself a significant impact
on pricing American options in practice, since we believe that taking advantage of the superior numerical
fit of the exponential Lévy model to real data may be more important than improving the accuracy of the
exercise boundary.



84 F. Avram et al. | Stochastic Processes and their Applications 100 (2002) 75—107

10+

Fig. 1. Exercise Barrier approximations, Lévy and Gaussian approx., f = 20.

10+

2 4 6 — 8 10

— —

L — —

Fig. 2. Exercise Barrier approximations, Lévy and Gaussian approx., ff = 1.

It will be convenient here to work with the “surplus over the barrier” variable u=y—a
which moves the barrier to u = 0. We denote by V,(u) the function defined by the
“shift” V,(u)=V(a+u)=V(y) (similarly, the “shifted” payoffs f,n are f,(u)=f(u+
a),n,(u)=n(u+ a)).

We obtain now the Laplace transform of the value function above the barrier, by
which we mean the usual Laplace transform with respect to the surplus variable

V;(@):/oo e—"(y—fI)V(y)dy:/ooo e "V, (u)du (15)

a

for functions satisfying Eq. (13) (or (59), which is a particular case of 13).



F. Avram et al. | Stochastic Processes and their Applications 100 (2002) 75—107 85

Let fi(0) = [" e "f(u + a)du = & [F e f(y)dy and vi(0) =
e fvoo e %v(dy) denote the “over the barrier Laplace transforms” of f,(y) and

va(dy).
Taking Laplace transforms in (13), we obtain the following key result, similar to a
result of Usabel (1999).

Proposition 2.1. (a) The Laplace transform V;(0) is given by
Ve (0)

(2O —F1E N+ [y wla—x)(vi(0)—vi(0,))dx — (a?/2)m(a)(O — d)
N 6 —c(0) (176)

where 0, denotes the largest (necessarily non-negative) root of c¢(0) — o = 0.
(b) In the pure-jump case, the value of a Canadian barrier option with 0 initial
surplus is

W0 =560+ [ ata— a6 )ax (17)
0
(¢) In diffusion-jump case V,(0+) = n(a) and

2 00 2
TN =afi@0 + [ nla—xwidx - ("2 o +u> ma).  (18)
0

Note: The equation ¢(0) — 6 =0 (which generalizes McMillan’s quadratic equation
obtained in the pure diffusion case) has always at most 2 solutions, since the Laplace
exponent ¢ is convex. Note that when 6 =0, 0 =0 is always a solution; let 0y denote
the largest solution in this case. Note that 0y > 0 if and only if ¢/(0) = E(Y;) <O.
Also, ¢(0) < 0 for 6 €0, 0y] while ¢ is increasing over the interval [0y, c0); therefore,
¢(0) has a unique continuous inverse () = 6y which is defined for 6 > 0 and satisfies
c(y(0))=0 for all 6 > 0 and y(c(0)) =0 for 6 > 6. Hence, c(0) — 6 = 0 has always
a unique positive solution d, = y(J).

Proof. Noting that V,(u —x) =n(a + u — x) for x > u, we take the Laplace transform
with respect to the surplus variable « in (13) to obtain

2
0= %(GZV;(G) — (Vg(04) + 0V,(0+))) + u(0V;(0) — Va(04)) — 6V,5(0)
+ofr(0)+ /: /: e~ M[V(u — x) — Va(u)] duv(dx)
2
= % (02V3(0) — (VJ(04) + 0V,(0+))) + w0V, (0) — Vo(0+)) — 5V (0)

+af:;(0)+/000 {/Ox e "n(a+u—x)du
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o0
+ / e "V (u —x)du — V;(@)} v(dx)
X

2
= % (02V;5(0) — (Vg(04) + 0V, (0+))) + p(0V,;(0) — Va(0+)) — 0V (0)

—X

[e%s} 0
+o<f;;(0)+/0 {e—"x/ e—f’zn(a+z)dz+(e—f’X—1)V;(0)}v(dx)

2
=c(0)V;(0) — 0V (0) + o f 5 (0) — % (Va(04) + 0Vo(04)) — uVu(0+)

00 0
+ / e ™ / e " n(a +z)dzv(dx).
0 —Xx

Rearranging the above gives

2
Vi(0)= (5= e(0)”! {—uVa(0+> — S (Vi0+) + 0Va(0+))

0o 0
+ ocfZ(O)+/ e*@‘/ e"zn(z+a)dzv(dx)}. (19)
0 —x

Changing the order of integration and the integral variable to x=z—u,z with 0 < x < oo,
z = x we find

%) 0 %)
—0x —0z _ _ *
/0 e [ e a)dz v(dx) = /0 (@ —x)v(0)dx. (20)

The right-hand side of (19) still involves certain unknown quantities, namely V,(0+)
and V,(0+). At this point, we need to consider two different cases separately.

Pure-jump model: Suppose the logarithmic stock price is pure jump and has no
Brownian component, so that ¢ =0. In this case, we need only find V,(0+). Consider
the value of the right-hand side of (19) at the largest (necessarily non-negative) root
0, of ¢(0) — 0 = 0. Since the Laplace transform is well-defined for all 0 >0, it
must in particular be finite at J,, implying thus Eq. (17): uV,(0+) = o f3(0+) +
I, mla —x)vi(ds)dx.

Substituting the above and (20) into (19) establishes (16).

Diffusion-jump model:> 1f a Brownian component is present, so that ¢ #0, u
V.(u) is always continuous at 0 (see Chan, 1999b), so we know that V,(0+) = n(a).
To find an expression for V/(0+), consider again the value of the right-hand side of
(19) at 6, ; we obtain now (18)

2 oo 2
Vo) = af5(00) + / n(a —x)vi(6,))dx - (“2 oy + u> n(a).
0
Substituting this and (20) into (19) establishes (16). [

5 The key difference between this case and the pure-jump case actually centres on whether Y has infinite
or finite variation; a similar result with the diffusion case below is also found for the pure-jump model, if
the jump process X has infinite variation.
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We consider now the put boundary payoff n(y)=(K —e”), =K — ¢, starting with
the preliminary case n(x) =™ (to be applied with n =0 and 1).

Lemma 2.2. If n(x) = e, then
/ n(—x)vy(0)dx :/ e Pyvi(0)dx =
0 0

where v*(0) = [;° (e=® — 1) v(dx).

ve(n) —vi(0)

T @)

Proof.
/ n(—x)vi(0)dx = / e Pvi(0)dx = / e ™ / " My(dy)
0 0 0 X

o0 (0—n)y—1 00 o=y _a—ly (1) —v* (0
:/ e — v(dy):/ el Ty = YO
0 0—n 0 0—n 0—n

Applying formula (21) of Lemma 2.2 with # =0 and 1 we find

Lemma 2.3. In the case of the put boundary payoff n(y)=(K —e’); =K —¢’,

/OOO @ —xWi(O0)dx =K (W) L (W) )

2 r— 20

where z(0) =K/0 — L/(0 — 1), and L =e* (z is the transform of K — Le").

Proof. The second expression (needed to establish 3.1b) is obtained by using expres-
sion (5) connecting the functions v¥(0), ¢(0) and the equalities ¢(1)=r —g, ¢(0)=0.

The following lemma follows readily from elementary calculations which are left to
the reader.

Lemma 2.4. The Laplace transform in the surplus variable u of the final put payoff
(K — Le"); is

F20) =5 (1= @KY) = 55 (1= @WK

=z(0) + ) (LK), (24)

00—1
where L =¢“ and z(0)=K/0 — L/(6 — 1).

From Lemma 2.2, we obtain also a convenient form for the well-known classical
formula of the joint moment generating function ¥ ,(u)= E,e %+ _see Bingham
(1975), Theorem 6a, where 7y is the first time when 0 is overshot by a spectrally
negative Lévy process.
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Corollary 2.5. The Laplace transform ¥}, (0) = fooo e s (u)du of the joint
moment generating function ¥s,(u) = E,e~ %%+ s given by

c(0) —c(n)  c(o+) — C(’?))
n—~0 n—20oy '

sa(0)= (3 —c(0)~! ( (25)

Proof. By Lemma 2.2 and (5), we get fooo m(—x)vi(0)dx — (6%/2)0 = (c(n) — c(0))/
(0 —n) + (6%/2)n + p. The result follows from Proposition 2.1(a) with f = 0,a =0,
n(x)=e™ and S =a +r.

Note: It would be quite useful to extend somehow this approach to the case of Lévy
processes with two-sided jumps, which is the one of main interest in mathematical
finance. In that case however we need to incorporate in the generator equation the
contribution of the negative jumps as well, and taking Laplace transform ceases to
yield an algebraic equation for the transform. The two-sided case requires considerably
more work. For example, the joint moment generating function presented in Corollary
2.5 ceases to be a function of the Laplace exponent ¢(6) only; instead (see Bingham,
1975, Theorem 1(e)) it requires obtaining the two Wiener—Hopf factors of the function
0/(6 — ¢(0)), which are known explicitly only in some particular cases although many
of these cases are of interest in financial models (see Boyarchenko and Levendorskii,
2000).

3. The optimal barrier for Canadian—American options

Proposition 2.1 yielded over barrier Laplace transform for the value V,(y) of a
Canadian option. A further explicit formula for the value V,(y) itself will be provided
in Proposition 4.3. By differentiating that, one might determine in principle the op-
timal barrier a* for exercising a Canadian—American option. However, a more direct
determination is obtained by using “smooth fit” continuity conditions for the values
Va(0+),7)(0+) at the barrier (these were already obtained in (17), (18)).

More precisely, it is known that in the pure-jump case the optimal value of a is given
by the continuity condition V,(0+)=m(a) (see Chan, 1999b or Gerber and Shiu, 1998)
and in the jump-diffusion case it is given by the smoothness condition V/(0+)=7'(a)
(see Chan, 1999b or Gerber and Landry, 1998). Although the smooth fit condition
does not always yield the optimal barrier in the case of all Lévy processes, it has been
shown in Chan (1999b) and Gerber and Landry (1998) that for the spectrally one-sided
Lévy processes considered here, the smooth fit condition is equivalent to finding the
optimal barrier by differentiating with respect to a.

We summarize in the Corollary below the results obtained from the smooth fit equa-
tions (parts (b) and (c¢)) are needed to determine the optimal barriers of n-Erlangian and
Canadian puts, and (d) and (e) are needed to establish the long/short-term asymptotics
of the approximate barrier).

Corollary 3.1. The optimal exercise barrier for Canadian—American options
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(a) The optimal exercise barrier a* for a “stationary” option which solves equation
(13) must satisfy the nonlinear equation:
2

[e%s) 2
af5(00) = /O m(a —x)vi(0,)dx + ("2 o + u) n(a) + 5 7'(a). (26)

(b) For an arbitrary final payoff f and “put type” boundary payoff n(y)=(K —e”),,
the optimal exercise boundary a satisfies
. _rk gL
A f300) =0, =5 5T
where z(0)=K/0 — L/(0 — 1), and L = e°.
(¢) In the case of both final and boundary payoff f(y)= (K — &)y, the optimal
exercise boundary L =e* satisfies

(27)

L\ L
(d) In the particular case o.=0 we get
L _ r(o,—1) 16, —1) (29)

K~ 46 oe(d) —c(l))

where O, is the positive root of the equation c(0) = r. If furthermore the
dividend is 0, then 6, =1 and the equation becomes
L r r

K (1) T2 + = [y xe=¥u(dx)’

(This last formula has also been obtained in Chan (1999b).)
(e) In the limit o — oo, the solution of (28) becomes

L i <r )
— =min( —,1 ).
K q

Remarks. (1) In the pure-jump case (26) simplifies to

2fi0) =~ [ nla=xi@.)dx + pn(a) (30)

This generalizes the formula before the references in Zhang’s (1998) discussion of
Gerber and Shiu’s paper (Zhang, 1998).

(2) Formula (28) generalizes formula (18) of Carr (1998).

(3) Since we plan to use (28) as an approximation for options with fixed finite expiry
T, it is of interest to compare the approximations’ limits as 7 — oo and 0 (obtained
in parts (d), (e) by letting « — 0 and oo, respectively) with the correct asymptotics
of the exact optimal exercise barrier as 7 — oo and 0. We see that at least in the
Brownian case (in which they are known) they do coincide with the well-known exact
asymptotics of the exercise barrier (see Kwok, 1998). The limit as 7 — oo (the «a =0
case) in the pure Brownian case is usually written in the form

L r

E:r+025,/2
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or in equivalent form

where 0, is the negative root of the quadratic equation 6202/2+(r—q—2/2)0 —r=0.
We may easily check that these coincide in the Brownian case with our expression
r(6, — 1)/qd, provided in (29).

Proof (Corollary 3.1).

(a) The optimal exercise barrier is known to make the value function continuous at
the barrier in the pure-jump case V,(0+) = n(a), and to make the derivative of the
value function continuous at the barrier in the diffusion-jump case V/(0+)=7'(a) (see
Chan, 1999b; Gerber and Shiu, 1998 and Gerber and Landry, 1998).

The equation V)(0+)=n'(a) yields (26) after using the formula for V/(0+) provided
in Proposition 2.1(c). In the case =0, (26) becomes (30) which by Proposition 2.1(b)
is tantamount to V,(0+) = n(a).

(b) Using the second expression in Lemma 2.3 and the expression of the put’s payoff
n(a) =K — e%, we rewrite (26) as

o’L  (r—q)L d*n'(a)

“fa(5+):52(5+)+7+ 51 )

rK
R i R s R N

K 4L
o, 0. —1

=0z(d4) +

which establishes (27).

To obtain (c) we substitute the expression f(0)—z(0)=(K/0(0—1))(L/K)’ provided
in Lemma 2.4 for the transform of the put’s final payoff into (b).

(d) To obtain (d) we note that the L.H.S. in (28) goes to 0 and that g=c(J,) —c(1).

(e) It is known (see Chan, 1999b) that limg_ o c(0)/0% = 62/2, so that J,(a) ~
O(y/2) as o — oo. Dividing (28) by ¢d, and replacing é, by its large o asymptotic,
we get

Woe—1Dr r
wEe ol D

qv/x q
Since L(x)/K < 1, if L(a)/K — 1, the first term above converges to 0 while the second
term is never bigger than 1. Therefore, if r/g > 1, the only way the left-hand side above
can converge to a limit large than 1 is for the first term to converge to a non-zero limit,
which implies L(«)/K — 1. Similarly, if »/g < 1, the first term above must converge
to 0, so that L(a)/K — r/q. Therefore, the ¢+ — 0 asymptotic is

L ) (r )
— =min| —,1
K q

g~ Vaexp{v/alog(L(2)/K)} + exp{log(L(x)/K )} =
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which also agrees with the known asymptotic of the optimal boundary in the pure
Brownian case. The same is also true in the pure-jump case (¢ = 0), only this time
limg_, o0 ¢(0)/0 = p so d,(a0) ~ O(ar). [

Corollary 3.2. (a) For an arbitrary final payoff f and “put type” boundary payoff
n(y) = (K — &)y, the Laplace transform in the surplus variable u of the value of a
Canadian—American option V,(u) is given by

ey D(O) — b(d)
O =5 (31
where
. . K L
bB)=0af;(0)—c(0)z2(0)—(r—q)L/(0—1), L=¢e"and z(0) = 2701
(b) After the barrier a* is optimized, this becomes
Pe(0) — =(0) 4 20 (0) = 2(0) (K0~ gL/(0 = 1)) )

o —c(0)

Note: The expression above is well defined as 6 — . by the barrier optimality
condition of Corollary 3.1(b).

Proof. (a) Substituting expression (23) of the transform of the put’s boundary payment
into (16) yields (a) immediately.
(b) The result follows upon noticing that

b(0:)=0f5(61) = 62(64) — (r —q)L/(64 — 1)

=o(f4(4) —2(04)) — rK/d; +qL/(d1 —1) =0

(by the smooth fit condition (27) provided in Corollary 3.1(b)) and that 5(6) can also
be written as

b(0) = o/ 3(0) = c(0)2(0) — (r — ¢)L/(0 — 1)
=2(0)(0 — ¢(0)) + #f 4(0) — 02(0) — (r — )L/(0 — 1)
=2(0)(0 — c(0)) + o £3(0) — 2(0)) — rK/0 + qL/(0 — 1). D

4. The value of “put type” Canadian barrier options

In Sections 2 and 3 we took advantage of the Laplace transform approach available
for spectrally negative Lévy processes to obtain (in Proposition 2.1) a general formula
for the Laplace transform in the initial capital for general Canadian barrier options.
In this section we exploit yet another simplification of “fluctuation theory” available
in the spectrally negative (positive) case: an explicit formula for the joint moment
generating function of the time and place of exit from a one-sided interval in terms
of the negative (positive) part of the resolvent density. Note that in the general case,
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the same task requires performing a Wiener—Hopf factorization—see Theorem 1(e) of
Bingham (1975). We quote now the spectrally one-sided result, following Theorem
6(b) of Bingham (1975).

Theorem 4.1. Suppose that X is a Lévy process whose jumps are positive but which

is not non-decreasing, with X, = 0.

(a) Then the resolvent measure rs(dx) = fooo e "P(X; €dx)dt is absolutely continu-
ous with respect to Lebesgue measure and the Laplace transform of its density
rs(x), for x > 0 is given by

r5(0)= / e ®rs(x)dx = !
0

1
d—c(0)  (0:)(04 —0)

(b) For u >0, let t,=inf{t = 0: X; > u}. The joint law of 1, and of the overshoot
X(t,)—uis

Wi (1) = [E[e*(sfu*ﬂ(X(%)*u)]

(33)

=(0 —c(n)) ((;f(f)n + / h e"(”>ns(z)dz> (34)

u

for 6,n = 0.

Notes: (1) While the resolvent function is rarely available analytically, efficient nu-
merical approaches for computing it exist, and so this provides an alternative to invert-
ing the Laplace transform. For example, in Chan (1999b) the fast Fourier transform
algorithm is used to compute rs(x).

(2) Relation (34) may be also obtained from Corollary 2.5. Indeed, starting from
the end by taking Laplace transform in u of (34), we get

(0 (0) — p*
¥5.,(0)= (0 —c(n) <5rj(—)n _ sl ;_ ;M))

_5—6(17)( o 1 )_5—c(n)
_5+—’7 0—c(0) (0+)(0+ —0) 0—n

1 1 1 1
X - — - +
(5 —c(0)  (04)04—0) d—cln)  (6:)(0+ — '1))
in which the three terms involving ¢/(d,) cancel out and the remaining terms yield
the result of Corollary 2.5 for the process Y (¢) =u — X (¢).
(3) The first relation (33) is a consequence of a simple identity
1

5= 0) =rs5(0) + n3(0), (35)

where n3(0) = ffoo e %rs(u)du denotes the Laplace transform of the negative part
of the resolvent density, and of the fact that the latter is the exponential function
rs(u) = e>*/c’'(8,) (for u < 0) as shown for example in Bingham (1975). Let now
W(u) denote the inverse Laplace transform of the function 1/(6 — ¢(0)). For general
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two-sided Lévy processes, we have

o0

W(u)= / e 'P(X, € du)dr + / e 'P(X, € — du)dt (36)
0 0

(by (35)). We provide now an alternative expression for W(u) available in the
spectrally negative case

Corollary 4.2. The inverse Laplace transform of the function 1/(6 — c(0)) for
spectrally negative Lévy processes is given by

e(Lu _ T¢3.5+(u) _ 65“4
IS BT

W(u) =rs(u) — (37)

Proof. The first equality is immediate from Theorem 4.1(a). The second follows by
letting # — 6 in (34), which yields the resolvent density in terms of the joint Laplace
transform of 7, and X (t,):

)
e’ Fle— 001X ()] — P50, (u)

c'(04) c(0y)

rs(u) = u>0. ] (38)

Note: Formula (38) shows that knowing the resolvent is equivalent to knowing the
joint Laplace transform of the hitting time 7, and of the overshoot X(z,), evaluated at
the particular values which make the “Wald exponential” a martingale. In some special
cases, like when X is a compound Poisson process with exponential jumps—see Gerber
and Shiu, 1998, or more generally, when the jumps have a phase-type distribution—see
Asmussen et al., 2000, the joint Laplace transform can be computed analytically, which
makes (37) preferable to (36).

Using this corollary, we give now two explicit representations for the value of
Canadian barrier options with put boundary payoff and arbitrary final payoff.

Proposition 4.3. Let L = ¢e“ denote a fixed barrier and u =y — a denote the initial
log-surplus over the barrier a. If X, = y — Y, satisfies the assumptions of Theorem

4.1, and n(y) = (K —e¥), = (K — Le"), is the put barrier payoff, then

Va,n,f,r,at(y) = Va(”) = KW&,O(“) - L'Ilé,l(u)

+ /0 AV (1 — %) f o) dx — 2 () 16 (39)

=Ko (r‘;(f)+/uoor5(z)dz) —(at+q)L <5T(f)1 Jr/uooe”zr(;(z) dz)

e5+(”_x)

+/0 ocr(;(u—x)fa(x)dx—ocf;k(5+)r5(u)+/ mfa(x)dx.
(40)
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Notes: (1) The first formula is more convenient for examples which allow an explicit
Wiener-Hopf factorization, since both ¥s,(u) and W(u) are expressible in terms of
the Wiener—Hopf factors. The second formula is preferable if the resolvent is to be
computed numerically.

(2) Even though formula (39) makes perfect sense for spectrally two-sided Lévy
processes, we conjecture that it does not provide the value of Canadian—American puts
in that case.

Proof. It is enough to establish separately the two particular cases A: f =0, n=(K —
Le"), (the payoff from overshooting the boundary) and B: m = 0 (the payoff from
expiration, if the boundary is not crossed).

Case A: When f = 0, observe that the solution of (13) can be expressed proba-
bilistically as

Va(u) = Eyfe™ " n(Y (1,))],

where the subscript in 7, refers to the barrier of the process X; =y — Vi1, =
inf{t: X; > u} =inf{s: ¥, < a}. The function V,(u) may therefore be obtained directly
by applying (34) to the spectrally positive process X; = y — ¥; with # =0 and 1 and
using ¢(1) =r — g, yielding

Va(u) = Ele™""(K — Le™ 7)) = KW, () — L¥5.1(u)

— Ko (”5(”) T /oo r(s(z)dz) — (6 — c(1))
+ u

x ( (;j(f)l n / e_(z_”)r(;(z)dz)

= K5 (r(;(u) + /00 r(;(z)dz) —(x+9q)

5+ u
. o0

L ( ro(u) +/ e“_zr(;(z)dz> . (41)

o —1 "

Case B: When © = 0, we recognize that the inverse Laplace transform of
o fa(0) — f2(0+))

4 < 42
0—c(0) (42)

is a combination of the inverse Laplace transform W(u) of 1/(6 — ¢(0)) provided in
Corollary 4.2 and of the convolution of W(u) with f,(x):

u 65+(M*X) d ‘5 e§+(u) 43
[t = ST s e - arien fnw - 555 @)
Finally, simplifying (43) and putting it together with (41) gives the desired result (40).

0

Note: The joint Laplace transform ¥s, may be computed explicitly for the com-
pound Poisson model with phase-type jumps (see for example Asmussen et al., 2000),
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leading to an explicit formula for the resolvent density rs(u) via (38). In that case,
(40) provides an explicit formula for the American put requiring only root solving and
matrix exponentiation.

5. The recursive algorithm

For a fixed positive integer n, let S, be a random variable with I'(n,n/T) distribution,
independent of Y. Since E(S,)=T and Var(S,)=T/n, S, — T in distribution as n — oo.
The idea is to use

Va(y) == Eyle ™ "n(Y; ns,)]

for large n as an approximation to the price of an American put. Since S, =71 + 1> +
.-+ + T, where T; are independent exponential rate n/T random variables, the Markov
property enables us to compute ¥, using the following recursive algorithm:

Vo(y) :=n(y),

I/l(y): Ey[eirrin(y‘fi)l{T,’ST[}]+[Ey[eirTiI/l'—l(YT,)l{’E,‘>T[}]’ i: 15"'9”5 (44)
where the stopping times 7; are now the optimal exercise times of American type
options with random expiry time 7; and final payoff given by V;_;. The memoryless
property of the exponential distribution means that the optimal exercise levels at each
stage are now constants, so that the optimal exercise times t; are of form

n=inf{t > 0: ¥, < a;} (45)

for some constant optimal levels @;, which can be thought of as a piecewise constant
approximation to the time-dependent optimal exercise curve for the fixed expiry option.
Note that some care is needed when computing the final payoffs V;_;, since these can
come either from immediate stopping (in which case V;_i(y) = (K —¢e”),), or from
continuing in which case V;_;(y) is given by Proposition 4.3.

With 7; as in (45) and continuing with the previous notation y = u + a;, consider
the value of a put with the exercise level at each stage fixed at a;:

I/i(uy ai) = [Eu+a, [eirrln(Y‘c,-)l{r,-ng}] + [Equa,-[eirTl ifl(YT,- —ai—1, ai*l)l{ri>T,‘}]
and its Laplace transform

Ve = [ e iman du
0

(We already know that Vi(x,a) = II(a + x) for x < 0, by definition.) Of course, the
Vi(u,a) and V;(u,a) are particular cases of the V,(u) and V) (u) considered in the
previous section. At each stage we need to maximize V;(u,a) over a to obtain V;(y)=
sup, Vi(y —a,a)= V(¥ —a;,a;). Note that the optimal exercise levels a; do not depend
on the starting point y (hence nor the initial excess u).

Before we can implement such a recursive algorithm, we need to verify that
Ele"(+"S) m(Y., As,)] can indeed be used as an approximation for [E[e " (*<"T)
7(Y:, a7 )]—more precisely, that

E[e™" ™" n(Yr, 15,)] — Ele™" M Da(Ye, a7)]



96 F. Avram et al. | Stochastic Processes and their Applications 100 (2002) 75—107

as n — oo. Recall that S, — T in distribution means that E[ £ (S,)] — E[f(7T)] for every
bounded continuous function f. In the Brownian model considered in Carr (1998), Y
is continuous, so E[e "SI n(Y, s,)] — E[e 7 (Y, Ar)] essentially follows by
definition. When Y is discontinuous, a little more work is required.

Lemma 5.1. Let Y be a spectrally negative Lévy process and for fixed T let S, be
a sequence of random variables with I'(n,n/T) distribution, independent of Y. Let f
be a bounded uniformly Lipschitz function satisfying

|f(t.x) = f(s, p)| <min(K,C(|s — [ + |[x — y[)) Vs.t,x,y (46)

for some constants K and C. Let ¢ > 0 be sufficiently small but otherwise arbitrary.
Then for any stopping time t we have

[EL/(x A Sp, Yens )] — ELf (AT Yenr)l| < &

whenever

K2 v(e/(6C),c0)log e

n> — 1877 .
&

(47)

(where v is the Lévy measure of —Y.)

Proof. Choose d; and 0, ~ o(d1) such that |f(s,y1) — f(t,¥2)| <¢/3 for all |y, —
y2| <61 and [s —t| < 02. From the central limit theorem we have (using a well-known
asymptotic for @)
= 2T 2 2
P(|S, — T| > 65) ~ 28(82y/n/T) ~ e~/ 48
(I | > 02) (02/n/T) PVr (48)
for arbitrary J, <1. Consider first the case that Y, = oW, has only the Brownian
component. We can choose 0, such that whenever |s — 7| < 02,

P|Y, - Y| > 6 @ —8}/20%|t—s| ~ ﬂ — 822675, 49
s =Y 1)~ oo, e \\/2?516 . (49)

(We have used essentially the same estimate as in (48).) On the other hand, if ¥; has
no Brownian component, we can choose d, such that whenever |s — | < Jy,

P|Y, — Y| > ;) ~ | — e %010 (50)

because for 0, <91 the dominant term in P|Y; — Y;| > J;) is the probability of making
a big jump of size d; in the time interval (s,7). When Y; has both the Brownian
component and the Lévy jump component

|, = Yl < |t = )| + 0| Wy — Wi + |, — Ji]
hence

BIY, — ¥ > 81) < Pu(t — )| + oWy — Wil + Wy — i > 81)
< P(a|W, — Wy| > 8,/2 or |u(t — s)| + |J; — J5| > 6,1/2)

= P(a|[W: = Wy| > 61/2) + P(|u(t — )| + [Ji — J5| > 61/2)

— P(a|W, — Wi| > 01/2)P(|u(t — s)| + [J: — Js| > 61/2).
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Since the estimate (50) is much bigger than (49) we have
P|Y, — Y| > 1) < P(lu(t — s)| + |, = Jg| > 61/2) ~ 1 — e=%"@1/2:00), (51)

Recall that ¢; and d, = o(d;) have been chosen so that |f(s, y1) — f(t,12)| <¢/3
whenever |y; — y2| < ;1 and |s — ¢| < J,. Because of the Lipschitz assumption (46)
and J; = 0(9), choosing J; to be as large as possible we may take d; ~ ¢/(3C) and
the asymptotic behaviour of (51) is then 1 — e~ ®"(#(6C)1>) We now choose d, so
small that whenever |s — ¢| < 0,

P|Y, — Y| > 81) < 1 — e 02@/6002) < g/(3k),

which requires
_ log(1 —¢/(3K))

0 . 52
=7 NE/(60). %) ¢
Finally, choose n so large that (from (48))
2T 2 2
PIS, — T| > d5) ~ ——— =21 < ¢/(3K). 53
| | > 02) PVre /(3K) (53)

A sufficient condition for this is
e %) < /(3K
and because of (52) we need
B 2T%v(e/(6C),00)* log e ~ _18T2K2 v(&/(6C), 00)? loga.
[log(1 — &/(3K))I” e’

Then
|ELS/ (T A S, Yens, )] — ELf (e A T, Yenr)]|
=E[|f(t ASu, Yins,) = f( AT Year))yis,—1)>6,}]
FE[f(t ASp, Yens,) — (T AT Yorr) | gis,— 1) <6, 1 vensy) -y ear) > 611
+E[f(t ASp, Yens,) — (T AT Yenr) s, — 1) <6, L vensy) -y ear) <61}

< ¢/3+4¢/3+¢/3. |

Corollary 5.2. Let f(x) be a bounded uniformly continuous function. For an arbitrary
piecewise continuous function h(t), let T,=inf{t: Y, = h(t)}. Then for any fixed r > 0,

sup E[e™" "5 £(¥;, 05,01 — sup E[e "D £(Y a7)]| <&
h h

whenever (47) holds (where the suprema are taken over all piecewise continuous
functions h(t).

Proof. From Lemma 5.1 E[e™"®"5) £(Y, 1s5,)] — E[e ™" £(Y,, Ar)] uniformly in
h as n — oo—that is, sup,, |E[e "5 £(¥; 15,)] — E[e™ ™ D £(Yy,a7)]| — O at the
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same rate as (47). The result now follows from the fact that
sup E[e™" %) £ (Y, p5,)] — sup E[e ™ £ (Yo ar)]
h h

< sup|E[e™" ") £ (Yyyns,)] — E[e" D f(Yoar)]l. O
h

Remarks. (1) The rate of convergence given by (47) depends critically on the be-
haviour of v near 0. For a compound Poisson process, v is a finite measure whose total
masses v(0,00) is the jump rate. In this case (47) becomes —18T2K?v(0,00)?c 2 loge
and so the rate of convergence is essentially 1//n but with a logarithmic correction.
In the case of a general Lévy process with finite variation satisfying (3), an integration
by parts shows that

1 1
/ xv(dx) =ev(e, 1)+ / v(x,1)dx.

Since the left-hand side above has a finite limit as ¢ — 0 and both terms on the
right-hand side are positive, both must have a finite limit as ¢ — 0. Therefore,
the worst-case scenario in (47) can be obtained from the integrability condition
fo L V(x,00)dx < oco. For example, we must have in particular that v(e,00) ~ o

((eloge)~") which gives a rate of convergence better than —c~*(loge)~'. On the other
hand, if v(e,00) ~ —loge (which is the case for a Gamma process, for example),
the rate of convergence is —187T2K2¢ %(loge)*—in other words, it is still essen-
tially 1/y/n but with a different logarithmic correction. If we do not make the fi-

nite variation assumption (3), we would only have fol x*v(dx) < oo and the same
integration by parts argument would give fo L Xv(x,00)dx < oo. Thus different types
of Lévy processes can give rise to very different rates of convergence. The recur-
sive algorithm performs best with Lévy processes which have a “small” Lévy
measure.

(2) Note that the rate of convergence would be much faster if ¥; did not have jumps
but only a Brownian component with drift, for then instead of (51) we would be able
to use (49) which would then give an exponential rate of convergence.

(3) The rate of convergence in Corollary 5.2 is stated in terms of boundary crossing
times of the form described because this is the context in which Corollary 5.2 is applied
to obtain convergence of the recursive algorithm presented in this section. However,
the same rate of convergence holds for arbitrary stopping times.

(4) The sizes of the constants in (47) also have practical implications for the perfor-
mance of the recursive algorithm. In the case of a standard American put with strike
price K we have f(f,x)=¢ (K —¢e*), and it is easily checked that the K in (47) is
the strike price and we may take C = K(1 A r).

(5) The assumption that f is uniformly Lipschitz is not strictly necessary; the same
proof will work for a bounded uniformly continuous function. The only difference is
that the rate of convergence will involve v(d1(¢), 00) for some function d,(¢) determined
by the modulus of continuity of f.
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5.1. A recursive algorithm for the value of n-Erlang American puts

In the context of the recursive algorithm (44), at the ith stage, we know the op-
timal exercise level a;_; for the (i — 1)th stage, V;_1(u,a;—;) and its Laplace trans-
form V;? ,(0,a;—1) (start with a9 =logK, Vo(u) = n(u) = (K —e*); and Vj(0,a0) =
foao e %n(u)du). We take as the final payoff at the end of each stage i fi(z)=V;_(z—
a;—1,a;—1) (note that this depends on a;_;), so that

ff(O,a)z/ e "V \(u+a—ai_1,a;_1)du.
0
But at the ith stage we are looking for an exercise level @ < a;_;, so we have
aj—1—a
f1(0,a) = / e Mn(u+ a)du + e MmO (0,0, 1). (54)
0

To find the optimal exercise level a; for the ith stage and V;*(0,q;), we take f™(0,a)
as given by (54) and solve (27) to find the optimal exercise level a;, at which point
(32) gives an expression for V;*(0,q;) in terms of quantities which are all known by
the ith stage. Formula (40) (with f(z) = fi(z) =Vi—i1(z — ai—1,a,—1) and f7(0,a;) as
given by (54)) gives an expression for V;(u,a;). We now have V*(0,a;) and Vi(u,a;)
which are needed at the (i 4+ 1)th stage. Of course, in order to use (40), we need to
compute the resolvent density rs(x) for x > 0. Although there is no explicit formula for
this except in the case of only a few Lévy processes, it has been pointed out in Chan
(1999b) that rs(x) can be readily computed using the fast Fourier transform algorithm,
at least when ¢ # 0; when ¢ =0 the convergence of the relevant Fourier sums may be
rather slow.

Alternatively, we can use a similar recursive algorithm to compute the Laplace trans-
forms V;* at each stage (these are expressed solely in terms of ¥, and m) and once
V has been obtained, a single numerical Laplace inversion can be performed to obtain
Vo(uyay) = Eyyo [e 7@MD 7(Y, a5, )]. However, inverting a Laplace transform numeri-
cally is usually more computationally demanding than the fast Fourier transform which
is needed to compute V,(u,a,) by means of Proposition 4.3. (It should be emphasised
that the fast Fourier transform is only suggested here as a suitable means of computing
the resolvent density r;; since the Fourier transform of rs has a simple formula—(see
Bertoin, 1996) this involves a straightforward Fourier inversion. We are not propos-
ing here to use FFT methods to compute V,(u,a,) directly.) On the other hand, since
Corollary 3.1 (especially part(b)) gives the optimal exercise level in terms of Laplace
transforms £ (and hence, by virtue of (54), VX)), it is possible to give more explicit
formulae for the Laplace transforms V;* at each stage, at least when m(a) = (K —e“)..
Also, Proposition 4.3 only holds in the case n(a) = (K — %), whereas (16) and (26)
hold for general .

The Erlang put presented above essentially uses a (random) piecewise constant ap-
proximation to the optimal exercise boundary of an American put with fixed expiry.
The associated approximate optimal exercise policy can therefore be described as fol-
lows. At the earliest stage (which in our notation above is actually labelled stage n),
we exercise as soon as the log price Y falls below the optimal level a,. If this does
not happen before the first exponential time 7, expires, then at time 7,, we re-adjust
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the current exercise level to the new optimal level a,_; for the next stage and exercise
as soon as Y crosses this new level, and so on. Of course, because of the jumps in the
piecewise constant exercise boundary, it may well happen that as soon as we switch to
a new exercise level, we exercise immediately because we find that although Yy, was
above the old level a;, it is below the new level a;_;.

5.2. An algorithm for the value of n-Erlang American puts via Laplace inversion

In this section, we present an algorithm for computing the value V,,(u, a,) of n-Erlang
American puts via Laplace inversion. It must be emphasised that the algorithm does
not need to invert a Laplace transform at each stage. Instead it computes the Laplace
transform V" (0, a,) explicitly and ends performing a single Laplace inversion.

In this section, we will denote by Ly=e the successive barriers, by (=717 (0), V=
ViE(0,a;) the successive Laplace transforms of the final payoffs and value functions of
the various stages and by z;(0) the expressions K/0 — L;/(0 — 1).

Since Corollary 3.2(b) yields the Laplace transform V; — z; in terms of f[ —
zx, and Corollary 3.1(b) expresses the optimal level L also in terms of f} — z, it
will be enough to obtain an explicit formula for f;' — z;, and this is achieved in
Proposition 5.3.

Proposition 5.3. Let n(a)=(K —e“). (a) For k = 2, the transforms in u of the final
payoff at the end of stage k satisfy the recursion

0
F50) — z(0) = (Lk) :

Li—1) 0 —c(0)
. _ (K gl
where Ly are defined recursively as solutions of
oK gl
OC5+ OC(5+ — 1)

B ( Ly )‘5* . (fro1(0) = 21 (0) — (rK /o0 — (qLi—1)/(2(0 — 1))))’

=0 — lim .
kal 0—d. 0 — CI(Q)

(56)

(b) The transform in u of the final payoff at the end of stage k is given by

k—1 0
. <a> (Lk) K
5 —c(0) K) 006-1)

! o k=i Ly Ok qL;
R (é—cw)) (L) (oco_aw—l))' 7

1
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Notes: (1) The indeterminate limit in (56) yielding the optimal levels L; requires
using L’Hopital’s rule £ — 1 times. For example, for £ =2 we find the optimality
condition for the second barrier in the no dividends case to be

L\ _ ¢'(84)
<L1 ) —a(1/(84 — 1) = log(Li/K))’
(2) It is possible to show using the smooth junction equation of Corollary 3.1(b)
that expressions (56), (57) are well defined as 0 — 4.

Proof. (a) At the end of stage k, the barrier is switched from L; to a higher value
Ly = Lie* where a = log(Ly_1/Li). Thus, the payoff will either be an immediate
exercise payoff K — S, if S; is between the two barriers, or a continuation Canadian
payoff given by (32). Thus, the Laplace transform at the &’th stage is:

1) = [ K L)+ 0)

—K Lk ’ Lk Lk o=t Lk ’ *
0 ((1 - Lk—l)) S 0-1 <1 - (Lk_1> > + (Lk—1> Vi—1(0)

L \'
=z + <L> Vezy — zie—1)-
k—1

Recursion (55) follows now by plugging in f5(0) — z(0) = (Ly/Le—1)*(V}_,(0) —
zx—1(0)) the formula for ¥, provided in Corollary 3.2(b).

Recursion (56) for the barriers is obtained from Corollary 3.1(b) by applying (55)
and L’Hopital’s limit rule.

(b) Follows by iterating the recursion of (a), starting with the expression | —z; =
(L1/K)(K/0(0 — 1)) provided in Lemma 2.4. [

6. Concluding remarks

As demonstrated by this paper, the value of American options with one exercise
barrier may be approximated analytically under a spectrally one-sided (negative or
positive) exponential Lévy model. It seems quite interesting to investigate whether this
is still possible for the various spectrally two-sided Lévy models recently proposed by
Eberlein, Madan and Barndorf Nielsen, and for problems with two barriers.

Also, since the first step, the Canadian approximation was found to already have
an exercise boundary which is exact asymptotically, it seems interesting to compare it
with other similar one step approximations, based on “the early exercise decomposition”
approach.

This approach replaces the “nonhomogeneous” equation (13) by an “homogencous”
equation with no final payoff f, by subtracting out of V' the “Canadian European”
value of the final payoff

FOo)=E L™ f(Yr)] (58)
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(which satisfies the same nonhomogeneous equation as V). Thus, the difference ¥V =
V — f, called early exercise premium, satisfies the homogeneous equation:

(I'V)(»)—V(y)=0,
V(y)=#(y) fory<a,
V(c0)=0, (59)

where 7(y) = n(y) — f(»). In the final approximation we would replace back the
“Canadian European” value f (y) by the exact European value, and add to it the
approximate early exercise premium #. This idea has appeared in several variations
in the literature: for example, the approach taken in McMillan (1986), Zhang (1998),
Chan (1999b) and Gerber and Shiu (1998) all result in the same type of equation
as (59). McMillan (1986) proposed approximating the “early exercise” premium as
i(t, y) =~ h(t)d(y), where h(t) =1 — e 7"~ was judiciously chosen to combine the
terms —rh+ A’ in the resulting equation and to equal 0 at expiration. This leads again
to equation (59) where 6 = /(1 —e~’T) and f is again the initial European value
given by f(7T,y)= E,[e~"" f(Yr)]. We note that in the classical Brownian case studied
by McMillan, the ODE (59) has for fixed a the explicit solution ¥ = 7(a)e’>—),
where 0 is the negative root of the quadratic equation ¢2/202 + u — & = 0. Hence,
the optimal exercise barrier is found quite easily by maximization with respect to a,
leading to the nonlinear equation #'(a) = 07(a). Zhang (1998) proposed the “one-step
discretization” approximation for the “early exercise” premium. For an interval of size
T, this leads to Eq. (59) with d = + 1/T and f being the European value given
by f(T,y) = E,le™"7 f(Yr)]. It may be interesting to compare in further work the
Canadian approximation with these methods which use the exact European value and
only approximate the early exercise part.
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Appendix A. The value of Canadian put options under the compound Poisson model
with exponential jumps

In this section we assume that ¥; is compound Poisson with exponential jumps, i.e.
we assume that 0 =0 and J, = vaz’l Z;, where N, is a Poisson process with rate 1 and
Z; have exponential density fe .

Let now a =logL and & = logK denote the exercise barrier and strike price of
a put option on the logarithmic scale, with a < k. Since V(y) =K — ¢’ for y < a,
we find that the differential equation for the value of Canadian options (13) becomes
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in the put case

(GV)(y)—oV(y)+ 4 /°° (K—=e"F)p(z)dz + «(K —e”)
y—a
=(GV)(¥) =0V ())+MUKP(y —a)~Lp,_,(1)+xK —e’); =0 for y >a,
V(iy)=K —¢” for y <a, (A.1)

where (GV)(»)=uV'(y)+ 4 [ “ [V(y—2)] p(z)dz — AV (y) and V is differentiable
over (a,k) and (k,00) and continuous at k.
In the exponential case we have p}(0)= p(u)/(0 + ), and so (A.1) becomes

- - - yia
(GV)(y)—oV(y)+ 4 . V(y —2z)p(z)dz
b
K L
+ip(y —a) (ﬁﬂ—i—l)o for y > k, (A.2)
K L
(GV)(y) —oV(y)+ip(y —a) ([f - ﬁ+1)
+ouK—e’)=0 fora<y<k (A.3)

V(y)=K —¢’ for y <a,

where 7,7,V denote the value of the option in the three ranges and G is the operator
= , vk
G =p1f' W)+ 7 [, (v =2)]pE)dz = 2f(p).
Using the results of the previous section, we may check that the solution of (A.1) is
a combination of exponential functions. However, once the right form of the solution
is known it becomes simpler to determine it directly, using the easily checked:

Lemma A.1. The operator G acts on exponential functions as

Ge"™ = c(0)e” — ™ ip;_,(0). (A4)

The equation ¢(0)=ud+ Ap/(0+ ) — 1= — 216/(0 + ) =5 becomes in this case:
02+ 0(up — (A+9)) — 6p. Let §,,_ denote the positive and negative roots of this
equation.

The structure of the Eqs. (A.2) forces us to start with the middle case a < y <k,
for which we guess a solution of the form V(y) = kie”? + ke?¥ + 4, + Are” (the
two undetermined exponents end up being the two roots of the equation ¢(0) = 9).
Plugging in Eq. (A.3) and using the fact that

Ap(y — a)e

Ge™ =" c(0) — 50

(A.5)

6 Including the diffusion term leads to a similar analysis, the only difference being that the equation ¢(0)—9
will be of third order.
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yields
_ 01a _ Ora
i (ef’ly(c(el) o) W) ks (eozy(cwz) _o)- W)
+ A4, ((C(O) —90)— }p();g—a)> + A, <ey(c(1) —90)— W)

g p+1
Using ¢(1)=r—gq and ¢(0)=0 and putting 0, =4, 0,=0_ we find that 4,=K(ot/(ot+r))
and A, = —a/(o+ q) and ki, k, satisfy
kleé’a n kze‘L" . < Kr _ Lq )
B+or  B+o- pla+r)  (f+1)(a+q)

For the case y > k, we guess a solution of the form V(y)=ke” with 6=4_ (since
this domain is unbounded and the solution has to be bounded as y — oo, 0 must be
negative). Substituting this into (A.2) and using (A.5) and [’ % Ce®0=9) e~ dz =
g™ p(y — k) — e p(y — a)) yields

; Ap(y — k)e™ > e
k(e™(c(0)—0)— o2 A V(y —z)p(z)dz
(@ - - EZD=) i [ v o

+ip(y —a) ( L >

+ip(y —a) (K—L> + oK —¢e”)=0.

g p+1
- _ ]; /’Lp(y B k)eéik + iﬁ /y_a (kle(5+y—(5++/)’)z
ﬁ"’ o_ y—k
. - L
kred-Y=O—+Bz g a=Fzy g oy=(B+D2y {4 )
+ (ke +41e7 " +A4se Ydz+ip(y — a) ﬁ e

k ky
R R = ) Ot

+

ky Nk by A1 A _
5_+ﬁ(p(y k)e p(y —a)e )+ﬂ(p(y k) — p(y —a))

Ay L
[3+l —a)e)+P(y—a)<ﬁ—ﬁH>}

The constants k; and k, have been chosen so that all the terms involving
p(y — a) in the above expression cancel. We must therefore choose k& so that

ked—k kyed+k khed-F 4, Ayet
= + + — +
f+o- P+ P+ p o p+1

ket etk N Ko Ko
CB+6 B+ Pla+r) (BH1D(a+q)
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Finally, using the continuity at £ we find

Ko(g—r) =54
Ctratg

We have now proved the following result.

ke F 4 kped-F +

Proposition A.2. The value of a Canadian put option on a compound Poisson process
with exponential jumps is given by

k1e5+y + kze‘jfy + % — ﬁl] e’ for a < y < ks
riv) =4 -, ©>
ke —y fOr y > k:
where
k165+a N kze(L” B ( Kr Lg >
B+oy B+o- Bla+r)y (B+1(a+q))’
feyedk kped—k B Jred—k K N Ko
B+6o.  B+o- B+o- Pla+r) (B+D(a+q)
Ko(r — q)

b1k Sk _ [0k

ke®" + koe® " = ke’" + Tt q)
We compare now the results for exponential jumps with those obtained by approxi-
mating our Lévy process by a Brownian motion of equal variance > = 24872 (and
uz%z(ﬁ/(ﬁ+l))2(ﬁ+l)+r—q), where § — oo. In the limit, é,,0_ become the positive
and negative root of the quadratic equation (2/2)02%+(r —q —%/2)0 — (r +2)=0. We
multiply the first equation by S and replace the second equation in the system above
by the third minus f times the second

kie®+p N kye-p _ ( Kr Lqp >
B+ds  p+o- (a+r)y B+D(a+q))’
kie® k5, kpedk5_ B ked=*5_ n Ko
B+os = B4+o-  Pf+o-  (B+D(x+q)
- ko, K —q)
k1e®tF + ke F = e + .
: ? (@ +r)a+q)
Finally, multiplying the second equation by f and taking the limit f — oo yields
K L
kleé+a _"_kzeé,a — ( r . q ) ,
(a+r) o+gq
5 _ K
ky e‘m‘&r + ke Ko =ked k5 + * ,
oa+gq
Ko(r —q)

ket 4 etk =tk 1
! 2 (a+r)a+gq)
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If ¢ =0, this becomes

Kr
kle‘S*“ + kzeéfa = S
o

k15+eé+k + ko e’ f — K =ko_eF,

Kr
o+r
which agrees with the results of Carr (1998) when the boundary L is optimized.

ke F + kped—F = ked-* +
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